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Abstract: 
The paper proposes an application of the survival time analysis methodology to 
estimations of the Loss Given Default (LGD) parameter. The main advantage of the 
survival analysis approach compared to classical regression methods is that it allows 
exploiting partial recovery data. The model is also modified in order to improve 
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1 Introduction 
 

Loss Given Default (LGD) is one of the key parameters needed in order to estimate expected 

and unexpected credit losses necessary for credit pricing as well as for calculation of the 

regulatory Basel II requirement (BCBS, 2006). While the credit rating and probability of 

default (PD) techniques have been well developed in recent decades, LGD has attracted little 

attention before 2000s. One of the first papers on the subject (Schuermann, 2004) provides an 

overview of what has been known about LGD at that time. Since the first Basel II consultative 

papers being published there has been an increasing amount of research on LGD estimation 

techniques (see e.g. Altman, Resti, Sironi, 2004, Frye, 2003, Gupton, 2005, Huang and 

Oosterlee, 2008, etc.). 

 

One of the issues financial institutions estimating PD and LGD face is lack of data. Besides 

the problem of short time series the most recent development is usually represented only by 

partial, i.e. censored data on defaults and recoveries. If default is defined as a legal bankruptcy 

or 90 days past due observed in the standard 12 month horizon then it is difficult to use data 

on loans granted during the last 12 months to predict PD for new applications. The problem is 

even more serious for LGD where financial institutions have started to collect data on 

recoveries from defaulted receivables in systematic manner relatively recently and moreover 

the recovery process usually takes up to three or even more years. Hence even if a bank 

observed recoveries on loans that defaulted in the past five years many or majority of LGD 

observations may be incomplete. It may be then difficult or impossible to estimate the LGD 

satisfying the regulatory requirements (BCBS, 2005) as well as the point-in-time LGD 

important for actual credit pricing that should reflect the most recent trends. 
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It is natural to apply the statistical technique of survival time analysis to model the probability 

of default. The technique allows to utilize censored default data as well as to model 

consistently probabilities of default in different time horizons. There is a relatively extensive 

literature on the subject (see e.g. Narain, 1992, Andreeva, 2006, Chava, Stefanescu, and 

Turnbull, 2008) and the technique is used by some banks and practitioners. On the other hand 

with the exception of Rychnovsky (2009) there is no literature to the authors’ knowledge on 

possible applications of the survival time modeling techniques to LGD modeling. This can be 

explained by the fact that the LGD estimation techniques are generally less developed and the 

interpretation of recovery data as time survival data is less straightforward than in the case of 

defaults. 

 

The goal of this paper is to study possible applications of survival time analysis techniques, in 

particular the proportional Cox model and its modifications to LGD estimations. The methods 

are applied to real banking data and compared with more classical techniques like the linear 

and logistic regression. The definitions and methodological approach are outlined in Section 

2, the empirical results are given and discussed in Section 3, and concluding remarks are 

made in Section 4. 

 

2 Methodology 
 

Recovery Rates and Loss given Default 

 

First we need to specify the notions of realized (ex post) and expected (ex ante) Recovery rate 

(RR) and the complementary Loss Given Default (LGD). Realized RR can be observed only 

on defaulted receivables while the expected recovery rate is estimated for non defaulted 

receivables based on available information. The RR and LGD are expressed as percentages 

out of the exposure outstanding at default (EAD) and LGD=1-RR is simply the 

complementary loss rate based on the recovery rate that is usually less than 1. For market 

instruments like bonds or other debt securities we may define the market RR as the market 

value out of the principal (plus coupon accrued at default) of the security shortly (e.g. one 

month) after the default. Applicability of the definition assumes existence of an efficient and 

sufficiently liquid market for defaulted debt. For other receivables we have to observe the net 

recovery cash flows tCF from the receivable generated by a work-out process. The work-out 
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process may be internal or external where a collection company is paid a fee for collecting the 

payment on behalf of the receivable owner. The process may also combine an ordinary 

collection and sale of the receivable to a third party. In any case the work-out process involves 

significant costs that must be deducted from the gross recoveries. The net cash flows must be 

finally discounted with a discount rate r appropriately reflecting the risk (BCBS, 2005). 

