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To date, mixed demand systems have been all but ignored in empirical work. A possible reason
for the scarcity of such applications is that one needs to know a priori which prices and
quantities are endogenous in the mixed demand system. By using a directed acyclical graph
(DAG), causal relationships among price and quantity variables are identified giving rise to a
causally identified mixed demand system. A statistical comparison is made of the traditional
Rotterdam model, a synthetic demand system, which subsumes the traditional Rotterdam
model, and a Rotterdam mixed demand system identified through the use of a DAG. In this
analysis, the respective demand systems consist of five products: steak, ground beef, beef
roasts, pork, and chicken.
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I. Introduction

Generally, most demand systems are mono-dependent, that is, they constitute a

set of either quantity-dependent demand relations or price-dependent demand
relations. Quantity-dependent demand functions are the usual representation of

preferences for individual consumers whose task is to make optimal consumption

decisions at given levels of prices and income. The behavioral implications of
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demand theory typically are assumed to hold at the aggregate or market-level, that
is, over a collective set of individuals. At the market level, the use of

quantitydependent demand functions also is tantamount to assuming that supplies

are perfectly elastic. Price-dependent or inverse demand functions are particularly
useful in markets for agricultural and natural resource commodities where, in the

short-run, it is reasonable to argue that supplies are perfectly inelastic (Wong and

McLaren 2005; Park et al. 2004; Barten and Bettendorf 1989).
However, at the market level, it is often the case that both prices and quantities

of commodities are endogenous variables. The sources of endogeneity in prices

and quantities largely are attributed to simultaneity of demand and supply
relationships as well as aggregation across economic agents. Theil (1976) provides

a general discussion of price endogeneity in demand systems. Thurman (1986,

1987), Wahl and Hayes (1990), and Eales and Unnevehr (1993) have examined the
issue of price versus quantity endogeneity in demand analysis using the Wu-

Hausman test (Hausman 1970 and 1977). La France (1991), Attfield (1985, 1991),

Brown et al. (1994) and Capps et al. (1994) also question the endogeneity of total
expenditure in conditional demand models. The commonality of the works in dealing

with these endogeneity issues is that consistent estimates of demand parameters

are obtained by using instrumental variables. The difficulty then arises in empirical
application with the justification of selected instruments.

In accord with Heien (1977), depending on the characteristics of the particular

market, one may want to specify some demand relationships as price dependent
and others as quantity dependent. The use of full duality in the words of Samuelson

(1965) allows for the specification of a mixed demand system. In the case of mixed

demand functions, prices of some goods are predetermined such that the respec-
tive quantities demanded adjust to clear the market, whereas, for the remaining set

of goods, quantities supplied are predetermined and prices must adjust to clear the

market. Bottom line, in addition to the polar cases of direct (quantity-dependent)
and inverse (price-dependent) demand functions, seemingly one must at least

consider Samuelson’s mixed demand functions, particularly when studying

aggregate consumption behavior (Chavas 1984).
Moschini and Vissa (1993) used a Rotterdam mixed demand system to study

retail price and quantity relationships of beef, pork and chicken in Canada. They

justified the mixed demand system approach because “for chicken, equilibrium is
characterized by exogenously determined supply with price adjusting to clear the

market. Their assumption that beef and pork prices are exogenous to the Canadian

market seems tenable” (p.5).
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Matsuda (2004) extended the model of Moschini and Vissa (1993) by
incorporating in it a generalized form of marginal budget shares. That is, the constant

marginal budget shares in the Rotterdam mixed demand system of Moschini and

Vissa (1993) are replaced with those derived from originally defined and specified
mixed Engel curves that take a generalized functional form using the Box-Cox

transformation. Matsuda (2004) empirically illustrated the use of this mixed demand

system in analyzing the Japanese demand for fresh and processed fruits and
vegetables.

If mixed demand systems are theoretically consistent, as shown by Samuelson

(1965), Chavas (1984), and Cunha-e-Sá and Ducla-Soares (1999), and, technically
feasible, as demonstrated by Barten (1992), Moschini and Vissa (1993), Gao et al.

(1996), and Matsuda (2004), why have they been largely ignored in empirical work?

Moschini and Vissa (1993) suggested that one reason for the scarcity of applications
of mixed demand systems is that knowledge of both direct and indirect utility

functions is required to characterize the demand properties. Commonly used flexi-

ble functional forms such as the translog models (Christensen et al. 1975) and the
Almost Ideal Demand System (AIDS) model (Deaton and Muellbauer, 1980) do

not have a closed form dual representation, making it impossible to express these

flexible functional forms as mixed demand systems.
Another possible reason for the scarcity of such applications is that one needs

to know a priori which prices and quantities are endogenous in the mixed demand

system. Through the works of Pearl (2000) and Spirtes et al. (2000), techniques
have been developed to determine causality among variables. One specific

technique is the use of a directed acyclical graph (DAG). The causal relationships,

represented by the DAG, then are used as a guide in specifying the left-hand side
(endogenous) and right-hand side (predetermined) variables of the equations in a

demand system, giving rise to a causally identified demand system (CIDS).

