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Abstract

A model is constructed in which trading partners are asymmetrically

informed about future trading opportunities and where spatial and infor-

mational frictions limit arbitrage between markets. These frictions create

an inefficiency relative to a full information equilibrium, and the extent of

this inefficiency is affected by monetary policy. A Friedman rule is opti-

mal under a wide range of circumstances, including ones where segmented

markets limit the extent of monetary policy intervention.
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1 Introduction

In this paper we explore the following ideas. Spatial and informational frictions

imply that arbitrage is limited across markets for goods and services, so that

the same good or service may trade at different prices in different locations. In

other words, there is a degree of segmentation across goods markets. Further,

economic agents move among spatially separated markets in an uncoordinated

fashion, so that a given agent’s current potential trading partners may be differ-

ent from his or her past and future trading partners. As a result, if two agents

are engaged in decentralized exchange, their future trading opportunities may

be quite different. If these two agents are asymmetrically informed about these

future trading opportunities, then this will in general affect the terms on which

they exchange goods, services, and assets. Now, monetary policy affects the

relative prices of goods and services across segmented markets, for two reasons.

First, given heterogeneity in the populations of buyers and sellers across differ-

ent markets, market prices may respond differently in different markets to the

same monetary policy intervention. Second, the central bank in general partic-

ipates directly in some markets and not in others, so that a money injection by

the central bank will at least initially have different effects in different markets.

Given that monetary policy actions can change relative prices across markets in

a persistent fashion, this will then matter for the efficiency losses due to private

information frictions. We want to explore the role for monetary policy in this

context, and to derive some conclusions for optimal policy.

The basic structure of the model builds on Lagos and Wright (2005), in

which there is trading on centralized and decentralized markets. In our model

there is segmentation in centralized markets, and the price of goods in terms of

money will in general differ across these markets. In the decentralized market,

there is random bilateral matching and monetary exchange, and agents who

meet will be privately informed concerning their centralized market location in

the next period. Thus, there is asymmetric information concerning how trading

partners value money. Elements of the bargaining problem in the decentralized

market conform to the features of standard adverse selection environments, such

as Maskin and Riley (1984). However, a key element of the problem is that cash

constraints alter the outcomes, and in this way our analysis shares something

with the work of Ennis (2007).

Our model is certainly not the first to study the potential role of monetary

policy in exacerbating information frictions. For example, a key contribution

to the monetary policy literature was the money surprise model developed in

Lucas (1972). In Lucas’s competitive environment, producers can be fooled by

the central bank into producing more or less than is optimal, as producers have

imperfect information about relative prices. In our model, buyers of goods are

imperfectly informed concerning how sellers value the money offered in exchange

for goods. This implies that contracts are distorted in order to induce self-

selection, and these distortions will vary with monetary intervention by the

central bank.

This paper is also related to some ideas in the market segmentation liter-
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ature. In particular, Williamson (2008, 2009) studies a class of models with

persistent nonneutralities of money and segmentation in goods and financial

markets.

The results we obtain here are the following. In general, prices will dif-

fer in equilibrium across the segmented centralized markets, and this creates a

private-information inefficiency in decentralized trade. The model also contains

a standard intertemporal distortion that is typically corrected by a Friedman

rule, i.e. inflation causes inefficient trade resulting from under-investment in

the accumulation of money balances. As it turns out (and perhaps surpris-

ingly) a Friedman rule will correct both the private information inefficiency and

the intertemporal distortion under all the alternative market arrangements we

consider. In particular, first, if the central bank can intervene in all central-

ized markets, then a Friedman rule equalizes prices across centralized markets

and corrects the standard intertemporal monetary distortion, even if the central

bank is constrained to making the same lump-sum money transfer to all agents.

Second, if there is financial trading (essentially a federal funds market) across

centralized markets, then prices are equalized across markets and a Friedman

rule is optimal, no matter who is on the receiving end of the central bank’s

lump-sum transfers. Third, even in the absence of financial market trading, and

when the central bank can intervene in only one centralized market, a Friedman

rule supports an efficient allocation.

The paper is organized as follows. In the first section the model is con-

structed, then features of the equilibrium related to centralized trade and de-

centralized trade, respectively, are determined in sections three and four. Then,

in sections five through seven, an equilibrium is determined and optimal mon-

etary policy is studied under, respectively, intervention by the central bank in

all centralized markets, financial market trade across centralized markets, and

intervention by the central bank in only one centralized market in the absence

of cross-location financial trade. Finally, Section 8 concludes.

2 The Model

The basic structure of the model is derived from Lagos and Wright (2005),

and we add some locational and informational frictions. Time is discrete and

there is a continuum of agents with unit mass. Each agent is infinite-lived and

maximizes

0

∞X
=0

[()− ]

where  ∈ (0 1)  is consumption of the unique perishable consumption good,
and  is labor supply. Assume that (·) is twice continuously differentiable,
strictly increasing, and strictly concave, with (0) = 0, 0(0) =∞ and 0(∞) =
0 Let ∗ denote the solution to 0(∗) = 1 Each agent possesses a technology
which permits the production of one unit of the perishable consumption good

for each unit of labor supplied, and no agent can consume his or her own output.
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In periods  = 0 2 4  agents are randomly allocated between two loca-

tions indexed by  = 1 2 Let  denote the probability that an agent goes to

location 1, and 1 −  the probability of going to location 2, where 0    1

Goods and agents cannot be moved between the two locations. Exchange oc-

curs competitively in even periods in each location. At the beginning of periods

 = 1 3 5  an agent learns whether he or she will be a buyer or a seller during

the current period. For an agent who is in location  during period  for  even,

the probability of being a buyer in period  + 1 is , and the probability of

being a seller is 1−  where 0    1 for  = 1 2 Assume that 1 
1
2
 and

that

2 =
1− 21
2(1− )



which guarantees that half the population consists of buyers (and the other half

consists of sellers) during an odd period. We need to assume that

1 
1

2


which assures that 2  0 Thus, agents in location 1 during an even period

have a higher probability of being buyers during the next odd period than is

the case for agents in location 2.

