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Abstract

Determining the co-integrating rank of a system of variables has become a
fundamental aspect of applied research in macroeconomics and �nance. It is well-
known that standard asymptotic likelihood ratio tests for co-integration rank
of Johansen (1996) can be unreliable in small samples with empirical rejection
frequencies often very much in excess of the nominal level. As a consequence,
bootstrap versions of these tests have been developed. To be useful, however,
sequential procedures for determining the co-integrating rank based on these
bootstrap tests need to be consistent, in the sense that the probability of selecting
a rank smaller than (equal to) the true co-integrating rank will converge to
zero (one minus the marginal signi�cance level), as the sample size diverges, for
general I(1) processes. No such likelihood-based procedure is currently known
to be available. In this paper we �ll this gap in the literature by proposing
a bootstrap sequential algorithm which we demonstrate delivers consistent co-
integration rank estimation for general I(1) processes. Finite sample Monte Carlo
simulations show the proposed procedure performs well in practice.

Keywords: Co-integration; trace test; sequential rank determination; i.i.d.
bootstrap; wild bootstrap.
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1 Introduction

Sequential likelihood-based procedures for the determination of the co-integration rank in
VAR systems of variables integrated of order 1 [I(1)], see Johansen (1996), are extensively
used in empirical research. However, it is now well understood that the �nite sample prop-
erties of these procedures, when based on asymptotic inference, can be quite poor; see, in
particular, Johansen (2002) and the references therein. It is also well-known that the boot-
strap, when correctly implemented, can be an important device to compute critical values
of asymptotic tests in samples of �nite size thereby delivering tests with empirical rejection
frequencies closer to the nominal level. As a consequence, it is not surprising that there
has been an increasing interest in using bootstrap methods in determining the co-integration
rank in vector autoregressive models. For co-integrated VAR models with independent and
identically distributed (i.i.d.) innovations, see, among others, van Giersbergen (1996), Harris
and Judge (1998), Mantalos and Shukur (2001), Swensen (2006, 2009) and Trenkler (2009);
for VAR models with potentially heteroskedastic innovations, see Cavaliere et al. (2010a,
20010b).

In order to be both operational and e�cacious a bootstrap sequential method for deter-
mining co-integration rank needs to satisfy the following three requirements: (i) it is applica-
ble to general I(1) systems; (ii) it is asymptotically valid and consistent, where consistency
is taken in the usual sense to mean that the probability of selecting a co-integration rank
smaller than the true rank converges to zero, while the probability of selecting rank equal
to the true co-integrating rank will converge to one minus the chosen (marginal) signi�cance
level, as the sample size diverges, and (iii) it improves upon the �nite sample performance of
the corresponding procedure based on the asymptotic tests. As discussed in Swensen (2009),
the sequential algorithm of Swensen (2006, Algorithm 2) does not satisfy these conditions;
nor, for exactly the same reason, does Algorithm 1 of Cavaliere et al. (2010a, 2010b) which
replaces the i.i.d. sub-sampling element of Swensen (2006) with wild bootstrap sub-sampling.
In particular, Swensen (2009) demonstrates that the analytic methods used in Swensen (2006)
to establish that requirement (ii) above holds for Algorithm 2 are in error and that to do so
requires a number of additional conditions to hold on the (unknown) parameters of the data
generating process (DGP). These conditions, labelled Assumption 2 in Swensen (2009), are
not required by the sequential method based on the asymptotic tests and are violated by a
large set of empirically plausible I(1) DGPs, thereby implying that this bootstrap procedure
fails requirement (i) above.

Swensen (2009) suggests that two natural responses arise from the problem he highlights.
First, he argues that it is important to determine how restrictive the additional conditions
are and, second, to formulate a bootstrap algorithm that is consistent even if the additional
conditions he lays out do not hold. While there may be some interest in the �rst issue, it is
clear that the key to making progress is to address the second of the responses Swensen (2009)
calls for. In this paper we do precisely that and propose an alternative bootstrap sequential
algorithm for the determination of the co-integrating rank which meets all of requirements
(i)-(iii) above. The proposed algorithm principally di�ers from Algorithm 2 in Swensen (2006)
and Algorithm 1 of Cavaliere et al. (2010a, 20010b), by having all parameters used to generate
the bootstrap samples re-estimated under the reduced rank being tested at each stage of the
procedure. Indeed, this idea was �rst mentioned in Remark 2 of Swensen (2006,pp.1701-02),
although it was not pursued further there other than noting it as a possible alternative to
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Algorithm 2 of Swensen (2006). The algorithm we discuss is based on well-known likelihood-
based reduced rank estimation and ordinary least squares (OLS), and is therefore entirely
straightforward to apply. We establish its asymptotic validity and show that the algorithm
can be applied to general I(1) DGPs, without the necessity to satisfy the additional conditions
detailed in Assumption 2 of Swensen (2009). The validity of our proposed algorithm is
established for both i.i.d. and wild bootstrap re-sampling methods. Furthermore a Monte
Carlo simulation study shows that our proposed algorithm also improves on the �nite sample
properties of existing procedures.

The remainder of the paper is organised as follows. In section 2 we provide a brief
summary of the model and standard asymptotic theory for sequential rank determination.
In section 3 we present the proposed sequential bootstrap algorithm, demonstrating how
this di�ers from Algorithm 2 of Swensen (2006) and Algorithm 1 of Cavaliere et al. (2010a,
20010b). The asymptotic properties of our proposed procedure are investigated in section 4,
while a small Monte Carlo study of its �nite sample behaviour is given in section 5. Section
6 concludes. Mathematical proofs are contained in the Appendix.

In the following `
w
!' denotes weak convergence, `

p
!' convergence in probability, and

`
w
!p' weak convergence in probability (Gin�e and Zinn, 1990; Hansen, 1996), in each case as
the sample size diverges to positive in�nity; `I(�)' denotes the indicator function; `x := y'
indicates that x is de�ned by y; b�c denotes the integer part of its argument; Ik denotes the
k�k identity matrix and 0j�k the j�k matrix of zeroes; the space spanned by the columns of

any m�n matrix A is denoted as col(a); if a is of full column rank n < m, then �a := a (a0a)�1

and a? is an m� (m� n) full column rank matrix satisfying a0?a = 0; for any square matrix,
a, jaj is used to denote its determinant, kak the norm kak2 := tr fa0ag (where tr fag denotes
the trace of a) and � (a) its spectral radius (that is, the maximal modulus of the eigenvalues

of a); for any vector, x, kxk denotes the usual Euclidean norm, kxk := (x0x)1=2. Finally, P �

denotes the bootstrap probability measure, i.e. conditional on the original sample; similarly,
E� denotes expectation under P �.