Using scanner data consisting of 113 weekly observations on quantities and
prices of various meats -steak, beef roasts, ground beef, pork and chicken- (Capps

1989; Nayga and Capps 1994), a statistical comparison is made of the traditional

Rotterdam model, a synthetic demand system which subsumes the traditional
Rotterdam model (Barten, 1993) and a Rotterdam mixed demand system. Through

the use of the DAG, in the mixed demand system, we show that steak, ground beef,

pork and chicken are quantity-dependent variables but beef roast is a
pricedependent variable. Hence, the use of the DAG suggests the specification of

a mixed demand system.

The intent of this analysis is to propose a method whereby the full theory of
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demand may be exploited when estimating a system of equations. The use of mixed
demand systems, according to Chavas (1984), “is very attractive for the

investigation of consumption decisions since it is derived without sacrificing the

elegance of theory.” A more precise understanding of the relationships of prices
and quantities leads to more precise measurement of elasticities and/or flexibilities.

The organization of this paper is as follows. In the next section, we describe the

notion of a directed acyclical graph (DAG). Subsequently, in Section III, guided by
the work of Moschini and Vissa (1993), we lay out the details of the Rotterdam

mixed demand system. We then present the data used in this analysis, along with

the results associated with the DAG (Section IV). In Section V, empirical results
associated with the various demand systems are presented, with emphasis placed

on uncompensated and compensated elasticities. Finally, we offer concluding

remarks and recommendations for further work.

II. Directed acyclic graphs and PC algorithm

A directed graph represents pictorially causal flows among a set of variables.

Edges (arrows) are used to represent flows; for example A→B indicates that varia-

ble A causes variable B. The graph is acyclic, as we do not consider graphs that
return to their origin; for example, the graph A→ B → A is not permitted. The idea

that allows detection of the direction of causal flows among variables from

observational or non-experimental data is that of screening-off phenomena and
their formal representations as d-separation (Pearl 2000). Two variables are said to

be d-separated if the information flow between them is blocked.

For three variables A, B and C, if we have variable A as a common cause of B
and C, that is (B←A→C), then the unconditional association between B and C is

non-zero, as both have a common cause in A (this graph is labeled a ‘causal fork’,

Pearl 2000). If we measure association (linear association) by correlation, then B
and C have a non-zero correlation. If we condition on A, the partial correlation

between B and C (given we know the value of A) is zero. Simply put, knowledge of

the common cause (A) “screens-off” association between its effects (B and C).
Variables B and C are d-separated.

Alternatively, suppose that we have variables D, E and F such that D→E←F.

In this case, E is a common effect of D and F (this graph is also labeled a ‘causal
inverted fork’). D and F have no association (zero correlation if we consider linear

association). If we condition on E, the association between D and F is non-zero

(the partial correlation between D and F, given knowledge of E is non-zero).
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Knowledge of the common effect does not “screen-off” association between its
causes.

Finally, if we have variables G, H and I forming a ‘causal chain’, G→H→I, the

unconditional association (correlation) between G and I is non-zero, but the
conditional (partial) correlation between G and I, given we know the value of H, is

zero. Again, knowledge of H “screens off” association between G and I.

The “screening off” conditions summarized above provide potentially useful
information about the causal structures generated directly from the data. Recently

computer scientists have constructed programs to take advantages of such

information. Pearl (2000), as well as Spirtes et al. (2000) through their work, provide
two such algorithms. The latter is labeled PC algorithm, embedded in the software

TETRAD II, III, and IV (see the offering at http://www.phil.cmu.edu/projects/tetrad/

and described in Spirtes et al. 2000); the former is IC algorithm presented in Pearl
(2000, pp.50-51). We offer a brief description of PC algorithm. Essentially, this

algorithm sequentially computes zero-order correlations (by zero order partial

correlation we mean the unconditional correlation between, say, X and Y) or
higherorder partial correlations (by higher order partial correlations we mean

conditional correlations between, say, X and Y given knowledge of variables W

and Z) among a set of variables to determine causal relationships.
One begins with a set of causally sufficient variables. Causal sufficiency rela-

tes to the issue of completeness. That is, there is no omitted variable from the

specified set that causes two or more of the variables in the set. The primary
source of information on our causally sufficient set is economic theory. One forms

a complete undirected graph on this set of variables. In demand analysis, these

variables correspond to quantities and prices of various commodities as well as
their total expenditure. Say we have variables X, Y and Z. Form the complete

undirected graph as:

       X

 /  \

Y       Z .

This graph has an edge connecting each variable with every other variable in
the predetermined (causally sufficient) set. Edges between variables are removed

sequentially based upon vanishing unconditional (zero-order) correlation or

higherorder partial correlation at some pre-specified significance level. The Fisher
Z statistic, distributed asymptotically as standard normal, is used in ascertaining

the significance of the respective correlations among the variables.
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Edges that survive these attempts at removal are directed by using the notion
of sepset (separating set). The conditioning variable(s) on removed edges between

two variables is called the sepset of the variables whose edge has been removed

(for vanishing zero-order conditioning information the sepset is an empty set). PC
algorithm directs the edges between X and Y into variable Z if Z is not in the sepset

of X and Y. For our X, Y, Z example, suppose we have removed the edge between

X and Y not conditional on Z (that is, the unconditional correlation between X and
Y is zero). We then direct X  Z  Y as X → Z ← Y. Had Z been used to remove

the edge between X and Y (if PC algorithm removed the edge because the correlation

between X and Y conditional on Z is zero) then PC algorithm would not be able to
direct the edges between X, Y and Z as the underlying model may have been a

causal fork, that is X ← Z → Y or a causal chain X → Z → Y. In such cases of

ambiguity, PC algorithm leaves the remaining edges undirected: X  Z  Y.
If we have at least one other variable in the pre-specified set in addition to X, Y

and Z (say W), the aforementioned ambiguity may be resolved. Suppose that after

removing edges on the four-variable set, we are left with the undirected graph on
X, Y, Z and W:

X  Z  Y
          |

        W.

