
STATA November 1996

TECHNICAL STB-34

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors
H. Joseph Newton Francis X. Diebold, University of Pennsylvania
Department of Statistics Joanne M. Garrett, University of North Carolina
Texas A & M University Marcello Pagano, Harvard School of Public Health
College Station, Texas 77843 James L. Powell, UC Berkeley and Princeton University
409-845-3142 J. Patrick Royston, Royal Postgraduate Medical School
409-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonex-
clusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the ma-
terial in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the ideas,
including communication of the ideas to other parties, even if the material is never published in the STB. Submissions should
be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets,
and help files) are copyright c
 by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be
copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution
to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata
Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use
is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of
fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose
of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

dt3.1. An updated utility to convert EpiInfo datasets 2
gr20. Low-level graphics in data coordinates 3
gr21. Flexible axis scaling 9
ip13. Maximum-likelihood estimation using the ml command 10

os16.1. Importing Stata graphs into word processors on the Macintosh: Part 2 21
sbe13. Age-specific reference intervals (“normal ranges”) 24

smv3.1. Discriminant analysis: An enhanced command 34
sts12. A periodogram-based test for white noise 36

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7003334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Stata Technical Bulletin [STB-34]

dt3.1 An updated utility to convert EpiInfo datasets

R. Mark Esman, Stata Corp., FAX (409) 696-4601, tech@stata.com

This is an updated version of epi2dct which appeared as dt3 in STB-32. epi2dct is a stand-alone DOS executable program
written to convert data produced with EpiInfo into a format readable by Stata. This version offers improved reading of records
spanning multiple lines. epi2dct reads EpiInfo’s record (.rec) files and then writes out a file in Stata’s dictionary (.dct) file
format. The resulting dictionary file can then be read into Stata using the infile command on any platform.

For those users who do not use DOS or Windows, the source code is included.

Since the first version of this program was released in STB-32, several Stata users have contacted me with difficulties reading
record files with a large number of variables. In particular, files in which the data span multiple lines. I have tried to address
most of the reported problems with this version. One particular problem that should be mentioned is the case where a string
variable(s) contain an exclamation point (!). EpiInfo uses this character as a line delimiter and therefore must be stripped from
the data during the conversion process.

Again, I would appreciate feedback from those of you that use epi2dct and/or EpiInfo. I have had the opportunity to try
converting some “real world” record files with very favorable results. In many cases, this program will be useful to eliminate
most of the mundane work, but the resulting dictionary files may need minor editing. As it stands, the program knows only two
data types: strings and floats. After the dictionary is created, you may edit the datatypes to include the appropriate cast. If, in
the future, there are any updates made, I will include them on the Stata Web site: http://www.stata.com.

Syntax

epi2dct is executed by typing the following from a DOS prompt:

C:> epi2dct infilename outfilename

or shelling out from the Stata dot prompt in Stata for Windows or Stata for DOS:

.!epi2dct infilename outfilename

The infilename is the name of the EpiInfo format (.rec) record file used to read data into the epi2dct program; outfilename is
the file in which the Stata format (.dct) dictionary file will be written. It should be noted that epi2dct will not assume the
proper file extensions; you must remember to add the correct extensions manually. Typing epi2dct alone at the DOS prompt
will display a syntax diagram and short help file.

Options

There are no options associated with epi2dct.

Example

The following is an example EpiInfo data file which was created to illustrate how the epi2dct program converts data. The
file was created using a sample questionnaire in EpiInfo 6.0 and converted with the epi2dct program.

16 1

PERSONRECO 34 2 30 47 2 0 0 112 Person Record

ILLUSTRATI 5 4 30 72 4 0 0 112

RECORDSBYH 5 5 30 75 5 0 0 112

IDENTIFIER 5 6 30 77 6 0 0 112

VIADEFINED 5 7 30 76 7 0 0 112

PASSEDVALU 5 8 30 72 8 0 0 112

ENTEREDHER 5 9 30 18 9 0 0 112

PERSONID 21 11 30 30 11 12 5 112 PersonID

HOUSEID 44 11 30 52 11 6 5 112 HouseID

NAME 21 13 30 26 13 1 33 112 Name

AGE 26 15 30 31 15 0 3 112 Age

SEX 38 15 30 42 15 3 1 112 Sex

ILL 48 15 30 53 15 5 1 112 Ill

ADDRESS 21 17 30 29 17 1 32 112 Address

CITY 21 19 30 26 19 1 22 112 City

STATE 50 19 30 56 19 3 2 112 State

Stata Technical Bulletin 3

1 1111Santa Q. Claus 99MN100 North Pole Circle !