2 The Co-integration Model and Asymptotic Test

Procedures

We consider the usual VAR(k) model in error correction format:

�Xt = �Xt�1 +	Ut + �Dt + "t, t = 1; :::; T (1)

where Xt := (X1t; :::; Xpt)
0 and the innovations, "t := ("1t; :::; "pt)

0, are both p � 1, and

Ut :=
�
�X 0

t�1; :::;�X
0
t�k+1

�0
is p (k � 1) � 1, 	 := (�1; :::;�k�1), where f�ig

k�1
i=1 are p � p

lag coe�cient matrices. The impact matrix � := ��0, where � and � are p � r, r � p,
matrices, with the usual convention that ��0 is the p � p matrix of zeroes when r = 0 (no
co-integration). The initial values, X0 :=

�
X 0
0; :::; X

0
�k+1

�0
, are taken to be �xed. The model,

which will often be referred to as model H(r) in what follows, may be written in the compact
form,

Z0t = ��#0Z1t +	#Z2t + "t (2)

with Z0t := �Xt, and the remaining terms de�ned according to the following three leading
cases for the deterministic term, �Dt (see, e.g., Johansen, 1996, p.81):
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(i) �Dt = 0 in (1), which implies that Z1t := Xt�1, Z2t := Ut, �
# = � and 	# = 	 (no

deterministic components);

(ii) �Dt = �1 = ��0 in (1), which implies that Z1t := (X 0
t�1; 1)

0, Z2t := Ut, �
# = (�0; �0)0

and 	# = 	 (restricted constant);

(iii) �Dt = �1 + �2t with �2 = ��0 in (1), which implies that Z1t := (X 0
t�1; t)

0, Z2t :=

(U 0
t ; 1)

0, �# = (�0; �0)0 and 	# = (	; �1) (restricted linear trend).

Throughout the paper the process in (1) is assumed to satisfy the following conditions.
First, as is standard (see, e.g., Engle and Granger, 1987), the autoregressive coe�cients in
(1) are assumed to satisfy the following set of assumptions.

Assumption 1: (a) all the characteristic roots associated with (1); that is of A (z) :=
(1� z) Ip���

0z��1z (1� z)�� � ���k�1z
k�1 (1� z) = 0, are outside the unit circle or equal

to 1; (b) � and � have full column rank r; (c) det (�0?��?) 6= 0, with � := Ip��1�� � ���k�1.

Second, as is routinely done in this literature (see, e.g., Johansen, 1996, Swensen, 2006), we
assume that the innovations are i.i.d. While this assumption is convenient for expositional
purposes it is also possible to derive corresponding results under (either conditionally or
unconditionally) heteroskedastic innovations; see Cavaliere et al. (2010a, 2010b). We will
briey discuss these generalisations later.

Assumption 2: The innovations f"tg form an i.i.d. sequence with E ("t) = 0 and E ("t"
0
t) =


, with 
 positive de�nite, and (ii) E k"tk
4 � K <1.

In the following, a VAR model satifying (1) under Assumptions 1 and 2 will be said to
satisfy the `I(1,r)' conditions. Moreover, we let r0 denote the true (unknown) rank of �.

Now, consider the problem of determining the co-integration rank. As is standard, let
Mij := T�1

PT
t=1 ZitZ

0
jt, i; j = 0; 1; 2, with Zit de�ned as in (2), and let Sij := Mij �

Mi2M
�1
22 M2j , i; j = 0; 1. Then, as shown in Johansen (1996), the LR test for H(r) vs H(p),

r = 0; :::; p� 1, rejects for large values of the trace statistic,

Qr;T := �T

pX
i=r+1

log
�
1� �̂i

�
(3)

where �̂1 > : : : > �̂p are the largest p solutions to the eigenvalue problem,���S11 � S10S
�1
00 S01

�� = 0: (4)

Under Assumptions 1 and 2, Johansen (1996) establishes that, as T !1, so

Qr;T ! +1; for r = 0; :::; r0 � 1 (5)
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while, for the true co-integrating rank,

Qr0;T
w
! tr (Qr0;1) (6)

where, for 0 � r � p� 1,

Qr;1 :=

Z 1

0
dBp�r(u)Fp�r(u)

0

�Z 1

0
Fp�r(u)Fp�r(u)

0du

��1 Z 1

0
Fp�r(u)dBp�r(u)

0 (7)

Bp�r denoting a (p � r)-variate standard Brownian motion and where Fp�r is a function of
Bp�r and the included deterministic term(s). More speci�cally, using the notation ajb :=
a(�) �

R
a(s)b(s)0ds(

R
b(s)b(s)0ds)�1b(�) to denote the projection residuals of a onto b, then:

(i) if �Dt = 0 in (1) and no deterministics are included in the estimation, then Fp�r :=
Bp�r; (ii) if �Dt = ��0 in (1) and a restricted constant is included in the estimation, then
Fp�r := (B0

p�r; 1)
0; (iii) if �Dt = �1 + ��0t in (1) and a restricted linear trend is included in

the estimation, then Fp�r := (B0
p�r; uj1)

0.
For each of r = 0; :::; p � 1, let G1

r denote the cumulative density function [cdf] of
tr (Qr0;1). Starting with r = 0, the sequential procedure of Johansen (1996) involves testing
in turn H(r) against H(p) for , r = 0; :::; p � 1, until, for a given value of r, the asymptotic
p-value, p1r;T := 1 � G1

r (Qr;T ) exceeds a chosen (marginal) signi�cance level, say �. The
estimated co-integration rank, say r̂, is then the lowest value of r such that the corresponding
asymptotic p-value is above �, with r̂ set to p if p1r;T � � for all r = 0; 1; :::; p � 1. The
results in (5) and (6) imply that the sequential LR procedure is consistent in the sense that
limT!1 P (r̂ = r) = 0, for r < r0, and limT!1 P (r̂ = r0) = 1 � � � I(r0 < p); see Johansen
(1996, Chapter 12).

Remark 2.1. The preceding discussion extends to the so-called maximum eigenvalue test;
that is, the LR test based for H(r) vs H(r + 1). As is well known, this test rejects for
large values of the statistic Qr;max := �2 (` (r)� ` (r + 1)) = �T log(1 � �̂r+1); see, for
example, Equation (6.19) of Johansen (1996). The null asymptotic distribution of Qr;max

corresponds to the distribution of the maximum eigenvalue of the real symmetric random
matrix Qr;1, while a sequential approach based on Qr;max, r = 0; :::; p � 1, will share the
same consistency properties given above for the corresponding sequential procedure based on
the trace statistics; see Paruolo (2001).

Remark 2.2. Cavaliere et al. (2010a) demonstrate that the large sample results given in this
section remain valid when the innovation process f"tg in (1) is a vector martingale di�erence
sequence with respect to the �ltration Ft; where Ft�1 � Ft for t = :::;�1; 0; 1; 2; :::, which sat-
is�es both a fourth moment condition (see Assumption 2(ii)) and the global homoskedasticity

condition, T�1
PT

t=1 E ("t"
0
tjFt�1)

p
! 
, with 
 positive de�nite. This assumption therefore

allows for certain forms of conditional heteroskedasticity in the innovations. Unconditional
heteroskedasticity, as considered by Cavaliere et al. (2010b), can, however, alter the large
sample results given in this section. Precisely, using the decomposition "t = �tzt with zt
a p-variate i.i.d. process and �t a non-stochastic matrix satisfying: (i) �t := � (t=T ) for all
t = 1; :::; T , where � (�) lies is the space of p � p matrices of c�adl�ag functions on [0; 1], and
(ii) � (u) := � (u)� (u)0 is assumed positive de�nite for all u 2 [0; 1], Cavaliere et al. (2010b)
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show that although the result in (5) remains valid, the result in (6) is no longer appropri-
ate, but rather that, in the case of the trace statistic, Qr0;T

w
! tr

�
Q�

r0;1

�
, where Q�

r;1 is as
given by the right member of (7) but with the (p � r)-variate stochastic volatility process
~M :=

�
�0?

���0?
��1=2

�0?
R �
0 �(s)dBp(s) replacing Bp�r throughout (including in the de�nition

of Fp�r), where �� :=
R 1
0 � (s) ds, so that the standard asymptotic test will therefore be incor-

rectly sized, even in the limit. The same comments hold (the relevant limiting distribution
now being that of the maximum eigenvalue of Q�

r;1) for the maximum eigenvalue statistic.