(1) 
1

1 .
(1 )

i

i

t
t

n

i

CF
RR

EAD r=

=
+∑  

The work-out recovery rate should in a sense mimic the market recovery rates. The 

relationship between the two ex ante notions is an analogy between the fundamental value and 

the market value of a stock. Hence the discount rate can be based on a measure of the RR 

systematic risk and a general price of risk (see Witzany, 2009). Since the market recovery rate 

is never negative and can be hardly larger than 1 we normally assume that RR as well as 

LGD=1-RR lie in the interval [0,1]. The calculation of the work-out recovery rates according 

to (1) may however in some cases lead to negative values due to high costs and low or no 

recoveries, and on the other hand to values larger than 1 in the case of large and successfully 

collected late fees. 

 

Having collected and calculated the realized recovery rates the next task is to estimate LGD 

for non defaulted accounts. In case of new loan applications banks need to estimate not only 

the probability of default (PD) in the 12 month or longer horizon but also the LGD in the 

same horizon. The loan interest rate margin should cover the expected loss ·PD LGD besides 

the cost of funds, administrative costs, minimum profit, etc. The ex ante LGD must be also 

calculated by banks applying the Advanced Internal Rating Based Approach (AIRB) in order 

to calculate the capital requirement for every non-defaulted receivable as defined by the Basel 

(2006) regulation.  Looking on the recovery cash flow data the typical situation may be 

illustrated by Figure 1. 
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Figure 1. Ex post recovery data  
 

The recovery cash flow finishes at time nt from (1) if the past due receivable is fully collected, 

or the uncollected receivable is written-off abandoning further collection or due to a sale of 

receivables, or when the recovery time exceeds certain maximum time, e.g. 3 years. Hence if 

0T denotes the current time then the ultimate recovery rate information is systematically 

available only for receivables that defaulted between the time 0  y5 earsT − and 0  y3 earsT − , 

i.e. in the part A of Figure 1. Between 0 3T − and 0T , i.e. in the part B, the recorded recovery 

rate history will be for many receivables only partial. For example for receivables that 

defaulted 6 month ago, i.e. at  0 0.5T − only for a minority the collection process could have 

been finished due to a full repayment, sale of receivable, or a write-off caused by some legal 

reasons. For majority of the defaulted receivables there is only partial recovery history 

information and the ultimate result of the recovery process is not known. Consequently the 

decision to use, for the sake of ex ante estimations, the completed recoveries from the part B 

but discard the incomplete recoveries may cause a significant bias and an estimation error. So 

applying methodologies based on ultimate recoveries we should limit ourselves just to data 

from the part A. Such a dataset may be clearly insufficient in terms of number of observations 

and more importantly we are losing the information on recent developments that might be 

important in particular in times of a financial turmoil like the recent one. 

 

Regarding the basic LGD estimation techniques we distinguish the pool level and account 

level estimations. The pool level estimations are designed for pools of receivables that are 

assumed to be homogenous in terms of expected LGD, typically defined by product, collateral 

level, and other properties. For example we may observe realized recovery rates for unsecured 

consumer loans collected through a standardized internal process and estimate the expected 
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LGD for non-defaulted unsecured consumer loans as one minus an average ultimate recovery 

rate observed in the part A of Figure 1. A more advanced approach is to try estimating 

expected LGD based on a set of explanatory variables, i.e. on specific properties of every 

non-defaulted receivable based on historical recovery rates and the observed values of the 

explanatory variables. We will go in this direction and compare classical linear and logistic 

regressions utilizing only the ultimate recoveries (part A, Figure 1) and the survival analysis 

techniques that can also consistently exploit the complete and incomplete recoveries in the 

part B. 

