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Abstract

We consider the problem of sharing a divisible good, where agents
prefer more to less. First, we prove that a sharing rule satisfies strategy-
proofness if and only if it has the quasi-constancy property: no one
changes her own share by changing her announcements. Next, by con-
structing a system of linear equations in a manner that is consistent
with quasi-constancy, we provide a way to find every strategy-proof
sharing rule. Finally, we identify a necessary and sufficient condi-
tion for the existence of non-constant, strategy-proof sharing rules, by
examining the relationship between the constancy of strategy-proof
sharing rules and the dimension of the solution space of the linear
system.

Keywords: Strategy-proofness, Bossiness, Non-constancy, Quasi-constancy.

JEL Classification Numbers: C72, D71.
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1 Introduction

Consider a group of agents who are to share the operating cost of an orga-
nization. How do they share the operating cost? The agents usually pay
membership dues that are common to all of them to cover the cost. Such
a sharing rule is called the equal-sharing rule.1 However, the equal-sharing
rule appears to be inappropriate in the sense that it does not at all reflect
variations in agents’ types, such as differences in intensity of preferences.
Nevertheless, the equal-sharing rule is used in many situations, such as the
equal burden of inhabitants tax in Japan, the equal sharing of all national
television revenues among all NFL teams or all MLB teams, etc. Why do
agents not use a sharing rule that mirrors differences in their types?

In this paper, we search for such a sharing rule in a simple but essential
problem of sharing a divisible good, where each agent has only one ordi-
nal preference relation, such as the sharing of money (e.g., the sharing of
research funding among universities, budget sharing among government
agencies, etc.), the sharing of natural resources (e.g., water sharing among
stakeholders, the sharing of fishery resources among countries, etc.), etc.
The crucial feature of the problem is that ordinal information about pref-
erences is useless because every agent has only one ordinal preference
relation. So, cardinal information about preferences plays a significant role
in looking for sharing rules that reflect differences in agents’ types.

When we consider the problem, it is important to keep in mind that each
agent knows about own type but does not know about the other agents’
types. Since the true type is unknown to the other agents, agents may have
an incentive to gain by manipulating the sharing rule through misrepre-
sentation of their types. Thus, we search for strategy-proof sharing rules.
Strategy-proofness is an incentive compatibility property that requires that
agents should not benefit from misrepresenting their types irrespective of
the types reported by other agents, which was introduced by the seminal
papers of Gibbard (1973) and Satterthwaite (1975). The property seems
attractive, but it is too strong a requirement in the sense that it rules out
almost all rules in many environments.

A constant sharing rule, where the good is always split in a fixed ratio, is
a familiar rule that satisfies strategy-proofness. In addition to the constant
sharing rules, as is well known, there exists a non-constant sharing rule that
satisfies strategy-proofness if there are three agents (see Example 1). The
non-constant, strategy-proof sharing rule demonstrated in Example 1 is a
bossy sharing rule, i.e., one where a change in one agent’s type does not
affect her own share, but affects the other agents’ shares.2 Besides the above
sharing rules, is there any strategy-proof sharing rule? The answer is no,

1A sharing rule is a function that assigns a list of shares to each announcement of agents’
types.

2The notion of bossiness was introduced by Satterthwaite and Sonnenschein (1981).
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as shown by Lemma 1. The lemma tells us that a sharing rule satisfies
strategy-proofness if and only if no agent can affect her share at all through
misrepresentation of her type. This implies that it is only the bossy sharing
rule that satisfies strategy-proofness and non-constancy.

Bossiness might appear unreasonable, as Satterthwaite and Sonnen-
schein (1981) state that “[W]hile we have not exhaustively considered this
question, we have identified one substantial consideration that bears on
nonbossiness’s reasonableness and desirability. It relates to simplicity of de-
sign.” However, the property of bossiness is inherent in some “nice” rules,
including in the Vickrey auction (Vickrey (1961)) and in the Clarke–Groves
mechanisms (Clarke (1971) and Groves (1973)). Furthermore, non-bossiness
is demanding, because non-bossiness together with strategy-proofness im-
plies coalitional strategy-proofness in some environments such as pure ex-
change economies (see Barberà and Jackson (1995)) or the Shapley–Scarf
housing markets (see Pàpai (2000)).3 Besides, the reason for imposing non-
bossiness is often technical, in the sense that the reason is that it is too diffi-
cult to characterize the class of strategy-proof rules without non-bossiness.
But this is not the case with our model.

In addition, consider the following example. There are three agents
who are to share the cost of a project, where each agent prefers less to
more. Suppose that each agent reports a different type and then their
shares of the cost are (0.3, 0.2, 0.5). What should be selected as the “fair”
shares when the announcement of agent 1 is changed to the same as that
of agent 2? Some might insist that the new shares should be (0.2, 0.2, 0.6),
since those who report the same types should be treated as the same. This
rule violates strategy-proofness, because agent 1 benefits from the change
in her announcement. Others may urge that the new shares should be
(0.3, 0.3, 0.4). This rule is bossy, but not manipulable.

As mentioned above, the bossy sharing rule is not so unreasonable, and
thus, it is of interest to study how to find all of the strategy-proof sharing
rules. In Section 4, we construct a system of linear equations by using
Lemma 1 in the following way:

• Suppose that there are n agents having m types.