3 The Bootstrap Sequential Algorithm

Bootstrap analogues of the Qr;T trace statistic (and corresponding maximum eigenvalue
statistic) from section 2 have been developed in the literature. This is done for the i.i.d. boot-
strap in Swensen (2006, Algorithm 1) and for the wild bootstrap (see, inter alia, Wu, 1986,
Liu, 1988 and Mammen, 1992) in Algorithm 1 of Cavaliere et al. (2010a,2010b). Swensen
(2006) established that, under Assumptions 1 and 2, the i.i.d. bootstrap analogue of the Qr0;T

trace statistic replicates that statistic's �rst order limiting null distribution when the true
rank is r0. Cavaliere et al. (2010a) show that this result also holds for both the i.i.d. and
wild bootstrap statistics under the martingale di�erence conditions laid out in Remark 2.2,
while Cavaliere et al. (2010b) prove that in the case of unconditional heteroskedasticity as in
Remark 2.2, the wild (but not the i.i.d.) bootstrap statistic attains the same �rst order (non-
pivotal) limiting distribution, tr

�
Q�

r0;1

�
, as Qr0;T under rank r0, such that asymptotically

correctly sized inference can be obtained using the wild bootstrap.
However, and as argued in Swensen (2006,p.1702), the most important use of the likeli-

hood ratio test for co-integration rank is as part of a sequential procedure to determine the
co-integration rank. As Swensen (2006,p.1700) notes, \This problem is more intriguing and
presents some new aspects that are nonstandard in a bootstrap context, because we have to
do the resampling for di�erent values of the rank of the estimated reduced rank matrix. The
dimension of the cointegration space in the generated observations will therefore not corre-
spond to the true cointegration rank, but to the imposed rank ..." As is done in Algorithm
2 of Swensen (2006,pp.1702-3) and in Algorithm 1 of Cavaliere et al. (2010a,2010b) this is
implemented by estimating �, � (and � in the case of deterministic terms) under H(r), and
then using these estimated values in the re-sampling recursion equation (see, for example,
Equation (4) in step (iv) of Algorithm 2 of Swensen, 2006). These algorithms, however, di�er
from the algorithm we now outline in that the remaining parameters from (1) are estimated
unrestrictedly, i.e. under H(p).

At each stage of our proposed sequential algorithm, the bootstrap trace statistic is cal-
culated from re-sampled data which are constructed using the (Gaussian) (quasi-) likelihood-
based estimates [QMLE] under H(r): notice that this model will be misspeci�ed unless

r = r0. Denote the corresponding estimators by �̂
(r)
, �̂(r); 	̂(r) := (�̂

(r)
1 ; ::::; �̂

(r)
k�1), 
̂

(r) and

�̂(r), which are obtained in the usual manner. That is, in the case of no deterministic
terms, with the ordered eigenvalues, �̂1 > : : : > �̂p, obtained as laid out in section 2, let
v̂ := (v̂1; v̂2; :::; v̂p) denote the corresponding eigenvectors, which satisfy

v̂0S11v̂ = Ip, v̂0S10S
�1
00 S01v̂ = �̂p := diag(�̂1; �̂2; :::; �̂p): (8)
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For each r = 0; 1; :::; p� 1, the (uniquely de�ned) QMLE, �̂
(r)
, is then given by

�̂
(r)

:= v̂K(r)
p ,

where K
(r)
p :=

�
Ir; 0r�(p�r)

�0
, is a selection matrix indexed by r and p. When deterministic

terms are included, �̂
#(r)

:= (�̂
(r)0
; �̂(r)0)0 = v̂K

(r)

p#
as in this case the eigenvectors in v̂ are

of dimension p# = p + 1. After �̂
(r)
, or �̂

#(r)
, is computed, the remaining estimators are

obtained by simple OLS regression, as detailed in Johansen (1996).

Using these restricted estimators, our proposed bootstrap sequential procedure is then
as follows.

Algorithm 1 Starting from r = 0, perform the following steps:

(i) Estimate model (1) under rank r using Gaussian QMLE as outlined above and denote

the resulting residuals by "̂r;t.

(ii) Generate T bootstrap errors "�r;t using the re-centred residuals
1, "̂cr;t := "̂r;t�T

�1
PT

i=1 "̂r;i,
for either: (a) the i.i.d. bootstrap, such that "�r;t := "̂cr;Ut

, where Ut, t = 1; :::; T is an

i.i.d. sequence of discrete uniform distributions on f1; 2; :::; Tg, or (b) the wild boot-

strap, where for each t = 1; :::; T , "�r;t := "̂cr;twt, where wt, t = 1; :::; T , is an i.i.d.N(0,1)

sequence.

(iii) Construct the bootstrap sample recursively from

�X�
r;t := �̂(r)�̂

(r)0
X�

r;t�1 + �̂
(r)
1 �X�

r;t�1 + :::+ �̂
(r)
k�1�X

�
r;t�k+1 + "�r;t; t = 1; :::; T; (9)

initialised at X�
�k+1 = � � � = X�

0 = 0;

(iv) Using the bootstrap sample, fX�
r;tg, and denoting by �̂

�
1 > : : : > �̂

�
p the ordered solutions

to the bootstrap analogue of the eigenvalue problem in (4), compute the LR test statistic

Q�
r;T := �T

pX
i=r+1

log
�
1� �̂

�
i

�
for the null of rank r against rank p, along with the corresponding p-value p�r;T :=
1 � G�

r;T (Qr;T ), where G�
r;T (�) denotes the conditional (on the original data) cdf of

Q�
r;T ;

(v) If p�r;T exceeds the signi�cance level, �, set r̂ = r, otherwise repeat steps (i){(iv) testing
the null of rank (r+1) against rank p if r+1 < p, or set r̂ = p if r+1 = p.

1Observe that re-centring is not needed in the case of a restricted trend as
PT

i=1 "̂r;i = 0 in this
case.
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Remark 3.1. Algorithm 1 di�ers from the corresponding algorithm in Swensen (2006,
Algorithm 2) in a number of respects. Firstly, although Algorithm 2 of Swensen (2006)
also suggests estimating � and � under rank r, in contrast to our proposed approach in
Algorithm 1, Algorithm 2 of Swensen (2006) estimates 	 unrestrictedly; i.e., under rank

p, we denote this estimator by 	̂(p) := (�̂
(p)
1 ; :::; �̂

(p)
k�1). Similarly, in step (ii) of Algorithm

2, Swensen (2006) uses residuals from the unrestricted model (i.e., those obtained under
rank p) which are therefore the same at each stage of the algorithm, while our Algorithm 1
employs the restricted residuals at each stage. As we will demonstrate in section 4, using
the restricted estimators ensures that the re-sampling recursion equation (9) always delivers
an I(1,r) system in the limit with p � r common stochastic I(1) trends, and r, r � r0, co-
integrating vectors. As recognised in Swensen (2009), this is not guaranteed under Algorithm
2 of Swensen (2006), nor indeed Algorithm 1 of Cavaliere et al. (2010a,2010b), since when
	 is estimated unrestrictedly, the bootstrap samples will not be asymptotically I(1; r) unless
Assumption 2 of Swensen (2009) is met; see also section 5 below.