 

Goodness of Fit Measures 

 

Before we start analyzing various regression methods that could be applied to estimation of ex 

ante LGD let us specify our target in terms of appropriate goodness of fit measures. The goal 

is to find, based on available historical data, a function ˆ( ) ( ( ))L a F a= x that gives predictions 

of the Loss Given Defaults based on given explanatory variables ( )ax for any non-defaulted 

receivable a in the product class for which the function has been developed. The performance 

of the function should be measured only on receivables that default within the 12 month 

horizon from the estimation time. So if we develop the function at time 0T on the data shown 

on Figure 1, optimally we need to calculate all the predictions based on covariates as of 0T , 

then wait 12 month to record the set D of all defaults in the observed class of receivables, and 

moreover wait up to 3 more years to obtain the realized ( ),LGD a a D∈ . Given all the data we 

may finally calculate e.g. the EAD weighted R-squared as a standard goodness of fit measure: 

(2) 
( )
( )

2

2
2

ˆ( ) ( ) ( )
1

(

·

)· ( )
a D

Da

EAD a LGD a L a
R

EAD a LGD a µ
∈

∈

−
= −

−

∑
∑

. 

The indicator 2 2 ( , )R R D µ= depends on the set of defaulted accounts used and on the 

mean µ . The EAD weighted mean of ( ),LGD a a D∈ would be a standard choice but the logic 

of the measure is to compare the performance of an advanced prediction function with a basic 

LGD mean estimate that could be produced at the time 0T . However at that time we may 

calculate only the mean of ultimate LGDs in the rectangle part A of the historical data, hence 

further on we shall use ( )· ( ) / ( )
a A a A

EAD a LGD a EAD aµ
∈ ∈

=∑ ∑ .  
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The indicator R-squared is a conventional econometric measure that has many technical 

advantages. Nevertheless it does not exactly fit the practical perspective of the LGD 

estimation users, i.e. banks and the regulators. The banks and the regulators will rather 

measure the absolute difference of realized losses and of the predictions (in currency units). 

The banks will not be happy if the predictions overshoot the real losses since the high 

predictions cause unnecessary capital requirements or too conservative prices. The central 

bank will not accept systematically low predictions reducing the capital requirement that 

should serve as a buffer against unexpected losses. Hence we propose to rather look on the 

modified R based on the absolute sum of differences: 

(3) 
ˆ( ) ( ) ( )

1
) ( )

·

( ·
D

D

a

a

EAD a LGD a L a
R

EAD a LGD a µ
∈

∈

−
= −

−

∑
∑

 . 

Finally we have to consider feasible data sets at which the goodness of fit measures could be 

evaluated. To get the full out-of-sample measures as described above we would need at least 9 

years of data, 5 years for the estimations and 4 years for the out-of-sample calculations. Since 

we have a shorter period of data we will have to use an in-sample or a mix between in-sample 

and out-sample approach. The first possibility is to evaluate the goodness of fit measures on 

the set A of receivables with ultimate recoveries. The measures would however clearly give 

an advantage to regression functions developed only on A  not taking into account the data 

from the part B (Figure 1). Hence to get a fair goodness of fit measure we will assume that we 

know the ultimate recoveries of all the accounts in the part B. This can be achieved waiting 

some time after 0T until all the partial recoveries are completed, or retrospectively by using 

only a part of the historical data for the regression and remaining part to obtain the completed 

recoveries. Let B be the set of all receivables in the part B of our development dataset and let 

C BA= ∪ . The key goodness of fit measures we shall use will be 2 ( , )R C µ  and )( ,R C µ with 

the EAD weighted LGD mean µ calculated on the set A . 

 

Linear and Logistic Regression 

 

The simplest way to model LGD is to use the OLS regression ( ) ( ) 'LGD a a ε= +x β , i.e. to 

search for the function L in the form ( ) ( ) 'L a a= x β , ( )ax containing the constant covariate 1, 

minimizing the sum of squared errors with the EAD weights on the given sample, i.e. looking 
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for the coefficients βminimizing the expression ( )2( ) ( ) (· )
Aa

EAD a LGD a L a
∈

−∑ . The solution 

that can be expressed analytically by definition maximizes 2 ( , )R A µ but not necessarily 
2 ( , )R C µ or )( ,R C µ . 

