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Based on the investment theory of Abel and Eberly (1994), we develop an analytical 

model of adjustment costs, which produces a sigmoidal investment function. We also 

estimate the piecewise linear investment function, which includes as special cases 

linear models, models with one threshold, the original model of Abel and Eberly, which 

has two thresholds, and sigmoidal models. Empirical evidence clearly supports the 

sigmoidal model. The threshold estimate of Tobin’s q is 0.91. The investment ratio does 

not respond at value of Tobin’s q below 0.91, but begins to react sensitively as Tobin’s q 
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Investment is one of the most influential factors for explaining macroeconomic booms 

and slumps because of its volatile nature. However the models derived from 

neoclassical theory have not performed well when compared with ad hoc accelerator 

models of investment (see, e.g., Bernanke et al., 1988). 

There are at least five reasons for the poor empirical performance of neoclassical 

models. First, firms might face the financial constraints, which neoclassical theory 

ignores. According to neoclassical theory, Tobin’s q is a sufficient statistic for the 

investment ratio. However, many empirical studies have found the cash flow variable 

has a statistically significant effect on investment. Firms facing financial constraints 

may be unable to invest even if they wish to. Fazzari et.al (1998), having divided their 

sample into groups of firms with high and low dividends, find that severely financially 

constrained firms react more sensitively to cash flow. They also demonstrate that firms 

are not indifferent between using internal and external funds for investment. Having 

divided their sample into firms with main banks and those without, Hoshi et al. (1991) 

estimate separate investment equations for these groups. Having found that the 
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estimated coefficient of the cash flow variable is significantly smaller for firms with 

main banks, Hoshi et al. (1991) argue that main banks mitigate the asymmetric 

information problem and reduce the agency cost of lending. From this viewpoint, cash 

flow is an important component of internal funds, and the agency cost of internal funds 

is lower than that of external funds. Thus, the investment behaviour of firms is 

sensitive to the volume of internal funds. 

Second, the fundamentals that drive investment might be mismeasured. In particular, 

most studies use average q as a measure of fundamentals. Average q in turn is defined 

as the ratio of the firm’s intrinsic value to the replacement cost of its assets. Because 

the firm’s intrinsic value is unobservable, most authors have used its market value as 

a proxy. However, people might make mistakes in evaluating the firm’s intrinsic value 

and/or may speculate on the stock market. Thus, the stock market value may be 

misleading, and might be a poor proxy for the intrinsic value. Instead of using stock 

market values, Cummins et al. (2006) propose using analysts’ forecasts to measure 

average q. 

Third, in practice, fixed investment is often infrequent and lumpy. Among others, Abel 

and Eberly (1994, 2002) formalise this idea in constructing neoclassical non-linear 

investment functions. The derived investment functions incorporate an inactive region 

in which investment does not respond to Tobin’s q. In these models, the adjustment 

costs of investment incorporate not only standard convex costs, but also lumpy fixed 

costs and/or those related to the irreversibility of investment. Some authors assert that 

adjustment costs are asymmetric because firms might incur additional costs above a 

certain threshold (e.g., when their investments exceed replacement investment). The 

asymmetric adjustment costs with a certain threshold could also produce an inactive 
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region in the investment function. 

Fourth, some researchers argue that because the lumpy nature of investment 

originates at the plant level, aggregation over plants distorts the shape of the 

investment function. To understand the relationship between adjustment costs and the 

non-linearity in investment, among others, Caballero et al. (1995, 1997), Goolsbee and 

Gross (2000) and Cooper and Haltiwanger (2006) use plant-level data. 

Fifth, Cooper and Ejarque (2001) argue that allowing the profit function at the firm 

level to be strictly concave to reflect its market power is sufficient to replicate 

regression results based on q-theory when profits significantly affect investment. 

Empirical findings largely support the non-linear investment function instead of the 

linear one, but there is no consensus on the shape of the non-linearity. For example, 

the investment theory of Abel and Eberly (1994) suggests the non-linear investment 

function illustrated in Figure 1. The investment function in Figure 1 incorporates a 

part in which investment is insensitive to Tobin’s q. However Barnett and Sakellaris 

(1998) suggest a different shape based on their empirical work. Making use of grid 

methods, they suggest that the investment ratio is a convex function of average q for 

small values of q, and is a concave function for larger values of q. The purpose of this 

paper is to provide estimates of a non-linear investment function, taking into account 

the five problems mentioned above. 

[Figure 1 around here] 

Our empirical findings indicate that the firm’s investment function is non-linear and 

has three parts and two thresholds. According to our estimated investment function, 

investment is insensitive to Tobin’s q for small values of q, is sensitive above the first 

threshold value of q, and is relatively insensitive above the second threshold value of q. 
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Although we used piecewise linear functions, incorporating the assumption of 

smoothness gives the estimated function a sigmoidal shape. 

The outline of the paper is as follows. In Section 1, we explain the relationship between 

various kinds of adjustment costs and the corresponding types of non-linearity in 

investment functions. In Section 2, we describe our approach to estimation. In Section 

3, we explain how to estimate a piecewise linear model with two thresholds, choose the 

best model among these models with two thresholds and compare this model with 

linear models and non-linear models that have one threshold. In Section 4, we report 

our empirical results and compare them with those from other studies. In Section 5, we 

discuss the implications of our findings and directions future research. 

 

1. Adjustment Costs and Types of Non-linear Investment Functions 

In this section, we review the relationship between adjustment costs and the type of 

non-linearity in investment functions. 

1.1. Standard Convex Adjustment Costs 

The standard neoclassical investment literature assumes convex adjustment costs. 

The simplest form is represented by the quadratic adjustment cost function. In this 

case, one can derive the investment ratio as a linear function of Tobin’s q (as shown in 

Appendix 1). 

1.2. The Irreversibility of Investment in Abel and Eberly (1994) 

Arrow (1968) argued that gross investment cannot take a negative value because of 

large disposal costs. Instead of following Arrow (1968) in assuming that the 

adjustment cost becomes infinite, Abel and Eberly (1994) quantify the irreversibility of 

investment as the difference between the purchase price ( +
itp ) and the resale price ( −

itp ) 
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of investment goods at time t, assuming that −+ > itit pp . The subscript i denotes the price 

of investment goods. 

