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1 Introduction

Unawareness refers to the lack of conception rather than to the lack of information.

It is natural to presume that asymmetric unawareness may lead to speculative trade.

Indeed, in Heifetz, Meier, and Schipper (2009) we present a simple example of speculation

under unawareness in which there is common certainty of willingness to trade but agents

have a strict preference to trade despite the existence of a common prior.1 This is

impossible in standard state-space structures with a common prior. In standard “No

Trade” theorems, if there is common certainty of willingness to trade, then agents are

necessarily indifferent to trade (Milgrom and Stokey, 1982). Somewhat surprising, in

Heifetz, Meier, and Schipper (2009) we also prove a “No-trade” result according to which

under a common prior there can not be common certainty of strict preference to trade.

This means that arbitrary small transaction costs rule out speculation under asymmetric

unawareness. The “No-trade” result in Heifetz, Meier, and Schipper (2009) has been

stated for finite unawareness belief structures. In this note we generalize the result to

infinite unawareness belief structures. Such a generalization is relevant since the space of

underlying uncertainties may be large. Especially if it is large, agents may be unaware

of some of them. Moreover, the generalization serves as a robustness check for our “No-

trade” result for finite unawareness belief structures. It shows that the result in Heifetz,

Meier, and Schipper (2009) is not an artefact of the finiteness assumption but holds more

generally.

Recently we learned that Board and Chung (2009) present a different model of un-

awareness in which they also study speculative trade under what they term living in

“denial” and “paranoia”. They consider only finite spaces. The precise connection be-

tween our result and their result is yet to be explored.

The paper is organized as follows. The next section introduces topological unaware-

ness belief structures. The general “No-trade” theorem is stated in Section 3. Finally,

Section 4 contains the proof of the theorem.

1The example in Heifetz, Meier, and Schipper (2009) is a probabilistic version of the speculation
example in Heifetz, Meier, and Schipper (2006). Unawareness belief structures allow us to state the
common prior assumption.
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2 Topological Unawareness Belief Structures

We consider an unawareness belief structure as defined in Heifetz, Meier, and Schipper

(2009) but with additional topological properties.

2.1 Compact Hausdorff State-Spaces

Let S = {Sα}α∈A be a complete lattice of disjoint state-spaces, with the partial order �
on S. If Sα and Sβ are such that Sα � Sβ we say that “Sα is more expressive than Sβ

– states of Sα describe situations with a richer vocabulary than states of Sβ ”.2 (S,�)

is well-founded, that is, every non-empty subset X ⊆ S contains a �-minimal element.

(That is, there is a S ′ ∈ X such that for all S ∈ X : if S � S ′, then S = S ′.) Each state-

space S ∈ S is a non-empty compact Hausdorff space with a Borel σ-field FS. Denote by

Ω =
⋃

α∈A
Sα the union of these spaces. Ω is endowed with the disjoint-union topology:

O ⊆ Ω is open if and only if O ∩ S is open in S for all S ∈ S.

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not

obtain in them. The partial order relates to the “richness” of spaces. The upmost space

of the lattice may be interpreted as the “objective” state-space. Its states encompass full

descriptions.

2.2 Continuous Projections

For every S and S ′ such that S ′ � S, there is a continuous surjective projection rS
′

S :

S ′ → S, where rSS is the identity. (“rS
′

S (ω) is the restriction of the description ω to the

more limited vocabulary of S.”) Note that the cardinality of S is smaller than or equal

to the cardinality of S ′. We require the projections to commute: If S ′′ � S ′ � S then

rS
′′

S = rS
′

S ◦ rS
′′

S′ . If ω ∈ S ′, denote ωS = rS
′

S (ω). If D ⊆ S ′, denote DS = {ωS : ω ∈ D}.

Projections “translate” states in “more expressive” spaces to states in “less expres-

sive” spaces by “erasing” facts that can not be expressed in a lower space.

2Here and in what follows, phrases within quotation marks hint at intended interpretations, but we
emphasize that these interpretations are not part of the definition of the set-theoretic structure.
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2.3 Events

Denote g(S) = {S ′ : S ′ � S}. For D ⊆ S, denote D↑ =
⋃
S′∈g(S)

(
rS
′

S

)−1
(D). (“All the

extensions of descriptions in D to at least as expressive vocabularies.”)