 

The second possibility we will explore is the logistic regression based on the idea dividing the 

observed and future LGDs on “low” and “high” values. Let (0,1)l∈ be a threshold and define 

an LGD  value to be “low” iff LGD l< . Hence for a A∈ we have the indicator function 

( ) {0,1}low a ∈ and for a non defaulted receivables we want to find the logistic function  

exp( ( ) ' )( )
1 exp( ( ) ' )

aa
a

π =
+

xβ
xβ

 

estimating the probability that the loss will be “low” if the account defaults. To estimate the 

ex ante LGD we combine appropriately the EAD weighted mean of low observed LGDs and 

high observed LGDs, i.e. 

(4) ( )· (( ) ( ))·1low higha aL a π µ π µ= + − ,  

, ( )

, ( )

( )· ( )

( )
a A low a

low

a A low a

EAD a LGD a

EAD a
µ ∈

∈

=
∑

∑
,  , ( )

, ( )

( )· ( )

( )
a A low a

high

a A low a

EAD a LGD a

EAD a
µ ∈ ¬

∈ ¬

=
∑

∑
. 

The vector of parametersβ is obtained by maximizing the likelihood  

· ( ) (1 ( ))· (( ) )( ) 1 ( )( )low EAD a low a EADa a

a A

L a aπ π −

∈

= −∏ . 

The solution can be found numerically e.g. solving ( )( )· ( ) ( ) ( ) 0
a A

EAD a low a a aπ
∈

− =∑ x with 

the Newton-Raphson algorithm. The performance of the resulting function (4) may be tested 

for different values of the threshold l , e.g. 0.1, 0.2, …, 0.9. 

 

Survival Analysis LGD Modeling 

 

The survival analysis is appropriate in situations where we observe a population of objects 

that stay in certain state (survive) for some time until an exit (death or failure) happens. 

Typically some observations are censored, i.e. the objects are known to have survived until 

certain time but no more information is available. The goal is to study the time until failure 

and the probability of survival or failure in a given time period. In the case of defaulted 
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receivables the idea is to consider the currency units or certain elementary amounts as the 

individuals that are in the collection process until they exit by a repayment. 

 

The key survival analysis concepts (Greene, 2003, Kalbfleisch, Prentice, 2002, Collet, 2003) 

are the survival function and the hazard rate. Let T be the random variable representing the 

time of exit of an object, ( , 0)f t t ≥ its continuous probability density function, and ( )F t the 

cumulative distribution function. Then ( )F t is the probability of exit (failure) of an individual 

until the time t  while the survival function ( ) 1 ( )S t F t= − gives the probability of survival 

until t . The hazard rate is defined as ( )( )
( )

f tt
S t

λ = . It gives the rate at which objects that have 

survived until the time t  and exit right at t ; specifically ( )t tλ δ  is approximately the 

probability of exit in the time interval ( ],t t tδ+ provided the object is still alive at t . It is also 

useful to define the cumulative hazard function 
0

( ) ( )
t

t s dsλΛ = ∫ as it can be seen that 

( )( ) tS t e−Λ= . If the concepts are applied to recovery data as indicated above then 

( )F t corresponds to the expected recovery rate at time t , while ( )S t to the expected loss rate 

if the recovery process was terminated at t . The hazard rate ( )tλ corresponds to the 

incremental recovery rate or to the speed of recovery measured on the unrecovered amount at 

time t after default. 

 

The models are specified through the hazard function given in a parametric or semi-

parametric form. The parameters are moreover allowed to depend on explanatory variables 

characterizing the objects under observation. For example the parametric Weibull model is 

specified by 

(5) 1 ( ),( ) (( ) )
pp tS t et p t λλ λ λ − −==  

while the Loglogistic model has the form 

(6) 1 1/ [1 (( ) ( ) )
)

], ( ) .
1 (

p p
pt p t t S t

t
λ λ λ λ

λ
− + =

+
=  

The coefficient eλ ′−= xβ in both cases depends on the vector of covariates x (without the 

constant 1). The coefficients θ = (β,p) are estimated using a maximum likelihood method 

maximizing in general 
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(7) 
uncensored all observations
observations

) ln ( | ) nn l )l (( |L t S tλ= +∑ ∑θ θ θ . 

The two parameterizations can be formulated as accelerated failure time models where 

ln 'T ε+= x β and ε has a specific distribution.  