Following Barnett and Sakellaris (1998), we briefly explain how incorporating this 

type of investment irreversibility into the adjustment cost generates an investment 

function that has an inactive component. 

The augmented adjustment cost function ( )1tt K,IG −  takes the form of  

( ) ( ) ( ) ( ) 0I0IDIp0IDIpK,ICK,IG tttitttit1tt1tt ≠<+>+= −+
−−   if    , 

( ) 0IK,IC t1tt == −   if                                                ,                  (1-1) 

where tI , ( )1tt K,IC −  and D denote gross investment, the standard convex adjustment 

cost function, and an indicator function, respectively. The indicator function D takes a 

value of unity when the condition in parentheses is satisfied and is zero otherwise. 

Note that the augmented adjustment cost G is discontinuous at the value of 0It = . 

The first-order condition for investment is given by: 

( ) 0Ip/qI/K,IGp/p tttt1tttit ≠=∂∂+ − for      ,                      (1-2) 

where tp  and tq  denote the output price and the shadow price of capital at time t, 

respectively (see Appendix 1 for details). Denoting the right-hand neighbourhood and 

the left-hand neighbourhood of zero by +0  and −0 , respectively, we have: 

               ( ) +
−

++ ==∂∂+ 0Ip/qI/K,0Cp/p tttt1ttit    at   , 

and 

               ( ) −
−

−− ==∂∂+ 0Ip/qI/K,0Cp/p tttt1ttit    at   .                      (1-3) 

Dividing (1-3) by tit p/p+  throughout yields 

               ( ) ++++ ==+ 0Ip/qp/p/C1 titttitI    at    , 

and 

               ( ) −++−+− ==+ 0Ip/qp/p/Cp/p titttitIitit    at   ,                         (1-4) 
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where ( ) t1tI I/K,0CC ∂∂= −
++  and ( ) t1tI I/K,0CC ∂∂= −

−− , respectively. Equations (1-4) 

show that investment is a discontinuous function of q; this is illustrated in Figure 1. 

1.3. Linear Adjustment Cost in Barnett and Sakellaris (1998) 

Instead of assuming that the purchase price exceeds the resale price of investment 

goods, Barnett and Sakellaris (1998) postulate that the firm incurs an incremental 

linear adjustment cost θ  when its investment exceeds replacement investment. They 

assume an asymmetric adjustment cost, 

          ( ) ( ) ( ) δ≦K/IK,ICK,IG 1tt1tt1tt −−− =   if                          

                   ( ) ( ) ( ) δK/IKδIθK,IC 1tt1tt1tt >−+= −−−   if    .                 (1-5) 

The investment function based on the augmented adjustment cost (1-5) is illustrated in 

Figure 2. Under this assumption, investment is inactive at the value of the investment 

ratio δK/I 1tt =−  in Figure 2. 

1.4. An Alternative Specification of Irreversibility 

Alternatively, taking into account the irreversibility of investment, one could specify 

the augmented adjustment cost as: 

     ( ) ( ) δ≦K/IKδ
K
I

2
αK,IG 1tt1t

2

1t

t1
1tt −−

−
− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=   if                                

( ) ( ) δK/IKδθKδ
K
I

2
α

1tt1t1t

2

1t

t2 >−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −−−

−

  if         It ,            (1-6) 

where 0αα 21 >> . The augmented adjustment cost is composed of two quadratic 

functions. It is asymmetric and thus not differentiable at ( ) δK/I 1tt =− . Equation (1-6) 

is illustrated in Figure 3.  

[Figure 3 around here] 

As in Barnett and Sakellaris (1998), equation (1-6) includes the incremental linear cost 
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( )1tt KδIθ −− , which implies that the firm incurs an additional linear cost as well as the 

standard convex cost when its investment exceeds replacement investment. However, 

given the assumption that 0αα 21 >> , the firm also incurs increasingly large costs 

when making negative net investments (when 0KδI 1tt <− − ) because of the 

irreversibility of investment. As argued by Arrow (1968), the firm incurs prohibitive 

costs as 1α  goes to infinity with the value of 2α  held constant. 

The specification of the augmented adjustment cost in (1-6) together with the 

first-order condition for investment (1-2) yields the non-linear investment function 

illustrated in Figure 4. 

[Figure 4 around here] 

The slope of the third part of the non-linear investment function in Figure 4 is much 

steeper than that of the first part. This is because the slopes of the first and third parts 

of the investment function in Figure 4 depend on ( α/1 ) (see Appendix 1), and because  

of the assumption that 0αα 21 >> . The larger the value of α , the less steep is the 

slope of the investment function in Figure 4. Indeed, as 1α  tends to infinity, the slope 

of the first part approaches the horizontal line at the height of δ , and the investment 

function looks like the one illustrated in Figure 5. 

[Figure 5 around here] 

1.5. Potentially Prohibitive Adjustment Costs for Extremely Large Investments 

The assumption of standard convex adjustment costs implies that the second 

derivative of the adjustment cost function is positive. There are usually two reasons for 

this. First, as the firm expands its investment, the costs of retraining labour, and 

management and other associated costs become increasingly high. Second, investment 

goods prices might rise as the firm purchases more investment goods. 
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In this sub-section, we postulate that the cost becomes prohibitive as the firm’s 

investment ratio exceeds a certain threshold. We believe that there is some limitation 

to expanding investment, partly because, as the firm significantly expands its 

investment, management cannot consider an infinite number of investment projects at 

the same time and partly because supply shortages of investment goods eventually 

make investment goods prices prohibitively high. 

