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Abstract

In Finance, the modeling of a correlation matrix is one of the important problems.

In particular, the correlation matrix obtained from market data has the noise. Here we

apply the de-noising processing based on the wavelet analysis to the noisy correlation

matrix, which is generated by a parametric function with random parameters. First

of all, we show that two properties, i.e. symmetry and ones of all diagonal elements,

of the correlation matrix preserve via the de-noising processing and the efficiency of

the de-nosing processing by numerical experiments. We propose that the de-noising

processing is one of the effective methods in order to reduce the noise in the noisy

correlation matrix.
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1 Introduction

One of the important problems in finance and risk management is how to specify a correlation

matrix. For instance, calibrating BGM model which is also called LIBOR forward rate model

(LFM), one must estimate the correlation matrix of forward rate of each index.

It is one of the methods to specify the correlation matrix to fit the (noisy) elements of the

market correlation matrix by means of some parametric function. In De Jong et al. (2004),

using USD historical interest rate data they estimated the following function ρ of correlation

matrix:

ρ(Ti, Tj) = exp

{

− γ1|Ti − Tj | −
γ2|Ti − Tj |

max(Ti, Tj)γ3

− γ4|
√

Ti −
√

Tj|
}

(1)

where γ1, γ3, γ4 > 0, and Ti is the expiry date.

There exists another method to specify the correlation matrix based on the decomposition

using eigenvalues and eigenvectors of matrices. This is often called rank-reduction in finance

and is implemented by some researchers; “zeroing eigenvalues”( Spectral decomposition,

also known as principle component analysis) in Rebonato and Jäckel (1999), “2 and 4 rank-

reduction” in Brigo (2002), “eigenvalue zeroing by iteration” in Morini and Webber (2006),

application to multi-factor lognormal forward rate model in Rebonato (1999).

Moreover, Grubǐsić and Pietersz (2005) considered the problem to find nearest-low-

rank correlation matrix and made numerical comparisons with several algorithms where

the correlation matrix was generated by (1) with γ-parameters assumed to be distributed

normally (capped at 0 for γ1 , γ3, γ4) with mean and standard errors1 estimated by De Jong

et al. (2004).

Let Sn be the set of n× n R-valued symmetric matrices and X∗ be the transpose of X.

For X ∈ Sn, denote by X � 0 that X is positive semidefinite. Denote C ∈ Sn a correlation

matrix, e.g. that of observations in market. Then the problem to specify the correlation

matrix by k rank-reduction is given by the following optimization problem;

1The estimated values; γ1, γ2, γ3, γ4 (standard errors in parentheses) are 0.000 ( - ), 0.480 (0.099), 1.511
(0.289), 0.186 (0.127), respectively.
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Figure 1: 4 reduced-rank angle parameterization.

Find X ∈ Sn

such that minX
1
2‖C−X‖2

subject to rank(X) = k; {Xii} = 1, i ∈ {1, . . . , n};

X � 0 (X = BB∗, B ∈ R
n×k).

(2)

In particular, Rebonato (1999), Rebonato and Jäckel (1999) suggested the reduced-rank

angle parameterization that the matrix B in (2) is approximated by means of trigonometric

functions. We will briefly view the procedure.

Let us implement the reduced-rank angle parameterization.2 As generating the correlation

matrix C by (1) with constant γ-parameters estimated by De Jong et al. (2004), which we

call the non-noisy correlation matrix, and applying the reduced-rank angle parameterization

of 4 rank-reduction, we have the calibrated X such as Figure 1(left). And Figure 1(right)

is in the random elements case where γ-parameters assumed to be distributed normally

(capped at 0 for γ1, γ3, γ4) with mean and standard errors estimated by De Jong et al.

(2004), which we call the noisy correlation matrix.

From these figures, we can see the calibrated matrix X preserving noise through the

reduced-rank angle parameterization of the 4 rank-reduction. It is natural for us to wish to

have a calibrated correlation matrix of which the noise is reduced. Then in this paper we

propose a procedure of rank-reduction method with a noise reduction technique for a noisy

2In (1) we set Ti = {0.5, 1.0, . . . , 16.0} and the dimension of the correlation matrix is 32 × 32. Through
Section 1-3, we implicitly use this setting.
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correlation matrix, which is called “de-noising” given by Donoho (1995), Donoho (1993),

Donoho and Johnstone (1994) based on Wavelet analysis. To put it more precisely, we solve

the optimization problem (2) after applying “de-noising” to a noisy correlation matrix C.

The procedure of “de-noising”, which will be explained in Section 2, is (i)to apply C ∈ Sn

to the wavelet transform, (ii) to implement the noise reduction procedure called “soft-

thresholding” for high frequency signal and (iii) to take the inverse wavelet transform.

Then two questions arise: let C̄ be C to which the processing of “de-noising” is achieved,

(I) C̄ ∈ Sn?

(II) diag{C̄}={1,. . . ,1}?

As discussing the two questions below, we previously state the answers: The answer to

(I) is yes, that is, the property of symmetry of the correlation matrix preserves through the

“de-noising” processing. As for (II), by a numerical example we will show that all diagonal

elements of the correlation matrix processed do not feature ones. And we will deal with this

problem by means of some procedures.

This paper is organized as follows: In Section 2 we give preliminaries; rank-reduction,

wavelet analysis (multi-resolution analysis), and de-noising. In Section 3, we discuss above

two questions and propose a procedure of rank-reduction method with a noise reduction

technique. Section 4 contains numerical experiments. Finally in Section 5 we conclude.