Remark 3.2. Algorithm 1 di�ers from Algorithm 2 of Swensen (2006) in a further way. In
step (iii) of Algorithm 2 of Swensen (2006) one must check, for each value of r tested, that
the roots of the equation jÂ(r) (z) j = 0 are either one or outside the unit circle, where

Â(r) (z) := (1� z) Ip � �̂(r)�̂
(r)0
z � �̂

(p)
1 (1� z) z � :::� �̂

(p)
k�1 (1� z) zk�1;

together with the requirement that j�̂
(r)0
? �̂(p)�̂

(r)
? j 6= 0, where �̂(p) := Ip � �̂

(p)
1 � ::: � �̂

(p)
k�1,

and �̂
(p)
j , j = 1; :::; k � 1, are the unrestricted estimates de�ned in Remark 3.1. It can be

shown that step (iii) will fail for the relevant value(s) of r with probability tending to one as
the sample size increases if Assumption 2 of Swensen (2009) does not hold for those value(s)
of r. In cases where step (iii) fails, Swensen (2006,p.1701) argues that \ ... another more
appropriate recursive scheme that reects the properties of the observed data should be used."
which is just what Algorithm 1 of this paper is designed to provide. It is also, therefore, not
necessary to check this condition when using the procedure outlined in Algorithm 1 of this
paper.

Remark 3.3. Notice also that, due to the (exact) invariance of Qr;T with respect to �, we
need not add an estimate of the deterministic component, �Dt, to the right member of (9) as
is done in, for example, Algorithm 2 of Swensen (2006). Moreover, since Qr;T is similar with
respect to the initial values (exact similar under cases (ii) and (iii) for �Dt given in section 2
and asymptotically similar under case (i)) we may set these to zero in our recursive scheme.
As an alternative to (9) one could use the recursion

�X�
r;t := �̂(r)�̂

(r)0
X�

r;t�1 + �̂
(r)
1 �X�

r;t�1 + � � �+ �̂
(r)
k�1�X

�
r;t�k+1 + �̂(r)Dt + "�r;t, t = 1; :::; T

with initial values, X�
t := Xt, t = �k + 1; :::; 0. In unreported Monte Carlo simulations we

found no discernible di�erences between the �nite sample properties of these two approaches
and so we have adopted the simpler of the two.
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Remark 3.4. In practice, the cdf G�
r;T (�) required in Step (iv) of Algorithm 1 will not

be known, but can be approximated in the usual way through numerical simulation; cf.
Hansen (1996) and Andrews and Buchinsky (2000). Taking the case of the wild bootstrap to
illustrate, this is achieved by generating B (conditionally) independent bootstrap statistics,
Q�

r;b;T , b = 1; :::; B, computed as above but recursively from

�X�
r;b;t := �̂(r)�̂

(r)0
X�

r;b;t�1 + �̂
(r)
1 �X�

r;b;t�1 + � � �+ �̂
(r)
k�1�X

�
r;b;t�k+1 + "�r;b;t; t = 1; :::; T;

with initial values X�
r;b;�k+1 = � � � = X�

r;b;0 = 0 and with ffwr;b;tg
T
t=1g

B
b=1 a doubly inde-

pendent N(0; 1) sequence. The simulated bootstrap p-value is then computed as ~p�r;T :=

B�1
PB

b=1 I(Q
�
r;b;T > Qr;T ), and is such that ~p�r;T

a:s:
! p�r;T as B ! 1. Note that an asymp-

totic standard error for ~p�r;T is given by (~p�r;T (1� ~p�r;T )=B)
1=2; cf. Hansen (1996, p.419).

4 Asymptotic Analysis

In this section prove that Algorithm 1 is consistent for any DGP which satis�es the I(1)
conditions stated in Swensen (2006) which consist of the I(1,r) conditions stated previously
in section 2, supplemented by Assumption 3 below; that is, our proposed algorithm does not
require the additional Assumption 2 of Swensen (2009) to hold for consistency.

By Johansen (1996), under the I(1,r) conditions, the largest r0 ordered sample eigenvalues,
�̂1 > �̂2 > ::: > �̂r0 of (4) converge, as T !1, to the corresponding r0 population eigenvalues
which solve (A.1); �1; �2; :::; �r0 say. For the asymptotic analysis, Swensen (2006, Lemma 3)
makes the standard assumption that these population eigenvalues are distinct, and we state
this here as Assumption 3. This implies that both the population eigenvectors and eigenvalues
are continuous functions of the population parameters.

Assumption 3: The limiting non-zero roots of (4) are distinct; that is, �1 > �2 > ::: >
�r0 > 0.

Our �rst lemma concerns the limiting behaviour of the Gaussian QMLE when an incorrect
rank r < r0 is imposed. This estimator is used to generate the bootstrap samples, see steps
(i) and (iii) of Algorithm 1 of section 3, and we show that in the limit this satis�es the I(1,r)
conditions.

Lemma 1 Let fXtg be generated as in (1) under Assumptions 1{3. Furthermore, let �̂
(r)

:=

f�̂(r); �̂
(r)
; 	̂(r); �̂(r); 
̂(r)g denote the QMLE in (1) under H(r). Then, for any r < r0 and

as T ! 1, �̂
(r) p

! �
(r)
0 , with �

(r)
0 := f�

(r)
0 ; �

(r)
0 ;	

(r)
0 ; �

(r)
0 ;


(r)
0 g de�ned in the appendix.

Moreover, the characteristic equation

A(r) (z) = Ip (1� z)� �
(r)
0 �

(r)0
0 z �	

(r)
0 (1� z) (z; :::; zk�1)0 = 0 (10)

satis�es the I(1,r) conditions.

Remark 4.1. Taken together, the results in Lemma 1 imply that, as T increases, the esti-

mates of �
(r)
0 ; �

(r)
0 ;	

(r)
0 =

�
�
(r)
10 ; :::;�

(r)
k�1

�
satisfy the I(1,r) conditions, even if r is lower than

9



the true rank r0. In particular, (10) implies that �
(r)0
0?

�
I �

Pk�1
i=1 �

(r)
0i

�
�
(r)
0? = �

(r)0
0? �

(r)
0 �

(r)
0? is

of full rankp � r > p � r0. Another way of stating this result is simply that the stochastic
di�erence equation

�X�
t = �

(r)
0 �

(r)0
0 X�

t�1 +	
(r)
0 U�

t + "�t ,

with "�t � i:i:d:(0;
(r)) generates an I(1,r) system with p� r common stochastic I(1) trends,
and r < r0 co-integrating vectors. This is the key result needed to prove the validity of our
sequential algorithm.

The implications of Lemma 1 for the bootstrap DGP are collected in the following
representation result, which establishes that for r � r0 the bootstrap sample always satis�es
the I(1,r) conditions as the sample size increases. This proposition holds irrespective of
whether an i.i.d. or wild bootstrapping re-sampling design is used.

Proposition 1 Let the bootstrap sample be generated as in Algorithm 1 for any r � r0.
Then, under the conditions of Lemma 1, and if r � r0, it holds that

X�
r;t = Ĉ(r)

tX
i=1

"�r;t + Sr;tT
1=2

where P � (maxt=1;:::;T jSr;tj > �)
p
! 0 and Ĉ(r) p

! C
(r)
0 := �

(r)
0?

�
�
(r)0
0? �

(r)
0 �

(r)
0?

��1
�
(r)0
0? , C

(r)
0

being of rank p� r. Moreover,

T�1=2X�
r;bT �c

w
!p C

(r)
0 W (�)

where W is a p-dimensional Brownian motion with covariance matrix 

(r)
0 .

Remark 4.2. Proposition 1 shows that, for any r � r0, the bootstrap sample (asymptot-
ically) behave as an I(1,r) process. This result does not hold for other extant bootstrap
algorithms, such as Algorithm 2 of Swensen (2006), since the latter may generate non-I(1)
samples, even asymptotically.