Suppose that the augmented adjustment cost is given by: 

( ) ( )

( ) ( )

( )                  

   if            I                 

   if                                   

t

1t

2

3

2

1t

t3
3

1tt1t1t

2

1t

t2
2

1tt1t

2

1t

t1
11tt

Kδλ
α
αλ

K
I

2
α

G

λ≦K/IδKδθKδ
K
I

2
α

G

δ≦K/IKδ
K
I

2
αGK,IG

−
−

−−−
−

−−
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−−==

<−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

  

               ( ) ( ) ( ) λK/IKδλ
α
α1

2
αKδθ 1tt1t

2

3

22
1t >−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−+ −−−    if     It ,         (1-7) 

where 3α  and λ  are positive constant parameters such that 23 αα >  and δλ > . The 

augmented adjustment cost function (1-7) is illustrated in Figure 6. 

[Figure 6 around here] 

The augmented adjustment cost function in (1-7), together with the first-order 

condition for investment (1-2) and the assumption of 1α  being infinite, yields the 

non-linear investment function illustrated in Figure 7. 

[Figure 7 around here] 

The non-linear investment function now has two kinks. Above the first threshold, the 

firm increases its investment ratio dramatically, as q increases. However, there is some 

saturation point for the investment ratio, λ , beyond which the investment ratio 



10 
 

increases only moderately as q increases. The investment function in Figure 7 is 

S-shaped or ‘sigmoidal’. If we assume a ‘smooth’ investment function, then a logistic 

curve would be a good approximation. 

Empirical studies such as those of Eberly (1997) and Barnett and Sakellaris (1998) 

suggest this shape. Abel and Eberly (2002) argue that aggregation over heterogeneous 

capital goods might yield an S-shaped investment function. To choose between a linear 

model, a logistic model and a hybrid of the two, Honda and Suzuki (2000) use the 

Akaike Information Criterion and the Schwartz Information Criterion. They also 

suggest that their investment function takes the logistic form for a sample of large 

Japanese manufacturers. 

 

2. The Basic Model  

Taking into account the relationship between adjustment costs and the type of 

non-linearity of investment functions, and following Tachibana’s (2007) analysis of 

piecewise linear models, we estimate a piecewise linear investment function for the 

i th firm, 

    11tt1t21t11t
1
1

1
0

1t

t q≦qDLγLγqββ
K
I

−−−−
−

⋅+++=   if      

21tt1t21t11t
2
1

2
0 q≦qDLγLγqββ −−−− <⋅+++= 1q  if     

21tt1t21t11t
3
1

3
0 qqDLγLγqββ >⋅+++= −−−−   if   ,                           (2-1) 

where 1tL −  and tD  denote the log of total fixed assets, and a dummy variable that is 

unity if the i th firm has never issued corporate bonds and zero otherwise, respectively. 

The parameters β  and γ  are to be estimated. The first and second threshold values 

of Tobin’s q are denoted by 1q  and 2q , respectively, and tq  denotes Tobin’s q at time t. 
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To avoid simultaneity bias, we use one-period lagged values for tq  in equation (2-1). 

Hansen (1999), Chida (2003), and Bo et al. (2006) carefully analyse threshold 

regression models. However, none of them uses Tobin’s q as a right-hand-side threshold 

variable, and their focus differs from ours. Because we are interested in testing the 

validity of Tobin’s q theory, the right-hand-side threshold variable should be Tobin’s q. 

We have explicitly clarified the relationship between the types of adjustment costs and 

the shape of non-linearity of the investment function in the previous section to extend 

Tobin’s q theory in such a way that the investment function has an inactive part. 

2.1. Financial Constraints 

Based on a similar sample to ours, Honda and Suzuki (2006) find that financial 

constraints significantly affect the investment ratio. To incorporate financial 

constraints, equation (2-1) includes the terms 1tL −  and t1t DL ⋅−  as right-hand-side 

variables. When a firm has a large amount of capital stock at time 1t − , 1tL −  becomes 

large. Given a sufficient stock of capital, such a firm is expected to make less 

investment at time t. Hence, the expected sign of 1γ  is negative. On the other hand, 

we expect 2γ  to be positive. Firms often use fixed capital as collateral when they 

borrow money, and fixed capital is a rough indicator of ‘creditworthiness’, which is 

particularly important for smaller firms that have never issued corporate bonds. The 

larger the value of collateral, the less likely is the financial constraint to be binding, 

and thus the larger is the investment ratio. Note that we include the interaction 

dummy t1t DL ⋅−  rather than the simple dummy variable tD  in equation (2-1). This is 

because including the simple dummy variable tD  together with individual dummy 

variables in a panel data regression causes perfect multi-collinearity. 
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Among others, Abel and Eberly (1994, 2002), Eberly (1997) and Barnett and Sakellaris 

(1998) exclude financial constraints from their non-linear estimated equations. 

However, Fazzari et al. (1998), Hoshi et al. (1991) and Honda and Suzuki (2006), 

among others, argue that financial constraints are important determinants of 

investment ratios. Thus, omitting these financial constraint variables from the 

non-linear regressions might seriously bias the estimates. Thus, we include tL  and 

tt DL ⋅  on the right-hand side of equation (2-1). 

2.2. Sample Selection 

We use data on unlisted Japanese auto parts suppliers for a number of reasons. First, 

data on listed large corporations might distort the true investment behaviour of firms 

because large corporations tend to produce multiple products in different fields. When 

there are multiple products, the relationship between the investment ratio and Tobin’s 

q is less clear. 

At the other extreme, some authors use plant-level data. Doms and Dunne (1998) find 

that most fixed investments are infrequent but lumpy at the plant level. Incorporating 

the finding of Doms and Dunne (1998), Caballero et al. (1995) develop a model in which 

fixed investments are not made gradually but are undertaken only when the difference 

between the desired and the existing capital stock exceeds a certain threshold. 

We do not use plant-level data because it is difficult to measure Tobin’s q at the plant 

level. In addition, firms examine all potential projects when making decisions on fixed 

investments. They do not investment in one plant without considering the situations in 

other plants. 

There is another advantage using data on unlisted Japanese auto parts suppliers. 

Cooper and Ejarque (2003), among others, point out that the q-theory of investment 
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does not apply to firms that have market power. Unlisted Japanese auto parts 

suppliers supply auto parts to giant auto manufacturers such as Toyota, and are less 

likely to have market power. Thus, sampling unlisted smaller firms that have limited 

market power is appropriate for our purposes. 