At the beginning of period  for  odd, each agent first learns whether he or

she is a buyer or seller during the current period. At this time, sellers also learn

their period  + 1 location, which is private information, but buyers will not

learn their period +1 location until the beginning of period + 1 Each buyer

is randomly matched with a seller during an odd period, but each buyer/seller

match occurs between a buyer and seller who will occupy the same location

during the next period. Thus, in a given pairwise match in an odd period,

the buyer and seller are asymmetrically informed. The seller knows his or her

location next period, but the buyer does not know his or her future location, or

the future location of the seller he or she is paired with. Trade is anonymous

in pairwise matches, so if exchange is to take place the seller must be willing to

accept money for the consumption goods that he or she can produce.

The setup of the model is illustrated in Figure 1. A key feature of the model

is that there is an adverse selection problem related to decentralized trade, in

that buyers and sellers are asymmetrically informed about their future trading

opportunities. As we will show, monetary policy will have important effects on

the nature of this adverse selection problem. There are some elements of the

model that we have rigged for tractability, for example the restrictions on who

meets whom and when, but we think that the ideas are quite general.

3 Centralized Exchange

Let 
 () be the value function of an agent with  units of money at location

, for  = 0 2 4 , and let  
 () be the value function of an agent with 

units of money in the decentralized market who resided in location  in period
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 − 1 (before learning period  buyer/seller status), for  = 1 3 5 . We then

have

 
 () = max

(̃
+1)∈R3+

£

¡

¢−  +  

+1

¡

+1

¢¤
subject to

 + ̃

+1 =  + + 


 (1)

Here,  is the value of money in units of consumption goods in location  = 1 2,

and   is a lump-sum money transfer from the central bank which we allow at

this stage to depend on the agent’s location. Suppose there is an interior solution

for  and  in every even period. Then, for each  = 1 2, we have

 
 () = + 

 (0) (2)

where

 
 (0) =  (∗)− ∗ + 


 + max

̃
+1∈R+

£−̃
+1 +  

+1

¡

+1

¢¤
 (3)

Note from (2) that, as in Lagos andWright (2005), the value function 
 ()

is linear in  Further, given our assumptions about the pattern of meetings in

even and odd periods, the per capita stock of money must always be the same

in each location in even periods. Ultimately we will show that, as in Lagos and

Wright (2005), all agents in a given location choose to hold the same quantity

of nominal money balances at the end of any even period.

4 Decentralized Exchange

There will be two kinds of meetings that can occur between buyers and sellers

during an odd period  In any bilateral meeting in an odd period, the buyer and

seller will ultimately be in the same location in the next even period. However,

the seller knows his or her location next period while the buyer does not. Let

 denote the seller’s type,  = 1 2 where the type is just period + 1 location.

Let  denote the quantity of goods provided by a type  seller to the buyer,

in exchange for  units of money. In a meeting between a buyer and a seller,

let the buyer have  units of money, and assume that he or she makes a take-

it-or-leave-it offer to the seller. The seller’s type is private information to the

buyer, and this information is critical, as revealing it would tell the buyer how

the seller values the money that the buyer offers in exchange for goods. The

seller’s type is also the buyer’s type, so the seller’s type also reveals how the

buyer will value the money exchanged with the seller, ex post.

The problem that the buyer faces when meeting a seller is much like the

problem of a monopolist selling goods to heterogeneous buyers whose types are

private information, as captured for example in the adverse selection model of

Maskin and Riley (1984). A key difference in this problem, however, is that the

money balances held by the buyer potentially constrain the array of contracts

that can be offered to the seller (see Ennis 2007).
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Now, consider the problem faced by a buyer In general, this buyer will offer

a choice of two contracts to the seller, (1  
1
 ) and (

2
  

2
 ) intended respectively

for sellers of types 1 and 2. The surplus received by the buyer from an accepted

contract by a type  seller is () − +1

 given (2). Buyer  then chooses

the two contracts to maximize his or her expected surplus

[(1 )− 1+1
1
 ] + (1− )[(2 )− 2+1

2
 ] (4)

Each contract must be individually rational for each type of seller, i.e. the seller

receives nonnegative surplus, or

− + +1

 ≥ 0 for  = 1 2 (5)

and each contract must be incentive compatible for each type of seller, or

− + +1

 ≥ − + +1


  for  = 1 2 and  6=  (6)

Further, the quantities of money that can be offered in exchange to each type

of seller cannot exceed  that is the cash constraints

 ≤  for  = 1 2 (7)

must hold.

Now, conjecture that

1+1  2+1 (8)

which we will later show holds in equilibrium. We can then characterize the

optimal contracts offered by a buyer with the following lemmas.