Remark 4.3. The proof of Proposition 1 exploits the fact that, for any rank r � r0, the boot-

strap sample �X�
r;t := �̂(r)�̂

(r)0
X�

r;t�1+	̂(r)U�
t + "

�
r;t; approximately behaves, as T increases,

as �X�
t := �

(r)
0 �

(r)0
0 X�

r;t�1 + 	
(r)
0 U�

t + "�r;t. As established in Lemma 1, the characteristic
polynomial associated with the latter process satis�es the I(1,r) conditions. This property
implies that, asymptotically, the bootstrap sample is I(1,r) with r co-integrating relations
and p� r unit roots.

A direct consequence of Lemma 1 and Proposition 1 is the following proposition, where it
is shown that the bootstrap trace statistic is asymptotically distributed as tr (Qr;1) for any
r � r0.

10



Proposition 2 Let the sequence of bootstrap statistics Q�
0;T ; Q

�
1;T ; :::; Q

�
r;T , r � r0 be gener-

ated as in Algorithm 1. Then, under the conditions of Lemma 1, and for any r � r0,

Q�
r;T

w
!p tr (Qr;1) : (11)

Consequently, p�r;T := 1�G�
r;T (Qr;T )

p
! 0 for all r such that 0 � r < r0, and p

�
r0;T

w
! U [0; 1].

We are now ready to establish the overall consistency of the bootstrap sequential proce-
dure embodied in Algorithm 1.

Theorem 1 Let r̂ denote the estimator of the co-integration rank as obtained in Algorithm

1. Then, under the conditions of Lemma 1,

lim
T!1

P (r̂ = r) = 0 for all r = 0; 1; :::; r0 � 1

lim
T!1

P (r̂ = r0) = 1� � � I(r0 < p)

lim
T!1

sup
r2fr0+1;:::;pg

P (r̂ = r) � �:

Remark 4.4. The results in Theorem 1 establish that the bootstrap sequential procedure
outlined in Algorithm 1 replicates the �rst order asymptotic properties of the corresponding
procedure based on the asymptotic tests, outlined in Section 2. This is achieved without the
need for the additional conditions in Assumption 2 of Swensen (2009) to hold.

Remark 4.5. Given the preceding results it is straightforward but tedious to show that
the large sample results given in this section remain valid under the martingale di�erence
conditions laid out in Remark 2.2. The stated results in Theorem 1 also apply for wild
bootstrap (but not i.i.d.) re-sampling under unconditional heteroskedasticity of the form
considered in Cavaliere et al. (2010b), as laid out in Remark 2.2. Moreover, all of the
conclusions drawn in this section for procedures based on trace statistics trivially also apply
to the corresponding procedures based on maximal eigenvalue statistics; cf. Remarks 2.1 and
2.2.

5 Numerical Results

In this section we use Monte Carlo simulation methods to investigate the �nite sample per-
formance of the sequential procedure proposed in Algorithm 1 of this paper, comparing its
performance, for both i.i.d. and wild bootstrap re-sampling schemes, with the asymptotic
procedure of Johansen (1996). Some comparison is also made with Algorithm 2 of Swensen
(2006) and the wild bootstrap version of that from Cavaliere et al (2010a,2010b).

The simulation model we consider in this section is the co-integrated VAR(2) process of
dimension p = 4,

�Xt = ��0Xt�1 + �1�Xt�1 + "t; t = 1; :::; T (12)
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initialised at zero. Results are reported for samples of size T = 100 and T = 250. Within the
context of (12) we will consider the following four models for the innovation process "t, with
parameters set as in Gon�calves and Kilian (2004) and Cavaliere et al. (2010b):

� Model IID: the innovations are Gaussian i.i.d.; "t � i:i:d: N(0; I4).

� Model GARCH: the innovation "it follows a standard stable GARCH(1,1) process

driven by standard normal innovations of the form "it = h
1=2
it vit, i = 1; :::; p, where

vit is i.i.d. N(0; 1), independent across i, and hit = ! + d0"
2
it�1 + d1hit�1, t = 0; :::; T .

Results are reported for (d0; d1) = (0:20; 0:79).

� Model SV: the innovation "it follows the stable stochastic volatility process, "it =
vit exp (hit); hit = �hit�1 + 0:5�it, with (�it; vit) � i.i.d. N(0; diag(�2� ; 1)), independent
across i = 1; :::; p. Results are reported for (�; ��) = (0:951; 0:314).

� Model NSV: the innovation process displays a one-time break in its unconditional
variance, such that "t = �tzt, where zt � i:i:d: N(0; I4) and �t = 1 + $ I(t > b�T c),
where I(�) is the usual indicator function. Results are reported for $ = 5 and � = 0:9.

Models GARCH and SV allow for conditional heteroskedasticity, which along with Model
IID, both satisfy the global homoskedasticity condition of Remark 2.2. In contrast, the shocks
from Model NSV are unconditionally heteroskedastic.

In order to isolate clearly the failure or otherwise of the extra conditions given in As-
sumption 2 of Swensen (2009) through a single parameter, we will focus attention on the
speci�c form of (12) where � := (1; 0; 0; 0)0, � := (a1; 0; 0; 0)

0, and

�1 :=

2664
 � 0 0
�  0 0
0 0  0
0 0 0 

3775 :
Results are reported for a1 = �0:4,  = 0:8 and � 2 f0; 0:2; 0:4g. It is easily seen that the
true co-integrating rank in this model is r0 = 1, and that although Assumption 1 is satis�ed
in all these cases, Assumption 2 of Swensen (2009) is only satis�ed when � = 0. In particular,
notice that Assumption 2 of Swensen (2009) requires that all of the eigenvalues of �1 have
modulus less than one. For � = 0 this is indeed the case. However, for � = 0:2 the largest
eigenvalue of �1 is 1.0 implying that the I(1,r) conditions are not met when rank r = 0 is
(wrongly) imposed; in fact the system will be integrated of order two. For � = 0:4 the largest
eigenvalue is 1.2 and the I(1,r) conditions are again not met, with the system becoming
explosive.

All experiments were conducted using 5; 000 replications. The number B of bootstrap
replications used in the bootstrap algorithms was set to 399. All tests were conducted at the
nominal 0:05 signi�cance level. The VAR model was �tted with a restricted constant (i.e.
deterministic case (ii) in Section 2), when calculating all of the tests for the reasons outlined
in Nielsen and Rahbek (2000), relating to similarity with respect to the initial values. For
the standard likelihood ratio tests asymptotic critical values as reported in Table 15.2 of
Johansen (1996) were employed.
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Table 1 reports the percentage of times that the asymptotic procedure of Johansen (1996)
and Algorithm 1 of this paper with either i.i.d. or wild bootstrap re-sampling selects each
of rank r = 0; :::; 4. Also reported for each experiment is the percentage of times that step
(iii) of Algorithm 2 of Swensen (2006) is failed; i.e., the percentage of times in practice (one
would of course not know in practice if Assumption 2 of Swensen, 2009, held or not) that
this algorithm terminates without providing an estimate of the co-integrating rank.

Tables 1� 2 about here

For each of Models IID, GARCH and SV, where all of the proposed methods are asymptot-
ically valid, we see that both versions of the bootstrap represent a considerable improvement
over the asymptotic procedure of Johansen (1996). For Models IID and GARCH both boot-
strap methods work very well, although the wild bootstrap based procedure is slightly more
accurate than that based on the corresponding i.i.d. bootstrap for Model GARCH (consistent
with what is reported in Cavaliere et al., 2010a), with results very close to the asymptotic
predictions from Theorem 1 even for T = 100. In contrast the asymptotic procedure can sig-
ni�cantly over estimate the co-integrating rank in small samples. For example, for T = 250
under Model SV the asymptotic procedure selects rank one only about 75% of the time and
rank two or more around 25% of the time. In contrast, the wild bootstrap procedure selects
rank one about 94% of the time and rank two or more about 6% of the time. For Model SV
the performance of the i.i.d. bootstrap is clearly inferior to that of the corresponding wild
bootstrap; in the previous example it selects rank one about 85% of the time and rank two
or more about 15% of the time.