2.3. Data on Tobin’s q 

Because we use data on unlisted firms, stock price data are not available. Therefore, 

we have constructed our measure of Tobin’s q based on the balance sheet and the profit 

and loss account of each firm. (See Appendix 2 for details.) 

 

3. Piecewise Linear Models 

As was explained in Section 1, the investment theory on Tobin’s q suggests that there 

are at most two thresholds in a piecewise linear model. We first explain how we 

estimate a piecewise linear model with two thresholds, and then discuss the procedure 

for choosing between models that contain zero, one, or two thresholds. 

3.1. Estimation of a Model with Two Thresholds 

In this sub-section, we explain how to estimate a piecewise linear model with two 

thresholds. Rewriting equation (2-1) as an econometric model yields: 

               ( ) ( )11it1it
1
1

1
0it q≦qIqββy −−+=     

                  ( ) ( )21it11it
2
1

2
0 q≦qqIqββ −− <++     

                  ( ) ( )21it1it
3
1

3
0 qqIqββ >++ −−     

                  itiit1it21it1 uWφDLγLγ ++⋅++ −− ,                            (3-1) 

where we define 1ititit K/Iy −= . Subscript i  denotes the i th firm. I( ⋅ ) and itu  denote 

the indicator function and the disturbance term, respectively. iW  denotes the 

individual dummy variable, which is unity for the i th firm and zero otherwise, and φ  
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is the corresponding coefficient parameter. The disturbance terms are assumed to be 

independently and normally distributed. Given the values of 1itL − , itD , iW , and itu , 

equation (3-1) is illustrated in Figure 8. Our estimation method is based on grid 

methods. We first provide a combination of respective numbers for the values of 1q  

and 2q , and then estimate equation (3-1) by using the fixed-effects model. 

[Figure 8 around here] 

To estimate equation (3-1), given the values of 1q  and 2q , we transform equation 

(3-1). The conditions for our piecewise linear model to be continuous at the respective 

points 1q  and 2q  are given by: 

                   1
2
1

2
01

1
1

1
0 qββqββ +=+    

and 

                   2
3
1

3
02

2
1

2
0 qββqββ +=+ .                                      (3-2) 

Solving for 1
0β  and 2

0β  in equation (3-2), expressing these two parameters in terms of 

3
0β , 1

1β , 2
1β , and 3

1β  and then substituting the resulting equations into equation (3-1) 

yields: 

   itit1it21it1it
3
1it

2
1it

1
1

3
0it uDLγLγMβJβGββy +⋅+++++= −− , 

where 

 ( ) ( )11it11itit q≦qIqqG −− −= , 

( ) ( ) ( ) ( )21-it121it11it21it qq≦qIqqq≦qIqqJ <−+−= −− , 

and 

( ) ( )[ ] ( ) ( )[ ]21-it111it221-it111it1itit q≦qqIq≦qIqq≦qqIq≦qI1qM <++<−−= −−− .       (3-3) 

One can estimate equation (3-3) using standard computer software. 

Our sample is an unbalanced panel. There are 1,553 observations on 104 firms for the 

sample period from 1977 to 2006. However, after excluding outliers, our final number 
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of observations is 1,527. (See A2-1 in Appendix 2.) Table 1 provides summary statistics 

for our sample of 1,527 observations. Figure 9 plots these observations with the 

investment ratio on the vertical axis and the lagged Tobin’s q on the horizontal axis. 

This shows that the ratio of investment to capital stock jumps upward near the value 

of one of the lagged Tobin’s q values. 

[Table 1 around here] 

[Figure 9 around here] 

3.2. The Best Model with Two Thresholds 

We first choose the best model among those models with two thresholds. Our procedure 

comprises two steps. First, we select our benchmark model by using ‘likelihood’ as our 

criterion. Then, in the second step, we compare this benchmark model with all other 

models, and choose the best model by using as our criterion the ‘encompassing 

principle’ (based on non-nested J-tests). 

3.2.1. Likelihood 

We first provide a combination of respective numbers for the values of 1q  and 2q , 

and estimate equation (3-3). Similarly, we repeat the same procedure for all 

combinations of the respective values of 1q  and 2q , and choose the best model, which 

is the one that produces the largest likelihood. We define this model as our benchmark 

model. 

More concretely, we vary the values of 2q  from 1.0 to 2.5 by 0.01 and vary the values 

of 1q−2q  from 0.0 to 2.5 by 0.01 respectively, and calculate the log likelihood for each 

case. It turns out that the pair 91.0=1q  and 20.1=2q  yields the largest log 

likelihood of 384.21. Table 2 reports the estimation results of this benchmark model. 

[Table 2 around here] 
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3.2.2. J-Tests 

To select the best estimated model with two thresholds, we use Davidson and 

Mackinnon’s (1981) non-nested testing procedure based on J-Tests. The model selection 

procedure proceeds as follows. Suppose that we wish to test the above benchmark 

model B, with 91.0=1q  and 20.1=2q , against an alternative model A with A
11 qq =  

and A
22 qq = , where A

1q  and A
2q  are exogenously given values. We first estimate the 

alternative model A with A
11 qq =  and A

22 qq =  in equation (3-3), and obtain the 

predicted values of ity , which we denote by A
itŷ . Superscript A indicates model A. In 

the second step, we add these predicted values A
itŷ  to the right-hand side of the 

benchmark model B, in which 91.0=1q  and 20.1=2q , and apply an artificial 

regression to the resulting equation. We are interested in the significance of the 

coefficient estimate of the predicted values A
itŷ . If it is statistically significant, the 

implication is that the alternative model A has some additional information that our 

benchmark model B does not have. Otherwise, model A adds no information to our 

benchmark model B. Table 3 reports the results of these tests. Because none of the 

t-values indicates significance, all alternative models have no additional information. 

(All t-statistics reported in the paper are based on heteroskedasticity-consistent 

standard errors.) 