• Choose a ratio arbitrarily, which is the list of shares that agents receive
when they announce type 1.

• Choose a ratio such that agent i’s share remains unchanged, whenever
only agent i changes her announcement.

• Iterate the above operation for all agents.

3Coalitional strategy-proofness is a group incentive compatibility property that requires
that no coalition of agents should be able to gain from joint misrepresentation. Note that
coalitional strategy-proofness is a stronger requirement than strategy-proofness.
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Thus, we obtain mn linear equations in nmn−1 unknowns. By construction,
we can find any strategy-proof sharing rule by solving the linear system. In
Example 2, we demonstrate the linear system when there are three agents,
each of whom has two types.

Next, we investigate some properties of the linear system to find a re-
lationship between the constancy of strategy-proof sharing rules and the
dimension of the solution set of the linear system. In conjunction with the
fact that the dimension of the solution space can be written as a function
of the numbers of agents and of admissible types, the relationship im-
plies a necessary and sufficient condition that guarantees the existence of
a non-constant and strategy-proof sharing rule: there exists a sharing rule
satisfying non-constancy and strategy-proofness if and only if there are at
least three agents (Theorem 3). This makes a difference between the cases
of two agents and of three or more agents (although the difference could
be imagined from the example of Satterthwaite and Sonnenschein (1981) in
the pure exchange economy).

Finally, in Section 5, we discuss the adequacy of non-constant and
strategy-proof sharing rules, and conclude that, from some viewpoints, con-
stant, strategy-proof sharing rules seem more appealing than non-constant
ones. This may be a reason why the equal-sharing rule, which is a typical
constant sharing rule, is used in practice for resolving the sharing problem.

The Related Literature

Sprumont (1991) considered the division problem with single-peaked prefer-
ences, and showed that a division rule satisfies strategy-proofness, Pareto
efficiency, and anonymity if and only if it is the uniform allocation rule (e.g.,
see Sprumont (1991) or Barberà (2001) for details of the uniform allocation
rule). Later, Ching (1994) weakened anonymity to symmetry. The sharing
problem considered in our paper appears similar to the division problem
with single-peaked preferences. Indeed, our problem could be regarded as
a special case where each agent has the peak of her preferences when she
receives the entire good.

Our model is also analogous to the pure exchange economy model con-
sidered in Zhou (1991). Zhou showed that there is no rule that is strategy-
proof, Pareto efficient, and non-inversely-dictatorial in two-agent pure ex-
change economies, and conjectured that a similar impossibility result could
be proved in pure exchange economies with three or more agents.4 His
conjecture implies that there is a difference in the possibility of the existence
of a non-constant, strategy-proof, and Pareto efficient rule in two-agent ver-

4However, Kato and Ohseto (2002) have recently proved that there exist some rules
that are strategy-proof, Pareto efficient, and non-inversely-dictatorial in pure exchange
economies with four or more agents. Nevertheless, as noted in Kato and Ohseto (2002),
Zhou’s conjecture is still open in three-agent pure exchange economies.
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sus n-agent settings, where n ≥ 3. Thus, the difference implied by Theorem
3 is similar to the difference implied by Zhou’s conjecture.

This paper is organized as follows. Section 2 provides notation and def-
initions. In Section 3, we characterize strategy-proof sharing rules, and
demonstrate how to look for all of the strategy-proof sharing rules. By con-
structing a system of linear equations, we identify a necessary and sufficient
condition for the existence of a non-constant and strategy-proof sharing rule
in Section 4. We discuss the desirability of non-constant, strategy-proof
sharing rules in Section 5. Section 6 contains concluding remarks. Proofs
are given in the Appendix.

2 Notation and Definitions

Let N := {1, 2, . . . , n} be the set of agents, where 2 ≤ n < +∞. Let X :={
(x1, x2, . . . , xn) ∈ Rn

+

∣∣∣ ∑
i∈N xi = 1

}
be the set of ratios, where agent i ∈ N

receives xi, which we call agent i’s share.5

We assume that each agent is selfish, i.e., she cares only about her own
share. Let Θi :=

{
θ1

i , θ
2
i , . . . , θ

m
i

}
be the set of agent i’s types: θk

i ∈ Θi only if
ui(·;θk

i ) is a strictly increasing function of xi, where ui : X ×Θi → R denotes
agent i’s utility function. We assume that Θi = Θ j for any i, j ∈ N and
m ≥ 2. The domain is the set Θ := Θ1 × Θ2 × · · · × Θn. A type profile is a list
θ = (θ1, θ2, . . . , θn) ∈ Θ.

A sharing rule is a single-valued function f : Θ→ X, which assigns a list
of shares x ∈ X to each type profile θ ∈ Θ. It will be convenient to write
f (θ) = ( f1(θ), f2(θ), . . . , fn(θ)), where fi(θ) denotes agent i’s share chosen by
f at θ.

Now we introduce a property that the sharing rule is to satisfy. Strategy-
proofness is an incentive compatibility property, which requires that no agent
should be able to benefit from misrepresenting her type irrespective of the
other agents’ types.

Definition 1 (Strategy-proofness). A sharing rule f satisfies strategy-proofness
if, for all θ ∈ Θ and all i ∈ N, there is no θ′i ∈ Θi such that ui( f (θ′i , θ−i);θi) >
ui( f (θ);θi).