For Model NSV only the procedure based on the wild bootstrap is asymptotically valid
and this is clearly reected in the small sample results. The asymptotic procedure is very
badly behaved here and even for T = 250 is more likely to select rank two or more than the
correct rank of one. The i.i.d. bootstrap is not quite so badly behaved but still selects rank
equal to two or more with about 40% probability even for T = 250. The wild bootstrap does
show some small sample distortions, perhaps not entirely surprisingly for a process which
displays a twenty �ve fold increase in variance towards the end of the sample, but by T = 250
we see that it selects rank one about 90% of the time and rank two or more about 10% of
the time.

It is interesting to consider the percentage of times that step (iii) of Algorithm 2 of
Swensen (2006) is failed for each experiment. Under Models IID and GARCH step (iii) is
never failed when � = 0, as one would hope. For Model SV it is almost never failed when
� = 0. In contrast for Model NSV step (iii) is failed 29% and 13% of the time for T = 100 and
T = 250, respectively, even though Assumption 2 of Swensen (2009) is met. For cases where
� > 0 (such that Assumption 2 of Swensen, 2009, is failed and Algorithm 2 of Swensen or the
corresponding wild bootstrap based procedure of Cavaliere et al., 2010a and 2010b should
not be used) we see that although step (iii) fails in the majority of cases when � = 0:4, this
is not so when � = 0:2. For example, under Model IID with � = 0:2, even for T = 250 step
(iii) is failed only 35% of the time. In other words 65% of the time step (iii) will be satis�ed
even though the algorithm should, in theory, have been terminated. Given this feature we
certainly recommend that practitioners use the sequential bootstrap procedure outlined in
Algorithm 1 of this paper.

13



For completeness, in Table 2 we conclude this section by reporting results corresponding
to those in Table 1 for both the i.i.d. bootstrap Algorithm 2 of Swensen (2006) and the
analogous wild bootstrap based procedure of Cavaliere et al. (2010a, 2010b) in those cases
where step (iii) is (correctly) passed 100% of the time, such that a valid comparison may
be made; i.e., for Models IID and GARCH when � = 0. Comparing these results with the
corresponding results in Table 1, we see that even in these cases the procedures proposed
in this paper display superior �nite sample performance, in particular for T = 100, to the
extant procedures. These �ndings are consistent with simulation results in Trenkler (2009)
who �nds that the �nite sample properties of non-sequential bootstrap rank tests based on
restricted estimation are superior to those based on unrestricted estimation.

6 Conclusions

In this paper we have developed a likelihood ratio-based bootstrap sequential procedure for
determining the co-integrating rank of a system of I(1) variables. In contrast to what has
been established for extant bootstrap sequential procedures, our approach delivers consistent
inference on the co-integration rank for general vector I(1) processes, without the need for
the additional assumptions outlined in Swensen (2009) to hold. Our approach can be used
under both i.i.d. and wild bootstrap re-sampling schemes and consequently can allow for
both conditional and unconditional heteroskedasticity in the underlying innovations. A small
Monte Carlo experiment showed that our procedure works very well in �nite samples, under
both homoskedastic and heteroskedastic environments, and we recommend its use in practice.

A Appendix

Proof of Lemma 1. For the proof it is convenient to introduce a normalization of the
co-integrating vector of (1), which is the population counterpart of the normalization of the
estimated co-integrating vectors given in (8). To do so, use that by Johansen (1996), the r0
largest eigenvalues (�̂i)i=1;:::;r0 satisfy, as T !1, the population eigenvalue problem,������ � ��0�

�1
00 �0�

�� = 0, (A.1)

with ��� :=Var
�
�#0Z1tjZ2t

�
and ��0 :=Cov

�
�#0Z1t; Z0tjZ2t

�
. Let � := (�1; :::; �r0) denote

eigenvectors corresponding to the eigenvalues �1 > �2 > ::: > �r0 > 0, such that �0���� =

Ir0 . We can then de�ne �#0 := �#� (�0 := ��) and �0 := � (�0)�1. Observe that, ��#0 =

�0�
#0
0 , while also

��0�0 = Ir0 and ��00�
�1
00 �0�0 = diag (�1; :::; �r0) , (A.2)

with ��0�0 :=Var
�
�#00 Z1tjZ2t

�
and ��00 :=Cov

�
�#00 Z1t; Z0tjZ2t

�
. Indeed, the relations in

(A.2) are the population equivalents of the sample normalisations in (8). The vector of unique

true parameters is denoted by �0 := (�0; �0;	0;
0; �0), and �
#
0 =

�
�00; �

0
0

�
; cf. (1) and (2).

Consider �rst the case of no deterministics; that is, �0 = 0 and hence �0 = �#0 . With

�̂ = �̂
(r0)

; the MLE under the true rank r0, then as in Johansen (1995, proof of Lemma
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13.1), ��
0
0(�̂ � �0)

p
! 0 and T 1=2�00?(�̂ � �0)

p
! 0; using continuity of the eigenvectors and

eigenvalues, as the latter are distinct. Therefore, as �̂
(r)

= v̂K
(r)
p = �̂K

(r)
r0 , it follows directly

that,
��
0
0(�̂

(r)
� �

(r)
0 )

p
! 0 and T 1=2�00?(�̂

(r)
� �

(r)
0 )

p
! 0 (A.3)

where �
(r)
0 := �0K

(r)
r0 . Next, consider the QMLE �̂(r):

�̂(r) = S01�̂
(r)

= S01

�
�0
��
0
0 + �0?

��
0
0?

�
�̂
(r) p
! �0�0K

(r)
r0 = �0K

(r)
r0 =: �

(r)
0 . (A.4)

Also, with �02 =Cov(Z0t; Z2t), ��02 =Cov
�
�00Z1t; Z2t

�
and �22 =Var(Z2t),

	̂(r) =
�
M02 � �̂(r)�̂

(r)0
M12

�
M�1

22
p
! 	

(r)
0 :=

�
�02 � �0K

(r)
r0 K

(r)0
r0 ��02

�
��1
22

= 	0 + �0K
(r)
r0;?

K(r)0
r0;?

��02�
�1
22 (A.5)

with K
(r)
r0;? = (0; Ir0�r)

0. Likewise,


̂(r) = S00 � �̂(r)�̂(r)0
p
! 


(r)
0 := �00 � �0K

(r)
r0 K

(r)0
r0 �00 = 
0 + �0K

(r)
r0;?

K(r)0
r0;?

�00 > 0: (A.6)

To see that the characteristic polynomial satis�es the I(1,r) conditions under smaller rank
r � r0, �rst rewrite the DGP as,

Z0t = �
(r)
0 �

(r)0
0 Z1t +	

(r)
0 Z2t + "

(r)
t ; (A.7)

where the innovations "
(r)
t are given by,

"
(r)
t = "t + �0K

(r)
r0;?

K
(r)0
r0;?