2 Preliminaries

In this section we briefly review the rank-reduction method, the wavelet analysis (multires-

olution analysis) and the “de-noising” procedure.

2.1 Rank-reduction

Let C be a correlation matrix in R
n×n. If one estimates the correlation matrix, the number of

parameters to be estimated is n(n−1)/2. Since the number of parameters of the correlation

matrix depends on n, the estimation problem becomes more burdensome as n is increasing.

For the large number of n, Rebonato and Jäckel (1999), Rebonato (1999) suggested a

rank-reduction method. To see the procedure of the rank-reduction, assume that C ∈ Sn

3



and C � 0, i.e. C is a positive semi-definite symmetric matrix. Denote the eigenvectors and

eigenvalues of C by Λ and P, respectively. Then

C = PΛP∗

where P is a real orthogonal matrix, i.e. PP∗ = PP = I.

As denoting Λ := A∗A and B := PA, we have

C = PAA∗P∗ = BB∗. (3)

{λ2
i }ni=1 denotes the elements of the eigenvalues Λ such that λ2

1 > λ2
2 > . . . > λ2

n. If one

choose k rank-reduction (k < n), then he only has to set the eigenvales as λ2
k+1 = λ2

k+2 =

· · · = λ2
n := 0.

Using the trigonometric function, Rebonato (1999) specified the i-th row vector of B ∈

R
n×k by

bi,1 = cos(θi,1)

bi,k = cos(θi,k)

k−1
∏

l=1

sin(θi,l), for 1 < k < n,

bi,n =

k−1
∏

l=1

sin(θi,l).

There exists the advantage in that the correlation matrix C can be expressed by the angles

θ of n × k elements. That is, we can reduce the number of the parameters estimated from

n× (n− 1)/2 to n× (k − 1) for (n + 1)/2 > k.

Let X̄(θ) be the approximated correlation matrix of C by the trigonometric function with

angles θ. We can obtain the angles θ by solving the optimization problem

min
θ

n
∑

i,j=1

|{X̄(θ)}ij − {C}ij |2.

However in order to estimate the angles θ, for convenience we here iteratively calibrate

θi,j from θi,j−1, θi,j−2, . . . , θi,1, j < k using the decomposed matrix B.3 The point to notice

3Since we take such procedure in order to estimate angles θ, the case where the elements of B do not
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is that it is not necessary to feature ones in all diagonal elements of C in (3) via above

decomposition, while all diagonal elements of the correlation matrix constructed by bi,k are

ones (Rebonato (1999)). Then in order to feature ones in diagonal we process the rescaling

{crescaling}ij :=
cij√
ciicjj

(4)

where {crescaling}ij denotes (i, j) element of rescaled C, and cij is that of C (Brigo (2002)).

2.2 Wavelet analysis

In order to view the concept of the wavelet analysis, first of all we start with the multireso-

lution analysis. Subsequently in accordance with the non-standard form (see pp153-157 of

Dahmen et al. (1997)), we explain two-dimensional multiresolution analysis.

We introduce multiresolution analysis, which is the important concept. Let Vj be a vector

space indexed by j ∈ Z. Then a multiresolution analysis of L
2(R) is a collection of Vj such

that

1. · · · V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·,

2. ∩∞j=−∞
Vj = 0, ∪∞j=−∞

Vj is dense in L
2(R),

3. f(x) ∈ Vj ⇔ f(2x) ∈ Vj−1,

4. f(x) ∈ V0 ⇔ f(x + k) ∈ V0,

5. ∃ a scaling function φ ∈ V0 such that {φ(x− k)}k∈Z is a Riesz basis of V0.

As denoting the orthogonal space of Vj by Wj , then we have Vj ⊕Wj = Vj−1. We define

two operators: Pj : L
2(R)→ Vj , Qj : L

2(R)→Wj .

We give a concrete (discrete transform) example of the multiresolution analysis of order

1 (at resolution level 1), which is Mallat Algorithm (see e.g. Resnikoff and Wells (1998),

Press et al. (1992)).

Example 2.1 (4-coefficient case) Let {hi}i=0,1,2,3 be the filter coefficients4 and define

{gi}i=0,1,2,3 such that g0 = h3, g1 = −h2, g2 = h1 and g3 = −h0. Let ñ = 2n, n ∈ N.

enclose the range of bi,k by any angle θ happens. We skip such case in numerical experiments of Section 4.
4This is the case where the genus is 4.
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Define the transformation matrices H, H̄ ∈ R
2n−j

×ñ such that

H :=



















h0 h1 h2 h3

h0 h1 h2 h3

. . .

h2 h3 h0 h1



















,

G :=



















g0 g1 g2 g3

g0 g1 g2 g3

. . .

g2 g3 g0 g1



















,

where j(∈ N) is the number of the resolution level.

Let f(x) be a function in L
2(R) and f̃(x) be the corresponding discrete data in R

ñ. Then

the relationship of the multiresolution analysis and the discrete wavelet transform of order

1, i.e. j = 1 is

f̃(x) ∈ R
ñ −→ Hf̃(x) ∈ R

ñ/2 ⊕ Gf̃(x) ∈ R
ñ/2

∼= ∼= ∼=

f(x) −→ (P1f)(x) ⊕ (Q1f)(x)

∩ ∩ ∩

V0 V1 ⊕ W1.

Now define the Non-Standard form (NS-form for short) for two-dimensional multiresolu-

tion analysis. We refer to Dahmen et al. (1997).