If the sepset of X and W does not contain Z, but Z is in the sepset of X and Y,

then X – Z – W may be characterized as an inverted fork:

X → Z  Y
          ↑
         W.

The inverted fork relation among X, Z and W, resolves the ambiguity on X, Z,

Y directions. The causal fork possibility (X ← Z → Y) does not hold. Consequently,
PC algorithm returns the directed acyclic graph:

X → Z → Y
         ↑
        W.
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PC algorithm has been studied in Monte Carlo simulations (Spirtes et al. 2000;
Demiralp and Hoover 2003). The algorithm may make mistakes of two types: edge

inclusion or exclusion and edge direction (orientation); the latter appears to be

more likely than the former. Spirtes et al. (p.116, 2000) state that “in order for the
methods to converge to correct decisions with probability 1, the significance level

used in making decisions should decrease as the sample size increases; the use of

higher significance levels (e.g., .2 at sample sizes less than 100 and .1 at sample
sizes between 100 and 300) may improve performance at small sample sizes.” Hence

in PC algorithm, the caveat is that the orientation (edge direction) decision is less

reliable than the edge inclusion decision.1

III. Rotterdam mixed demand system

A flexible mixed demand system can be specified by approximating the demand

equations directly through a differential approach. This process leads to a Rotterdam

mixed demand system. The literature on mixed demand functions is limited. Not
many empirical applications deal with mixed demand systems. The system introduced

by Mochini and Vissa (1993) is both theoretically consistent and empirically

manageable in the sense that it is relatively easy to impose theoretical restrictions
and to compute elasticities.2

Assume m quantity-dependent demand equations and n-m price-dependent

demand equations:

1 1

ln ln ln ln
m n

i i i i i ij j i ik k
j k m

w d q w d y w d p w d qη ε ψ
= = +

= + +∑ ∑ , (1)

1 1

ln ln ln ln
m n

k k k k k kj j k ks s
j s m

w d p w d y w d p w d qθ ρ θ
= = +

= + +∑ ∑ , (2)

where y corresponds to total expenditure ;
11

∑∑
+==

+=
n

mr
rr

m

r
rr qpqpy  w

i 
and w

k 
are

expenditure shares y

qp
w ii

i =  and y

qp
w kk

k =  and i, j = 1, 2, ..., m and k, s = m + 1,

1 For an interesting extension of DAGs in the use of instrumental variables for identification of
structural models we recommend the reader to the recent paper by Chalak and White (2006).

2 Matsuda (2004) indeed extends the model of Moschini and Vissa (1993). We employ the latter
model because of its relative simplicity. Of course, it is possible to extend our work using the
Matsuda (2004) version of a mixed demand systems model.
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…, n. Note that εij is the uncompensated own-price elasticity (if i = j ) and

uncompensated cross-price elasticity (i ≠ j) associated with goods i and j .
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it is possible to obtain the Rotterdam mixed demand system,

k
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IV. Data description and data analysis

A. Data description

Scanner data from a retail food firm in Houston are aggregated to form weekly time-

series observations from September 1986 to November 1988 (Capps 1989; Nayga

and Capps 1994). These data correspond to point-of-sale purchases and involve
only fresh meat items, namely ground beef, beef roasts, steak, chicken, and

pork.

To obtain the quantities of the various fresh meat products, we sum the
respective quantities in the commodity group. The corresponding prices are

weighted averages of the prices in the particular commodity group. The weights

correspond to the quantity shares of each product in the relevant group.  Quality
effects may result from commodity aggregation (Houthakker 1952; Cox and

Wohlgenant 1986).  Although the use of these implicit prices potentially limits the

analysis, quality effects attributable to commodity aggregation could be assumed
negligible given that the meat products in question are relatively homogeneous.

Descriptive statistics associated with the quantities, prices, and expenditures

shares of the respective meat products are exhibited in Table 1. Chicken and ground
beef are the most important items in terms of volume of purchases. Beef roasts are

the least important in terms of volume of purchases. In terms of prices, steak is the

most expensive commodity ($3.92 per pound on average), and chicken is the least
expensive commodity ($1.42 per pound on average).

Total meat expenditures associated with these products are slightly more than

$1 million per week on average for this retail food firm. In terms of expenditure
shares, pork and steak comprise nearly 50% of the total dollar sales of the various

meat products. Ground beef and chicken comprise slightly more than 40% of the

total dollar sales, and beef roasts constitute roughly the remaining 7% of total
dollar sales.