An event is a pair (E, S), where E = D↑ with D ⊆ S, where S ∈ S. D is called

the base and S the base-space of (E, S), denoted by S(E). If E 6= ∅, then S is uniquely

determined by E and, abusing notation, we write E for (E, S). Otherwise, we write ∅S

for (∅, S). Note that not every subset of Ω is an event.

Some fact may obtain in a subset of a space. Then this fact should be also “express-

ible” in “more expressive” spaces. Therefore the event contains not only the particular

subset but also its inverse images in “more expressive” spaces.

Let Σ be the set of measurable events of Ω, i.e., D↑ such that D ∈ FS, for some

state-space S ∈ S. Note that unless S is a singleton, Σ is not an algebra because it

contains distinct ∅S for all S ∈ S.

2.4 Negation

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by

¬(D↑, S) := ((S \D)↑, S). Note, that by this definition, the negation of a (measurable)

event is a (measurable) event. Abusing notation, we write ¬D↑ := (S \D)↑. Note that by

our notational convention, we have ¬S↑ = ∅S and ¬∅S = S↑, for each space S ∈ S. The

event ∅S should be interpreted as a “logical contradiction phrased with the expressive

power available in S.” ¬D↑ is typically a proper subset of the complement Ω \D↑ . That

is, (S \D)↑ $ Ω \D↑ .

Intuitively, there may be states in which the description of an event D↑ is both

expressible and valid – these are the states in D↑; there may be states in which its

description is expressible but invalid – these are the states in ¬D↑; and there may be

states in which neither its description nor its negation are expressible – these are the

states in

Ω \
(
D↑ ∪ ¬D↑

)
= Ω \ S

(
D↑
)↑
.

2.5 Conjunction and Disjunction

If
{(
D↑λ, Sλ

)}
λ∈L

is a finite or countable collection of events (with Dλ ⊆ Sλ, for λ ∈ L),

their conjunction
∧
λ∈L

(
D↑λ, Sλ

)
is defined by

∧
λ∈L

(
D↑λ, Sλ

)
:=
((⋂

λ∈LD
↑
λ

)
, supλ∈L Sλ

)
.
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Note, that since S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then

we have
(⋂

λ∈LD
↑
λ

)
=
(⋂

λ∈L

((
rSSλ
)−1

(Dλ)
))↑

. Again, abusing notation, we write∧
λ∈LD

↑
λ :=

⋂
λ∈LD

↑
λ (we will therefore use the conjunction symbol ∧ and the intersec-

tion symbol ∩ interchangeably).

We define the relation ⊆ between events (E, S) and (F, S ′) , by (E, S) ⊆ (F, S ′) if

and only if E ⊆ F as sets and S ′ � S. If E 6= ∅, we have that (E, S) ⊆ (F, S ′) if and

only if E ⊆ F as sets. Note however that for E = ∅S we have (E, S) ⊆ (F, S ′) if and

only if S ′ � S. Hence we can write E ⊆ F instead of (E, S) ⊆ (F, S ′) as long as we keep

in mind that in the case of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows

from these definitions that for events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only

when E and F have the same base, i.e., S(E) = S(F ).

The disjunction of
{
D↑λ

}
λ∈L

is defined by the de Morgan law
∨
λ∈LD

↑
λ = ¬

(∧
λ∈L ¬

(
D↑λ

))
.

Typically
∨
λ∈LD

↑
λ $

⋃
λ∈LD

↑
λ, and if all Dλ are nonempty we have that

∨
λ∈LD

↑
λ =⋃

λ∈LD
↑
λ holds if and only if all the D↑λ have the same base-space. Note, that by these

definitions, the conjunction and disjunction of (at most countably many measurable)

events is a (measurable) event.

Apart from the topological conditions, the event-structure outlined so far is analogous

to Heifetz, Meier, and Schipper (2006, 2008, 2009).

2.6 Regular Borel Probability Measures

Here and in what follows, the term ’events’ always means measurable events in Σ unless

otherwise stated.

For each S ∈ S, ∆ (S) is the set of regular Borel probability measures on (S,FS).