Lemma 1 The optimal contract offered by a buyer to a type 2 seller yields zero

surplus to the seller. That is, the individual rationality constraint holds with

equality for the type 2 seller, or

−2 + 2+1
2
 = 0 (9)

Proof. Suppose −2 + 2+1
2
  0 at the optimum. Then, from (6) and (8),

we have

1+1
1
 − 1 ≥ 1+1

2
 − 2  2+1

2
 − 2  0

so that the optimal contracts offered by the buyer to each seller give both sellers

strictly positive surplus. This implies that both 1 and 2 can be reduced,

holding constant   = 1 2 in such a way that constraints (5)-(7) continue

to hold, while increasing the value of the objective function in (4). Thus the

contracts are not optimal, a contradiction.

Lemma 2 The incentive constraint for the type 1 seller binds at the optimum.

That is,

−1 + 1+1
1
 = −2 + 1+1

2
  (10)
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Proof. Suppose −1 +1+1
1
  −2 +1+1

2
 at the optimum. Then, given

(8), we have

1+1
1
 − 1  0

which implies that 1 can be reduced in such a way that the constraints (5)-(7)

continue to hold, while increasing the value of the objective function in (4).

Thus, the contracts are not optimal, a contradiction.

Lemma 3 The optimal contract offered to the type 1 seller gives the seller

strictly positive surplus. That is, the individual rationality constraint for the

type 1 seller holds as a strict inequality, or

−1 + 1+1
1
  0 (11)

Proof. From (10), (8), and (9) we get

−1 + 1+1
1
 = −2 + 1+1

2
  −2 + 2+1

2
 = 0

Lemma 4 At the optimum, the type 1 seller supplies more goods and receives

more money in exchange than does the type 2 seller. That is, 1 ≥ 2 and

1 ≥ 2 at the optimum, and 1  2 if and only if 
1
  2 

Proof. Adding the two incentive constraints, i.e. constraint (6) for ( ) =

(1 2)  (2 1)  we obtain

(1+1 − 2+1)(
1
 − 2 ) ≥ (1+1 − 2+1)(

2
 − 1 )

which, given (8), implies 1 ≥ 2  Then, it is immediate from equation (10) that

1 ≥ 2 , and that 
1
  2 if and only if 

1
  2 

Thus, in spite of the cash constraints (7) that make this problem different

from standard adverse selection problems in the literature, from lemmas 1-4 the

solution will have some standard properties. The type 2 seller, who has a low

value of money in the following period, receives zero surplus from the contract

offered by the buyer, while the type 1 seller, who has a high value of money,

receives strictly positive surplus. The incentive constraint binds for the type 1

seller, and larger quantities are exchanged between the buyer and a type 1 seller

than between the buyer and a type 2 seller. These features allow us to solve the

optimal contracting problem (4) subject to (5)-(7) in a more straightforward

way. In particular, substitute in the objective function in (4) and in the cash

constraints (7) for 1 and 2 using (9) and (10), and then solve the problem as

max
1 

2




"
(1 )− 1 −

Ã
1+1

2+1
− 1
!
2

#
+ (1− )

£
(2 )− 2

¤
(12)
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subject to the cash constraints

1 + 2

Ã
1+1

2+1
− 1
!
≤ 1+1 (13)

2 ≤ 2+1 (14)

From the proof of Lemma 3, since we have imposed (9) and (10), therefore

both individual rationality constraints hold, and we need only check that the

second incentive constraint, (6) for ( ) = (2 1) holds. In turn, from the proof

of Lemma 4, we then only need to check that the solution has the property

1 ≥ 2 

4.1 Case 1: Cash Constraints Bind for Both Contracts

In this case the two contracts that the buyer offers the seller are both constrained

by the quantity of money  that the buyer possesses. That is, (13) and (14)

both hold with equality. Solving for 1 and 2 from (13) and (14) we obtain

1 = 2 = 2+1 (15)

and so, since the buyer gives up all his or her money balances irrespective of

the seller’s type, the payoff to the buyer as a function of  is

1 () = (2+1) (16)

Thus, in this case the buyer is constrained to offering the same contract to each

type of seller, and the type 1 seller who values money highly extracts some

surplus from the buyer.

In Figure 2, we show the equilibrium contract in Case 1. Note that both

equilibrium contracts involve a distortion from full-information quantities. In

this case, the buyer has sufficiently low money balances that it is inefficient for

him or her to induce the seller to reveal his or her type.

4.2 Case 2: Cash Constraint Binds Only for the Type 1

Seller

Recall from Lemma 4 that 1 ≥ 2 at the optimum, so if one cash constraint

binds, it must be the one for the type 1 seller. Thus, substituting for 1 in

(12) using (13) with equality, in case 2 we can write the buyer’s optimization

problem as

max
2



(


"
−2

Ã
1+1

2+1
− 1
!
+ 1+1

#
− 1+1

)
+ (1− )

£
(2 )− 2

¤
(17)
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subject to (14). The first-order condition for an unconstrained optimum is then

−
Ã
1+1

2+1
− 1
!
0
"
−2

Ã
1+1

2+1
− 1
!
+ 1+1

#
+ (1− )

£
0(2 )− 1

¤
= 0

(18)

Now, let (2 ) denote the function on the left-hand side of (18).

