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Abstract 
 

In a previous paper (see [7] ) we considered the family of multi-argument functions 
called multidistances, introduced in some recent papers (see [1]-[6]) by J.Martin and 
G.Mayor , which extend to n -dimensional ordered lists of elements the usual concept 
of distance between a couple of points in a metric space. In particular Martin and 
Mayor investigated three classes of multidistances, that is Fermat, sum-based and 
OWA- based multidistances. In this note we introduce a new family of multidistance 
functions, which are a generalization of the sum-based multidistances and we call 
them arithmetic- geometric multidistances. 
 
Keywords: multidistance, sum-based multidistances, arithmetic- geometric 
multidistances 
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1. INTRODUCTION 
 

 
In some recent papers (see  [1] –[6] ) J.Martin and G.Mayor (M. and M. in the sequel) 
proposed a formal definition of a multi-argument function distance.  
In their papers, the formal definition of a distance function is extended to apply to 
collections of more than two elements. The measure proposed by the authors applies 
to n -dimensional ordered lists of elements. The authors give the definition of (weak) 
multidistance and strong multidistance and present significant examples of 
multidistance functions: in particular Fermat multidistances, sum-based 
multidistances and OWA-based multidistances. 
In this note we introduce a new family of multidistance functions , which are a 
generalization of the sum-based multidistances and can be called arithmetic- 
geometric multidistances. 
 
 
 
2. NOTATIONS AND DEFINITIONS 
 

 
We recall briefly the formal definition of multidistance functions. (see, for example, 
[7], for further details). Given a setX , let X

�
 be the collection of all n -dimensional 

lists of elements of X  with 1,2,...n = In other words, we call X
�

 the set given by 
1

n

n

X
∞

=
∪ . 

The definition of multidistance function over the set X  is the following: 
 
DEFINITION OF MULTIDISTANCE 
 
A function [ ]: 0,D X → ∞

���
 is a multidistance on a set X  if the following properties 

hold, for all n  and for all 1,..., , :nx x y X∈  
 
( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1

1 1

1 1

1 ,..., 0 , 1,...,

2 ,..., ,..., 1,...,

3 ,..., , ... ,

n i j

n n

n n

m D x x if and only if x x for all i j n

m D x x D x x for any permutation on n

m D x x D x y D x y

π π π

= = =

=

≤ + +

 

 
REMARK  
 
 Note that if D  is a multidistance on a set X , then the restriction of D  to 2X  is an 
ordinary distance function on X . 
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In [2] M. and M. , starting from an ordinary distance function, introduce several kinds 
of multidistance functions. In particular, they consider Fermat, sum-based and OWA-
based multidistances. In this note we focus our attention on the so-called sum-based 
multidistances. 
 
DEFINITION OF SUM-BASED MULTIDISTANCE 
 
Consider an ordinary distance function d  on X  and define a function [ ): 0,D Xλ → ∞

�
 

as follows: 
 

( )
( ) ( ) ( )

1

1

0

,..., , 2n i j
i j

D x

D x x n d x x for n

λ

λ λ
<

=

 = ≥


∑
 

 
In [4] M. and M. proved that Dλ  is a multidistance if and only if: 
 
( ) ( )

( ) ( )

2 1

1
0 2

1

i

ii n for any n
n

λ

λ

=

< ≤ >
−

 

 
In this case we call Dλ  a sum-based multidistance. 
 
 
 
3. ARITHMETIC-GEOMETRIC MULTIDISTANCES 
 
 
Now we introduce a new family of multidistance functions and we call them 
arithmetic-geometric multidistances. The definition is as follows. Consider an 
ordinary distance function d  on X  and define a function [ ): 0,AGD Xλ → ∞

�
 in the 

following way:    
 
 

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1

1

2
1

0

,..., , ,
22

1
0 2

1

AG

n
AG

n i j i j
i j i j

D x

nn
D x x n d x x n d x x

where n for n
n

λ

λ λ λ

λ

< <

 =

    
 = + −    
     

< ≤ ≥
−

∑ ∏
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REMARK 1 
 

Note that  ( ) ( ) ( )1 1 0
22 2

nn n
n n nλ λ 

− = − − ≥    
 

 by definition. 

 
REMARK 2 
 
Note that  ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , 1 , ,AGD x x n d x x n d x x d x xλ λ λ= + − =    
That is, the restriction of AGDλ  on 2X  is simply d . 