 

The parametric models are attractive for their simplicity but may impose too much restriction 

on the structure of data. Fewer restrictions are imposed by the Cox (1972) proportional hazard 

model we shall focus on. The proposed hazard function has a semi-parametric form 

0( , ) ( ) exp( ' ),t tλ λ=x xβ  

where 0 ( )tλ is called baseline hazard function independent on the explanatory variables x .  

The baseline hazard is a step function estimated on a discrete set of points where exits or 

censoring take place. The corresponding survival function is in the form 

(8) exp( ' )
0 0 0 0

0 0

( , ) exp ( )exp( ' )  where ( ) ex( ) , p ( )
t t

S t s S S t stλ λ
   

= − = = −   
   
∫ ∫xβx xβ . 

The coefficients β are estimated using the partial likelihood: if an object i with covariates 

ix exits at time it , if we assume that there is only one exit at that time, and if iA is the set of 

objects alive at it then the partial likelihood is 

(9) ( , ) ))
( , ) )

exp( '(
exp( '

i i

j j
j

i i i
i

j
A j A

L t
t

λ
λ

∈ ∈

−
=

−
=
∑ ∑ x

β
β

xxβ
x

. 

The coefficients β are then obtained maximizing 
1

ln ln
K

i
iL L

=

=∑ numerically using the 

Newton-Raphson algorithm. In general, in particular in the case of recovery process 

modelling, we need to handle ties, i.e. multiple exits at the same time. The partial likelihood 

function (9) can be generalized in a straightforward manner for the case of id ties (frequency 

weights) at the same time it . However due to computational complexity the exact partial 

likelihood function is usually approximated by an estimate due to Breslow (1974) or due to 

Efron (see Kalbfleisch, Prentice, 2002).  Given β the baseline hazard function values are 

estimated separately for each of the unit time intervals where it is assumed to be constant 

maximizing the likelihood function 

( )
0 0

1

( ) exp( ) exp ( )exp' ( )' ) ([ ] ( ),i

n
dN t

t i i i
i

L t t Y tλ λ
=

= −∏ xβ x β  
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where ( )idN t is an indicator of the fact that subject i died in the time interval ( 1, ]t t− , and 

( )iY t  is an indicator of the fact that subject i is at the time 1t − still alive. The maximum 

likelihood estimator of the baseline hazard function is then in the Breslow-Crowley form 

(10) 1
0

1

( )
ˆ ( ) .

ex 'p ( )( )

n

i
i

n

i i
i

N t
t

Y

d

t
λ =

=

=
∑

∑ xβ
 

If there are no explanatory variables, i.e. exp( ) 1'i =xβ , then the estimator gives the estimate 

of the Kaplan-Meier hazard rate function and the corresponding Kaplan-Meier survival 

function. 

  

To apply the survival analysis approach to recovery data we assume to have a set of defaulted 

receivables a C∈ and observed (discounted net) recovery cash flows (( , , )
1 )

)
( tR CF a tCF a t

r
=

+
 

(see (1)) taking nonnegative integer values. The recovery time t  is measured in month (or 

some other units) and takes only values in {1,2,..., }K , i.e. the maximum length of the 

recovery process is K month. The observed recovered amounts end at a time ( )endt a K≤ . If 

( )endt a K<  then the recovery process has been either successfully finished, or abandoned 

with a write-off, or the process has not been completed, but we have no more observations. 

Defaulted receivables with complete recovery history are marked by the 

indicator ( ) {0,1}fin a ∈ . If ( )endt a K= then the recovery process is always considered to be 

complete, i.e. ( ) 1fin a = . Moreover for each receivable there is an initial exposure at default 

( )EAD a again being a positive integer and a vector of explanatory variables ( )ax  (personal 

and/or behavior information). We assume that the cumulative recovery cash flow 

1
( , ) ( , )

t

s
CRCF a t RCF a s

=

=∑ never exceeds the exposure at default. In particular the observed 

ultimate recovery rate ( ) ( , ) ( , ) / ( )end endRR a RR a t CRCF a t EAD a= =  (corresponding to (1)) 

will be always in the interval [0,1] . Finally, the survival time data set must contain not only 

the information on amounts that have been recovered but also the information on amounts that 

were not recovered. We will construct it as follows: 

1. For every , ( )endC t ta a∈ ≤  with ( , ) 0RCF a t > include an observation of 

( , )RCF a t objects with covariates ( )ax exiting at time t , i.e. censor = 0 (for exit) and 
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frequency weight ( , )d RCF a t= . This means that the amount of ( , )RCF a t  was 

recovered at the time t . 