A constant sharing rule is a sharing rule that satisfies strategy-proofness.

Definition 2 (Constant Sharing Rules). A sharing rule f is a constant sharing
rule if, for some x ∈ X, f (θ) = x for any θ ∈ Θ.

The equal-sharing rule is a special case of constant sharing rules.

5This definition implicitly assumes that Pareto efficiency is automatically satisfied by
social choice functions considered in this paper.

6



Definition 3 (The Equal-sharing Rule). A sharing rule f is the equal-sharing
rule if f (θ) = (1/n, . . . , 1/n) for all θ ∈ Θ.

A dictatorial sharing rule, which always assigns the entire share to a
given agent, is also a special case of constant sharing rules. In order to
distinguish non-constant sharing rules from constant ones, we often impose
the following property.

Definition 4 (Non-constancy). A sharing rule f satisfies non-constancy if
f (θ) , f (θ′) for some θ, θ′ ∈ Θ.

3 A Way to Find Strategy-proof Sharing Rules

In this section, we provide an example of a non-constant, strategy-proof
sharing rule, and demonstrate how to find the sharing rule.

Aside from constant sharing rules, there is a non-constant sharing rule
that is strategy-proof, as shown in Example 1 below.

Example 1. Suppose that there are three agents, 1, 2, and 3, who are to share
a divisible good worth $100 to each of them. Furthermore, suppose that, for
each agent, the set of types consists of only two types, i.e., m = 2. Then, the
following sharing rule f̄ satisfies non-constancy and strategy-proofness:

f̄ (θ1
1, θ

1
2, θ

1
3) = x1 = (0.7, 0.2, 0.1) f̄ (θ1

1, θ
1
2, θ

2
3) = x5 = (0.5, 0.4, 0.1)

f̄ (θ2
1, θ

1
2, θ

1
3) = x2 = (0.7, 0.1, 0.2) f̄ (θ2

1, θ
1
2, θ

2
3) = x6 = (0.5, 0.3, 0.2)

f̄ (θ1
1, θ

2
2, θ

1
3) = x3 = (0.4, 0.2, 0.4) f̄ (θ1

1, θ
2
2, θ

2
3) = x7 = (0.2, 0.4, 0.4)

f̄ (θ2
1, θ

2
2, θ

1
3) = x4 = (0.4, 0.1, 0.5) f̄ (θ2

1, θ
2
2, θ

2
3) = x8 = (0.2, 0.3, 0.5).

The sharing rule f̄ is illustrated in Figure 1.6 �

Example 1 shows that it is possible to design a non-constant sharing rule
that satisfies strategy-proofness if there are three agents.7 The following
lemma provides a full characterization of strategy-proof sharing rules.

Lemma 1. A sharing rule f satisfies strategy-proofness if and only if

fi(θ) = fi(θ′i , θ−i)

for all θ ∈ Θ, all i ∈ N, and all θ′i ∈ Θi.

6In Figure 1, agent i’s share at a point in the simplex is denoted by the length of the
perpendicular from the point to the side that is opposite to the vertex labeled i.

7We shall show in Example 2 how to construct the non-constant, strategy-proof sharing
rule.
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1
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x7

2

x8

x3
x5 x6

x4

x1 x2

Figure 1: A Non-constant and Strategy-proof Sharing Rule

The proof is straightforward, so we omit it. Lemma 1 tells us that a
sharing rule satisfies strategy-proofness if and only if each agent never
changes her own share by misrepresenting her type. This does not lead
to the constancy of the sharing rule, because it might be a bossy sharing
rule, i.e., one where each agent could change someone else’s share through
misrepresentation of her type, even though she cannot affect her own share.8

Nevertheless, the bossy sharing rule is quasi-constant in the sense that each
agent never affects her own share by changing her announcements. In this
sense, Lemma 1 could be deemed to be an impossibility result.

The following example demonstrates that Lemma 1 plays a fundamental
role in finding strategy-proof sharing rules.

Example 2. Consider again the situation described in Example 1. Let f be a
sharing rule that satisfies strategy-proofness. Then, by Lemma 1, we have
the following:

f (θ1
1, θ

1
2, θ

1
3) = (x1

1, x
1
2, x

1
3) f (θ1

1, θ
1
2, θ

2
3) = (x3

1, x
3
2, x

1
3)

f (θ2
1, θ

1
2, θ

1
3) = (x1

1, x
2
2, x

2
3) f (θ2

1, θ
1
2, θ

2
3) = (x3

1, x
4
2, x

2
3)

f (θ1
1, θ

2
2, θ

1
3) = (x2

1, x
1
2, x

3
3) f (θ1

1, θ
2
2, θ

2
3) = (x4

1, x
3
2, x

3
3)

f (θ2
1, θ

2
2, θ

1
3) = (x2

1, x
2
2, x

4
3) f (θ2

1, θ
2
2, θ

2
3) = (x4

1, x
4
2, x

4
3),

where xk
i ≥ 0. Since

∑
i∈N fi = 1, we have the following equations:

x1
1 + x1

2 + x1
3 = 1 x3

1 + x3
2 + x1

3 = 1

x1
1 + x2

2 + x2
3 = 1 x3

1 + x4
2 + x2

3 = 1

x2
1 + x1

2 + x3
3 = 1 x4

1 + x3
2 + x3

3 = 1

8 It is worth noting that every non-constant and strategy-proof sharing rule is bossy.
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x2
1 + x2

2 + x4
3 = 1 x4

1 + x4
2 + x4

3 = 1,

where xk
i ≥ 0.