We consider this set itself as a measurable space which is endowed with the topology of

weak convergence.3

3This topology is generated by the sub-basis of sets of the form

{µ ∈ ∆(S) : µ(O) > r}

where O ⊆ S is open and r ∈ R (see e.g. Billingsley (1968), appendix III). When S is Normal (and
in particular compact and/or metric), this topology coincides with the weak∗ topology - the weakest
topology for which the mapping

µ −→
∫

S

fdµ

is continuous for every continuous real-valued function f on S.
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⋃
S∈S ∆(S) is endowed with the disjoint-union topology: O∆ ⊆

⋃
S∈S ∆(S) is open if

and only if O∆ ∩∆(S) is open in ∆(S) for all S ∈ S.

Note that although each S and each ∆(S) are compact, if S is infinite, Ω and⋃
S∈S ∆(S) are not compact.

2.7 Marginals

For a probability measure µ ∈ ∆ (S ′), the marginal µ|S of µ on S � S ′ is defined by

µ|S (D) := µ

((
rS
′

S

)−1

(D)

)
, D ∈ FS.

Let Sµ be the space on which µ is a probability measure. Whenever Sµ � S(E) then

we abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

2.8 Continuous Type Mappings

Let I be a nonempty finite or countable set of individuals. For every individual, each

state gives rise to a probabilistic belief over states in some space.

Definition 1 For each individual i ∈ I there is a continuous type mapping ti : Ω →⋃
α∈A∆ (Sα).

We require the type mapping ti to satisfy the following properties:

(0) Confinement: If ω ∈ S ′ then ti(ω) ∈ 4 (S) for some S � S ′.

(1) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S) then ti(ωS′) = ti(ω).

(2) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S ′) then ti(ωS) = ti(ω)|S.

(3) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ωS′) ∈ 4(S) then Sti(ω) � S.

ti(ω) represents individual i’s belief at state ω. Properties (0) to (3) guarantee the

consistent fit of beliefs and awareness at different state-spaces. Confinement means that

at any given state ω ∈ Ω an individual’s belief is concentrated on states that are all
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described with the same “vocabulary” - the “vocabulary” available to the individual at

ω. This “vocabulary” may be less expressive than the “vocabulary” used to describe

statements in the state ω.”

Properties (1) to (3) compare the types of an individual in a state ω and its projection

to ωS. Property (1) and (2) mean that at the projected state ωS the individual believes

everything she believes at ω given that she is aware of it at ωS. Property (3) means that

at ω an individual can not be unaware of an event that she is aware of at the projected

state ωS.

Define4

Beni (ω) :=
{
ω′ ∈ Ω : ti(ω

′)|Sti(ω)
= ti(ω)

}
.

This is the set of states at which individual i’s type or the marginal thereof coincides

with her type at ω. Such sets are events in our structure:

Remark 1 For any ω ∈ Ω, Beni(ω) is an Sti(ω)-based event, which is not necessarily

measurable.5

Assumption 1 If Beni(ω) ⊆ E, for an event E, then ti(ω)(E) = 1.

This assumption implies introspection (Property (va) in Proposition 9 in Heifetz,

Meier, and Schipper, 2009). Note, that if Beni(ω) is measurable, then Assumption 1

implies ti(ω)(Beni(ω)) = 1.

Definition 2 We denote by Ω :=

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I

〉
an topological unawareness

belief structure.

Topological unawareness belief structures are analogous to unawareness belief struc-

tures in Heifetz, Meier, and Schipper (2009) except for the additional topological prop-

erties.

3 A Generalized “No-Trade” Theorem

Definition 3 (Prior) A prior for player i is a system of probability measures Pi =(
P S
i

)
S∈S ∈

∏
S∈S ∆(S) such that

4The name “Ben” is chosen analogously to the “ken” in knowledge structures.

5Even in a standard type-space, if the σ-algebra is not countably generated, then the set of states
where a player is of a certain type might not be measurable.
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1. The system is projective: If S ′ � S then the marginal of P S
i on S ′ is P S′

i . (That

is, if E ∈ Σ is an event whose base-space S (E) is lower or equal to S ′, then

P S
i (E) = P S′

i (E).)