Proposition 5 There is a unique ∗ () that solves (∗ ()) = 0 with

0  ∗ ()  (
1
+1)

³
1+1
2+1
− 1
´


Proof. Nonnegativity of consumption for the buyer implies that

0 ≤ 2 ≤ (1+1)
Ã
1+1

2+1
− 1
!


Given (8), and the strict concavity of (·) (2 ) is strictly decreasing in 2

on
³
0 (1+1)

³
1+1
2+1

− 1
´´

for fixed   0. Further, lim→0() = ∞

and lim
→(1+1)


1
+1

2
+1

−1
() = −∞

Proposition 6 The solution ∗ () satisfies the cash constraint (14) if and only
if (2+1) ≤ 0

Proof. Since (2 ) is strictly decreasing in 
2
 and  [

∗
 ()] = 0 therefore

∗ () ≤ 2+1 if and only if (2+1) ≤ 0

Further, since at the case 2 optimum the quantity of money exchanged with

the type 2 seller cannot exceed the quantity exchanged with the type 1 seller,

from (10) we must have 1 ≥ 2  and so the incentive constraint for the type 2

seller is satisfied.

This last proposition gives us a necessary restriction on  for the optimum

to have case 2 characteristics. That is, from (18), (2+1) ≤ 0 givesÃ
1− 

1+1

2+1

!
0(2+1)− (1− ) ≤ 0 (19)

Now, assume for now (we will later establish conditions which guarantee that

this holds) that

1− 
1+1

2+1
 0 (20)

and let () denote the function on the left-hand side of inequality (19). Note

that () is strictly decreasing and continuous in with (0) =∞ and () 

0 for  sufficiently large. Therefore, there is some 1  0 such that (1) = 0
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()  0 for   1 and ()  0 for   1 Therefore, if the optimum is

case 2, then it is necessary that  ≥ 1
  where 

1
 is the solution toÃ

1− 
1+1

2+1

!
0(2+1

1
 )− (1− ) = 0 (21)

Finally, since when we have a case 2 optimum, the buyer gives up all of his

or her cash balances to a type 1 seller and only some of his or her cash balances

to a type 2 seller, the expected payoff to the buyer as a function of  is

2 () = 

"
−∗ ()

Ã
1+1

2+1
− 1
!
+ 1+1

#
+

+(1− )

"
 [∗ ()] + 2+1

Ã
− ∗ ()

2+1

!#
 (22)

We illustrate the equilibrium contracts in Figure 3. Here, note that the

binding cash constraint implies that the contracts for both types are distorted

from what would be achieved with full information. Relative to Case 1, the

buyer has enough cash that he or she optimizes by inducing self-selection by the

seller, but has insufficient cash to offer a non-distorted contract to the type 1

seller.

4.3 Case 3: Neither Cash Constraint Binds

In this case 1 and 2 are chosen by the buyer to solve (12) ignoring the cash

constraints. The first-order conditions characterizing an optimum are

0(1 ) = 1 (23)

and

0(2 ) = 1 +


1− 

Ã
1+1

2+1
− 1
!
 (24)

Now, let ̄1 and ̄
2
 denote the solutions to equations (23) and (24), respectively.

First, notice that ̄1 = ∗. Second, note that (8) implies that ∗  ̄2  which im-

plies that the incentive compatibility constraint for the type 2 seller is satisfied.

Further, note that ∗ would be the quantity traded in a full information contract
between the buyer and both types of sellers, unconstrained by the buyer’s cash

holdings. As well, given (8) ̄2 is smaller than the quantity traded with a full in-

formation contract between the buyer and a type 2 seller, again unconstrained

by the buyer’s cash holdings. This is a standard feature of adverse selection

models with two types, whereby the type 2 contract is distorted from what it

would be with full information, so as to induce the type 1 seller to self-select.

The next step is to establish conditions on  that guarantee that there is a

case 3 optimum. That is, we want  to be sufficiently large that neither cash

constraint binds. Since ∗  ̄2  a larger quantity of cash is traded in the type
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1 contract, so if the cash constraint does not bind for the type 1 contract it will

not bind for the other contract. Therefore, neither cash constraint binds if and

only if, from (13),

 ≥ ∗

1+1
+ ̄2

Ã
1

2+1
− 1

1+1

!
 (25)

and we let 2
 denote the quantity on the right-hand side of (25).

The payoff to the buyer if there is a case 3 optimum is

3 () = 

(
 (∗) + 1+1

"
− ∗

1+1
− ̄2

Ã
1

2+1
− 1

1+1

!#)
+

+(1− )

"
(̄2 ) + 2+1

Ã
− ̄2

2+1

!#
 (26)

In Figure 4, we show the equilibrium contracts in Case 3. Here, as cash

constraints do not bind, the type 1 seller receives a contract that is not distorted,

but the type 2 contract is distorted to induce self-selection, just as in Maskin

and Riley (1984). In Figure 5, we show how contracts differ across the three

cases. Note that, as the money held by the buyer declines, the surplus received

by the type 1 seller falls, and the distortion in each contract rises.1

4.4 Odd-Period Value Functions

Now that we know the payoffs to the buyer as a function of the buyer’s cash

balances  and the constraints on  that are necessary to obtain the cases

1-3 above, we can proceed to construct the value functions  
 () for  = 1 2

Recall that  
 () gives the value of money at the beginning of period  (before

learning buyer/seller status) of money balances  to an agent who resided in

location  in period − 1, where  is an odd period.
It is straightforward to show that, given (8), 1