B. Data analysis

We use the TETRAD II program to determine the directed acyclical graph (DAG)

for all prices, quantities, and total expenditure indigenous to this analysis. The
resulting DAG is exhibited in Figure 1. Arrows associated with prices for ground

beef, steak, chicken, and pork point to the corresponding quantities of these meat

products. Consequently, for ground beef, steak, chicken, and pork, price is casual
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to quantity.  However, for beef roasts, the reverse is true as the quantity arrow for
this commodity points to its corresponding price.3  Bottom line, the DAG provides

empirical evidence that this demand system of meat products is not mono-

dependent but mixed.4

3 The data used in our analysis are from a single retailer located in Houston, Texas. The
customers associated with this retailer are upscale, with incomes well above the norm. A
hypothesis consistent with our empirical findings is that beef roasts are used as a loss leader for
this retailer.

4 One may develop a system of equations based solely on the DAG exhibited in Figure 1. We do
not attempt to estimate this system, however, because of its inconsistency with demand
theory.

Table 1.  Descriptive statistics associated with weekly quantities, prices, and
expenditure shares of meat products

Mean Median St. dev Minimum Maximum

A. Quantities (pounds)
Ground beef 119,273 112,629 29,066 68,341 261,449
Beef roasts 31,310 20,827 22,931 13,190 142,663
Steak 63,640 58,463 17,311 27,415 121,822
Chicken 172,460 143,094 124,480 72,162 1,296,539
Pork 95,021 72,561 140,510 46,784 1,543,418
B. Prices (cents/pound)
Ground beef 190.42 197.26 23.12 134.37 223.86
Beef roasts 267.34 286.26 52.93 124.34 341.39
Steak 391.95 395.74 49.47 251.38 486.87
Chicken 142.03 144.15 27.41 68.27 193.74
Pork 299.71 297.58 38.44 198.13 385.65
C. Expenditure shares
Ground beef 0.2224 0.2281 0.0368 0.0296 0.3038
Beef roasts 0.0724 0.0644 0.0247 0.0077 0.1558
Steak 0.2413 0.2388 0.0390 0.0395 0.3326
Chicken 0.2181 0.2172 0.0365 0.1090 0.3105
Pork 0.2459 0.2177 0.0810 0.1682 0.6181

V. Empirical results

A. Rotterdam mixed demand model

We  assume  that  the  meats  group  is weakly separable from other



 JOURNAL OF APPLIED ECONOMICS178

commodities.5  We initially describe the estimation of the mixed demand system

based on the analysis of the DAG, wherein the quantity-dependent demand

relations  correspond  to  ground  beef,  steak,  chicken,  and  pork  and  the  price-
dependent  demand  relation  corresponds  to  beef  roasts.  Implementing  the

Rotterdam mixed demand  system  requires  converting  the  differential  terms in

equations  (13)   and  (14) to  finite  logarithmic  changes.  That is,  ln id q

1ln lnit itq q −= − , ln jd p  1ln lnjt jtp p −= −  1ln( / )jt jtp p −=  and

lnd y 1ln lnt ty y −= − 1ln( / ).t ty y −=
The stochastic version of the model is obtained by adding error terms that are

assumed to be multi-normally distributed and contemporaneously correlated.

Adding-up holds only at a particular point, and so the demand system is not

singular. Thus, all equations are used in the estimation.

5 This type of econometric utilization of weak separability is standard practice in demand
analysis. However, owing to the endogenity of total meat expenditure, simultaneous-equation
bias may arise (LaFrance 1991; Capps et al 1994).

Figure 1.  Directed acyclic graph of prices, quantities, and total expenditure of
the various meat products

Beef
roast
price
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Ground
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The mixed differential model is estimated using SHAZAM 9.0 with the inclusion
of intercepts for each equation as well as a correction for first-order autocorrelation.

To satisfy adding-up, intercepts of the equations are constrained to sum to zero.

Also, the autocorrelation coefficient is constrained to be the same in all equations.
Parameter estimates, standard errors, and t-statistics associated with the

Rotterdam mixed demand system are exhibited in Table 2. The number of

independent parameters estimated is 19; we recover the remaining estimates through
the use of the restrictions from homogeneity, symmetry, and adding-up in equations

(15), (16), and (17).  The goodness-of-fit associated with the respective demand

relationships range from 0.5596 (ground beef) to 0.9029 (chicken).

With the exception of the intercept estimates for the steak and chicken equations

and of the estimate of γ
51

, the remaining parameter estimates are significantly

different from zero. If we divide the estimates of the intercepts in the respective
equations by their corresponding expenditure share, we determine the rate of

change of quantity demanded for each of the meat products. Hence, over the

sample period and for reasons not attributable to meat prices and total meat

Coefficient 

 

Parameter 
estimate 

Standard 
error 

Coefficient 

 