�
�00Z1t ���02�

�1
22 Z2t

�
: (A.8)

Observe that �
(r)0
0 Z1t and Z2t in (A.7) are uncorrelated with the innovation term "

(r)
t ; which

is used below to establish the algebraic I(1,r) results for the characteristic polynomial A(r) (z)
in (10). With Xt :=

�
X 0

t; :::; X
0
t�k+1

�0
the system can be written in companion form as,

�Xt = A
(r)
B
(r)0
Xt�1 + E

(r)
t (A.9)

with E
(r)
t := ("

(r)0
t ; 0; :::; 0)0, X0 �xed and with 	

(r)
0 = (�

(r)
1;0; :::;�

(r)
k�1;0),

A
(r) :=

 
�
(r)
0 	

(r)
0

0 Ip(k�1)

!
=

0BBBBB@
�
(r)
0 �

(r)
1;0 � � � � � � �

(r)
k�1;0

0 Ip 0 � � � 0
0 0 Ip � � � 0
� � � � � � � � � � � � � � �
0 0 0 � � � Ip

1CCCCCA (A.10)

B
(r) :=

0BBBB@
�
(r)
0 Ip 0 � � � 0
0 �Ip Ip � � � 0
0 0 �Ip � � � 0
� � � � � � � � � � � � � � �
0 0 0 � � � �Ip

1CCCCA :
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Observe �rst, that by Assumption 1, Yt := B
(r)0
Xt is covariance stationary with covariance

�Y Y > 0, which furthermore from (A.9), using the mentioned uncorrelatedness2, is the
solution to,

�Y Y = �(r)�Y Y �
(r)0 +�EE ; (A.11)

where �(r) = (Ir+p(k�1) + B
(r)0
A
(r)) and �EE =Var(B(r)

0

E
(r)
t ). From the de�nition of "

(r)
t in

(A.8), Var("
(r)
t ) > 0 and, as B(r)

0

E
(r)
t = ("

(r)0
t �

(r)
0 ; "

(r)0
t ; 0; :::; 0)0 it follows that �EE � 0, with

V 0�EEV = 0; and V 0
?�EEV? > 0, where

V =

0BBBBBB@
Ir 0 � � � 0

��
(r)
0 0

...
0 Ip
...

. . . 0
0 � � � 0 Ip

1CCCCCCA ; V? =

0BBBBB@
�(r)0

Ip
0
...
0

1CCCCCA . (A.12)

As �(r) solves (A.11), and since �Y Y > 0 and �EE � 0, the spectral radius of �(r) satis�es
�
�
�(r)

�
� 1. Suppose, for � an eigenvalue of �(r)0, j�j = 1. Then, using (A.11), the

corresponding eigenvector v is in the space spanned by V , v 2 col(V ). However, as

�(r)0V = (Ir+p(k�1) + A
(r)0
B
(r))V

=

0BBBBBBB@

Ir 0 � � � 0

0 Ip
...

0 0
. . .

...
. . . Ip

0 � � � 0

1CCCCCCCA
;

any v 2 col(V ) is not an eigenvector of �(r)0. Thus, we conclude �
�
�(r)

�
< 1. Finally,

consider the eigenvalue problem,���(1� z) Ipk � A
(r)
B
(r)0z

��� = 0. (A.13)

Observe that B(r)0A(r) 6= 0 such that N := (B(r);A
(r)
? ) has full rank, where

A
(r)
? = (Ip;��

(r)
1;0; :::;��

(r)
k�1;0)

0�
(r)
0;?, B

(r)
? = (Ip; :::; Ip)

0 �
(r)
0;?:

Multiplying from the left and right by N and its transpose respectively in (A.13), shows that
there are (p� r) roots at z = 1, while the remaining satisfy jzj > 1 since �

�
�(r)

�
< 1. This

�nishes the proof of Lemma 1 for the case of no determinstic terms.

Consider next the case of a restricted constant ; that is, �0 = �0�
0
0 and �

#
0 =

�
�00; �

0
0

�0
.

De�ne #0 :=
�
�00?; 0

�0
and �#0 :=

�
��0

��
0
0; 1
�0

such that
�
�#0 ; 

#
0 ; �

#
0

�
spans Rp# . As before,

it holds that �
(�̂

#
� �#0 )

0��
#
0 ; T

1=2(�̂
#
� �#0 )

0�#0 ; (�̂
#
� �#0 )

0��
#

0

�
p
! 0:

2This is the vital di�erence between our Algorithm 1 and Algorithm 2 of Swensen (2006); in the

latter, 	
(r)
0 is replaced by 	0, this resulting from the use of the unrestricted estimator of 	0.
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Therefore, as �̂
#(r)

= v̂K
(r)

p#
= �̂

#
K

(r)
r0 , we have the following results:

��
#0
0 (�̂

#(r)
� �

#(r)
0 )

p
! 0, T 1=2#00 (�̂

#(r)
� �

#(r)
0 )

p
! 0 and �#00 (�̂

#(r)
� �

#(r)
0 )

p
! 0:

The results follow proceeding as in the case of no deterministics. Speci�cally, in (A.4)-(A.8)

replace �0 by �
#
0 , while from (A.9) and onwards, the term A

(r)
R
(r)0 should be added to the

right hand side of (A.9), where

R
(r) :=

�
�
(r)
0 ; 0; :::; 0

�
: (A.14)

Consider �nally the case of a restricted linear trend ; that is, �0 = �10 + �0�
0
0 and �

#
0 =�

�00; �
0
0

�0
. For the asymptotic analysis in this case, Rahbek et al. (1999, proof of Theorem

4.2) apply the non-orthogonal basis
�
�#0 ; 

#
0 ; �

#
0

�
for Rp# ; where #0 :=

�
�00?;�

0
0

�0
and

�#0 := (0; 1)0, with 0 := �00?C0
�
�10 + �0��0�

0
0

�
and C0 := �0? (�

0
0?�0�0?)

�1 �00?. With,

�̂
#
� �#0 := �#0 b̂ + #0 b̂ + �#0 b̂�; then by Rahbek et al. (1999), b̂ = op (1), b̂ = op

�
T 1=2

�
,

b̂� = op (T ) ; such that �̂
#(r)

= �̂
#
K

(r)
r0 converges as desired. Proceed as in the case of a

restricted constant, replacing �0 by �
#
0 in (A.4)-(A.8), and adding the term A

(r)
R
(r)0t+M

(r)
1

in (A.9), with R(r) de�ned in (A.14) and M
(r)
1 :=

�
�
(r)0
10 ; 0; :::; 0

�0
. Last, de�ne the covariance

stationary process Yt in this case as Yt := B
(r)0
Xt + R

(r)0t. �

Proof of Proposition 1: For r = r0 the result is established in Lemma A.4 of Cavaliere et
al. (2010a). Now consider the case where r < r0. Set X

�
t :=

�
X�0

t ; :::; X
�0
t�k+1

�0
and X�0 := 0,

and use the companion form in (A.9) in the proof of Lemma 1 with "
(r)
t replaced by "�r;t , to

see directly that X�
t = (Ip; 0; :::; 0)X

�
t has the representation,

X�
r;t = Ĉ(r)

tX
i=1

"�r;t + Sr;tT
1=2

where Ĉ(r) = �̂
(r)
?

�
�̂
(r)0
? �̂(r)�̂

(r)
?

��1
�̂
(r)0
? , �̂(r) =

Pk�1
i=1 �̂

(r)
i � I; and,

Sr;t = (�̂(r); 	̂(r))(bB0bA)�1 t�1X
i=0

�̂i(T�1=2bB0e�r;t�i):
Here �̂ := (Ir+p(k�1)+bB0bA) with the matrices bA and bB de�ned as A(r) and B(r) of (A.10) with

�
(r)
0 and �

(r)
0 replaced by the corresponding estimators �̂(r); �̂

(r)
, and e�r;t :=

�
"�0r;t; 0; :::; 0

�0
.