North Pole AK!

2 2222Easter A. Bunny 30FN555 Hare Lane !

Everywhere TX!

3 3333Tooth C. Fairy 45FY32 Bicuspid Blvd. !

Molar CO!

4 4444Frosty T. Snowman 55MY5432 Corncobb Ct. !

Winter Wonderland MT!

which we can convert to a Stata dictionary file using

C:> epi2dct sample.rec sample.dct

The created dictionary file is

dictionary {

str5 personid %5s "PersonID"

_column(6)

str5 houseid %5s "HouseID"

_column(11)

str33 name %33s "Name"

_column(44)

age %3f "Age"

str1 sex %1s "Sex"

_column(48)

str1 ill %1s "Ill"

_column(49)

str32 address %32s "Address"

_column(81)

str22 city %22s "City"

_column(103)

str2 state %2s "State"

_column(105)

}

1 1111Santa Q. Claus 99MN100 North Pole Circle North Pole AK

2 2222Easter A. Bunny 30FN555 Hare Lane Everywhere TX

3 3333Tooth C. Fairy 45FY32 Bicuspid Blvd. Molar CO

4 4444Frosty T. Snowman 55MY5432 Corncobb Ct. Winter Wonderland MT

The dictionary file can then be read into Stata using the infile command:

. infile using sample.dct

Reference
Esman, R. M. 1996. dt3: Reading EpiInfo datasets into Stata. Stata Technical Bulletin 32: 9–10.

gr20 Low-level graphics in data coordinates

H. Joseph Newton, Texas A&M University, FAX (409) 845-3144, jnewton@stat.tamu.edu
James W. Hardin, Stata Corp., FAX (409) 696-4601, tech@stata.com

With the gph commands in Stata 5.0, programmers are now able to produce highly customized graphics. These commands
allow one to open a graphics window in which points, lines, text, boxes, and so on can be drawn. One particularly important
use of the commands is in adding graphical components to graphs produced by the graph command. In this insert we describe
modified versions of the gph commands which allow a programmer to add graphical elements to an existing graph in terms of
the data coordinates of the graph rather than in terms of screen coordinates as the gph commands require. We illustrate the use
of the new programs with three examples.

Background

Stata thinks of a graphics window as being composed of a matrix of rows and columns of plotting positions with a particular
position in the window being denoted by (r; c) where r and c denote the row and column of the position, respectively. The
upper left and lower right corners of the window are positions (0; 0) and (23063; 32000), respectively. When a program calls
the graph command, Stata places the bounding box of the graph and the data region of the graph into the global macros S G1

4 Stata Technical Bulletin [STB-34]

and S G2, respectively (see [R] gph for details), as well as placing into result(5) through result(8) the factors needed to
convert data coordinates to screen coordinates. If we denote these four factors by ay , by , ax, and bx, then the screen coordinates
(r; c) of a data coordinate having horizontal and vertical values x and y are given by

c = axx+ bx; r = ayy + by

Syntax

gphsave

gphdt clear y1 x1 y2 x2

gphdt text y x #rotation #alignment text

gphdt vtext varnamey varnamex varnamestr
�
if exp

� �
in range

�
gphdt line y1 x1 y2 x2

gphdt vline varnamey varnamex
�
if exp

� �
in range

�
gphdt vpoly varnamey1 varnamex1 varnamey2 varnamex2 � � � varnameyp varnamexp�

if exp
� �

in range
�

gphdt box y1 x1 y2 x2 #shade
gphdt point y x #�c #symbol

gphdt vpoint varnamey varnamex
�
varname�c varnamesymbol

� �
if exp

� �
in range

�
�
, size(#�c) symbol(#symbol)

�

The gphsave command

For the gphdt commands to work properly, one must call gphsave immediately after calling graph. This puts the elements
of result(5) through result(8) into the global macros GPH ay, GPH by, GPH ax, and GPH bx for the gphdt commands to
use.