Parameter 
estimate 

Standard 
error 

Ground beef, equation (1) 0.0085 0.0035 ** 
14α 2 0.0938 0.0201 *** 

Steak, equation (2) 0.0039 0.0033 22α  -0.3388 0.0143 *** 

Chicken, equation (3) 0.0008 0.0032 23α  0.0998 0.0097 *** 

Pork, equation (4) -0.0088 0.0044 ** 24α 3 0.1730 0.0167 *** 

Beef roasts, equation (5)1 -0.0044 0.0011 *** 33α  -0.2636 0.0118 *** 

1α  0.1211 0.0159 *** 34α 4 0.0910 0.0137 *** 

2α  0.1206 0.0146 *** 44α 5 -0.3578 0.0295 *** 

3α  0.2862 0.0145 *** 55β  -0.0386 0.0020 *** 

4α  0.4600 0.0196 *** 51 15( )γ δ 6 -0.0045    0.0048      

5α  0.0121 0.0051 ** 52 25( )γ δ  -0.0278 0.0040 *** 

11α  -0.2326 0.0198 *** 53 35( )γ δ  -0.0138 0.0035 *** 

12α  0.0661 0.0125 *** 54 45( )γ δ  -0.0262 0.0051 *** 

13α  0.0727 0.0122 *** Rho -0.2989 0.0469 *** 

Table 2. Parameter estimates with the Rotterdam mixed demand system

Notes: 1Derived from the restriction that the sum of the intercepts equals zero. 2Derived from
the restriction that α14 = − α11 − α12 − α13. 

 3Derived from the restriction that α24 = − α12 − α22 − α23.
4Derived from the restriction that α34 = − α13 − α23 − α33.  

 5Derived from the restriction that α44 =
− α11 + α22 + α33 + 2α12 + 2α13 + 2α23.  

6Derived from the restriction that γ51 = - γ 52 - γ 53 - γ 54 – average
expenditure share of beef roasts. ** denotes significance at 5% and *** at 1%.
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expenditures, the quantity demanded of ground beef, steak, and chicken rose by
3.8 percent, 1.6 percent, and 0.4 percent respectively.  On the other hand, the

quantity demanded of pork and beef roasts fell by 3.6 percent and 6.1 percent

respectively.
Marshallian mixed elasticities retrieved from the use of equations (3)-(8) are

given in Table 3. The mixed expenditure elasticities are all positive and statistically

significant in accord with prior expectations. These elasticities for ground beef,
steak, chicken, and pork indicate the percentage change in consumption (0.54

percent, 0.50 percent, 1.31 percent and 1.87 percent) attributed to a one percent

change in total meat expenditure. For beef roasts, the expenditure elasticity indicates

Table 3.  Elasticities estimated from the Rotterdam mixed demand system

Commodity Price Price Price Price Quantity Meat  Meat
ground steak  chicken pork beef expenditure share
beef roasts

A. Marshallian elasticities♣
Quantity ground beef -1.1695 0.1507 0.2008 0.2735 0.0006 0.5445 0.2224
p-value 0.0000 0.0132 0.0002 0.0029 0.9795 0.0000
Quantity steak 0.1605 -1.5390 0.2977 0.5809 -0.0959 0.4999 0.2413
p-value 0.0035 0.0000 0.0000 0.0000 0.0000 0.0000
Quantity chicken 0.0357 0.1045 -1.5129 0.0603 -0.0129 1.3124 0.2181
p-value 0.5464 0.0330 0.0000 0.3493 0.4108 0.0000
Quantity pork -0.0432 0.2000 -0.0637 -1.9639 -0.0343 1.8707 0.2459
p-value 0.6036 0.0048 0.2609 0.0000 0.1213 0.0000
Price beef roasts 0.0250 0.3393 0.1527 0.3165 -0.5264 0.1666 0.0724
p-value 0.7184 0.0000 0.0018 0.0001 0.0000 0.0185
B. Compensated elasticities ♣
Quantity ground beef -1.0459 0.2972 0.3271 0.4217 -0.0204
p-value 0.0000 0.0000 0.0000 0.0000 0.3458
Quantity steak 0.2739 -1.4044 0.4136 0.7169 -0.1152
p-value 0.0000 0.0000 0.0000 0.0000 0.0000
Quantity chicken 0.3336 0.4576 -1.2086 0.4174 -0.0635
p-value 0.0000 0.0000 0.0000 0.0000 0.0001
Quantity pork 0.3814 0.7034 0.3701 -1.4548 -0.1065
p-value 0.0000 0.0000 0.0000 0.0000 0.0000
Price beef roasts 0.0628 0.3841 0.1913 0.3618 -0.5329
p-value 0.3458 0.0000 0.0001 0.0000 0.0000

Notes: Asymptotic standard errors (not reported) are computed via the use of the Delta
method. The p-values associated with the significance of the respective elasticities are
reported. These p-values are based on the relation that the ratios of the elasticities to their
respective standard errors are asymptotically normally distributed. ♣ Calculations at the
sample means.
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the percentage change in price (0.17 percent) when total meat expenditure changes
by one percent.  The own-price elasticities for the commodities range from –1.17

(ground beef) to –1.96 (pork). The own-price flexibility for beef roasts is –0.52.

Estimated mixed compensated elasticities obtained by the use of equations (9)-
(12) and their associated p-values are given in Table 3. The ratios of the elasticities

to their standard errors are asymptotically normally distributed.  Ground beef,

steak, chicken, and pork are net substitutes for each other as indicated by the
positive mixed compensated elasticities. The compensated cross-price flexibilities

of beef roasts with respect to steak, chicken, and pork are negative and statistically

different from zero.
To facilitate comparisons to quantity-dependent demand systems, it is desirable

to retrieve direct Marshallian elasticities and direct compensated elasticities from

the mixed elasticities. Let [ ]
mxmijεε = , [ ] )( mnmxik −= ψψ , [ ]

xmmnkj )( −= ρρ and
[ ] )()( mnxmnkk −−= θθ correspond to the matrix of elasticities derived from equations

(3) - (6), i, j=1, 2, . . .m and k = m+1, . . ., n.  Then the Marshallian and mixed

elasticities are related by:

[ ]ρψθεε 1−−=AA ,

where ε,ψ,θ, and ρ denote the aforementioned matrices of mixed elasticities and

ε
AA

, ε
AB

, ε
BA

, and ε
BB

 denote submatrices of the direct Marshallian price elasticities.
In our analysis, ground beef, steak, chicken and pork are in group A and beef

roasts are in group B.