By construction, solving the system of the eight linear equations in 12
unknowns, we can find every strategy-proof sharing rule. To handle the
linear system easily, we put the equations into matrix form:




1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1







x1
1

x2
1

x3
1

x4
1

x1
2

x2
2

x3
2

x4
2

x1
3

x2
3

x3
3

x4
3




= 1.

Solving the linear system, we have



x1
1

x2
1

x3
1

x4
1

x1
2

x2
2

x3
2

x4
2

x1
3

x2
3

x3
3

x4
3




=




1
1
1
1
0
0
0
0
0
0
0
0




+ α1




−1
−1
0
0
1
1
0
0
0
0
0
0




+ α2




0
0
−1
−1
0
0
1
1
0
0
0
0




+ α3




−1
0
−1
0
0
0
0
0
1
1
0
0




+ α4




0
0
0
0
−1
0
−1
0
1
0
1
0




+ α5




0
−1
0
−1
1
0
1
0
−1
0
0
1




.

Thus, every strategy-proof sharing rule f is written as


f (θ1
1, θ

1
2, θ

1
3) = (x1

1, x
1
2, x

1
3) = (1 − α1 − α3, α1 − α4 + α5, α3 + α4 − α5)

f (θ2
1, θ

1
2, θ

1
3) = (x1

1, x
2
2, x

2
3) = (1 − α1 − α3, α1, α3)

f (θ1
1, θ

2
2, θ

1
3) = (x2

1, x
1
2, x

3
3) = (1 − α1 − α5, α1 − α4 + α5, α4)

f (θ2
1, θ

2
2, θ

1
3) = (x2

1, x
2
2, x

4
3) = (1 − α1 − α5, α1, α5)

f (θ1
1, θ

1
2, θ

2
3) = (x3

1, x
3
2, x

1
3) = (1 − α2 − α3, α2 − α4 + α5, α3 + α4 − α5)

f (θ2
1, θ

1
2, θ

2
3) = (x3

1, x
4
2, x

2
3) = (1 − α2 − α3, α2, α3)

f (θ1
1, θ

2
2, θ

2
3) = (x4

1, x
3
2, x

3
3) = (1 − α2 − α5, α2 − α4 + α5, α4)

f (θ2
1, θ

2
2, θ

2
3) = (x4

1, x
4
2, x

4
3) = (1 − α2 − α5, α2, α5),
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for some (α1, α2, α3, α4, α5) ∈
{
(α1, α2, α3, α4, α5) ∈ [0, 1]5

∣∣∣α1+α3 ≤ 1, α2+α3 ≤
1, α4 ≤ α1 + α5 ≤ 1, α4 ≤ α2 + α5 ≤ 1, and α5 ≤ α3 + α4 ≤ 1

}
.

The strategy-proof sharing rule introduced in Example 1 is given by
(α1, α2, α3, α4, α5) = (0.1, 0.3, 0.2, 0.4, 0.5). �

This example illustrates that we can obtain every strategy-proof sharing
rule by solving the system of linear equations constructed by using Lemma
1.

4 A Necessary and Sufficient Condition

In Section 3, we demonstrate a way to find all strategy-proof sharing rules in
the case where each agent has two types. In this section, we generalize the
way to the case where each agent has more than two types, and explore the
relationship between the constancy of strategy-proof sharing rules and the
dimension of the solution set of the generalized system of linear equations
to identify a necessary and sufficient condition for the existence of non-
constant, strategy-proof sharing rules. All Proofs in this section are given
in the Appendix.

Now we construct a generalized system of linear equations to find all
strategy-proof sharing rules. As demonstrated in Example 2, by using
Lemma 1, we obtain the following system of the mn linear equations in
nmn−1 unknowns:
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1 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
1 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 1 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0
0 0 ··· 1 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1
0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1







x1
1

x2
1...

xm
1...

xmn−2
1

xmn−2+1
1 ...
xmn−1

1
x1

2
x2

2...
xm

2...
xmn−2

2

xmn−2+1
2 ...
xmn−1

2 ...
x1

n
x2

n...
xm

n
xm+1

n
xm+2

n...
x2m

n...
xm(m−1)+1

n

xm(m−1)+2
n ...

xm(m−1)+m
n ...
xmn−1

n




= 1.

To simplify notation, let A denote the mn×nmn−1 coefficient matrix, and
x denote the nmn−1 × 1 matrix. The following lemma is concerned with the
properties of the coefficient matrix A.

Lemma 2. Consider the linear system Ax = 1. Then the following statements
hold:

(i) rank A = mn − (m − 1)n.

(ii) The dimension of the solution space of the linear system is

nmn−1 − {mn − (m − 1)n} .

We next examine the relationship between the constancy of strategy-
proof sharing rules and the dimension of the solution set of the linear
system. The following theorem is a fundamental result, which follows
from the fact that n − 1 linear independent vectors are necessary to express
all of the constant sharing rules, each of which is a typical strategy-proof
sharing rule.