Let Pj and Qj be projectors on subspaces Vj and Wj , respectively. Define an operator T

of the NS-form by

T =
∑

j∈Z

(QjTQj + QjTPj + PjTQj).

If resolution level J is finite, then

T0 =

J
∑

j=1

(QjTQj + QjTPj + PjTQj) + PJTPJ .
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For convenience, denote T0 = {{Aj, Bj, Γj}Jj=1TJ} such that

Aj = QjTQj : Wj →Wj

Bj = QjTPj : Vj →Wj

Γj = PjTQj : Wj → Vj

TJ = PJTPJ : VJ → VJ .

And we denote the operator of the two-dimensional discrete wavelet transform by T0.

T2

Γ2

B2

A2

A1

B1

Γ1

Figure 2: NS-form at resolution level 2.

Figure 2 shows two-dimensional multiresolution analysis by the operator T0 with J = 2.

Notice that though the structure of elements in this figure is different from that in Figure 5

of pp.155 in Dahmen et al. (1997), the elements of each NS-form are identical. The difference

is in the arrangement of elements and the dimensions of the NS-forms: If the dimensions of

the original data matrix are ñ × ñ, the dimension of our structure is same to the original

matrix but that in Dahmen et al. (1997) is 2ñ× 2ñ.

Let us clarify the discrete two-dimensional wavelet transform through an example.
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Example 2.2 Let us consider the 4-coefficient case same as in Example 2.1. As applying

the two-dimensional wavelet transform of order 1 to f(x) ∈ L
2(R2), we have (T0)f(x) =

{(A1)f(x), (B1)f(x), (Γ1)f(x), (T1)f(x)}. And let C be a discrete data matrix in R
ñ×ñ

corresponding to f(x). Using the transform matrices of H and G, we have (T0)C =

{GCG∗, HCG∗, GCH∗, HCH∗} and the following relationship;

(A1)f(x) ∼= GCG∗, (B1)f(x) ∼= HCG∗,

(Γ1)f(x) ∼= GCH∗, (T1)f(x) ∼= (T1)C = HCH∗.

2.3 De-noising

Donoho (1995), Donoho (1993) and Donoho and Johnstone (1994) proposed a method to

extract an unknown function f(ti) on [0, 1] from noisy data

di = f(ti) + σzi, i = 0, . . . , ñ− 1 (5)

where ti = i/ñ, zi is a Gaussian White noise and σ is a noise level.

In accordance with Donoho (1995), the processing of “de-noising” is to find f̂ which is at

least as smooth as f with high probability by minimizing the mean square error

ñ−1
ñ−1
∑

i=0;

E(f̂(i/ñ) − f(i/ñ))2 .

Let us apply the de-noising processing to {di}ñ−1
i=0 . Assume ñ = 2n, n ∈ N. First, applying

the discrete wavelet transform at resolution level 1 to d := {di}ñ−1
i=0 ∈ R

ñ, we have

d→ Hd + Gd.

Secondly implement the following “soft-thresholding” to Hd := {Hdi}(ñ−1)/2
i=0 ;

{Hd}new
i :=























{Hd}i − t0 for di > t0

0 for |di| 6 t0

{Hd}i + t0 for di < −t0

8



where t0 := MAD
√

2 log ñ and MAD is the median absolute deviation

MAD :=
median(||Hd| −median(|Hd|)|)

0.6745
.

Here median(d) is the median of {di}ñ−1
i=0 . Thirdly processing the inverse discrete wavelet

transform with {Hd}new := {{Hd}new
i }(ñ−1)/2

i=0 in place of {Hdi}(ñ−1)/2
i=0 , i.e.

dnew ← {Hd}new + Gd,

we obtain the de-noised data dnew.

Similarly we can apply the de-noising processing to the two-dimensional data structure.

Let us consider the NS-form in Figure 2. This data is processed via the discrete wavelet

transform at resolution level 2. In this case, all we have to do is to process the soft-

thresholding to A1, B1, Γ1, A2, B2 and Γ2, respectively. And with these data, the de-noised

correlation matrix can be obtained via the inverse discrete wavelet transform.

3 Properties of the correlation matrix processed by de-

noising

In this section, we discuss the two questions as mentioned above. To begin with, we prove

C̄ ∈ Sn. Therefore we first show a symmetric matrix preserves symmetry of the processed

matrix through both the wavelet transform and the inverse wavelet transform. Secondly the

de-noising processing is confirmed not to ruin symmetry of the matrix. Then as for question

(II), we give a concrete example and observe that all diagonal elements of a processed

symmetric matrix are not ones. For this problem, we make ones all diagonal elements of the

matrix by means of rescaling. Finally we apply the rank-reduction method with de-noising

to a noisy correlation matrix.

Let C be a noisy correlation matrix in Sñ, ñ = 2n, n ∈ N. T0 denotes the operator of the

two-dimensional discrete wavelet transform defined in Section 2 and we denote (T0)C that it

is obtained by the processing of the soft-thresholding to (T0)C. And let C be the de-noised

correlation matrix obtained by the processing of the inverse discrete wavelet transform to

9



(T0)C.

Figure 3 shows the series of flow of de-noising.

C −→ (T0)C
wavelet transform

↓ soft− thresholding

C̄ ←− (T0)C
inverse wavelet transform

Figure 3: The series of flow of the de-nosing processing to a correlation matrix.