Direct elasticities retrieved from the Rotterdam mixed demand system are
reported in Table 4. We initially compute the direct Marshallian elasticities. Then,

through the homogeneity restrictions, we retrieve the expenditure elasticities.

Finally, via the use of Slutsky’s equation, we obtain the direct compensated
elasticities. For the quantity-dependent demand functions, the set of mixed

elasticities exhibited in Table 3 are very similar to the set of direct elasticities

exhibited in Table 4. The direct elasticities associated with the price-dependent
demand relation for beef roasts retrieved from the mixed Rotterdam model suggest

(18)

[ ],1−= ψθεBB (19)

,1ρθε −−=BA                 and (20)

(21),1−=θεBB
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that: (1) beef roasts are substitutes (in the Hicksian sense) for the meat commodities;
(2) the expenditure elasticity for beef roasts is about 0.32, smaller than that of steak

(0.47), of ground beef (0.54), chicken (1.31), and pork (1.86); and (3) the own-price
elasticity of demand for beef roasts is –1.90, on par with the elastic demands of the
other meat items in the system.

B. Synthetic demand system

The choice of demand  systems can potentially have a material effect on the

Table 4.  Direct elasticities retrieved from the Rotterdam mixed system

Commodity Price Price Price Price Quantity Meat  Meat
ground steak  chicken pork beef expenditure share
beef roasts

A. Marshallian elasticities ♣
Quantity ground beef -1.1695 0.1510 0.2010 0.2739 -0.0011 0.5447 0.2224
p-value 0.0000 0.0163 0.0002 0.0022 0.9795 0.0000
Quantity steak 0.1559 -1.6008 0.2698 0.5809 0.1823 0.4696 0.2413
p-value 0.0064 0.0000 0.0000 0.0000 0.0000 0.0000
Quantity chicken 0.0351 0.0962 -1.5167 0.0244 -0.0129 1.3084 0.2181
p-value 0.5533 0.0464 0.0000 0.4113 0.4108 0.0000
Quantity pork -0.0448 0.1779 -0.0737 -1.9845 -0.0343 1.8599 0.2459
p-value 0.5889 0.1357 0.1964 0.0000 0.1213 0.0000
Quantity beef roasts 0.0250 0.6445 0.2900 0.6012 -0.5264 0.3164 0.0724
p-value 0.7204 0.0000 0.0016 0.0000 0.0000 0.0179
B. Compensated elasticities♣
Quantity ground beef -1.0484 0.2824 0.3198 0.4078 0.0384
p-value 0.0000 0.0000 0.0000 0.0000 0.3556
Quantity steak 0.2604 -1.4875 0.3722 0.6387 0.2162
p-value 0.0000 0.0000 0.0000 0.0000 0.0000
Quantity chicken 0.3261 0.4118 -1.2314 0.3743 0.1191
p-value 0.0000 0.0000 0.0000 0.0000 0.0001
Quantity pork 0.3688 0.6266 0.3319 -1.5271 0.1999
p-value 0.0000 0.0000 0.0000 0.0000 0.0000
Quantity beef roasts 0.1179 0.7208 0.3590 0.6790 -1.8767
p-value 0.3556 0.0000 0.0001 0.0000 0.0000

Notes: Asymptotic standard errors (not reported) are computed via the use of the Delta
method. The p-values associated with the significance of the respective elasticities are
reported. These p-values are based on the relation that the ratios of the elasticities to
their respective standard errors are asymptotically normally distributed. ♣ Calculations at
the sample means.
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estimation of elasticities. For comparison purposes, we estimate a synthetic demand
system (quantity-dependent) developed by Barten (1993).

 6 
Lee, Brown and Sale

(1994) provide details of this quantity-dependents synthetic demand system.

The synthetic demand nests four differential demand systems: The traditional
Rotterdam model (Theil 1965; Theil 1980; Mountain 1988); (2) the Linear

Approximate Almost Ideal Demand System (LA/AIDS) (Deaton and Muellbauer

1980); (3) the CBS model (named after the Dutch Central Bureau of Statistics); and
(4) the NBR model (named after the National Bureau of Research). The use of the

Almost Ideal Demand System (AIDS) model and the use of the Rotterdam model

are common in demand system estimation using scanner data (Nayga and Capps
1994; Seo and Capps 1997; Capps, Seo, and Nichols 1997). That is, given the

nature of scanner data, often the assumption is made that prices are exogenous.

Under this assumption, retailers set their prices, and consumers may purchase all
they want at the given prices.