2. Each probability measure P S
i is a convex combination of i’s beliefs in S: For every

event E ∈ Σ such that S(E) � S,

P S
i (E ∩ S ∩ Ai (E)) =

∫
S∩Ai(E)

ti (·) (E) dP S
i (·) . (1)

We call any probability measure µi ∈ ∆(S) satisfying equation (1) in place of P S
i a

prior of player i on S.

Definition 4 (Common Prior) P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) (resp. P S ∈ ∆ (S)) is a

common prior (resp. a common prior on S) if P (resp. P S) is a prior (resp. a prior on

S) for every player i ∈ I.

Denote by [ti(ω)] := {ω′ ∈ Ω : ti(ω
′) = ti(ω)}.

Definition 5 A common prior P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) (resp. a common prior P S

on S) is positive if and only if for all i ∈ I and ω ∈ Ω: If ti (ω) ∈ 4 (S ′), for some S ′,

then P S
(

([ti (ω)] ∩ S ′)↑ ∩ S
)
> 0 for all S � S ′.

Note that by Lemma 3 below, [ti(ω)] ∩ S ′ ∈ FS′ .

Recall Remark 8 in Heifetz, Meier, and Schipper (2009) according to which if Ŝ is the

upmost state-space in the lattice S, and (P S
i )S∈S ∈

∏
S∈S ∆(S) is a tuple of probability

measures, then (P S
i )S∈S is a prior for player i if and only if P Ŝ

i is a prior for player i on

Ŝ and P S
i is the marginal of P Ŝ

i for every S ∈ S.

Definition 6 Let x1 and x2 be real numbers and v a continuous random variable on Ω.

Define the sets E≤x1
1 :=

{
ω ∈ Ω :

∫
St1(ω)

v (·) d (t1 (ω)) (·) ≤ x1

}
and

E≥x2
2 :=

{
ω ∈ Ω :

∫
St2(ω)

v (·) d (t2 (ω)) (·) ≥ x2

}
. We say that at ω, conditional on his

information, player 1 (resp. player 2) believes that the expectation of v is weakly below

x1 (resp. weakly above x2) if and only if ω ∈ E≤x1
1 (resp. ω ∈ E≥x2

1 ).

Theorem 1 Let Ω be a topological unawareness belief structure and P a positive common

prior. Then there is no state ω̃ ∈ Ω such that there are a continuous random variable
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v : Ω −→ R and x1, x2 ∈ R, x1 < x2, with the following property: at ω̃ it is common

certainty that conditional on her information, player 1 believes that the expectation of v is

weakly below x1 and, conditional on his information, player 2 believes that the expectation

of v is weakly above x2.

This general “No-trade” theorem implies our “No-trade” theorem for finite unaware-

ness belief structures (Heifetz, Meier, and Schipper, 2009).

In Heifetz, Meier, and Schipper (2009) we show by example that the converse of the

“No-trade” theorem does not hold.

4 Proof of Theorem 1

4.1 Preliminary Definitions and Results

For i ∈ I, p ∈ [0, 1] and an event E, the p -belief operator is defined by

Bp
i (E) := {ω ∈ Ω : ti(ω)(E) ≥ p},

if there is a state ω such that ti(ω)(E) ≥ p, and by

Bp
i (E) := ∅S(E)

otherwise. The mutual p-belief operator on events is defined by

Bp(E) =
⋂
i∈I

Bp
i (E).

The common certainty operator on events is defined by

CB1 (E) =
∞⋂
n=1

(
B1
)n

(E).

These are standard definitions (e.g. see Monderer and Samet, 1989) adapted to our

unawareness structures.

As in Heifetz, Meier, and Schipper (2009) we define for every i ∈ I the awareness

operator

Ai (E) := {ω ∈ Ω : ti (ω) ∈ ∆ (S) for some S � S (E)} ,

for every event E, if there is a state ω such that ti(ω) ∈ ∆(S) with S � S(E), and by

Ai(E) := ∅S(E)
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otherwise.

In Heifetz, Meier, and Schipper (2009, Proposition 1 and 2) we show that Ai(E),

Bp
i (E), Bp(E), and CB1(E) are all S(E)-based events. We also show in Heifetz, Meier,

and Schipper (2009, Proposition 9) that standard properties of belief obtain. Moreover,

in Heifetz, Meier, and Schipper (2009, Proposition 3) we show “standard” properties

of awareness. One of those properties is weak necessitation, i.e., for any event E ∈ Σ,

Ai(E) = B1
i (S(E)↑). This property will be used later in the proof.