[Table 3 around here] 

We then switch the respective roles of models A and B, and test the significance of the 

coefficient estimate of the predicted values B
itŷ  in another artificial regression model 

with A
11 qq =  and A

22 qq = . If it is significant, our benchmark model has some 

additional information that model A does not have. Otherwise, the benchmark model 

adds no information to model A. Table 4 reports the results of these tests. We reject the 
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null hypothesis that our benchmark model has no additional information at least at 

the 10% significance level in 77 out of 83 cases. We cannot reject the null hypothesis in 

only six cases. The respective values of 1q  and 2q  in these six alternative models 

cluster around 0.91 and 1.2 in our benchmark model. This suggests that these six 

alternative models are so similar to our benchmark model that the tests are not 

sufficiently powerful to discriminate between them. 

[Table 4 around here] 

In summary, we cannot reject the null hypothesis that an alternative model has no 

additional information in all the 83 cases reported in Table 3. In Table 4, we reject the 

null hypothesis that our benchmark model has no additional information at least at 

the 10% significance level in 77 cases. These results imply that our benchmark model 

dominates these 77 alternative models. We cannot reject the null hypothesis that our 

benchmark model has no additional information in six cases in Table 4. However, the 

respective values of 1q  and 2q  in these six alternative models are so close to those in 

our benchmark model that our tests do not have sufficient power to discriminate 

between them. These results indicate that our benchmark model is the best model 

among those non-linear models with two thresholds. 

3.3. Linear Models and Models with One Threshold 

In the previous sub-section we found that our benchmark model is the best model 

among those models with two thresholds. In this sub-section we compare our 

benchmark model with linear models and with non-linear models with one threshold. 

For this, we use both standard F-tests and J-tests. 

3.3.1. F-Tests 
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We have found that model (3-3) with 91.0=1q  and 20.1=2q  is the best model among 

models with two thresholds. To compare this model with the equivalent model with one 

threshold, we use a standard F-test to test the null hypothesis that 2
1

1
1 ββ =  in model 

(3-3) with 91.0=1q  and 20.1=2q .  

Substituting 2
1

1
1 ββ =  into equation (3-3) yields the restricted model: 

( ) itit1it21it1it
3
1itit

1
1

3
0 uDLγLγMβJGββ +⋅+++++= −−ity .                (3-4) 

We estimate (3-3) with 91.0=1q  and 20.1=2q , estimate (3-4) with 20.1=2q , and 

then calculate the F-value, which turns out to be 6.24. Under the null hypothesis, this 

statistic has an F-distribution with (1, 1418) degrees of freedom. We reject the null 

hypothesis that 2
1

1
1 ββ =  at the 5% significance level. Therefore, we reject the model 

with one threshold. 

Similarly, we compare our best model with two thresholds with a linear model, and test 

the null hypothesis that 3
1

2
1

1
1 βββ == . Substituting these two restrictions into equation 

(3-3) yields the restricted equation: 

( ) itit1it21it1ititit
3
1

3
0 uDLγLγMJGββ +⋅+++++= −−ity .                 (3-5) 

Having estimated (3-3) with 91.0=1q  and 20.1=2q , and (3-5), we test the null 

hypothesis that 3
1

2
1

1
1 βββ == . The F-value turns out to be 7.48. This statistic has 

F-distribution with (2, 1418) degrees of freedom under the null. We reject the null 

hypothesis at the 1% significance level. Therefore, we reject the linear model. 

3.3.2. Non-nested J-Tests 

In sub-section 3.3.1, we confined our attention to model (3-3) with 91.0=1q  and 

20.1=2q , and tested restrictions on the coefficients in this model. In this sub-section, 

we first search for the best model among those with one threshold. Then, we compare 
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this model with the best model with two thresholds, which we validated in sub-section 

3.2. 

The procedure used to search for the best model with one threshold is the same as that 

used to search for the best model with two thresholds. In the first step, we find the 

benchmark model based on the likelihood; i.e., we find the one-threshold mode with the 

largest likelihood. In the second step, we use grid methods to compare the best model 

with two thresholds with all alternative models with one threshold, including the 

benchmark model with one threshold. 

In the first step, we vary the value of the threshold 1q  from 0.0 to 2.5 by 0.01, and find 

that the model with 3411 .q =  gives the largest log likelihood of 381.8763. Our 

estimated benchmark model with 3411 .q =  is reported in Table 5. 

[Table 5 around here] 

In the second step, we vary the value of threshold 1q  from 0.5 to 2.4 by 0.1, which 

produces 20 alternative models with one threshold. We also include the benchmark 

model with one threshold (with 3411 .q = ) as another alternative model. Therefore, we 

compare the best model with two thresholds ( 91.0=1q  and 20.1=2q ) with these 21 

alternative models with one threshold. Tables 6 and 7 report the results of the 

non-nested J-tests. 

[Tables 6 and 7 around here] 

The number in each cell in Table 6 is the t-value of the coefficient of the fitted variable 

A
itŷ  in the corresponding alternative model with one threshold. Because none of these 

indicates statistical significance, the alternative models with one threshold have no 

additional information. 
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On the other hand, all the t-values in Table 7 indicate significance at least at the 5% 

level. This implies that the best model with two thresholds ( 91.0=1q  and 20.1=2q ) 

has some additional information that is not incorporated in any of the alternative 

models. 

The exceptional case in Table 6 is that of 201.q1 = . In this case, the estimated 

coefficient of the fitted variable A
itŷ  is unusually large. We suggest that this is the 

result of multi-collinearity. Recall that our best model with two thresholds has 

91.0=1q  and 20.1=2q . 

The results of this section indicate that our best model with two thresholds ( 91.0=1q  

and 20.1=2q ) is the best model among linear models, models with one threshold, and 

models with two thresholds. 

 

4. Results and Discussion 

In this section, we summarise our findings and discuss their relationship to those of 

existing studies. 