Initially, one estimates the following model

where δ
ij
 denotes the Kronecker δ such that δ

ij
 =1  if i=j and δ

ij
 =0 if i≠ j, d lnQ

denotes the Divisa volume index; w
i
 denotes the expenditure share of the ith

good; q
i
 denotes the volume purchased of the ith good; and p

j
 denotes the price

of the jth good. The parameters to be estimated in this synthetic system are b
i
, c

i j
,

δ and γ. The indices i and j run from 1 to n, where n corresponds to the number of

commodities in the demand system.

Theoretical demand restrictions in the synthetic model are adding-up,
homogeneity, and symmetry:

∑ −=
i

ib δ1
 and 

0=∑
i

ijc
for all j.

,0∑ =ijc and

6 Indeed, one may compare a mixed demand system with inverse demand systems (Brown et al.
1995), as well as with direct demand systems. Eales and Unnevehr (1993) and others estimated
U.S. meat demand using inverse demand functions. Because the majority of the demand rela-
tionships were found to be quantity dependent, we compare our mixed demand model to the
synthetic Barten direct demand system.

[ ] ,ln)(ln)(ln 1 j

j

iijiijiii pdwwcQdwbqdw ⋅−−++= ∑ δγδ (22)

(23)

(24)

jiij cc = for all i,j. (25)
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Restricting the values of δ and γ  yield the following demand systems:

Rotterdam: δ = γ = 0;          (26)

LA/AIDS: δ = γ = 1;         (27)

CBS: δ = 1,  γ = 0 ;         (28)

NBR:  δ = 0,  γ = 1;          (29)

Maynard and Veeramani (2003) reject the conventional demand models (i.e.,
Rotterdam model, LA/AIDS model, CBS model, and NBR model) in their investiga-

tion of the demand for U.S. frozen dairy products. Their test results illustrate the

strength of the synthetic model in helping to avoid inadequate functional form
choices that could lead to specification bias. Likelihood ratio tests evaluated with

two degrees of freedom allow one to choose which set of restrictions (if any)

adequately describes the appropriate functional form of the quantity-dependent
demand functions. The expressions for the calculation of expenditure elasticities,

compensated price elasticities, and uncompensated price elasticities are:

( ) / ,i i i ib w wη δ= +

( ) / ,c
ij ij i ij j ic w w wε γ δ = − − 

.c
ij ij j iwε ε η= −

Standard errors of the elasticity estimates are calculated using the Delta method.
To operationalize the synthetic demand system, we add random error terms to

the system. The model then is estimated using an iterated seemingly unrelated
regression (ITSUR) technique, with an allowance for AR(1) serial correlation in the
disturbance terms of all equations (Berndt and Savin 1975). Because this demand
system is singular, the pork equation is dropped in estimation. The autocorrelation
coefficient, however, is constrained to be the same in all equations.

The parameter estimates, standard errors, and t-statistics associated with the
synthetic Barten demand system are exhibited in Table 5. The number of indepen-
dent parameters to be estimated in this system is 21. The goodness-of-fit statistics
range from 0.8492 (ground beef) to 0.9490 (chicken).  In light of the parameter
estimates associated with delta (0.7396) and gamma (2.0735), we reject the conven-
tional or traditional demand models in this analysis. Specifically, the synthetic

Barten model offers a statistically superior representation over the traditional

Rotterdam model.

(30)

(31)

(32)
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Uncompensated and compensated own-price and cross-price elasticities as
well as expenditure elasticities obtained from the synthetic Barten model are exhib-
ited in Table 6. The uncompensated own-price elasticities for ground beef and beef
roasts are higher in the synthetic Barten model than in the Rotterdam mixed de-
mand system. The reverse is true for steak, chicken, and pork. In addition, the
expenditure elasticities for ground beef, steak, and beef roasts are much higher in
the synthetic Barten model than in the Rotterdam mixed demand system. The
expenditure elasticities for chicken and pork are lower in the Barten model than in
the Rotterdam mixed demand system. Noticeable differences also exist for the
magnitude of the uncompensated cross-price elasticities across the two demand
systems. While the same is true in regard to the magnitude of the compensated
cross-price elasticities associated with the respective demand systems, empirical
evidence exists from both models to indicate that the meat products in question
are substitutes for each other.

Coefficient Parameter 
estimate 

Standard 
error 

Coefficient Parameter 
estimate 

Standard 
error 

Ground beef, equation (1) 0.0028 0.0019 15c 3 -0.0226 0.0138 

Beef roasts, equation (2) 0.0032 0.0013 ** 22c  -0.0038 0.0113 

Steak, equation (3) 0.0028 0.0018 23c  -0.0020 0.0065 

Chicken, equation (4) -0.0049 0.0021 ** 24c  0.0041 0.0054 

Pork, equation (5)1 -0.0039 0.0028 25c 4 0.0084 0.0078 

1b  0.0119 0.0137 
33c  0.0684 0.0254 *** 

2b  0.0051 0.0075 
34c  -0.0373 0.0097 *** 

3b  0.0100 0.0013 
35c 5 0.0054 0.0137 

4b  0.1153 0.0212 *** 
44c  0.1128 -0.0234 ***

5b 2 0.1182 0.0343 *** 
45c 6 -0.0331 0.0123 *** 

11c  0.1104 0.0251 *** 55c 7 0.0045 0.0313 

12c  -0.0068 0.0064 Delta 0.7396 0.0680 *** 

13c  -0.0346 0.0108 *** Gamma 2.0735 0.1213 *** 

14c  -0.0465 0.0097 *** Rho -0.4691 0.0501 *** 

Table 5.  Parameter estimates with the synthetic Barten demand system

Notes: 1Derived from the restriction that the sum of the intercepts equals zero. 2Derived
from the restriction that b5 = 1 – b1 - b2 - b3 - b3 - delta. 3 Derived from the restriction that c15
= -c11 - c12 - c13 - c14. 