Definition 7 An event E is evident if for each i ∈ I, E ⊆ B1
i (E).

Proposition 1 For every event F ∈ Σ:

(i) CB1(F ) is evident, that is CB1(F ) ⊆ B1
i (CB

1(F )) for all i ∈ I.

(ii) There exists an evident event E such that ω ∈ E and E ⊆ B1
i (F ) for all i ∈ I, if

and only if ω ∈ CB1(F ).

The proof is analogous to Proposition 3 in Monderer and Samet (1989) for a standard

state-space and thus omitted.

We define G ⊆ Ω to be a measurable set if and only if for all S ∈ S, G∩S ∈ FS. The

collection of measurable sets forms a sigma-algebra on Ω.

Let Ω be an unawareness belief structure. As in Heifetz, Meier, and Schipper (2009,

Section 2.13), we define the flattened type-space associated with the unawareness belief

structure Ω by

F (Ω) := 〈Ω,F , (tFi )i∈I〉,

where Ω is the union of all state-spaces in the unawareness belief structure Ω, F is the

collection of all measurable sets in Ω, and tFi : Ω −→ ∆(Ω,F) is defined by

tFi (ω)(E) :=

{
ti(ω)(E ∩ Sti(ω)) if E ∩ Sti(ω) 6= ∅
0 otherwise

The definition of the belief operator as well as standard properties of belief and

Proposition 1 can be extended to measurable subsets of Ω. The proofs are analogous and

thus omitted.

Let Ω be a topological unawareness belief structure and P a positive common prior.

For the proof of the theorem, we have to show that there is no evident measurable set

E ∈ F such that ω̃ ∈ E and∫
Ω

v(·)d(t1(ω))(·) ≤ x1 < x2 ≤
∫

Ω

v(·)d(t2(ω))(·)

10



for all ω ∈ E.

We need the following lemmata:

Lemma 1 Let Ω be a topological unawareness belief structure, v : Ω −→ R be a contin-

uous random variable, and x ∈ R. Then
{
ω ∈ Ω :

∫
Ω
v(·)d(ti(ω))(·) ≥ x

}
and{

ω ∈ Ω :
∫

Ω
v(·)d(ti(ω))(·) ≤ x

}
are closed subsets of Ω.6

Proof of the Lemma. Since for every S ∈ S, the topology on ∆(S) coincides with

the weak∗ topology and since in particular, v : S −→ R is continuous,{
µ ∈ ∆(S) :

∫
S
v(·)dµ(·) < x

}
is open in ∆(S). Hence

{
ν ∈

⋃
S∈S ∆(S) :

∫
S
v(·)dν(·) < x

}
is open in

⋃
S∈S ∆(S).

By the continuity of ti : Ω −→
⋃
S∈S ∆(S), it follows that{

ω ∈ Ω :
∫

Ω
v(·)d(ti(ω))(·) < x

}
is open in Ω and hence it’s relative complement with

respect to Ω,
{
ω ∈ Ω :

∫
Ω
v(·)d(ti(ω))(·) ≥ x

}
is closed in Ω. �

Lemma 2 Let Ω be a topological unawareness belief structure. Let E be a closed subset

of Ω. Then CB1(E) is a closed subset of Ω.

Proof of the Lemma. The relative complement of E with respect of Ω, Ω \ E, is

open, and hence for every S ∈ S, (Ω \E)∩S = S \ (E ∩S) is open in S. Therefore {µ ∈
∆(S) : µ(S\(E∩S)) > 0} is open. It follows that

⋃
S∈S {µ ∈ ∆(S) : µ(S \ (E ∩ S)) > 0}

is open. Hence for every i ∈ I,
{
ω ∈ Ω : ti(ω) ∈

⋃
S∈S {µ ∈ ∆(S) : µ(S \ (E ∩ S)) > 0}

}
is open. It follows that it’s relative complement with respect to Ω,

B1
i (E) =

{
ω ∈ Ω : ti(ω) ∈

⋃
S∈S{µ ∈ ∆(S) : µ(E ∩ S) = 1}

}
is closed. Since an arbitrary

intersection of closed sets is closed, the Lemma follows by induction. �

Lemma 3 Let Ω be a topological unawareness belief structure. Then for every ω ∈ Ω,

every state-space S ∈ S and every player i ∈ I, the set {ω′ ∈ Ω : ti(ω
′) = ti(ω)} ∩ S is

closed in S.