In accordance with Figure 3, question (I) is whether each processing; “wavelet transform”,

“soft-thresholding” and “inverse wavelet transform”, preserves symmetry of the input data,

or not. So we divide two parts in order to prove C̄ ∈ Sñ: Part 1 is that the wavelet

transform and inverse wavelet transform preserve symmetry, i.e. (a)C ∈ Sñ ⇒ (T0)C ∈ Sñ

and (b) (T0)CSñ ⇒ C̄ ∈ Sñ. And part 2 is that the processing of soft-thresholding preserves

symmetry of the matrix, i.e. (T0)C ∈ Sñ ⇒ (T0)CSñ.

We give the two lemmas that these processes preserve symmetry of the matrix.

Lemma 3.1 Let C be in Sñ. T0 denotes the operator of the discrete wavelet transform and

T −1
0 denotes that of the inverse discrete wavelet transform. Then (T0)C ∈ Sñ where (T0)C

has the NS-form as in Figure 2. Moreover (T −1
0 )C ∈ Sñ.

Proof. Let (T0)C be in the NS-form. We prove (T0)C ∈ Sñ for 4-coefficient case of

the discrete wavelet transform at resolution level 1 as in Example 2.1. We use notation in

Example 2.1. For another coefficient case the property of symmetry of the matrix can be

shown by similar way. For the higher resolution level, we can iteratively show (Tj)C, for

j > 1 with (Tj)C ∈ Sñ. And for the inverse discrete wavelet transform, it can be shown

with recalling H∗ = H−1 and G∗ = G−1.

{cij}ñi,j=1 and {GCG∗}ij , ij = {1, . . . , ñ/2} denote the elements of C ∈ Sn and GCG∗,

respectively. Then

{GCG∗}k,l =

3
∑

j=0

gj

3
∑

i=0

c(i+1)+2(l−1),(j+1)+2(k−1)gi, for k, l = {1, . . . , ñ/2− 1},

10



{GCG∗}k,ñ/2 =

1
∑

i=0

gi

3
∑

j=0

c(i+1)+(ñ−2),(j+1)+2(k−1)gi +

3
∑

i=2

gi

3
∑

j=0

c(i+1)−2,(j+1)+2(k−1)gi,

for k = {1, . . . ñ/2},

{GCG∗}ñ/2,l =

1
∑

j=0

gj

3
∑

i=0

c(i+1)+2(l−1),(j+1)+(ñ−2)gi +

3
∑

j=2

gj

3
∑

i=0

c(i+1)+2(l−1),(j+1)−2gi,

for l = {1, . . . ñ/2}.

Therefore by cij = cji, GCG∗ ∈ Sñ/2. As for HCH∗, the property of symmetry holds by

the similar way.

It is easy to show GCH∗ = (HCG∗)∗. Since C ∈ Sñ, i.e. C = C∗, this equality holds

from

(HCG∗)∗ = GC∗H∗

= GCH∗

Thus we have that C ∈ Sñ ⇒ (T0)C ∈ Sñ. 2

Lemma 3.2 Let C be in Sñ. T0 denotes the operator of the discrete wavelet transform and

(T0)C denotes (T0)C to which the soft-thresholding is processed. Then (T0)C ∈ Sñ.

Proof. Let (T0)C be in the NS-form and (T0)C denotes (T0)C processed via soft-thresholding.

Since C ∈ Sñ, (T0)C ∈ Sñ by Lemma 3.1. Since the result at resolution level 1 can be it-

eratively applied to the higher resolution level case, we will prove for the case where the

resolution level is 1. {GCG∗}ij , {GCH∗}ij and {HCG∗}ij denote the elements of GCG∗,

GCH∗ and HCG∗. Note that {GCG∗}ij = {GCG∗}ji, {GCH∗}ij = {(HCG∗)∗}ij .

As processing soft-thresholding to {GCG∗}ij , then we have

{GCG∗}new
ij :=























{GCG∗}ij − tGCG∗

0 , for {GCG∗}ij > tGCG∗

0

0, for |{GCG∗}ij | 6 tGCG∗

0

{GCG∗}ij + tGCG∗

0 , for {GCG∗}ij < tGCG∗

0

where tGCG∗

0 is MADGCG∗

√

2 log (ñ/2× ñ/2) and MADGCG∗ is the median absolute devi-

ation

MADGCG∗ :=
median(||GCG∗| −median(|GCG∗|)|)

0.6745
.
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Since {GCG∗}ij = {GCG∗}ji, it is obvious that {GCG∗}new
ij = {GCG∗}new

ji .

It is clear that {GCH∗}new
ij = {(HCG∗)∗}new

ij holds because of {GCH∗}ij = {(HCG∗)∗}ij .

Thus we have (T0)C ∈ Sñ. 2

Thus we have the following proposition from Lemmas 3.1 and 3.2.

Proposition 3.1 Let C be in Sñ. As applying the de-noising processing to C ∈ Sñ, then

we have C̄ ∈ Sñ.

By Proposition 3.1, C ∈ Sñ ⇒ C̄ ∈ Sñ of question (I) holds, i.e. the de-nosing processing

preserves symmetry of the correlation matrix.

Now we will consider question (II): Are all of the diagonal elements of the correlation

matrix via de-noising ones? Let us consider the example of Figure 1(right) in Section 1 again.

This figure is an implementation of the 4-rank reduction of angle parameterization. The

noisy correlation matrix to be calibrated is generated by (2) with γ-parameters estimated

by De Jong et al. (2004) which are normally distributed. Figure 4(left) shows such a noisy

correlation matrix.
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Figure 4: Noisy correlation matrix, de-noising and diagonal.