4 Derived from the restriction that c25 = -c12 – c22 – c23 – c24.  
5 Derived from

the restriction that c35 = -c13 – c23 – c33 – c34.  
6Derived from the restriction that c45 = -c14 – c22

– c34 – c44.  
7Derived from the restriction that  c55 = c11 + c22 + c33 + 2c12 + 2c13 + 2c14 + 2c23 +

2c24 + 2c34.  **denotes significance at 5% and ***at 1%.
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VI. Model selection

The synthetic Barten model subsumes the traditional Rotterdam model, among

others. We provide statistical evidence that the synthetic Barten model dominates

statistically the traditional Rotterdam model. However, the synthetic Barten model

and the Rotterdam mixed demand system are non-nested specifications. To

determine the superiority of non-nested demand specifications, we rely on three

criteria: (1) the Akaike criterion (Akaike 1973); (2) the Schwarz criterion (Schwarz

1978); and (3) the Likelihood Dominance Criterion (Pollak and Wales 1991).

Let L
1
 denote the log-likelihood value of the Rotterdam mixed demand system,

and let L
2
 denote the log-likelihood value of the synthetic Barten demand system.

As well, let n
1
 and n

2
 denote the number of independent parameters associated

with the Rotterdam mixed demand system and the synthetic Barten demand system

respectively. Finally, let C(ι)denote the critical values of the χ2 distribution with
 
ô

degrees of freedom at some fixed significance level.

Then, the Rotterdam mixed demand system is preferred to the synthetic Barten

demand system if according to the

(i)  Akaike criterion, L
1
 - L

2
 > n

1
 - n

2 
;

(ii) Schwarz criterion, L
1
 - L

2
 > (n

1
 - n

2
)(½lnT), where T is the number of observations

used in the estimation of the demand system; and

(iii) Likelihood Dominance criterion, L
2
 – L

1
 < [C(n

2
+1) - C(n

1
+1)] /2.

In our analysis, 112 observations are used in the estimation of each demand

system. The log-likelihood value of the Rotterdam mixed demand system (L
1
) is

1079.397, and the log-likelihood value of the synthetic Barten demand system (L
2
)

is 1069.566. The number of independent parameters in the mixed demand model is

19, and the number of independent parameters in the synthetic Barten model is 21.

Thus, by the Akaike and Schwarz criteria, clearly the Rotterdam mixed demand

model is preferred to the synthetic Barten demand model. Now, assume a level of

significance of 0.05; then C(22) = 33.9 and C(20) = 31.4. Subsequently, by the

Likelihood Dominance Criterion, the Rotterdam mixed demand system is preferred

to the synthetic Barten model. Bottom line, we provide statistical evidence to

demonstrate that the Rotterdam mixed demand system dominates statistically the

synthetic Barten demand system.
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VII. Conclusion

To date, mixed demand systems have received scant attention in empirical work. A

limited literature exists pertaining to mixed demand functions. Mixed demand

systems offer an alternative approach to consumer demand analysis other than

the more heavily used direct and inverse demand systems. The difficulty in the

empirical application of mixed demand systems is that analysts need to know a

priori which prices and quantities are endogenous. Until recently, no scientific and

theoretically tenable methodology had been accessible to combine with economic

theory that reveals the causal relationships from observational or non-experimental

data. A specific application of the theory of causality is made using PC-algorithm,

which creates a directed acyclical graph (DAG) from various correlations among

variables. The causal relationships, represented by the DAG procedure, then are

used as a guide in specifying the left-hand and right-hand side variables of the

equations in the demand system. Consequently, the use of a DAG gives rise to

causally-identified demand systems.

A statistical comparison is made of the traditional Rotterdam model, the synthetic

Barten model that subsumes the tradition Rotterdam model, and a Rotterdam mixed

demand system identified through the use of a DAG. In this analysis, the respective

demand systems consist of five products: ground beef, steak, beef roasts, chicken,

and pork. We demonstrate that the magnitudes of the direct elasticities retrieved

from the Rotterdam mixed demand system and those from the synthetic Barten

model indeed are different, in some cases substantially. We also offer statistical

evidence to support the contention that in our analysis, the Rotterdam casually-

identified mixed demand system is preferred to the synthetic Barten model. One

may extend our analysis to the more general Matsuda mixed demand system.

Also, one may compare mixed demand systems to inverse demand systems.

Given that, at the market level, it is often the case that both prices and quantities

of commodities are endogenous variables, we recommend the consideration of

casually-identified demand systems. Through the use of a DAG indigenous to the

demand system, we may determine a priori which price and quantity variables in

the system are endogenous. A more precise understanding of the relationships of

prices and quantities results in a more precise measurement of elasticities and/or

flexibilities.
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