11



Theorem 1. Consider the linear system Ax = 1. Then the dimension of the
solution set of the linear system is greater than or equal to n − 1.

Theorem 1 tells us that in order for every strategy-proof sharing rule
to be obtained as a solution of the linear system, it is necessary that the
dimension of its solution space is at least n − 1. This leads to the following
theorem, which states that (n−1)-dimensional solution space is not enough
for a non-constant sharing rule to be represented as a solution of the linear
system.

Theorem 2. Consider the linear system Ax = 1. Then, only the constant sharing
rule satisfies strategy-proofness if and only if the dimension of the solution set of
the linear system is equal to n − 1.

Theorem 2 shows the relationship between the constancy of strategy-
proof sharing rules and the dimension of the solution space of the linear
system. In Example 2, it is easy to see that the dimension of the solution
space, which is 5, is greater than n − 1, which is 2; thus there are many
sharing rules satisfying non-constancy and strategy-proofness as indicated
by Theorem 2.

Combined with Lemma 2, Theorem 2 implies that it depends on the
numbers of agents and of admissible types, whether or not there exists
a non-constant, strategy-proof sharing rule, which is formally stated in
Theorem 3 below.

Theorem 3. Consider the linear system Ax = 1. Then, there exists a non-constant
and strategy-proof sharing rule if and only if n ≥ 3.

Theorem 3 indicates that non-constant, strategy-proof sharing rules as
well as all of the constant sharing rules appear as solutions to the linear equa-
tions whenever there are three or more agents. Furthermore, the theorem
implies that more complicated sharing rules emerge as either the number
of agents or of types increases, since the dimension of the solution space of
the linear system becomes large as either of these numbers grows.

Theorem 3 gives a condition that is necessary and sufficient for the
existence of a sharing rule satisfying non-constancy and strategy-proofness.
It turns out that we can design non-constant and strategy-proof sharing
rules whenever there are at least three agents, while we can never do so
when there are only two agents. This makes a critical difference between
the two-agent and n-agent cases, where n ≥ 3. The result parallels the
conjecture of Zhou (1991), who states that there exists a rule that satisfies
non-constancy, strategy-proofness, and Pareto efficiency in n-agent pure
exchange economies, where n ≥ 3, whereas there does not exist such a rule
in two-agent pure exchange economies.9

9To be precise, Zhou (1991) conjectured that a rule satisfies strategy-proofness and Pareto

12



5 Discussions

In Section 4, we investigate the properties of the solution space of the linear
system, and show that if there are three or more agents, it is possible to
construct non-constant and strategy-proof sharing rules, which are bossy
as noted in footnote 8. In this section, we discuss the desirability of the
sharing rules from the points of view of fairness and implementability.

5.1 Fairness

As the notion of fairness, we adopt symmetry, which is one of the weak-
est properties that pertain to fairness. Symmetry requires that if agents
announce identical types, they should receive the same shares.

As mentioned in the Introduction, our model is considered to be a
special case of Ching’s (Ching (1994)),10 and the uniform rule (Sprumont
(1991)) is equivalent to the equal-sharing rule in our model; thus we can
prove that it is only the equal-sharing rule that satisfies symmetry and
strategy-proofness.11 Moreover, we can show that only the equal-sharing
rule satisfies envy-freeness.12 These results indicate that the equal-sharing
rule is attractive from the point of view of fairness. However, the sharing
rule is far from non-constant.

5.2 Implementability

It is easy to show that constancy is equivalent to monotonicity, which is both
necessary and sufficient for Nash implementation in our model.13 There-
fore, every strategy-proof sharing rule is Nash implementable when there
are only two agents, since it is a constant sharing rule. On the other hand,
when there are three or more agents, not all strategy-proof sharing rules
are Nash implementable. Indeed, none of the non-constant, strategy-proof

efficiency if and only if it is inversely-dictatorial in pure exchange economies. Note that
there exists an inversely-dictatorial and non-constant rule if there are three or more agents,
while every inversely-dictatorial rule is constant (because it is dictatorial) if there are only
two agents (see Zhou (1991) or Kato and Ohseto (2002) for details).

10Ching (1994) considered the division problem with single-peaked preferences, and
proved that it is only the uniform rule that satisfies symmetry, strategy-proofness, and
Pareto efficiency.

11The proof is straightforward (See Mizukami et al. (2003) for details).
12Envy-freeness is a requirement that each agent should never prefer someone else’s share

to her own, which was first introduced by Foley (1967).
13Necessity follows immediately from Maskin (1999) who showed that monotonicity is

necessary for Nash implementation. In the case of three or more agents, sufficiency also
follows from Maskin (1999), who proved that monotonicity and no veto power are sufficient
for Nash implementation, together with the fact that no veto power is automatically satisfied
in our model. In the two-agent case, sufficiency follows from the fact that only the constant
sharing rule, which is Nash implementable, satisfies strategy-proofness that is implied by
monotonicity, a necessary condition for Nash implementation.

13



sharing rules are Nash implementable, because they violate monotonicity.
In short, only constant sharing rules are Nash implementable no matter
how many agents there are.