  2
  Then, since a nec-

essary condition for a case 2 optimum is that  ≥ 1
  and a necessary con-

dition for a case 3 optimum is  ≥ 2
  we will have a case 1 optimum when

0 ≤  ≤ 1
 , a case 2 optimum when 1

 ≤  ≤ 2
  and a case 3 optimum

when  ≥ 2
  Above, we calculated the payoffs to a buyer as a function of 

in the three different cases. For a seller’s payoff, note that the seller does not

give up any money balances no matter who he or she meets in the decentralized

market, and the surplus received by the seller is independent of his or her money

holdings. Therefore, we can write the odd-period value function as

 
 () = () + (1− )

©
[1+1 + (1− )2+1] + 

ª
 (27)

1Let 1 () denote the surplus received by a type 1 seller. It follows that 1 () =



1+1 − 2+1


, for 0 ≤  ≤ 1

  
1
 () = ∗ ()


1+1

2
+1

− 1

, for 1

 ≤  ≤ 2
  and

1 () = ̄2


1+1

2
+1

− 1

, for  ≥ 2
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where

() =

3X
=1

()

() (28)

In (27),  is a constant, and in (28) the indicator functions () for  = 1 2 3

are defined by

1 () = 1 if 0 ≤  ≤ 1
 ; 

1
 () = 0 otherwise.

2 () = 1 if 
1
 ≤  ≤ 2

 ; 
2
 () = 0 otherwise.

3 () = 1 if  ≥ 2
 ; 

3
 () = 0 otherwise.

Proposition 7 The function () is continuously differentiable for  ≥ 0

concave for  ≥ 0 and strictly concave for 0 ≤   2
 

Proof. Note that  (·) is clearly continuously differentiable at every point
 ≥ 0, except possibly at the critical points 1

 
2
 . It remains to show that

 (·) is continuously differentiable at these points. Observe that

1

→ 2+1

0 ¡2+11


¢
as → 1

 from below. On the other hand, using (18) and (21), we find that

2

→ 2+1

0 ¡2+11


¢
as  → 1

 from above. Therefore, we conclude that  (·) is continuously
differentiable at 1

 . Consider now the critical point 2
 . As  → 2

 from

below, we have

2

→ [1+1 + (1− )2+1]

where we have used (23). For any   2
 , it follows that

3 ()


= [1+1 + (1− )2+1]

so that we conclude that  (·) is continuously differentiable at 2
 .

To show that  (·) is concave, notice that 00 ()  0 for any  ∈
¡
01



¢∪¡
1
 

2


¢
; 00 () = 0 for any   2

 ; and 0 (·) is continuous. This implies
that  (·) is concave for  ≥ 0 and strictly concave for 0 ≤   2

 .

We illustrate the value function in Figure 6. We will later show that (02
+1]

is the relevant region for the agent’s optimal choice of money balances in an even

period  The last proposition, together with this observation, then implies that,

from (3), and similarly to Lagos and Wright (2005), it is optimal for each agent

in a given location in an even period to hold the same quantity of money at the

end of the period.
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5 Discussion

In the model, the higher demand for money in centralized market 1 will tend

to make the price of money higher in market 1 than in market 2. This differ-

ence in prices across markets matters, as economic agents are asymmetrically

informed when trading in decentralized markets, concerning which centralized

market they will participate in during the following period. To overcome the

fundamental friction in the model, in even periods money needs to flow to the

markets where it is valued more from the markets where it is valued less. In the

following sections we will show how this can be achieved through central bank

intervention, or through private financial trade across markets, in a manner akin

to trading on the federal funds market.

6 Central Bank Intervention in Both Central-

ized Markets

Suppose that the central bank can make lump-sum transfers, but that these

transfers are constrained to be the same in each location in a given period, as well

as being identical across agents in a given location. This constraint could arise if,

for example, the transfers are made electronically, an agent’s location is private

information, and the central bank has no memory of an agent’s past transfers.

Further, for simplicity assume that the money stock grows at a constant rate

from one even period to the next. That is, let  denote the aggregate money

stock during an even period  where

+2 = 2

for  = 0 2 4  with 0 normalized to unity and   0. Note that there are

no money transfers in odd periods while agents are engaged in decentralized

exchange. The money transfer that each agent receives in an even period  is

then

1 = 2 = (
2 − 1)−2

Recall that, by construction, the beginning-of-period per capita money stock

is the same in each location. Since the central bank is constrained to make

the same lump-sum transfer in each location, it follows that the end-of-period

per capita money stock in each location is also the same. Given that there is

a continuum of agents with measure one, it follows that the aggregate money

stock in an even period  equals the per capita money stock in each location.

Now, confine attention to stationary equilibria having the property that

 =



 for  = 1 2 where  is a constant for  = 1 2 From (3) and (27), the

following first-order conditions must be satisfied for each  = 0 2 4 




= 

½


0
+1(̃


+1) +

(1− )[
1 + (1− )2]

+2

¾
 for  = 1 2 (29)
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where ̃
+1 is the quantity of money acquired by the agent in period  and

available to spend in decentralized trade in period  + 1 Then, imposing the

equilibrium condition that ̃
+1 =  =  for  = 1 2 and rearranging, we

get

1 =


0+1(
)


+ (1− )

2

2
[1 + (1− )2]


 for  = 1 2 (30)

Proposition 8 If    then 1  2 in a stationary equilibrium.