The gphdt commands

In this section we refer to a data coordinate as (x; y) where x and y are the horizontal and vertical coordinates of the point.
In the arguments of the gphdt commands, we have preserved Stata’s usual practice of putting the vertical position first.

gphdt clear y1 x1 y2 x2 clears the rectangle having opposite corners (x1; y1) and (x2; y2).

gphdt text y x #rotation #alignment text displays text at data coordinate (x; y). See [R] gph for information about the rotation
and alignment arguments.

gphdt vtext varnamey varnamex varnamestr
�
if exp

� �
in range

�
displays N centered lines of horizontal text where the

location and text for the lines are contained in the three variables.

gphdt line y1 x1 y2 x2 draws a line from data coordinate (x1; y1) to (x2; y2).

gphdt vline varnamey varnamex
�
if exp

� �
in range

�
draws a series of connected lines where the consecutive data coordinates

are contained in the two variables.

gphdt vpoly varnamey1 varnamex1 varnamey2 varnamex2 � � � varnameyp varnamexp
�
if exp

� �
in range

�
draws a series of

connected lines for each observation in the input variables.

gphdt box y1 x1 y2 x2 #shade draws a rectangle having opposite corners having data coordinates (x1; y1) and (x2; y2). The
shading argument must be between 0 and 5 where the shading gets darker from 0 to 4, and 5 means there is no shading.

gphdt point y x #�c #symbol displays a point at data coordinate (x; y). See [R] gph for information on the size and symbol
arguments.

gphdt vpoint varnamey varnamex
�
varname�c varnamesymbol

� �
if exp

� �
in range

� �
, size(#�c) symbol(#symbol)

�
displays points at the data coordinates contained in the variables. See [R] gph for information on the size and symbol
arguments.

Stata Technical Bulletin 5

A simple linear regression example

A standard example of adding graphic components to a plot is to add the least squares regression line to a scatterplot as well
as line segments showing vertical deviations of observed points to the line. Here is a simple program called slrplot for doing
this for a given dependent variable y and independent variable x. The program uses gphdt vpoly to draw the line segments
and gphdt line to draw the regression line.

program define slrplot

version 5.0

local y "`1'"

local x "`2'"

tempvar yhat

quietly {

gph open

graph `y' `x', xlab ylab

gphsave

regress `y' `x'

predict `yhat'

gphdt vpoly `y' `x' `yhat' `x'

sum `x'

local x1 = _result(5)

local x2 = _result(6)

local y1 = _b[_cons] + _b[`x']*`x1'

local y2 = _b[_cons] + _b[`x']*`x2'

gphdt line `y1' `x1' `y2' `x2'

gph close

}

end

In Figure 1, we show the result of using slrplot for regressing price on mpg for Stata’s auto.dta.

. slrplot price mpg

P
ri

c
e

Mi leage (mpg)
10 20 30 40

0

5000

10000

15000

Figure 1.

In Figure 2, we show the result for a sample of size 30 from a bivariate normal population having means 0, variances 1,
and correlation coefficient 0.7. We generated the data by

. set obs 30

. gen e1 = invnorm(uniform())

. gen e2 = invnorm(uniform())

. local rho = 0.7

. gen x = e1

. gen y = `rho' * e1 + sqrt(1 - `rho' * `rho') * e2

. slrplot y x

6 Stata Technical Bulletin [STB-34]

y

x
-2 -1 0 1 2

-2

-1

0

1

2

Figure 2.

Illustrating the rejection method of random number generation

If it is hard to generate realizations from a random variable X having pdf f and we can find another pdf g defined over
the same range as f for which it is easy to generate realizations and we can find a constant c > 1 such that

h(x) = cg(x) � f(x) for all x

then we can generate a realization X from f via the following algorithm, called the rejection or acceptance-rejection method:

1. Generate Y from g.

2. Let Z = Uh(Y) where U is U(0; 1) independent of Y .

3. Let X = Y if Z < f(Y), otherwise go back to 1.

The probability that a point will be rejected is the area between h and f divided by the area under h, that is,

Pr(rejection) =

R
1

�1
[h(x)� f(x)]dxR
1

�1
h(x)dx

= 1� 1

c

and thus we should try to find a c that is as small as possible. If we know that we can find an “enveloping function” g, then
we can find the “best” value of c by finding

c = max
x

�
f(x)

g(x)

�

since we want cg(x) � f(x).

We consider using the standard Cauchy pdf

g(x) =
1

�

1

1 + x2
; �1 < x <1

as the enveloping function for the standard normal pdf

f(x) =
1p
2�

e
�x

2
=2
; �1 < x <1

which means we need to find the maximum of

q(x) =
f(x)

g(x)
=

r
2

�

e
x
2
=2

1 + x2

In Figure 3, we have used graph to plot the function q and then used gphdt line and gphdt text to show where the
maximum value c =

p
2�e�1=2

:
= 1:52 occurs.