Applying the processing of de-noising, where we use genus 2 of Daubechies and take

resolution lavel 2, to the noisy matrix we have the noise reduced matrix, Figure 4(center),

and the right of this figure shows the diagonal elements of it. Though this example is one

of many cases, it is clear that the processing of de-noising loses the property that all of

diagonal elements of the correlation matrix are ones.

Then we may hit upon the rescaling as in Section 2, i.e.

ρij :=
c̄ij√
c̄iic̄jj

(6)
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Figure 5: De-noised correlation matrices.

where c̄ij is the (i, j)-element of the correlation matrix C̄ applied de-noising to C, and ρij is

the (i, j)-element of the correlation matrix by the rescaling process (6). Figure 5(left) shows

the rescaled correlation matrix of that in Figure 4(center).

We propose the following procedure in place of the rescaling for the property of non-ones

of diagonal elements in the correlation matrix. Our proposing procedure is based on taking

into account the form (1) and (5).

To begin with, taking the logarithm of the noisy correlation matrix C we have from (1)

log cij = −γ1|Ti − Tj| −
γ2 |Ti − Tj |

max(Ti, Tj)γ3

− γ4|
√

Ti −
√

Tj |. (7)

Then, comparing (7) with (5), the term corresponding to the noise level in (7) depends on

Ti and Tj while that in (5) is constant. It should be divided by some function of Ti and Tj ,

e.g. |Ti−Tj |, |
√

Ti−
√

Tj | and so on. However from (7) it is difficult to specify a function to

adjust (7). We leave the matter open for further research. For convenience we here divide

(7) by |Ti − Tj |, i.e.

log cijad :=











log cij

|Ti − Tj|
for i 6= j

0 for i = j.

(8)

We apply the soft-thresholding processing to log cijad. Denoting the elements of de-noised

log cijad by log cijad, we again adjust log cijad using |Ti − Tj |, i.e.
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c̄ijad :=











log cijad × |Ti − Tj | for i 6= j

0 for i = j.
(9)

Finally taking the exponential of c̄ijad, we obtain the de-noised correlation matrix.

The important point to note is that the exponential values of c̄ijad for i = j are ones since

c̄ijad are set to equal zeros for i = j in above procedure. Therefore the problem of non-

zero diagonal elements of the de-noised correlation matrix is solved. We furthermore would

like to lay special emphasis on achieving more effective in the processing of de-noising.

The effectiveness of de-noising comes from the adjustment in log cijad, i.e. reducing the

dependence of Ti and Tj in the noise level. Figure 5(right) shows the de-noised correlation

matrix via our proposing procedure. The following table is the results of these errors of

the de-noised correlation matrices; by the rescaling process (6) (Figure 5(right)) and by our

proposing procedure (Figure 5(left)). Here the error is defined by

Error :=
∑

i>j

({cnon−noise}ij − {c̄noise}ij)2 (10)

where {cnon−noise}ij is (i, j)-element of the correlation matrix generated by (1) with constant

γ-parameters by De Jong et al. (2004), and {c̄noise}ij is (i, j)-element of the correlation ma-

trix, which is similarly generated but γ-parameters are assumed to be normally distributed

with mean and standard error estimated by De Jong et al. (2004), processed via each the

de-noising procedure. We will use the error defined as (10) in the next section.

Table 1: Comparison of errors of de-noised correlation matrices.
Rescaling processing Our proposing procedure

Error 7.691851274 1.362358664

Finally we give Figure 6 that the de-noising processing (genus 2 of Daubechies and resolu-

tion level 2) with 4 rank-reduction of angle parameterization is applied to a noisy correlation

matrix; Figure 5(left).

Comparing Figure 6 with Figure 1(right), we can find it that the noise of the correlation

matrix with 4 rank-reduction is reduced by the de-noising processing. In the next section,
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Figure 6: The de-noised correlation matrix with 4 rank-reduction of angle parameterization.

we investigate accuracy of the de-noised correlation matrix by numerical experiments.

4 Numerical results

We experiment on the de-noising processing for the numerical efficiency with different cases

of dimensions of the correlation matrix (We will select 32 × 32 and 64 × 64. For 64 × 64,

Ti = {0.5, 0.25, . . ., 16}.), wavelet basis, resolution levels and the number of reduced rank.

Before proceeding, we confirm the arbitrary parameters.

First, it is the kind of wavelet bases. Wavelet bases used in numerical experiments are

Daubechies 2-10, Coiflet 2-10(only the even number) and Symlet 4-10, where the numbers

are genus of wavelet bases. Secondly, resolution levels. Resolution levels depend on the

dimension of data implemented the processing of the discrete wavelet transform. Thirdly,

for rank reduction of angle parameterization we can choose the reduction number. It goes

without saying that as the number of reduction increases, the rank reduced correlation

matrix becomes closer to original one.

Tables 2, 3 and 4 show the average error, which is the average of errors defined as (10) by

ten trials, of between the non-noisy correlation matrix and the noisy one implemented the

de-noising processing. We attempt the de-noising processing of both our proposed procedure

and the processing of soft-thresholding directly to the noisy matrix with rescaling (the errors

of this procedure are in parentheses), respectively.