2. For every a C∈ such that the recovery process is incomplete ( ( ) 0fin a = ) and 

( , ( )) ( )endCRCF a t a EAD a< include an observation of 

( ) ( , ( ))endd EAD a CRCF a t a= − objects with covariates ( )ax censored at the 

time ( )endt a . This means that the amount of d  has not been recovered until the time t , 

i.e. survived the time t  with no future information (censoring). 

3. For every a C∈ such that the recovery process is complete ( ( ) 1fin a = ) and 

( , ( )) ( )endCRCF a t a EAD a< include an observation of 

( ) ( , ( ))endd EAD a CRCF a t a= − objects with covariates ( )ax censored at the 

time t K= . In this case we know that there were no recoveries until the last 

observation time and we have no more future information. 

 

Having applied one of the parametric or semi-parametric survival models described above we 

get a survival function ( , )S t x and our final ex ante LGD estimate for a receivable a will be 

the survival probability 

ˆ( ) ( , ( ))L a S K a= x , 

i.e. the probability (given by the covariates of a ) of a currency unit not being recovered until 

the maximal recovery time. 

Pseudo Survival Models for LGD 

 

The main advantage of the proposed application of tsurvival models to LGD estimations is a 

consistent utilization of all available recovery data including partial recoveries. On the other 

hand it appears that the maximum likelihood estimation approach used by the standard 

survival analysis model is a weak point with respect to the targeted goodness of fit measures, 

i.e  R-squared and the modified R. Moreover the likelihood estimation (7) or (9) takes into 

account the sequence of all partial recoveries while the R-squared and modified R indicators 

measure performance of the predictions only with respect the ultimate recovery rates. 

 

Our proposed modification is to use an appropriate survival model functional form 

)( , |S t θx and to fit the parameters θ not using MLE but simply minimizing an appropriate 

sum of squared errors. Similarly we could minimize a sum of absolute differences but the 
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minimization would be generally numerically less efficient due to many singularities of the 

function to be minimized. Taking into account only the ultimate or last available recovery 

rates the EAD weighted sum of squared errors is 

(11) 
( ) ( )

( )

2

, ( ) 1

2

, ( ) 0

( )· ( )· ( ) (

( )

, ( ) | )

( ), ( ) | ( ))· ( )· ( ) ( ,

a C fin a

end end
a C fin a

w a EAD a S K RR a

w a EAD a S t

SSE x a

RR a ta x a a

θ θ

θ

∈ =

∈ =

= − +

+ −

∑

∑
  

The purpose of the weights ( )w a  is to differentiate completed recovery observations and 

partial observations. Note that in the Cox regression an account contributes to the likelihood 

function with a number of terms (9) corresponding to the number of monthly observations. 

Partial recoveries based on short observations should have lower weights than the results 

based on a full or almost completed recovery process. Consequently we propose to set 

( ) 1w a = for completed observations and ( )( ) endt aw a
K

= for incomplete recoveries. The 

estimation procedure can be directly realized in the case of the parametric Weibull (5) or 

Loglogistic model (6) where ( )pθ = β, . To apply the idea to the Cox model we must specify 

the baseline survival function in (8). We will use simply the Kaplan-Meier estimate 0 ( )S t , 

and the vector of coefficients to be estimated will be just  θ = β  in this case also including the 

constant coefficient changing the overall level of the baseline survival, hence  

(12) ( )
0( , | ( )) expt SS t ′= β xx β . 
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3 Empirical Results 

 
We have used an LGD data set of 4 000 defaulted unsecured retail loans obtained from a large 