It is also easy to check that monotonicity is equivalent to the rectangular
property which is a necessary and sufficient condition for secure implementa-
tion, i.e., double implementation in Nash and dominant strategy equilibria
(see Saijo et al. (2004) for details of secure implementation). Hence, we reach
the same conclusion as the one about Nash implementation: only constant
sharing rules are secure implementable, whereas none of the non-constant
and strategy-proof sharing rules are secure implementable. These results
suggest that constant sharing rules are appealing from the point of view of
implementability.

From some viewpoints, as argued above, constant sharing rules appear
to be more attractive than non-constant sharing rules including bossy ones.
This might be a reason why bossy sharing rules are not used in practice,
even if they satisfy strategy-proofness.

In this paper, we consider the situation where every agent has only
one ordinal preference relation; so cardinal information about preferences
is critical to look for rules that reflect agents’ characteristics. The require-
ment of the non-constancy of rules means that rules should mirror cardinal
information about preferences. Non-constancy might seem at first glance
to be agreeable because, if it is not satisfied, rules never reflect cardinal
information about preferences as well as ordinal information. However, as
mentioned above, non-constancy together with strategy-proofness is incon-
sistent with symmetry or Nash implementability. This indicate that, from
the point of view of fairness or implementability, it is no use employing car-
dinal information about preferences to search for non-constant rules, in the
sense that there is no desirable rule that depends on cardinal information
about preferences.

6 Conclusion

In this paper, we have constructed a system of linear equations in a manner
that is consistent with strategy-proofness, and explored the relationships
between strategy-proof sharing rules and the dimension of the solution
space of the linear system.

In Section 3, we have characterized the class of strategy-proof sharing
rules, and provided a way to find all of the strategy-proof sharing rules. In
Lemma 1, we have shown that only strategy-proof sharing rules have the
quasi-constancy property: each agent never changes her own share through
misrepresentation of her type. The lemma does not imply that strategy-
proof sharing rules are constant, because there can be bossy sharing rules

14



which are non-constant. However, the lemma implies that only strategy-
proof and non-bossy sharing rules are constant. Hence, combined with the
fact that strategy-proofness plus non-bossiness implies coalitional strategy-
proofness, the lemma leads to an impossibility result: there is no sharing
rule that satisfies coalitional strategy-proofness and non-constancy. Thus,
Lemma 1 may seem to be a possibility result, but the lemma has a somewhat
negative implication.

In Section 4, we have established a fundamental result concerning the
dimension of the solution space of the linear system constructed by using
Lemma 1: every strategy-proof sharing rule can be represented as a solu-
tion of the linear system, only when the dimension of the solution set is
greater than or equal to the number of agents minus one. Furthermore,
exploring the relationship between the constancy of strategy-proof sharing
rules and the dimension of the solution space, we have established that
more non-constant, strategy-proof sharing rules emerge, as the dimension
of the solution space, which is determined by the numbers of agents and
of types, becomes greater than the number of agents minus one. Thus,
we have shown that there are non-constant, strategy-proof sharing rules
when there are at least three agents. However, we have not yet found an
algorithm for easily finding such sharing rules (although we know that it
is possible to find them by solving the linear system constructed in Section
4). It would be an interesting area of further research to provide such an
algorithm.

In this paper, we have searched for bossy and strategy-proof rules by
constructing a system of linear equations. The way of finding such rules
developed here could help in the search for bossy and strategy-proof rules
in other environments, including in pure exchange economies where non-
bossy, strategy-proof rules have been mainly sought.
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Appendix

In the Appendix, we first provide a remark, which concerns constant sharing
rules, and then provide proofs.

Remark 1. Every constant sharing rule can be written as a vector

(x̄1, x̄1, . . . , x̄1︸         ︷︷         ︸
mn−1

, x̄2, x̄2, . . . , x̄2︸         ︷︷         ︸
mn−1

, x̄3, x̄3, . . . , x̄3︸         ︷︷         ︸
mn−1

, . . . , x̄n, x̄n, . . . , x̄n︸         ︷︷         ︸
mn−1

)t

for some (x̄1, x̄2, x̄3, . . . , x̄n) ∈ X, where the constant sharing rule always
assigns x̄1 to agent 1, x̄2 to agent 2, x̄3 to agent 3, . . . , x̄n to agent n.

Proof of Lemma 2-(i). Given n ≥ 2 and m ≥ 2, define matrix Ar by

ar
pq =


apq if q ∈

{
(r − 1)mn−1 + 1, (r − 1)mn−1 + 2, . . . , rmn−1

}
,

0 otherwise,

where ar
pq and apq denote the pq-th elements of Ar and A, respectively. Then,

we obtain the following matrices A1,A2, . . . ,An.

A1 =




1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0




,

A2 =




0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0




,

16



...

An =




0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...
...
. . .
...
...
...
. . .
...
. . .
...
...
. . .
...
. . .
...

0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1




.

Note that A1 + A2 + · · · + An = A. Let
(v
w
)

:= v!
w!(v−w!) .

Consider matrix A1. By means of Gaussian elimination, we obtain

rank A1 = mn−1.

Consider (A1 + A2). By Gaussian elimination, we have

rank(A1 + A2) = 2mn−1 − (mn−2)

= 2mn−1 −
(
2
2

)
mn−2(−1)2.