Proof of the Lemma. Since ∆(Sti(ω)) is the set of regular Borel probability measures

on Sti(ω) endowed with the topology of weak convergence, {ti(ω)} is closed in ∆(Sti(ω)),

and hence {ti(ω)} is closed in
⋃
S∈S ∆(S). Therefore, by continuity of ti, t

−1
i ({ti(ω)}) =

[ti(ω)] is closed in Ω. Hence, [ti(ω)] ∩ S is closed in S. �

6Note that we abuse notation and write
∫

Ω
v(·)d(ti(ω))(·) instead of

∫
Sti(ω)

v(·)d(ti(ω))(·).
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Lemma 4 Let Ω be a topological unawareness belief structure. Let P S be a positive

(common) prior on the state-space S, and let ω ∈ S such that ti(ω) ∈ ∆(S). Then, for

every E ∈ FS, we do have ti(ω)(E) = ti(ω)(E ∩ [ti(ω)]) = PS(E∩[ti(ω)])
PS(S∩[ti(ω)])

.

Proof. We have ti(ω)(S ∩ [ti(ω)]) = 1 and hence ti(ω)(E) = ti(ω)(E ∩ S ∩ [ti(ω)]) =

ti(ω)(E ∩ [ti(ω)]). Since P S is positive, we do have P S(S ∩ [ti(ω)]) > 0.

Since S((E ∩ [ti(ω)])↑) = S and since ω′ ∈ [ti(ω)] implies ti(ω
′) ∈ ∆(S), we do have

(E ∩ [ti(ω)])↑∩Ai((E ∩ [ti(ω)])↑) = (E ∩ [ti(ω)])↑. We also have (S ∩ [ti(ω)])↑ ⊆ Ai(S
↑) =

Ai((E ∩ [ti(ω)])↑). The last equality follows from weak necessitation. We have - by the

definition of a common prior - the following (with our abuse of notation):

P S(E ∩ [ti(ω)]) =

∫
S∩Ai((E∩[ti(ω)])↑)

ti(·)(E ∩ [ti(ω)])dP S(·)

=

∫
S∩[ti(ω)]

ti(·)(E ∩ [ti(ω)])dP S(·)

+

∫
(S∩Ai(S↑))\(S∩[ti(ω)])

ti(·)(E ∩ [ti(ω)])dP S(·)

But if ω′ ∈ (S ∩Ai((E ∩ [ti(ω)])↑)) \ (S ∩ [ti(ω)]), then ti(ω
′)(E ∩ [ti(ω)]) = 0, and hence,

we have

P S(E ∩ [ti(ω)]) =

∫
S∩[ti(ω)]

ti(·)(E ∩ [ti(ω)])dP S(·)

= ti(ω)(E ∩ [ti(ω)])

∫
S∩[ti(ω)]

1dP S(·)

= ti(ω)(E ∩ [ti(ω)])P S(S ∩ [ti(ω)]).

Since P S(S ∩ [ti(ω)]) > 0, it follows that ti(ω)(E ∩ [ti(ω)]) = PS(E∩[ti(ω)])
PS(S∩[ti(ω)])

. �

4.2 Proof of the Theorem

Suppose by contradiction, that there are x1, x2 ∈ R with x1 < x2 and a continuous

random variable v : Ω −→ R such that CB1(E≤x1
1 ∩ E≥x2

2 ) 6= ∅, where

E≤x1
1 :=

{
ω ∈ Ω :

∫
St1(ω)

v(·)d(t1(ω))(·) ≤ x1

}
, and

E≥x2
2 :=

{
ω ∈ Ω :

∫
St2(ω)

v(·)d(t2(ω))(·) ≥ x2

}
.

Let S be a �-minimal state-space with the property that S ∩CB1(E≤x1
1 ∩E≥x2

2 ) 6= ∅.
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By standard properties of beliefs, we have CB1(E≤x1
1 ∩E≥x2

2 ) ⊆ B1
i (CB

1(E≤x1
1 ∩E≥x2

2 ))

for i = 1, 2. This implies that for each ω ∈ S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) and i = 1, 2, we have

ti(ω)(CB1(E≤x1
1 ∩ E≥x2

2 )) = 1, which by the minimality of S implies that ti(ω) ∈ ∆(S)

and ti(ω)(S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )) = 1.