Czech retail bank. The loans defaulted in a recent period (preceding the year 2008 but not 

exactly specified due to confidentiality reasons) of 57 months in a numbering used by the 

bank starting with the month 1 162m = and ending with the month 2 218m = . The last month 

when we have observed recoveries is 3 220m = , thus the recovery process has not been 

completed for many accounts. The data set contains account level information on net 

discounted monthly recovery cash flows as well as some basic application and behavior 

explanatory variables. Ultimate recovery rates are achieved by a sale of receivable, write-off, 

or full recovery, with majority of cases (87%) being resolved in 27 months. To test the 

survival methods in the context outlined in Section 2 we need data of the type shown in 

Figure 1and at the same time to have the information on ultimate recoveries for all accounts in 

the data set. In order to achieve that we not only need to move retrospectively back, e.g. to 

restrict ourselves only to accounts that defaulted between the months 162 and 194, but also to 

shorten the maximum recovery time to a shorter period, e.g. setting 27K = . Figure 2 shows 

the structure of the original and modified data set. 

 

 Figure 2. The original and modified data sets 

 

Hence the development of various ex ante LGD functions will be done as of the month 194 on 

the data sets D1 and D2, but the goodness of fit measures will be calculated on ultimate 

recovery rates, i.e. also on the data set D3 available from the perspective of the month 220. 

Since for the purpose of survival analysis method testing we admit only nonnegative cash 

flows and recovery rates in [0,1] we had to omit negative cash flows and adjust the exposure 
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at default to the cumulative recovery rate in case it exceeded the original EAD. The resulting 

distributions of the ultimate recovery rates on the data set D1 and on D3 shown on Figure 3 

are highly bimodal due to the fact that original data contained an unusually high number of 

recoveries below 0 and over 1. Note that the recovery rate distribution on D3 (unknown at the 

development month 194) differs quite significantly from the distribution on D1. 
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Figure 3. Histograms of ultimate recovery rates on the data sets D1 and on D3 

 

A descriptive statistics of the datasets D1, D2, and D3 focusing on the ultimate or 

last available recovery rates in the case of D2 is shown in  

Table 1. The number of observations is obviously still more than sufficient to calibrate the 

model. There are 8 available explanatory variables including time in books, exposure, and 

other application or behavior properties not disclosed by the bank. One categorical variable 

with 10 possible values has been decoded into 9 dummy variables; hence the total number of 

the regression variables not including the intercept coefficient is 16. 

 Ultimate 

RR on D1 

Last RR 

on D2 

Ultimate 

RR on D3 

Num 605 1739 1739 

Max 1 1 1 

Min 0 0 0 

Mean 0.5951 0.3508 0.5253 

Median 0.8174 0.1136 0.5260 

Range 1 1 1 

Std 0.4270 0.4133 0.4010 
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Table 1. Descriptive statistics of the ultimate or last available recovery rates on 

D1,D2, and D3 

The last available (partial) recovery rates on D2 cannot be used for the linear and logistic 

regressions development. The results of the regressions developed on ultimate recoveries on 

D1 in terms of the R-squared and modified R goodness of fit indicators measured on D1, D3, 

and D1+D3 are presented in tables Table 2 and Table 3. 

D1 D3 D1+D3
Obs R_SQUAR

ED1
modR1 N1 R_SQUARED2 modR2 N2 R_SQUAR

ED3
modR3 N3

1 0,1518 11,96% 605 0,067244 8,63% 1739 0,08898 9,47% 2344  

Table 2. The goodness of fit measures for the LGD linear regression 

 
D1 D3 D1+D3

Obs MODEL R_SQUARED
1

modR1 N1 R_SQUAR
ED2

modR2 N2 R_SQUAR
ED3

modR3 N3

1 0,1 0,12734 8,67% 605 0,13114 9,78% 1739 0,13016 9,50% 2344
2 0,2 0,14322 10,28% 605 0,07993 8,09% 1739 0,0962 8,65% 2344
3 0,3 0,12142 9,20% 605 0,0699 7,46% 1739 0,08315 7,90% 2344
4 0,4 0,15625 11,59% 605 0,06908 8,32% 1739 0,09149 9,15% 2344
5 0,5 0,15079 11,15% 605 0,06684 8,13% 1739 0,08843 8,89% 2344
6 0,6 0,15062 11,28% 605 0,06465 8,01% 1739 0,08675 8,84% 2344
7 0,7 0,14791 10,99% 605 0,05406 7,00% 1739 0,07819 8,01% 2344
8 0,8 0,13928 10,70% 605 0,03806 6,26% 1739 0,06408 7,38% 2344
9 0,9 0,12847 9,30% 605 0,04078 5,33% 1739 0,06332 6,33% 2344   