Proof. If   , then we must have ̃
+1 ≤ 2

+1 for each  = 1 2, with at

least one strict inequality. To see this, note that, as → 2
+1 from below,

− + 
 

+1


→ 1



½
− + 2

2

£
1 + (1− )2

¤¾
where we have used (23). When   , any stationary monetary equilibrium

must satisfy

 ≥ 2

2

£
1 + (1− )2

¤
for each  = 1 2. If 1 6= 2, then there must be at least one strict inequality.

Therefore, the optimal choice of money balances in location  in an even period

 is such that ̃
+1 ≤ 2

+1 for each  = 1 2, with at least one strict inequality.

Notice that 0+1(·) is a decreasing function and that

0+1() ≥


+2

£
1 + (1− )2

¤
for all  ≥ 0. In fact, it holds as a strict inequality when   2

+1. In a

stationary equilibrium, we have ̃1
+1 = ̃2

+1 =  and

0+1(
) 

2

2

£
1 + (1− )2

¤


Since 1  2 it follows that

1
0+1(

) + (1− 1)
2

2

£
1 + (1− )2

¤
 2

0+1(
) + (1− 2)

2

2

£
1 + (1− )2

¤


so 1  2 in a stationary equilibrium as claimed.

If    this implies that some cash constraint must bind in equilibrium,

and that a buyer faces a higher marginal payoff to holding money than does a

seller in the decentralized market. Since an agent in location 1 in an even period

has a higher probability of being a buyer in the next decentralized market, this

14



agent then must have a higher expected marginal payoff to holding money in an

even period. Since the quantities of money per capita are identical in the two

locations in an even period, money must have a higher value in location 1 than

in location 2 in equilibrium.

Thus, when the rate of money growth is larger than the discount rate, prices

are different in the two locations, and we know that this induces a private

information friction in monetary exchange in this model. That is, there is a

friction here, in addition to what would occur with full information, due to the

fact that a seller with a high value of money can extract some surplus from the

buyer because the buyer needs to induce self-selection.

Proposition 9  =  yields an optimal equilibrium allocation.

Proof. As →  from above, it follows that

0+1(
)→ 1 + (1− )2

>From (30), it follows that

 = 1 + (1− )2

for each  = 1 2, which holds if and only if 1 = 2 = . Then, as →  from

above, we have
0+1(

)


→ 1 = 0 (∗)

so that agents in both locations acquire enough money to get ∗ in the next
decentralized market if they are buyers.

Under a Friedman rule, all cash constraints are relaxed, and there is a sta-

tionary equilibrium where 1 = 2 so that prices are equalized in the two

locations in even periods. The private information friction is eliminated and

the economy collapses to essentially the same allocation studied by Lagos and

Wright (2005), for the special case where buyers have all the bargaining power.

The efficient quantity of output is produced and consumed in every bilateral

match in the decentralized market. Therefore, with the ability to intervene in

all centralized markets, the central bank is able to effectively saturate central-

ized markets with real money balances, relax cash constraints, and accommodate

differences in money demand across markets. Thus, prices are equated across

markets at the optimum. However, when monetary policy departs from the

Friedman rule, not only does the standard intertemporal distortion come into

play, whereby agents economize too much relative to the optimum on money

balances and consume too little, but there is a difference in prices across markets

which induces a private information friction.

7 Financial Market Trade Between Locations

We have assumed that, in even periods, there is no trade between agents in

location 1 and those in location 2. Here, we will continue to assume that neither
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goods nor people can move across the two locations. However, we will permit

a bond market in even periods where agents in the two locations can exchange

outside money (say, in electronic form) for claims to money in the next even

period. This of course requires that a bond issuer in period  can be found in

period + 2 and that the financial claim can be enforced.

Assume a market in an even period  for two-period bonds, each of which

sells for one unit of money and is a claim to +2 units of money in period +2

We can then rewrite the budget constraint (1) of an agent in location  in an

even period as

 + ̃

+1 + 


+2 =  + + + 


 (31)

where  denotes the quantity of bonds acquired by the agent in period  − 2
that mature in period  Given quasilinear utility, equilibrium requires that

each agent in each location be indifferent about the bond holdings in any even

period  or

 = 2+2

£
1+2 + (1− )2+2

¤
for  = 1 2 (32)

But these two conditions clearly imply that 1 = 2 in equilibrium, so that

prices are equalized across the two locations. This economy then collapses to a

basic Lagos-Wright structure with take-it-or-leave-it offers by buyers, and with

no private information friction.

Now, if the aggregate money stock grows at a constant rate in a stationary

equilibrium, as in the previous section, then (29) must hold, but now 1 = 2 =

 in equilibrium, and the stocks of money in each location are endogenous. That

is, in a stationary equilibrium, the per capita quantity of money in location 

is   in an even period , where from (30) and the equilibrium condition

1 + (1− )2 = 1 we obtain

1
0+1(

1) + (1− 1)
2

2
 = 2

0+1

µ

1− 1

1− 

¶
+ (1− 2)

2

2


(33)

which solves for 1 giving us the equilibrium distribution of money balances

between locations 1 and 2.

Proposition 10 If    then 1  2 in equilibrium, and the equilibrium

allocation is inefficient.