Next, note that

max
t=1;:::;T

kSr;tk � max
t=1;:::;T

(�̂(r); 	̂(r))(bB0bA)�1 t�1X
i=0

�̂i
�
T�1=2bB0e�r;t�i�

 �  T max
t=1;:::;T

T�1=2��t
where ��t =

bB0e�r;t = ��̂(r); Ip; 0; :::; 0�0 "�r;t and  T =
(�̂(r); 	̂(r))(bB0bA)�1PT�1

i=0 �̂(r)i
. It

follows that  T
p
!  =

(�(r)0 ;	
(r)
0 )(B(r)0A(r))�1

(B(r)0A(r))�1 by using the established
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consistency of the estimators Lemma 1 and the de�nition of �̂. In particular, note that for
su�ciently large T we have, by continuity, that �(�̂) < 1, which implies that jj�̂ijj �const.�i

for some 0 < � < 1; uniformly over i. Finally, showing that P �
�
maxt=1;:::;T

T�1=2��t > �
�

is of order op (1) implies the desired result that P � (maxt=1;:::;T kSr;tk > �)
p
! 0. This holds

by showing P �
�
T�1=2maxt=1;:::;T

"�r;t > �
�
= op (1) : For the wild bootstrap, observe that

with �"r := T�1
PT

t=1 "̂r;t,

E�
�
"�0r;t"

�
r;t

�2
=
�
("̂r;t � �"r)

0 ("̂r;t � �"r)
�2
=
�
"̂0r;t"̂r;t � �"0r�"r

�2
;

while for the i.i.d. bootstrap,

E�
�
"�0r;t"

�
r;t

�2
=

1

T

TX
t=1

�
"̂0r;t"̂r;t � �"0r�"r

�2
:

Thus in both cases one has, by Chebychev's inequality,

P �

�
T�1=2 max

t=1;:::;T

"�r;t > �

�
�

1

�4T 2

TX
t=1

E�
�
"�0r;t"

�
r;t

�2
=

3

�4T 2

TX
t=1

�
"̂0r;t ("̂r;t � �"r)

�2 p
! 0 (A.15)

since T�1
PT

t=1

�
"̂0r;t"̂r;t

�2
= Op (1) under the assumption that "t has bounded fourth moment.

To see this note that by de�nition, cf. (A.8),

"̂r;t = Z0t � �̂(r)�̂
#(r)0

Z1t � 	̂(r)Z2t

= "t �

�
�̂(r)�̂

#(r)0

� �0�
#0
0

�
Z1t �

�
	̂(r) �	0

�
Z2t;

where we recall that �#0 = �0 in the case of no deterministics. Next, observe �rst that,

�̂(r)�̂
#(r)0

� �0�
#0
0 =

�
�̂K(r)

r0 K
(r)0
r0 �̂

#0
� �0K

(r)
r0 K

(r)0
r0 �#00

�
� �0K

(r)
r0;?

K
(r)0
r0;?

�#00

= (�̂� �0)K
(r)
r0 K

(r)0
r0 �#00 � �̂K(r)

r0 K
(r)0
r0

�
�̂
#
� �#0

�0
� �0K

(r)
r0;?

K
(r)0
r0;?

�#00 :

(A.16)

Likewise,

	̂(r) �	0 =

�
M02 � �̂(r)�̂

#(r)0

M12

�
M�1

22 �
�
�02 � �0��02

�
��1
22

=
�
M02M

�1
22 ��02�

�1
22

�
�

�
�̂(r)�̂

#(r)0

� �0�
#0
0

�
M12M

�1
22

� �0

�
�#00 M12M

�1
22 ���02�

�1
22

�
: (A.17)

Using (A.16) and (A.17), and collecting terms, it follows that,

"̂r;t = "r;t + vr;t (A.18)
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where "r;t is given in (A.8), while

vr;t =

�
�̂K(r)

r0 K
(r)0
r0

�
�̂
#
� �#0

�0
� (�̂� �0)K

(r)
r0 K

(r)0
r0 �#00

�
R1t

+
h
�0

�
�#00 M12M

�1
22 ���02�

�1
22

�
�
�
M02M

�1
22 ��02�

�1
22

�i
Z2t

with R1t = Z1t �M12M
�1
22 Z2t, that is, Z1t corrected for Z2t by OLS regression. Thus, as

claimed above,

1
T

TP
t=1

�
"̂0r;t"̂r;t

�2
= 1

T

TP
t=1

�
"0t"t

�2
+ op (1) ; (A.19)

by using standard arguments for the stationary processes "t; �
#0
0 Z1t and Z2t in combination

with consistency of the parameters in the de�nition of vr;t; while for (cross) products in

terms of the non-stationary process #00 Z1t (and �#00 Z1t in the case of a restricted trend),
standard arguments for non-stationary processes in combination with super consistency give
the desired result. We have here used the notation introduced in the proof of Lemma 1,

such that the vectors in the basis
�
�#0 ; 

#
0 ; �

#
0

�
, which are de�ned for the case of a restricted

constant and linear trend respectively, in the case of no deterministic terms are set equal to�
�0;

��0?
�
.

Next, T�1=2X�
r;bTuc

w
!p C

(r)
0 W (u), follows by establishing, T�1=2

PbT �c
t=1 "

�
r;t

w
!p W (�),

which for the wild bootstrap, as in Cavaliere et al. (2010a), is implied by the pointwise
convergence,

1

T

bTucX
t=1

"̂r;t"̂
0
r;t =

1

T

bTucX
t=1

"r;t"
0
r;t + op (1)

p
! u


(r)
0 ; (A.20)

see also (A.19). For the i.i.d. bootstrap, the result follows as in Swensen (2006, Lemma S2)
using (A.20) and �nite fourth order moments of "r;t. �

Proof of Proposition 2: As in the proof of Theorem 3 of Cavaliere et al. (2010a), this
follows immediately by the results in Proposition 1 using standard arguments and de�ning

Bp�r :=
�
�
(r)0
? 
(r)�

(r)
?

��1=2
�
(r)0
? W . �

Proof of Theorem 1: The proof mimics that of Theorem 12.3 in Johansen (1996). In
brief, note �rst that, as established in Proposition 2, for each rank r < r0 being tested, the
bootstrap trace statistic for rank r has the usual asymptotic null distribution, tr (Qr;1). But
since the original trace statistics Qr;T diverge when an incorrect rank r < r0 is imposed, see
(5), our sequential algorithm will consequently reject any r < r0 with probability one in the
limit. Finally, since (11) also holds for r = r0, for a chosen signi�cance level �, the overall
probability of selecting rank r0 will therefore equal 1� � � I(r0 < p), in the limit. �
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Table 2: Unrestricted Bootstrap Sequential Procedures for Selecting the
Co-integration Rank. True Rank is 1.

I.I.D. BOOTSTRAP WILD BOOTSTRAP
Model T � r = 0 1 2 3 4 r = 0 1 2 3 4

IID 100 0 0.8 91.2 6.5 1.1 0.5 0.6 91.0 6.8 1.1 0.4
250 0 0.0 94.5 4.7 0.5 0.3 0.0 94.3 4.9 0.6 0.2

GARCH 100 0 2.2 90.1 6.3 0.9 0.6 1.2 89.9 7.1 1.0 0.8
250 0 0.0 94.2 5.0 0.5 0.2 0.0 93.1 6.0 0.8 0.2
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