 
We can now prove the following 

 
THEOREM 
 
 AGDλ is a multidistance function. 

 
Proof.  
  
It is easy to verify that conditions ( )1m  and ( )2m  are satisfied. Then we have to prove 

condition ( )3m , that is 

 
( ) ( ) ( )1 1,..., , ... ,AG AG AG

n nD x x D x y D x y y Xλ λ λ≤ + + ∀ ∈  
 

We start from  the arithmetic-geometric inequality  
  

( ) ( ) ( ) ( ) ( )
1

2 1 2
, , ,

1

2

n

i j i j i j
i j i ji j

d x x d x x d x x
n n n< <<

 
≤ =  −  
 
 

∑ ∑∏  

 
On the other hand, we can observe that  
   

( ) ( ) ( ) ( ) ( )
1

, , , 1 ,
n

i j i j i
i j i j i

d x x d x y d x y n d x y
< < =

 ≤ + = − ∑ ∑ ∑    that is         

( ) ( )
1

1
, ,

1

n

i j i
i j i

d x x d x y
n < =

≤
− ∑ ∑ . Thanks to this inequality then we get 

 

( ) ( ) ( )
1

2

1

2
, ,

nn

i j i
ii j

d x x d x y
n =<

 
≤ 

 
∑∏    
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By using again the same inequality we can write 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

1

2
1

1 1

1 1 1

,..., , ,
22

2
1 , ,

22

1 , 1 1 , ,

n
AG

n i j i j
i j i j

n n

i i
i i

n n n

i i i
i i i

nn
D x x n d x x n d x x

nn
n n d x y n d x y

n

n n d x y n n d x y d x y

λ λ λ

λ λ

λ λ

< <

= =

= = =

   = + − ≤   
    

  
≤ − + − =  

  

= − + − − =  

∑ ∏

∑ ∑

∑ ∑ ∑  

We conclude that   ( ) ( )1
1

,..., ,
n

AG
n i

i

D x x d x yλ
=

≤∑  , that is 

( ) ( ) ( )1 1,..., , ... ,AG AG AG
n nD x x D x y D x y y Xλ λ λ≤ + + ∀ ∈ . And the proof is complete. □  

 
Last thing, we can easily establish a simple relationship between ordinary sum-based 
multidistances Dλ  and our arithmetic-geometric multidistances AGDλ . 

Note that, if we set ( ) 1

1
n

n
λ∗ =

−
, we have ( ) 0

22

nn
nλ∗ 

− = 
 

 and then  

( ) ( ) ( )1 1

1
,..., , ,...,

1
AG

n i j n
i j

D x x d x x D x x
nλ λ∗ ∗

<

= =
− ∑  

Note also that , since ( ) 0
22

nn
nλ 

− ≥ 
 

, we have obviously AGD Dλ λ≤ . 

In general, thanks to the arithmetic-geometric inequality , we can write 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2
1

1

,..., , ,
22

1
, ,

22

2

1 1
, , ,...,

1 1

n
AG

n i j i j
i j i j

i j i j
i j i j

i j i j n
i j i j

nn
D x x n d x x n d x x

nn
n d x x n d x x

n

n n d x x d x x D x x
n n

λ

λ

λ λ

λ λ

λ λ ∗

< <

< <

< <

   
= + − ≤   

    

  
≤ + − =  

   
 
 

  = + − = =  − −  

∑ ∏

∑ ∑

∑ ∑

 

 
 
To sum up, we can conclude that 
 

( ) ( ) ( ) ( )1 1 1 1,..., ,..., ,..., ,...,AG AG
n n n nD x x D x x D x x D x xλ λ λ λ∗ ∗≤ ≤ = . 
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6. CONCLUSIONS 
 

We consider a special class of multi-argument functions, called multidistances, 
introduced in some recent papers (see [1] –[6] ) by J.Martin and G.Mayor , which 
extend to n -dimensional ordered lists of elements the usual concept of distance 
between a couple of points in a metric space. They considered several kinds of 
multidistances and in particular the family of the so-called sum-based multidistances. 
In this note we introduce a new family of multidistance functions , which are a 
generalization of the sum-based multidistances, and we call them arithmetic- 
geometric multidistances. 
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