From these tables we can see that each wavelet basis has an effect on reduction of noise
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Table 2: The average errors of ten trials in the case of Daubechies
Dimension 32 × 32 64 × 64
Resolution level 1 2 3 1 2 3 4
Genus 2 3.44358 1.36874 0.751105 13.7606 5.05773 3.24893 3.18586

(6.5766) (7.00861) (14.0139) (20.6087) (15.7337) (21.4448) (41.5408)
3 3.50705 1.18642 0.858654 13.8425 5.08308 3.10786 2.88396

(6.38463) (6.84171) (13.7677) (21.1469) (14.8616) (20.6742) (55.5278)
4 3.64409 1.14975 0.832121 12.6055 4.91367 2.79003 13.5351

(6.5261) (6.62765) (12.037) (21.5777) (15.0325) (18.7512) (38.7879)
5 3.53333 1.42193 0.868147 13.9286 4.89595 2.86826 3.08182

(6.39687) (5.66469) (10.6696) (22.0682) (13.8777) (18.4925) (32.0768)
6 3.78049 1.32183 0.862698 13.6346 4.58636 3.09941 2.8359

(5.80856) (5.72751) (11.3211) (20.4376) (13.3408) (19.879) (40.6603)
7 3.52203 1.17397 0.816016 13.8312 4.84761 3.08698 2.99891

(5.94017) (6.28963) (11.8559) (20.442) (15.8285) (20.7714) (42.1737)
8 3.388 1.32895 0.896223 16.5219 5.11483 3.15518 2.96394

(6.38468) (6.72878) (12.1746) (20.8376) (15.8776) (20.8797) (44.2803)
9 3.55838 1.71375 1.65457 13.309 6.76205 5.94225 7.30971

(5.90228) (8.22615) (15.2378) (21.4901) (18.4647) (25.0892) (50.9098)
10 3.38783 1.24019 0.860728 13.9113 4.93779 3.02772 2.92374

(6.65682) (5.8396) (9.44729) (22.4168) (14.353) (17.853) (36.9585)
Notes. The average errors of ten trials without de-noising are 15.5953 for 32× 32 dimensions and
59.822 for 64 × 64 dimensions.

Table 3: The average errors of ten trials in the case of Symlet
Dimension 32 × 32 64 × 64
Resolution level 1 2 3 1 2 3 4
Genus 4 3.86259 1.16994 0.895216 13.6503 4.70693 3.01925 2.81157

(6.17135) (6.50023) (14.3212) (21.0281) (15.2748) (21.5359) (48.5764)
5 3.37395 1.35071 0.926237 22.146 4.68016 2.87207 2.58169

(5.75714) (5.57946) (9.95477) (20.1559) (13.2243) (17.6088) (30.6046)
6 3.45378 1.2953 0.865213 14.3042 4.85847 2.77971 2.61081

(6.61443) (6.33027) (12.4705) (21.7418) (16.3727) (20.7341) (44.5585)
7 3.79725 1.24548 0.752502 13.7907 4.64732 3.03287 2.93934

(5.48011) (6.32576) (12.0127) (20.9631) (14.5937) (20.0962) (36.0471)
8 3.19487 1.39074 0.944772 17.7634 4.53851 2.73749 2.46935

(6.48661) (5.48471) (11.4298) (20.8045) (14.0669) (17.8917) (40.9124)
9 3.49675 1.26362 0.77321 13.0209 4.79031 3.02266 3.14536

(6.59085) (6.56399) (11.0917) (21.5547) (14.6114) (19.5484) (36.4282)
10 3.6747 1.3378 0.828756 15.0832 4.92973 2.94068 2.76981

(6.44662) (6.70892) (12.0674) (22.215) (15.8075) (19.2987) (42.6612)
Notes. The average errors of ten trials without de-noising are 15.5953 for 32× 32 dimensions and
59.822 for 64 × 64 dimensions.

Table 4: The average errors of ten trials in the case of Coiflet
Dimension 32 × 32 64 × 64
Resolution level 1 2 3 1 2 3 4
Genus 2 3.69033 1.27274 0.705419 14.3172 4.70438 2.89604 2.52319

(6.54103) (7.32041) (19.1372) (21.0537) (16.0893) (25.0673) (63.1392)
4 3.20396 1.23853 0.838013 14.0103 4.49569 2.86704 2.63752

(6.58319) (6.35604) (12.5084) (20.8765) (14.8778) (19.9739) (46.1159)
6 3.74978 1.23459 0.904902 14.5603 4.80749 2.91008 2.5838

(6.28458) (6.4922) (12.0739) (21.1872) (14.4249) (18.3925) (37.9046)
7 3.64536 1.34903 0.857927 13.56 4.8745 2.77451 2.50775

(6.49138) (6.30138) (12.305) (20.9527) (14.8684) (17.6072) (40.4683)
10 3.59507 1.22305 0.788097 14.1545 4.82791 2.92645 2.76616

(6.25314) (5.85984) (11.4895) (21.6836) (14.1711) (19.306) (44.7241)
Notes. The average errors of ten trials without de-noising are 15.5953 for 32× 32 dimensions and
59.822 for 64 × 64 dimensions.
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in the correlation matrix. Moreover, as increasing the resolution level we can achieve the

effect more. The exceptions however exist, e.g. the case of Daubechies 4 and 5 (64 × 64)

at resolution level 3-4 in Table 2. Since the errors without the de-noising processing of our

proposed procedure or the processing of soft-thresholding with rescaling are apparently lager

than those with de-noising (see the notes of each table), there is no need to go into details

about the case of no de-nosing.