Table 3 The goodness of fit measures for the LGD logistic regression with different cut-offs 

 

Our key goodness of fit indicator, i.e. the modified R on D1+D3, does not show a superior 

performance with values below 10%. The low R indicates a weak explanatory power of the 

covariates which is nevertheless normal in the case of LGD predictions according to the 

authors’ experience.  The linear and logistic regressions with the recovery rate cut-off 

threshold at 10% show the best performance. Looking also on the R-squared one would prefer 

the logistic regression predictions. It is interesting to note that while the linear regression fits 

well the data set D1 and poorly the data set D3, the logistic regression predictions appear to 

be more balanced. 

 

Next we have performed the Cox regression based on maximum likelihood estimation of the 

coefficients with the same covariates but extending the data set D1 with partial recoveries in 

D2. The goodness of fit measures in Table 4 indicate that the predictions fit much better the 
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ultimate recovery rates given by D3 due to the partial recovery history information. The 

overall performance on D1+D3 is significantly superior to the linear and logistic regression. 

D1 D3 D1+D3
Obs R_SQUAR

ED1
modR1 N1 R_SQUAR

ED2
modR2 N2 R_SQUAR

ED3
modR3 N3

1 0,07264 6,91% 605 0,14532 12,99% 1739 0,12663 11,45% 2344  
Table 4 The goodness of fit measures for the Cox regression 

 
The Cox survival function and a particular shape of the baseline hazard function on Figure 4 

indicate that the parametric hazard functions might be difficult to fit to the given data. The 

Weibull and Loglogistic models that we have tested provided indeed weaker results compared 

to the Cox regression. 

 

 

 
Figure 4. The baseline hazard function and the survival function for the first account given by 

the Cox regression 

 
Finally we have estimated the Kaplan-Meier survival function 0 ( )S t and found the coefficients 

of the Cox-like function (12) minimizing the sum of squared errors (11) on D1+D2. As we 

expected the predictions yield significantly better performance with  modified R almost 13% 

and R-squared on D1+D3 exceeding 15%. The parametric functions again did not show a 

better result. 

D1 D3 D1+D3
Obs R_SQUAR

ED1
modR1 N1 R_SQUAR

ED2
modR2 N2 R_SQUAR

ED3
modR3 N3

1 0,10207 8,81% 605 0,17662 14,37% 1739 0,15681 12,92% 2344  

Table 5. The goodness of fit measures for the pseudo Cox regression 
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4 Conclusions 

 
We have described and tested four regression methods, linear regression, logistic regression, 

survival, and pseudo survival, to estimate future recovery rates and LGDs. The recovery data 

have been limited to only non negative cash flows and the recovery rates not exceeding one. 

Without those assumptions the survival methods can be hardly expected to be applicable. This 

prerequisite could be however achieved separating the gross recovery amounts from the costs 

and scaling the data appropriately, e.g. using a discount rate corresponding to the penalizing 

interest rates and the late fees. The general experience from banking practice is that standard 

regression LGD predictions perform quite poorly with R2 below or around 10%. In spite of 

that banks do apply the regression analysis at least to sort exposures into appropriate LGD 

pools. Thus any improvement in the account level LGD prediction methods is desirable. The 

results confirmed that the survival methods utilizing partial recovery observations provide 

significantly better ex ante predictions with R2 exceeding 15%. We have identified the Cox 

proportional model compared to the parametric as more flexible and appropriate to fit 

empirical recovery data with different patterns. Our proposed modification of the survival 

methods, in particular the pseudo Cox model, based on minimization of squared differences 

on last known recovery rates outperformed all the other methods.   
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