By Lemma 2, S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )) is closed in S. Therefore it is easy to verify

that if flattened, F (S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )), that is S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) with the

induced structure, is a standard topological type-space (as in Heifetz, 2006), since for

each ω ∈ S ∩CB1(E≤x1
1 ∩E≥x2

2 ), we have ti(ω)(S ∩CB1(E≤x1
1 ∩E≥x2

2 )) = 1 for i = 1, 2.

Since P S is a positive prior on S, we have that P S(S ∩ [ti(ω)]) > 0, for each ω ∈ S.

For ω ∈ S∩CB1(E≤x1
1 ∩E≥x2

2 ) we also have ti(ω)(S∩CB1(E≤x1
1 ∩E≥x2

2 )∩ [ti(ω)]) = 1,

and by Lemma 4, we have ti(ω)(S∩CB1(E≤x1
1 ∩E≥x2

2 )∩[ti(ω)]) =
PS(S∩CB1(E

≤x1
1 ∩E≥x22 )∩[ti(ω)])

PS(S∩[ti(ω)])
.

Hence, since P S(S∩ [ti(ω)]) > 0, it follows that P S(S∩CB1(E≤x1
1 ∩E≥x2

2 )∩ [ti(ω)]) =

P S(S ∩ [ti(ω)]) > 0. It follows that P S(S ∩CB1(E≤x1
1 ∩E≥x2

2 )) > 0. Therefore it is easy

to check that PS(·)
PS(S∩CB1(E

≤x1
1 ∩E≥x22 ))

is a common prior on F (S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )).

Claim: Let ω ∈ CB1(E≤x1
1 ∩E≥x2

2 )∩S. Then
∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t1(ω))(·) ≤ x1

and
∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t2(ω))(·) ≥ x2.

We prove the second inequality, the first is analogous to the second one. We know

already that t2(ω) ∈ ∆(S). By the definitions ω ∈ S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) implies ω ∈
S∩B1

2(E≥x2
2 ), and therefore t2(ω)([t2(ω)]∩E≥x2

2 ∩S) = 1. It follows that [t2(ω)]∩E≥x2
2 ∩S

is non-empty. Let ω′ ∈ [t2(ω)] ∩ E≥x2
2 ∩ S. Then we have

∫
S
v(·)d(t2(ω′))(·) ≥ x2. But

we have t2(ω) = t2(ω′) and therefore
∫
S
v(·)d(t2(ω))(·) ≥ x2.

Since S is compact and v : S −→ R is continuous, there is a v̄ ∈ R such that |v(ω̃)| ≤ v̄

for all ω̃ ∈ S.

Since t2(ω)(S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )) = 1, we have∣∣∣∣∣
∫
S\(S∩CB1(E

≤x1
1 ∩E≥x22 ))

v(·)d(t2(ω))(·)

∣∣∣∣∣ ≤ v̄

∫
S\(S∩CB1(E

≤x1
1 ∩E≥x22 ))

1d(t2(ω))(·)

= v̄ t2(ω)(S \ (S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )))

= 0.

Hence, we have∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t2(ω))(·) =

∫
S

v(·)d(t2(ω))(·) ≥ x2

and this finishes the proof of the claim.
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It follows that we have found a standard topological type-space S∩CB1(E≤x1
1 ∩E≥x2

2 )

in the sense of Heifetz (2006) with a common prior and a continuous random variable

v : S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) −→ R such that∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t1(ω))(·) ≤ x1 < x2 ≤
∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t2(ω))(·).

Note that if we replace v(·) by v(·)− x1+x2

2
, we get∫

S∩CB1(E
≤x1
1 ∩E≥x22 )

v(·)− x1 + x2

2
d(t1(ω))(·) < 0 <

∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)− x1 + x2

2
d(t2(ω))(·).

But this is a contradiction to Feinberg’s (2000) Theorem (Proposition 1 in Heifetz, 2006).

Hence this completes the proof of the theorem. �
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