4.1. Non-linearity 

We apply the neoclassical theory of investment that specifies investment as a function 

of Tobin’s q. With the introduction of non-convex adjustment costs into the model, Abel 

and Eberly (1994) show theoretically that the investment function incorporates an 

inactive portion in which investment does not respond to Tobin’s q. Although the 

consensus seems to be that the empirical literature supports this theory and the notion 

at investment is a non-linear function of Tobin’s q, there is no consensus about the type 

of non-linearity exhibited by the investment function. 
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For example, although Bo et al. (2006) rely on real-options theory and adopt a 

threshold variable that differs from Tobin’s q, they essentially estimate an investment 

function with one threshold. Based on our evidence the investment function is 

non-linear and sigmoidal with two thresholds. This empirical finding confirms those of 

Eberly (1997), Barnett and Sakellaris (1998), and Honda and Suzuki (2000). 

4.2. Irreversibility 

Our preferred estimated investment function is reported in Table 2. The estimate of 

the slope coefficient in the first regime, 1
1β , is 0.0134 and its t-value is 0.2362. This 

shows that the null hypothesis that the slope in the first regime is zero cannot be 

rejected. This suggests the existence of an inactive portion in which investment is 

insensitive to Tobin’s q, because of the irreversibility of investment. This finding 

confirms the theory of Abel and Eberly (1994), and is also consistent with the recent 

empirical findings of Chirinko and Schaller (2008), who estimate a Euler equation and 

obtain empirical evidence of an irreversibility premium. Our estimates also indicate 

that this inactive part holds for the domain q≦0.91. When Tobin’s q exceeds this 

threshold value of 0.91, the investment ratio starts to respond sharply to changes in 

Tobin’s q. 

What is the best estimate of the height of the investment ratio K/I  for the domain 

q≦0.91? The floor of the investment ratio in the first regime is given by: 

it1it21it1
1
0 DLγLγβ ⋅++ −− .                             (4-1) 

(See equation (2-1).) 

Substituting our preferred estimates from Table 2 with 91.0=1q  and 20.1=2q  into 

equation (3-2) yields our preferred estimate for 1
0β . Making use of this estimate of 1

0β  

together with the estimates of 1γ  and 2γ  from Table 2 enables us to estimate 



22 
 

equation (4-1) for each firm. We obtain such estimates for 104 firms. The simple 

average of equation (4-1) over these 104 firms turns out to be 0.1992. This represents 

the estimated depreciation rate δ  in Figure 7. 

4.3. Estimates of the Thresholds 

Our preferred estimate of the first threshold 1q  is 0.91. This implies that a firm starts 

to increase its investment ratio when Tobin’s q exceeds 0.91. This estimate 0.91 is 

smaller than those from existing studies. The corresponding benchmark estimates 

obtained by Barnett and Sakellaris (1998) are 1.95 for their first model and 1.13 for 

their second model. Honda and Suzuki (2000) report a corresponding benchmark 

estimate of 1.62. 

There are too few empirical studies to draw definitive conclusions on why these 

estimates differ. However, our estimates may differ from theirs for several reasons. 

First, unlike Barnett and Sakellaris (1998) and Honda and Suzuki (2000), we control 

for the influence of financial constraints by adding the variables L and L ⋅D to the 

right-hand side of equation (2-1). 

Second, our estimate of the first threshold applies to smaller unlisted firms whereas 

those of Barnett and Sakellaris (1998) and Honda and Suzuki (2000) apply to larger 

listed firms. 

Third, our estimates are for Japanese firms whereas those of Barnett and Sakellaris 

(1998) are for US firms. More empirical evidence must be accumulated to explain 

estimation difference across different studies. 

4.4. Financial Constraints 

To control for the potential effects of financial constraints, we added 1it1Lγ −  and 

t1it2 DLγ ⋅−  to the right-hand side of equation (2-1). Our estimate of 1γ  is -0.1622 in 
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Table 2. The negative estimate implies that a firm with sufficient capital stock at the 

beginning of a period undertakes less investment in that period, as expected. The 

t-value of -10.2899 indicates that our estimate is highly significant. 

tD  in equation (2-1) is a dummy variable that is unity for firms that have never issued 

corporate bonds. Our estimate of 2γ  is 0.0588 in Table 2. This implies that the level of 

the capital stock is a rough indicator of ‘creditworthiness’, and that relatively large 

firms can borrow and invest more easily. The result is as expected. The t-value of 

2.3592 indicates that the parameter is highly significant. Our results support the 

notion that financial constraints matter and confirm those of in Honda and Suzuki 

(2006). 

4.5. Market Power 

Cooper and Ejarque (2001) argue that allowing the firm’s profit function to be strictly 

concave to reflect its market power is sufficient to replicate regression results based on 

q-theory in which profits significantly affect investment. Partially because of this 

argument, we have carefully selected our samples. More specifically, we have chosen to 

use data on auto parts suppliers. The sampled firms are small and unlisted. They are 

price takers and do not have the power to control their product prices. Therefore, the 

arguments of Cooper and Ejarque (2001) do not apply to our study. 

 

5. Concluding Remarks 

Based on the investment theory developed by Abel and Eberly (1994), we have 

provided a simple analytical model of adjustment costs, which produces a sigmoidal 

investment function. We have also estimated the piecewise linear investment function, 

which includes the linear model, a model with one threshold, the original model of Abel 
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and Eberly (1994) with two thresholds, and the sigmoidal model as special cases. Our 

empirical evidence clearly supports the sigmoidal investment function. 

The sigmoidal investment function casts serious doubt on the credibility of existing 

large macro-econometric models that specify a linear investment function. 

Is it possible to aggregate sigmoidal investment functions over firms? If so, under what 

conditions? Although answering these questions is important for understanding the 

volatile nature of investment in practice, they are beyond the scope of our research. 

What is the threshold value of Tobin’s q above which a firm undertakes new 

investment? Our estimate is 0.91. Are these threshold values the same across 

industries and countries? Do they change over time? Answers to these questions 

require estimated thresholds for different samples, which is a task for future research. 
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Appendix 1.Derivation of the Standard Investment Function 

Following Abel (1980, 1990), we briefly derive the standard investment function in this 

appendix. A firm maximises its value V, which is the sum of future discounted net cash 

flows, with respect to capital investment I and other variable inputs, such as labour 

input, X. To simplify the exposition, we ignore taxes, which can easily be incorporated 

if necessary. 