Proof. If   , we have that ̃
+1  +2∗ (), for  even, and

0+1(̃

+1)




2

2

for each  = 1 2. Since 1  2 and ̃
+1 =   for each  = 1 2 in

equilibrium, it follows from (33) that

0+1(
1)  0+1(

2)
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Since 0+1(·) is strictly decreasing for 0 ≤   +2∗ (), we have that
1  2. The fact that    implies that it is not optimal for agents in each

location to take enough money to the decentralized market in order to get ∗ if
they are buyers.

Proposition 11 If  =  there is an optimal equilibrium allocation.

Proof. When →  from above, we have

0+1(
 )


→ 1 = 0 (∗)

for each  = 1 2. This implies that the efficient quantity is traded in each

bilateral match in the decentralized market.

Just as in the previous section, a Friedman rule is optimal, but trading in

this cross-location bond market serves to equalize prices in the two locations

by moving money balances to where they would otherwise have a higher value.

Thus, there is no private information friction, even when money growth is higher

than the Friedman rule rate. The bond market plays a role much like the federal

funds market in the United States, except that in our model we have assumed

that all economic agents have access to this market. Note that, given trading

on the bond market, it is irrelevant what market the central bank intervenes

in. Agents could receive money transfers from the central bank in location 1,

location 2, or both locations, but the actions of the central bank can have no

effect on the end-of-period distribution of money balances between locations 1

and 2 in an even period.

8 No Inter-Location Trade, and Central Bank

Intervention in Only One Location

In practice, there is financial market segmentation that may be important for

the effects and conduct of monetary policy. In particular, not all economic

agents are on the receiving end of central bank actions, and we can capture

this in a simple way in our environment. As well, in practice not all economic

agents can trade on the federal funds market or something comparable. In this

section, as an example to show the effects of limited intervention by the central

bank, and limited financial market participation, we will assume that there is

no trade between locations during an even period, and that the central bank

can intervene at only one location, through lump-sum money transfers.

Suppose, without loss of generality, that the central bank intervention is

confined to location 1. Let  
 denote the even-period  per capita money stock

at location  Given that the central bank intervenes only at location 1, 1
 can

be treated as exogenous, and we will have

2
+2 = 1

 + (1− )2
   = 0 2 4  (34)
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Now, consider monetary policies such that  
+2 = 2 

 for  = 0 2 4  with
1


2

=  where from (34), we have

 =
2 − 1 + 


 (35)

As should be clear, equation (35) reflects the fact that the central bank cannot

independently determine the money growth rate and the distribution of money

balances across the two locations. Normalize 1
0 to unity.

Proposition 12 Suppose that  is sufficiently close to one. There exists a

stationary equilibrium at the Friedman rule  =  where 1 = 2 = ∗ provided
that  ∈ (1− 2 ̂], where ̂ solves

̂ =
¡
1− 2

¢ 1 +  − 2

1 +  − 22 . (36)

Proof. In any stationary equilibrium, the first-order conditions for the optimal

choice of money balances in each location imply

1 =
1

0+1(
)

1
+ (1− 1)

2

2
[1 + (1− )2]

1
(37)

and

1 =
2

0+1
³
 

2−1+
´

2
+ (1− 2)

2

2
[1 + (1− )2]

2
(38)

for all  = 0 2 4 . Conjecture that 1 = 2 = ∗ is a stationary equilibrium
at  = . Then, (37) and (38) become

1 = 1
+10+1(

)

∗
+ 1− 1 (39)

and

1 = 2
+10+1(

 

2−1+ )

∗
+ 1− 2. (40)

Conjecture also that neither cash constraint binds. Notice that the right-

hand side of (25) becomes

2
+1 =

∗

1+2
= +1

at the conjectured solution. From (26) and (27), we have that

+1 () =  (∗)− ∗ + ∗−−1

for all  ≥ 2
+1, so that

0+1 () = ∗−−1
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for all  ≥ 2
+1. Therefore, both (39) and (40) are satisfied if both 1

 = 

and 2
 = 

¡
2 − 1 + 

¢
are greater than or equal to 2

+1, which involves

a case 3 optimum. Then, we have that



2 − 1 + 
    2

+1,

so that the optimality conditions (39) and (40) are indeed satisfied at the con-

jectured solution.

It remains to check whether the budget constraints are satisfied. In any

bilateral meeting in the odd-period  + 1, it follows that 1+1 = 2+1 = +1.

This means that each seller receives +1 units of money in exchange for ∗

units of the good. Money holdings and nominal transfers are

̃1
+1 =1

 = ,

̃2
+1 =2

 = 


2 − 1 + 
,

1 =1
 − 1

−2 − (1− )2
−2 = 

¡
2 − 1¢

2 − 1 + 
,

and

2 = 0.

for  = 0 2 4 .2 Consider an agent who leaves location 1 in the even-period 

with  units of money and becomes a buyer in period  + 1. He spends +1

in the decentralized market in exchange for ∗. In period  + 2, he ends up in

location  and works +2 such that

+2 = ∗ + +2

+2 − +2


+2 − +2

 (1− ) .

Then, we have

1+2 = 2+2 = ∗
µ
1 +



2 − 1 + 
− 1− 

2

¶
 0.

If the same agent were a seller in period + 1, his budget constraint in period

+ 2 would be

+2 = ∗ + +2

+2 − +2


+2 − +2

 (1 + ) .