Consider (A1 + A2 + A3). By applying Gaussian elimination, we get

rank(A1 + A2 + A3) = 3mn−1 − (3mn−2 −mn−3)

= 3mn−1 −
{(

3
2

)
mn−2(−1)2 +

(
3
3

)
mn−3(−1)3

}

= 3mn−1 −
3∑

h=2

(
3
h

)
mn−h(−1)h.

Thus, by the construction of A, we can find that

rank(A1 + A2 + · · · + Ar) =



mn−1 if r = 1,

rmn−1 −
r∑

h=2

(
r
h

)
mn−h(−1)h if r ≥ 2.

Therefore, we establish that

rank A = rank(A1 + A2 + · · · + An)

= nmn−1 −
n∑

h=2

(
n
h

)
mn−h(−1)h
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= nmn−1 −
n∑

h=2

(
n
h

)
mn−h(−1)h + (mn −mn)

= mn −


n∑

h=2

(
n
h

)
mn−h(−1)h − nmn−1 +mn



= mn −


n∑

h=2

(
n
h

)
mn−h(−1)h +

n!
1!(n − 1)!

mn−1(−1)1 +
n!

0!n!
mn(−1)0



= mn −


n∑

h=2

(
n
h

)
mn−h(−1)h +

(
n
1

)
mn−1(−1)1 +

(
n
0

)
mn(−1)0



= mn −
n∑

h=0

(
n
h

)
mn−h(−1)h

= mn − (m − 1)n,

whenever n ≥ 2. �

Proof of Lemma 2-(ii). Let c1 := (1, 1, . . . , 1︸     ︷︷     ︸
mn−1

, 0, 0, . . . , 0)t be a constant sharing

rule where agent 1 always gets the entire share. Since the constant sharing
rule satisfies strategy-proofness, c1 is a particular solution of the linear
system Ax = 1. So, the solution set of the linear system is the affine space

{
x ∈ Rnmn−1

∣∣∣∣ x = c1 +w for some w ∈ Null(A)
}
.

Since the dimension of the affine space is equal to that of Null(A), and since
dim Null(A) is equal to the number of variables nmn−1 minus rank(A), the
dimension of the solution space is equal to nmn−1 − {mn − (m − 1)n}. �

Proof of Theorem 1. Suppose to the contrary that the dimension of the solu-
tion space of the linear system is less than n − 1, i.e., dim Null(A) < n − 1.
Except for the particular solution c1 defined in the proof of Lemma 2-(ii),
the linear system Ax = 1 must have n − 1 kinds of solutions such that

c2 = (0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, 1, 1, . . . , 1︸     ︷︷     ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, . . . , 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

)t,

c3 = (0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, 1, 1, . . . , 1︸     ︷︷     ︸
mn−1

, . . . , 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

)t,

...
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cn = (0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, . . . , 1, 1, . . . , 1︸     ︷︷     ︸
mn−1

)t,

because each of the solutions c2, c3, . . . , cn is a constant sharing rule, which
satisfies strategy-proofness. It follows from the definition of the solution
set provided in the proof of Lemma 2-(ii) that the vectors

c2 − c1 = (−1,−1, . . . ,−1︸           ︷︷           ︸
mn−1

, 1, 1, . . . , 1︸     ︷︷     ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, . . . , 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

)t,

c3 − c1 = (−1,−1, . . . ,−1︸           ︷︷           ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, 1, 1, . . . , 1︸     ︷︷     ︸
mn−1

, . . . , 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

)t,

...

cn − c1 = (−1,−1, . . . ,−1︸           ︷︷           ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, 0, 0, . . . , 0︸     ︷︷     ︸
mn−1

, . . . , 1, 1, . . . , 1︸     ︷︷     ︸
mn−1

)t

are all contained in Null(A). Since the n−1 vectors c2− c1, c3− c1, . . . , cn− c1
are linearly independent, dim Null(A) = n − 1: a contradiction because we
have assumed that dim Null(A) < n − 1. �

Proof of Theorem 2. The if part: Suppose not, then there exists a non-constant
sharing rule satisfying strategy-proofness. Let c′ denote the non-constant
sharing rule. Then c2 − c1, c3 − c1, . . . , cn − c1, and c′ − c1 are linearly inde-
pendent; otherwise, for some (r2, r3, . . . , rn), it must hold that

c′ − c1 = r2(c2 − c1) + r3(c3 − c1) + · · · + rn(cn − c1)
c′ = {1 − (r2 + r3 + · · · + rn)}c1 + r2c2 + r3c3 + · · · + rncn,

which contradicts the fact that c′ is a non-constant sharing rule. Conse-
quently, Null(A) has n linear independent vectors c2 − c1, c3 − c1, . . . , cn − c1,
and c′−c1, so dim Null(A) = n: a contradiction because dim Null(A) = n−1.

The only if part: Suppose that only the constant sharing rule satisfies
strategy-proofness. Then the linear system Ax = 1 must have the solu-
tions c1, c2, . . . , cn defined in the proofs of Lemma 2-(ii) and Theorem 1,
because each of the solutions is a constant sharing rule satisfying strategy-
proofness. It follows from the same argument as in the proof of Theorem
1 that dim Null(A) = n − 1. Since any other constant sharing rule can be
written as c1 plus a linear combination of c2 − c1, c3 − c1, . . . , cn − c1, the
dimension of Null(A) still remains n − 1. �
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Proof of Theorem 3. Before proceeding to the proof, we present two lemmas.