Stata Technical Bulletin 7

N(0,1) /Standard Cauchy
x

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

.5

1

1.5
 (1,1.520) (-1,1.520)

Figure 3.

In Figure 4, we have used graph to draw h(x) = cg(x), then used gphdt vline to add the plot of f(x), and finally
gphdt vpoly to shade in the rejection region, that is, the area between the two curves.

h(x) and f(x), P(reject ion = 0.342)
x

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

.2

.4

.6

Figure 4.

Here is the program that was used to produce these two figures. Notice that the final graphs were saved by using the
saving option on the gph open commands.

program define tryrej

version 5.0

quietly {

gph open, saving(tryrej1.gph,replace)

set obs 201

gen x = 5*(_n-101)/100

gen y = sqrt(_pi/2)*exp(-x^2/2)*(1+x^2)

graph y x, c(l) s(i) xlab(-5,-4,-3,-2,-1,0,1,2,3,4,5) ylab /*

*/ title("N(0,1)/Standard Cauchy")

gphsave

local c = sqrt(2*_pi)*exp(-.5)

local dc : display %5.3f `c'

local oc : display %5.3f 1-(1/`c')

gphdt line `c' -1 0 -1

gphdt line `c' 1 0 1

gphdt line 0 -5 0 5

gphdt text `c' 1 0 -1 (1,`dc')

gphdt text `c' -1 0 1 (-1,`dc')

gph close

gph open, saving(tryrej2.gph,replace)

8 Stata Technical Bulletin [STB-34]

* Graph h(x)=c*g(x):

gen h = `c'/(_pi*(1+x^2))

graph h x, c(l) s(i) xlab(-5,-4,-3,-2,-1,0,1,2,3,4,5) ylab /*

*/ title("h(x) and f(x), P(rejection = `oc')")

gphsave

* Add N(0,1) curve and shade rejection region:

replace y = exp(-x^2/2)/sqrt(2*_pi)

gphdt vline y x

gphdt vpoly y x h x

gph close

}

end

A simple mapping example

The file census90.dta contains variables x and y which are the longitude and latitude of the centroids of the 582 census
tracts in Harris County, Texas in the 1990 census, as well the variable kids which contains the number of children five years
old or younger in the 582 tracts. The file also contains variables called lgtude and lttude which are a set of coordinates for
the boundary of Harris County (observations 1 – 47) as well as eight other sets of observations, each of which is part of the
system of roads in the County. In Figure 5 we have plotted the locations of the 582 centroids as well as the county boundary
and main roads in the county. The graph function was used to set up the axes and plot the centroids, while gphdt vline was
used nine times to get the boundary and roads. The program also uses the bbox option on graph and gph text to put a title
above the graph.

Here is the program that was used to produce Figure 5.

program define plotrds2

version 5.0

use census90

quietly {

gph open, saving(plotrds2.gph,replace)

graph x y, s(.) xlab(-96,-95.6,-95.2,-94.8) /*

/ ylab(29.5,29.6,29.7,29.8,29.9,30,30.1,30.2) /

*/ bbox(3000,0,23000,30000,850,400,0)

gphsave

gph text 1000 16000 0 0 1990 Census Tracts in Harris County, Texas

gphdt vline lttude lgtude in 1/47

gphdt vline lttude lgtude in 48/58

gphdt vline lttude lgtude in 59/71

gphdt vline lttude lgtude in 72/82

gphdt vline lttude lgtude in 83/90

gphdt vline lttude lgtude in 91/96

gphdt vline lttude lgtude in 97/107

gphdt vline lttude lgtude in 108/147

gphdt vline lttude lgtude in 148/153

gph close

}

end

x

y
-96 -95.6 -95.2 -94.8

29.5

29.6

29.7

29.8

29.9

30

30.1

30.2

 1990 Census Tracts in Harr is County, Texas

Figure 5.

Stata Technical Bulletin 9

gr21 Flexible axis scaling

Patrick Royston, Royal Postgraduate Medical School, UK, proyston@rpms.ac.uk

Stata’s standard graphs allow linear and logarithmic axis scaling, but that’s all. Sometimes you want other scales. tgraph
is a utility to produce graphs with almost any scaling you like.