Then, we would have

1+2 = 2+2 = ∗
µ
1 +



2 − 1 + 
− 1 + 

2

¶
 0.

Consider now an agent who leaves location 2 in the even-period  with


¡
2 − 1 + 

¢
units of money and becomes a buyer in period  + 1. He

2Notice that 1
 + (1− )2

 is the per capita stock of money in each location at the

beginning of period + 2.

19



spends +1 in the decentralized market in exchange for ∗. In period + 2, he

ends up in location  and works +2 such that

+2 = ∗ + +2

+2 − +2


+2 − +2



µ


2 − 1 + 
− 

¶
.

Then, we have

1+2 = 2+2 = ∗
µ
2 − 1 + 2
2 − 1 + 

¶
− ∗

1

2

µ


2 − 1 + 
− 

¶
 0.

If the same agent were a seller in period + 1, his budget constraint in period

+ 2 would be

+2 = ∗ + +2

+2 − +2


+2 − +2



µ


2 − 1 + 
+ 

¶
.

Then, we would have

1+2 = 2+2 = ∗
µ
2 − 1 + 2
2 − 1 + 

¶
− ∗

1

2

µ


2 − 1 + 
+ 

¶
≥ 0.

Proposition 13 At the Friedman rule  = , there is no stationary equilibrium

with 1 6= 2.

Proof. In any stationary equilibrium with  = , the optimality conditions

(37) and (38) must hold for all  = 0 2 4 . Recall that +1 (·) is a concave
function such that

0+1 () ≥ −−1
£
1 + (1− )2

¤
, (41)

for all  ≥ 0. Notice that (37) and (38), together with (41), imply that both

1 ≥ 1 + (1− )2

and

2 ≥ 1 + (1− )2

must hold in a stationary equilibrium at the Friedman rule. But these conditions

are simultaneously satisfied if and only if 1 = 2.

These results are perhaps surprising. The fundamental friction which gives

rise to the private information friction in the model arises because of limitations

on the flows of money across markets. In this example, in spite of the fact that

there is no financial market that permits flows of outside money across markets,

and the central bank is limited to intervention in only one market, a Friedman

rule achieves the equalization of prices across markets, and also eliminates the

standard intertemporal distortion. Our intuition might tell us that two policy
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instruments are needed to correct the two distortions (the private information

distortion and the intertemporal distortion), but in fact one instrument is all

that is needed. At the Friedman rule, the central bank withdraws outside money

from market 1 in each even period, so that the quantity of money per person

is smaller in market 1 than in market 2 in each even period. Thus, since no

contracts are cash-constrained at the Friedman rule, all agents from market 2,

including the ones who are buyers, take more cash with them to trade in the

decentralized market than what they will trade in exchange for goods. They are

happy to hold this excess cash in equilibrium, as the implicit nominal interest

rate is zero.

9 Conclusion

In the model constructed here, the key frictions are market segmentation and

private information. Money demand differs across spatially separated markets

implying that, in the absence of central bank intervention and financial trade

between markets, there will be price dispersion across markets. Then, given

asymmetric information concerning future trading opportunities, there exists

a private information inefficiency that in general will be affected by monetary

policy.

When there is financial market trade across markets, then this eliminates

price dispersion across markets in all circumstances, and the optimal central

bank policy conforms to a Friedman rule, which acts to eliminate an intertem-

poral distortion, as is typical in many monetary models. However, given incom-

pleteness in private financial market participation, the central bank can still

achieve an efficient allocation by implementing a Friedman rule, but in this case

the Friedman rule eliminates not only the standard intertemporal distortion but

also the private information friction. Perhaps surprisingly, this result holds even

if the central bank’s participation in markets is limited.

In this paper we have explored a mechanism by which informational frictions

matter for the effects of monetary policy and for optimal policy. In contrast to

Lucas (1972), this theory does not rely on imperfect information concerning

aggregate shocks, but on asymmetric information at the level of individual ex-

change.

10 References

Ennis, Huberto (2008) Search, money, and inflation under private information.

Journal of Economic Theory 138, 101-131.

Maskin, Eric and John Riley (1984) Monopoly with incomplete information.

Rand Journal of Economics 2, 171-196.

Lagos, Ricardo and Randall Wright (2005) A unified framework for monetary

theory and policy analysis. Journal of Political Economy 113, 463—484.

21



Lucas, Robert (1972) Expectations and the neutrality of money. Journal of

Economic Theory 4, 103-124.

Williamson, Stephen D. (2008) Monetary policy and distribution. Journal of

Monetary Economics 55, 1038-1053.

Williamson, Stephen D. (2009) Transactions, credit, and central banking in a

model of segmented markets. Review of Economic Dynamics 12.

22



Location 1

Location 2

buyers

sellers

1/2

1/2

bilateral
meetings

Location 1

Location 2

ρ

1-
ρ

period t period t+1 period t+2

ρα1

ρ(1-α1)

(1-ρ)α2

(1-ρ)(1-α2)

ρ

1-
ρ

1-
ρ

ρ

Figure 1: Locational Itineraries



Figure 2: Case 1

q = quantity of goods

Full info
type 1

Full info
type 2

Pooling
contract

d 
= 

qu
an

tit
y 

of
 m

on
ey

(0,0)

zero surplus
type 2

zero surplus
type 1

m



Figure 3: Case 2
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Figure 4: Case 3
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Figure 5
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Figure 6: Value Function
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