( ) ( ){ }[ ] ( )dss,tRIpXwK,ICX,KFpV
t sisss1sss1sst    ∫
∞

−− −−−= ,               (A-1) 

where ( ) ⎟
⎠
⎞

⎜
⎝
⎛−= ∫

s

t v
dvrexps,tR . 

sK , sX , sI , sp , sw , isp , ( )s1s X,KF − , ( )s,tR , and vr  denote the capital stock at the 

end of period s, variable input in period s, investment input in period s, the product 

price in period s, the variable input price in period s, the investment goods price in 

period s, a homogeneous production function of degree one, the discount factor that 

discounts the net cash flow of period s to their value at time t, and the discount rate at 

time v, respectively. ( )1ss K,IC −  is the adjustment cost incurred when a firm changes 

its capital stock K. C is assumed to be strictly convex with respect to I, and 

homogeneous of degree one with respect to I and K. 

  C represents the standard convex adjustment cost function. A firm maximises its 

value tV , given by (A-1), subject to the dynamic constraint, 

  1ttt KδIK −−=& ,                                                   (A-2) 

where ⋅  denotes the derivate with respect to time. 

The current value Hamiltonian of this maximisation problem is given by: 

( ) ( ){ } ( )1ttttittt1ttt1ttt KδIqIpXwK,ICX,KFpH −−− −+−−−= ,            (A-3) 
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where tq  is the shadow price of capital. The above maximisation problem yields the 

first-order condition: 

( ) ttt1tttit p/qI/K,ICp/p =∂∂+ − .                                    (A-4) 

The shadow price tq  can be shown to be the sum of the discounted values of marginal 

profits that accrue from an additional unit of capital installed at time t; see Abel (1980, 

1990) for details. 

When we assume a quadratic adjustment cost function: 

( ) 1t

2

1t

t
1tt Kδ

K
I

2
αK,IC −

−
− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ,                                     (A-5) 

we have: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∂∂

−

δ
K
IαI/C
1t

t
tt .                                            (A-6) 

By substituting (A-6) into (A-4), we can derive the investment ratio K/I  as a linear 

function of q: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

−

1
p
q

p
p

α
1δ

K
I

it

t

t

it

1t

t .                                           (A-7) 

This is the standard investment equation on which empirical studies are based. 
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Appendix 2.Data 

We describe data in this appendix. Because our sample comprises unlisted firms, stock 

price data are not available. Hence, we obtain our data from the financial statements 

of unlisted firms. 

A2.1. Data Sources 

The sample data are selected from the financial statements of 104 unlisted 

corporations that produce automobile parts. These data are complied by Tokyo Shoko 

Research (TSR). The Kaisha-Sokan (Corporation List) is used to identify automobile 

parts suppliers. Although we attempted to include all suppliers, the TSR database does 

not cover all firms. Our final sample comprises information on 104 corporations. 

The potential sample period is from 1977 to 2006, or 30 years. However, because few 

firms are represented for the entire sample period, we use an unbalanced panel. The 

total number of observations is 1,553. We discard as outliers cases with negative 

values of 1tq − . We also discard those samples for which any value of the gross profit 

rate, 1tq − , or K/I  is more than five standard deviations from the corresponding mean 

(see, e.g., Abel and Eberly (2002) for similar treatment of the data). Therefore, our final 

number of observations is 1,527. 

The fact that most of our sample consists of data with missing observations hampers 

use of the perpetual inventory method as used by Hoshi and Kashyap (1990) and 

Hayashi and Inoue (1991), and poses difficulties in measuring the replacement cost of 

capital, which is needed to measure marginal q. Hence, we follow Kaplan and Zingales 

(1997), Polk and Sapienza (2008), Almeida and Campello (2007) and others, and use 

the book value of the nominal capital stock or total assets. 

A2.2.Tobin’s q 



28 
 

We define the gross profit rate as: 

( )
1

1

K
Kδπτ1

−

−+− ,                                        (A-8) 

where τ , π , δ , and 1K−  denote the corporate tax rate, operating profit, the 

depreciation rate, and capital stock at the beginning of the period, respectively. When 

we discount this value (A-8) by the cost of capital ( ) δrτ1 +−  with the assumption of 

static expectations, we have Tobin’s q, 1K/Vq −= , where ( )
( ) δrτ1

Kδπτ1V 1

+−
+−

= −  and r 

denotes the interest rate. We use the average loan rate of each firm for r. 

A2.3.Corporate Investment 

We use the same definition of corporate investment as in Honda and Suzuki (2006), 

which improves measuring investment used in existing studies, including that of 

Hayashi and Inoue (1991). Anyone can download this working paper, Honda and 

Suzuki (2006), from http://www2.econ.osaka-u.ac.jp/library/local/e_HP/e_g_shiryo.html, 

School of Economics, Osaka University. 

 

Footnote 

* The authors thank Kazuo Ogawa for his advice on computational techniques. The 

first author also gratefully acknowledges financial support from Grant-in-Aid No. 

17203016 and the Global Center of Excellence Program at Osaka University, both 

sponsored by the Ministry of Education, Culture, Sports, Science, and Technology. 
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Tables 

Table 1: Summary Statistics from 1,527 Observations 

 Mean Std Dev Minimum Maximum 

I/K  0.3192 0.2327 -0.1662 1.5964 

q 1.3914 0.4651 0.0328 4.0472 

L 14.5747 1.1266 10.7462 17.7081 

 

 

Table 2: Benchmark Estimates of the Model with Two Thresholds  

( 1.20q0.91q 21 ==   and  ) 

 

 Estimates 

3
0β  (intercept of the third regime) 2.5645 

(11.0512) 

1
1β  (slope of the first regime) 

0.0134 
(0.2362) 

2
1β  (slope of the second regime) 

0.3598 
(4.9787) 

3β1  (slope of the third regime) 
0.0354 

(1.8413) 

1γ  (coefficient of L) 
-0.1622 

(-10.2899) 