Table 5: The errors of one trial in the case of Daubechies(32× 32)

Number of reduction 2 4
Resolution level 1 2 1 2
Genus 2 3.47839 1.2304 3.47839 1.24315

(7.80334) (7.47017) (7.80334) (5.9989)
3 3.35458 1.43929 3.43044 1.26945

(5.54594) (5.3571) (7.79298) (5.66786)
4 3.53995 1.46991 3.22274 1.24773

(7.11109) (8.02536) (8.11481) (5.58232)
5 4.00682 1.09067 3.35526 1.70721

(7.21688) (6.41524) (7.89056) (5.84447)
6 3.87462 1.47681 3.43223 1.15183

(6.07728) (4.64816) (6.15129) (6.35335)
7 3.40078 1.22714 4.10106 1.27902

(5.50847) (6.62746) (7.599) (6.03748)
8 3.42811 1.28955 3.8106 1.29159

(6.18565) (5.29226) (7.34069) (5.49672)
9 3.13907 1.66327 3.10539 1.73053

(6.58181) (7.43516) (7.89338) (6.70895)
10 2.90535 1.103 3.09497 1.26236

(7.14704) (5.77488) (7.60268) (5.38444)

Notes. The errors of one trial without de-noising are 88.3573 for 2
rank-reduction and 27.966 for 4 rank-reduction.

Table 6: The errors of one trial in the case of Coiflet(32× 32)

Number of reduction 2 4
Resolution level 1 2 1 2
Genus 2 3.3737 1.20694 2.94696 1.12896

(4.82535) (7.32102) (10.6183) (8.77185)
4 3.13909 0.901501 2.89812 1.59106

(5.26267) (5.3324) (10.4358) (6.25513)
6 5.42238 1.32268 3.08198 0.988084

(6.39225) (6.11669) (7.0152) (7.10367)
8 3.33172 1.0402 3.49045 0.941876

(5.80168) (6.94001) (7.23875) (4.41349)
10 3.72734 1.56455 3.39523 0.880426

(5.85368) (7.111) (6.40654) (6.43521)

Notes. The errors of one trial without de-noising are 88.3573 for 2
rank-reduction and 27.966 for 4 rank-reduction.

Let us now attempt to apply the de-noising processing with rank reduction of angle

parameterization. Tables 5-10 show the error of one trial for 2 and 4 rank reduction of angle

parameterization via each de-noising processing; our proposing procedure and the processing
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Table 7: The errors of one trial in the case of Symlet(32× 32)

Number of reduction 2 4
Resolution level 1 2 1 2
Genus 4 3.62293 1.85502 2.91825 1.09082

(7.09927) (6.63074) (10.8838) (7.78382)
5 3.71419 1.44007 3.55601 1.254

(3.86964) (6.48222) (6.60093) (4.46325)
6 3.30247 1.38123 3.47745 1.291

(5.58069) (6.64417) (8.54499) (7.13329)
7 3.33233 1.66218 3.50047 1.39193

(6.07235) (7.43886) (8.39405) (5.7028)
8 3.6064 1.57959 2.73993 1.31866

(5.39474) (5.78264) (6.69617) (4.5321)
9 3.73318 1.17182 3.53883 1.25953

(5.47919) (7.4134) (8.53637) (6.96826)
10 2.82371 1.0937 3.50745 1.23799

(5.24888) (6.94403) (8.69077) (7.0935)

Notes. The errors of one trial without de-noising are 88.3573 for 2
rank-reduction and 27.966 for 4 rank-reduction.

Table 8: The errors of one trial in the case of Daubechies(64× 64)

Number of reduction 2 4
Resolution level 1 2 3 1 2 3
Genus 2 12.1616 5.26446 2.82076 12.1616 4.91042 3.10275

(19.5914) (14.7071) (21.5356) (19.5914) (14.0582) (24.5382)
3 15.6802 4.35574 2.98269 15.6802 4.7495 3.76557

(22.2374) (13.8672) (22.2439) (22.2374) (12.5364) (21.2842)
4 12.8896 4.9642 3.02964 11.0168 5.45062 3.53037

(22.0133) (13.7415) (16.6519) (20.1757) (15.2537) (21.7249)
5 12.8131 4.79937 3.03124 10.9582 4.81322 2.324

(17.852) (13.472) (17.3104) (20.3416) (14.1903) (20.164)
6 14.4926 4.70052 2.48094 14.1549 3.96311 4.09055

(21.2014) (14.9421) (23.9511) (18.5432) (11.532) (20.0147)
7 40.1463 4.35982 3.25772 11.4282 5.78058 3.4782

(17.5169) (16.0471) (24.6019) (20.0715) (15.8102) (21.2178)
8 17.0413 4.83928 2.44311 11.7313 5.24397 2.60227

(19.9906) (18.1415) (21.8668) (20.1699) (15.8513) (24.1446)
9 13.5226 6.51037 5.194 21.6994 5.71822 7.44931

(21.5648) (21.1974) (21.1485) (22.6609) (14.5948) (24.2116)
10 14.1428 4.98524 2.57266 11.7691 5.12459 2.65957

(23.8334) (15.1974) (17.7665) (20.4305) (13.339) (19.8569)

Notes. The errors of one trial without de-noising are 345.772 for 2 rank-reduction and 122.603
for 4 rank-reduction.