Lemma 3. Let 1(s) be a polynomial of degree 3. If 1 satisfies

(i) 1(1) ≥ 0 and

(ii) 1′(s) > 0 for any s ≥ 1,

then 1(s) > 0 for any s ≥ 2.

Lemma 4. Let 1(s) be a polynomial of degree l ≥ 4. If 1 satisfies

(i) 1(1) ≥ 0,

(ii) 1(i)(1) > 0 for any i with 1 ≤ i ≤ l − 3, and

(iii) 1(l−2)(s) > 0 for any s ≥ 1,

then 1(s) > 0 for any s ≥ 2, where 1(i)(s) := di1(s)
dsi .

We omit the proof of Lemma 3, since it is analogous to the proof of
Lemma 4 below.

Proof of Lemma 4. Since 1(l−3)(1) > 0 and 1(l−2)(s) > 0 for all s ≥ 1 by Condi-
tions (ii) and (iii) respectively, it must hold that 1(l−3)(s) > 0 for all s ≥ 1. In
conjunction with 1(l−4)(1) > 0, this implies that 1(l−4)(s) > 0 for all s ≥ 1. Sim-
ilarly together with 1(l−5)(1) > 0, this implies that 1(l−5)(s) > 0 for all s ≥ 1.
Iterations of this argument implies that 1(1)(s) > 0 for all s ≥ 1. Combining
Condition (i), i.e., 1(1) ≥ 0, we conclude that 1(s) > 0 for any s ≥ 2. �

Now we are ready to prove Theorem 3. By the contrapositive of Theorem
2, Theorem 3 is equivalent to the following statement: the dimension of the
solution set of the linear system is not n − 1 if and only if n ≥ 3. Then,
together with Lemma 2-(ii) and Theorem 1, Theorem 3 is also equivalent to
the following statement:

nmn−1 − {mn − (m − 1)n} > n − 1 if and only if n ≥ 3. (∗)

Thus, we prove (∗) instead of the original statement, when m ≥ 2.

The if part: Given n ≥ 2, define a continuous function 1 as follows:

1(s) :=
{
nsn−1 − {sn − (s − 1)n}

}
− (n − 1)

= (s − 1)n − sn + nsn−1 − n + 1.

For any integer n ≥ 3, it is sufficient to show that 1(s) > 0 whenever s ≥ 2,
in order to prove the if part of (∗).
Case 1: n ≥ 4.
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By Lemma 4, in order to prove that 1(s) > 0 for any s ≥ 2, it suffices to verify
that (i) 1(1) ≥ 0, (ii) 1(i)(1) > 0 for all i with 1 ≤ i ≤ n− 3, and (iii) 1(n−2)(s) > 0
for all s ≥ 1. Differentiating 1(s) i times, we get

1(i)(s) = n(n − 1)(n − 2) · · · (n − (i − 1))︸                                ︷︷                                ︸
i

{
(s − 1)n−i − sn−i + (n − i)sn−(i+1)

}
.

First, we check 1(1) ≥ 0.

1(1) = (1 − 1)n − 1n + n · 1n−1 − n + 1
= 0 ≥ 0.

Second, we verify that 1(i)(1) > 0 for all i with 1 ≤ i ≤ n − 3.

1(i)(1) = n(n − 1)(n − 2) · · · (n − (i − 1))︸                                ︷︷                                ︸
i

{
(1 − 1)n−i − 1n−i + (n − i) · 1n−(i+1)

}

= n(n − 1)(n − 2) · · · (n − (i − 1))︸                                ︷︷                                ︸
i

(n − (i + 1)).

Since 1 ≤ i ≤ n−3, it must hold that 4 ≤ (n− (i−1)) ≤ n and 2 ≤ (n− (i+1)) ≤
n − 2. Hence, we conclude that 1(i)(1) > 0 for all i with 1 ≤ i ≤ n − 3.

Finally, we confirm that 1(n−2)(s) > 0 for all s ≥ 1.

1(n−2)(s) = n(n − 1)(n − 2) · · · (n − ((n − 2) − 1))︸                                        ︷︷                                        ︸
n−2

×
{
(s − 1)n−(n−2) − sn−(n−2) + (n − (n − 2))sn−((n−2)+1)

}

= n(n − 1)(n − 2) · · · 3︸                  ︷︷                  ︸
n−2

×
{
(s − 1)2 − s2 + 2s

}

= n(n − 1)(n − 2) · · · 3︸                  ︷︷                  ︸
n−2

×1 > 0.

Therefore, 1(n−2)(s) > 0 for all s ≥ 1.

Case 2: n = 3.
By Lemma 3, in order to show that 1(s) > 0 for any s ≥ 2, it is sufficient to
check that (i) 1(1) ≥ 0 and (ii) 1′(s) > 0 for any s ≥ 1. In a way similar to
Case 1, we can verify that 1 fulfills (i) and (ii).

The only if part: Suppose to the contrary that n = 2. It is easy to check that
the inequality nmn−1 − {mn − (m− 1)n} > n− 1 does not hold when n = 2. �
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