2γ  (coefficient of L･D) 
0.0588 

(2.3592) 

 

The log likelihood of the estimated equation is 384.2105. Numbers in parentheses are 

t-values. Throughout the paper, all reported t-values are based on 

heteroskedasticity-consistent standard errors.
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Table 3: Testing the Significance of A
itŷ  in the Benchmark Model 

 

2q  

1q  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

0.2 -0.01 -0.66 0.26 0.60 1.09 0.83 0.91 1.10 

0.3 -0.04 -0.43 0.25 0.60 1.08 0.83 0.90 1.09 

0.4 0.47 0.36 0.46 0.70 1.15 0.87 0.93 1.12 

0.5 0.85 0.85 0.69 0.83 1.24 0.94 1.00 1.17 

0.6 0.93 0.96 0.73 0.85 1.25 0.95 1.00 1.18 

0.7 0.38 0.27 0.43 0.68 1.13 0.85 0.92 1.10 

0.8 0.47 0.36 0.42 0.67 1.13 0.85 0.91 1.09 

0.91 0.49  0.35 0.64 1.11 0.84 0.91 1.09 

1.0  -0.49 0.30 0.63 1.11 0.86 0.93 1.12 

1.1  -0.41 0.32 0.67 1.15 0.90 0.98 1.16 

1.2   0.35 0.64 1.11 0.84 0.91 1.09 

 

Note: The number in each cell is the t-value for the coefficient of the fitted variable A
itŷ . 

Because none of these indicates statistical significance, the alternative models convey 

no additional information. 
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Table 4: Testing the Significance of B
itŷ  in the Alternative Model 

 

2q  

1q  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

0.2 3.87*** 2.90*** 2.31** 2.44** 2.43** 2.85*** 3.11*** 3.24*** 

0.3 3.82*** 2.68*** 2.19** 2.40** 2.41** 2.84*** 3.10*** 3.24*** 

0.4 3.67*** 2.31** 1.93** 2.28** 2.35** 2.81*** 3.08*** 3.23*** 

0.5 3.51*** 1.88* 1.70* 2.19** 2.31** 2.79*** 3.08*** 3.23*** 

0.6 3.40*** 1.51 1.57 2.16** 2.30** 2.80*** 3.09*** 3.25*** 

0.7 3.36*** 1.29 1.62* 2.23** 2.36** 2.83*** 3.11*** 3.26*** 

0.8 3.12*** 0.58 1.60 2.28** 2.41** 2.88*** 3.15*** 3.29*** 

0.91 2.73***  1.73* 2.37** 2.47** 2.91*** 3.16*** 3.29*** 

1.0  1.39 2.02** 2.49** 2.54** 2.93*** 3.15*** 3.25*** 

1.1  2.18** 2.40** 2.60*** 2.57*** 2.85*** 2.99*** 3.05*** 

1.2   2.64*** 2.70*** 2.64*** 2.80*** 2.86*** 2.89*** 

 

Note: The number in each cell is the t-value for the coefficient of the fitted variable B
itŷ .  

***”, **, and * indicate that the fitted variable B
itŷ  is significant at the 1% level, 5% level, 

and 10% level, respectively, which implies that the benchmark model conveys more 

information than does each alternative model. 
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Table 5: Benchmark Estimates of the Model with One Threshold 

   ( 1.34q1 = ) 

 Estimates 

2
0β  (intercept of the third regime) 2.5797 

(11.0218) 

1
1β  (slope of the first regime) 

0.1742 
(5.6493) 

2
1β  (slope of the second regime) 

0.0313 
(1.5338) 

1γ  (coefficient of L) 
-0.1627 

(-10.1861) 

2γ  (coefficient of L･D) 
0.0577 

(2.3046) 
 
The log likelihood of the estimated equation is 381.8763. Numbers in parentheses are 

t-values. 

 

Table 6: Testing the Significance of A
itŷ  (the Fitted Values from the Model with One 

Threshold) in the Best Model with Two Thresholds  

 

1q  0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.34 1.4 

t-value 0.85 0.96 -0.27 -0.36 0.22 0.49 0.41 - 0.35 0.39 0.35
 

1q  1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 

t-value 0.49 0.64 1.03 1.11 0.94 0.84 0.78 0.91 1.01 1.09 
 
Note: The number in each cell is the t-value for the coefficient of the fitted variable A

itŷ  

in an alternative model with one threshold. Because none indicates statistical 

significance, alternative models with one threshold convey no additional information. 
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Table 7: Testing the Significance of B
itŷ  (the Fitted Values from the Model with Two 

Thresholds) in Alternative Models with One Threshold  

 

1q  0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.34 1.4 

t-value 4.12*** 4.13*** 4.10*** 4.09*** 4.05*** 3.91*** 3.52*** 3.14*** 2.67*** 2.53** 2.49**

 

1q  1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 

t-value 2.45** 2.51** 2.40** 2.47** 2.67*** 2.86*** 3.04*** 3.11*** 3.19*** 3.24*** 

 

Note: Number in each cell is the t-value for the coefficient of the fitted variable B
itŷ . ***, 

**, and * indicate that the fitted variable B
itŷ  is significant at the 1% level, 5% level, 

and 10% level, respectively, which implies that the best model with two thresholds 

( 20.1q91.0q 21 ==   and  ) conveys additional information not conveyed by each 

alternative model. 
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Figures 

Fig. 1.TheIrreversibility of Investment in Abel and Eberly (1994)  

 

 

Fig. 2.Linear Adjustment Costs in Barnett and Sakellaris (1998) 
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Fig. 3.Asymmetric Adjustment Costs 

  

 

 

Fig. 4.An Alternative Specification of Irreversibility 
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Fig. 5.A Horizontal First Part  

 

 

Fig. 6.Prohibitive Adjustment Costs for Extremely Large Investments 
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Fig. 7.A Non-linear Investment Function with Two Kinks 

 

 

Fig. 8.A Model with Two Thresholds  
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Fig. 9.Sample Plot of Investment Ratio against Lagged Tobin’s q (N=1,527) 
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