Table 9: The errors of one trial in the case of Coiflet(64× 64)

Number of reduction 2 4
Resolution level 1 2 3 1 2 3
Genus 2 13.5877 4.35398 3.14338 15.3794 4.46501 3.51686

(19.9902) (17.6652) (25.7925) (19.7249) (13.1525) (26.8393)
3 14.3766 5.44463 3.22989 11.2677 4.92094 2.41073

(21.611) (14.4066) (17.3562) (20.7702) (15.409) (19.2783)
4 13.6058 3.97281 2.72442 14.2765 4.25495 3.62265

(22.789) (12.4538) (21.9992) (18.8921) (10.8864) (17.196)
5 14.7043 5.37858 3.00026 11.1599 4.92286 2.54106

(21.6336) (15.3365) (18.3604) (20.5655) (14.9866) (17.1398)
6 13.952 4.38408 2.4456 14.1915 4.21693 3.67346

(19.1076) (11.9616) (18.7356) (19.0094) (11.0611) (16.135)

Notes. The errors of one trial without de-noising are 345.772 for 2 rank-reduction and 122.603
for 4 rank-reduction.
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Table 10: The errors of one trial in the case of Symlet(64× 64)

Number of reduction 2 4
Resolution level 1 2 3 1 2 3

4 15.1263 4.26181 3.50585 11.1341 5.89072 3.53155
(19.6266) (18.3206) (21.7973) (20.9973) (14.4947) (21.7264)

5 13.7677 5.19445 1.89293 11.531 4.80997 2.3099
(17.8774) (17.5095) (17.2179) (19.8187) (13.5594) (20.6842)

6 14.1219 4.35096 4.10913 14.549 4.36362 3.72636
(21.8168) (14.0008) (17.502) (19.5489) (11.7588) (20.5307)

7 14.168 4.71341 2.92352 10.9073 5.13088 2.88013
(19.929) (17.7445) (22.6889) (20.871) (15.3294) (19.9687)

8 13.0946 4.60801 3.40682 15.8596 4.21399 3.72223
(20.1913) (12.0684) (18.8404) (18.8492) (10.7254) (16.4405)

9 14.6731 5.20236 2.35333 11.1207 5.09365 2.71046
(20.4017) (15.8373) (20.3934) (20.4596) (16.4008) (18.5191)

10 13.3157 4.60539 2.99442 15.1549 4.30419 3.72316
(19.6267) (17.2603) (18.3559) (19.6054) (12.2258) (17.9967)

Notes. The errors of one trial without de-noising are 345.772 for 2 rank-reduction and 122.603
for 4 rank-reduction.

of soft-thresholding with rescaling (in parentheses). Tables 5-7 are for 32× 32 dimensions,

Tables 8-10 for 64 × 64 dimensions, respectively. We take resolution level to 2 for 32 × 32

dimensions and 3 for 64×64 dimensions. Since there exist exceptions of the increasing error

at resolution level 3 in Table 2, we omit the case of resolution level 4 for 64× 64 dimensions

and 3 for 32× 32 while such exceptions occur only for Daubechies case of 64× 64.

The results of the numerical experiments for 2 and 4 rank reduction of angle parameteriza-

tion with the de-noising processing are excellent as expected it from Tables 2-4. There exists

no apparent difference in errors by the kind of wavelet bases and genus. And the decreasing

tendency in errors exists as the resolution level increases. However the exception of this

tendency arises for Daubechies coefficient (64× 64, resolution level 9 and 4 rank-reduction)

case in Table 8.

5 Conclusion

In this paper, we proposed a simple procedure based on the de-noising processing using

wavelet analysis in order to reduce the noise in the noisy correlation matrix. And supposing

the elements of the noisy correlation matrix as (1) with random γ-parameters, we made

numerical experiments on the reduction of the noise by this procedure. The result of numer-

ical experiments showed good performance. Subsequently, the rank reduction method with

de-noising was also effective in modeling the approximated correlation matrix. Though it

19



depends on the assumption of the distribution of noise in the correlation matrix, these nu-

merical results lead to us that our proposed procedure of de-noising works well in modeling

the correlation matrix from the noisy correlation data.

Lastly we remark the further research on improving the efficiency of de-noising and the

application to finance.

First as mentioned in Section 3, the problem is how to adjust in (8) and (9). We divided

(7) simply by |Ti − Tj|. This means that from the noisy correlation data we substantially

extract the unknown f̂ij such that

{correlation data}ij = exp{f̂ij + σ|Ti − Tj |zij} (11)

where zij ∼iid N(0, 1) and σ is the noise level. Therefore we presumed (11) instead of (1),

alternatively. Then we should establish the processing of de-noising or soft-thresholding

to (1) in order to improve the effectiveness of de-noising, if (1) is the good parametric

function for the market correlation. If not so, we should consider another de-noising or

soft-thresholding for better parametric function.

Secondly, it is the practical application to the calibration of LFM. The calibration of LFM

is usually accomplished as follows (Refer to, e.g. London (2004)): Let σi(a, b, c, d, θ) be a

volatility model. vmarket denotes the market volatilities. Then the parameters a, b, c, d, θ

are estimated by solving

min
a,b,c,d,θ

∑

i

(

vmarket − σ2
i (a, b, c, d, θ)

vmarket

)2

.

Using the Newton-Raphson, gradient-decent or Brent’s method solves the minimization

problem. For instance, in such iterative calculus one can apply the de-noising processing as

follows: Implement the de-noising processing to the angles obtained by the iterative routine.

Set the de-noised angles as the initial values and execute the iteration again. Though we

will have to discuss the convergence by such procedure, it is likely to become very effective

to solve the minimization problem in the case of clarifying of effectiveness of it.
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