Consider Figure 1. This shows a scatterplot of mpg (miles per gallon) against displ (displacement, cu. in.) for the 74 cars
in the ubiquitous automobile dataset auto.dta supplied with Stata. Clearly the relationship is quite nonlinear, but fractional
polynomial analysis using Stata’s fracpoly command reveals a simple transformation (x= displ

�2) which makes the relationship
between mpg and x very nearly a straight line. In some applications, you might want to plot mpg against displ on the special
scale (inverse square) for displ which gives such a straight line.

M
il

e
a

g
e

 (
m

p
g

)

Displacement (cu. in.)
80 100 150 200 400

10

20

30

40

Figure 1.

In Figure 1, I have labelled the displacement axis with the unequally spaced numbers 80, 100, 150, 200, 400 cu. in. Figure 2
shows the same labels applied to the new scale in which the relationship is linear. One is actually plotting mpg against x, but
keeping the original labels for displ. Notice how the label spacing, which looks quite odd in Figure 1, is appropriate for the
new scale. Analogously, one often labels log scales with increments corresponding to powers of 10.

M
il

e
a

g
e

 (
m

p
g

)

d ispl , transformed scale
80 100 150 200 400

10

20

30

40

Figure 2.

Figures 1 and 2 were drawn using graph and tgraph as follows:

. graph mpg displ, xlabel(80,100,150,200,400) ylabel

. tgraph mpg displ, xlabel(80,100,150,200,400) xtrans(-1/@^2) ylabel

The first statement just produces Figure 1 and is standard. The second uses tgraph to create a plot with the x-axis transformed
according to the function �1=x2. The @ is a placeholder. The reason why the transformation is �1=x2 rather than 1=x2 is that
use of 1=x2 reverses the ordering of the x-axis labels. Sometimes you might want to do this, but not here.

10 Stata Technical Bulletin [STB-34]

You can if you wish transform both axes; you just define suitable labels for each axis and suitable transformations xtrans
and ytrans. All y-variables are transformed in the same way.

Syntax

The syntax of tgraph is

tgraph yvarlist xvar
�
if exp

� �
in range

� �
, xtrans(x transf) xlabel(xlablist)

ytrans(y transf) ylabel(ylablist) graph options
�

Options

xtrans(x transf) defines the x-axis transformation; i.e., a function to be applied to xvar. The argument of the function is
represented by @. Square brackets must be used in place of round parentheses; otherwise, standard Stata expression syntax
is used. If you specify xtrans(), then you must also specify xlabel().

ytrans(y transf) defines the y-axis transformation; i.e., a function to be applied to each of the variables in yvarlist. The
rules for defining the function are the same as those for xtrans(). If you specify ytrans(), then you must also specify
ylabel().

xlabel(xlablist) and ylabel(ylablist) are the required axis labels.

graph options are any of Stata’s graph, twoway options except for xlabel() and ylabel().

Remarks

The principle behind tgraph is that it creates value labels for the transformed variable(s) which “point to” the labels you
specified in xlabel() or ylabel() on the original scale of xvar or yvarlist. Stata automatically uses these value labels in the
plot, even though you are plotting “strange” transformed variable(s) which you never see, and which tgraph does not preserve.

The only extra point worth noting is that in defining the transformations, any Stata expression may be used except that
round parentheses should be replaced with square brackets. For example, to get a square root x-axis, you would specify
xtrans(sqrt[@]), rather than xtrans(sqrt(@)) which would result in a syntax error.

ip13 Maximum-likelihood estimation using the ml command

William Gould, Stata Corp., FAX (409) 696-4601, wgould@stata.com

The purpose of this insert is to take away some of the mystery of using Stata’s ml command. ml allows you to specify
your own likelihood function and obtain the corresponding maximum-likelihood estimates.

In outline, you (1) write a Stata program to evaluate the likelihood function, (2) give an eq command to define the model
to be estimated, and (3) give a sequence of ml commands to obtain the solution.

ml provides four alternative methods for obtaining the maximum-likelihood estimates:

1. linear form (lf),

2. derivative-free (deriv0),

3. user-supplied first derivatives (deriv1),

4. user-supplied first and second derivatives (deriv2).

The form of the program you write for evaluating the likelihood function depends on the chosen method, but they are each
variations on the same theme.

In this article, I will discuss the linear-form (lf) method exclusively. This method is the easiest to use and is almost as
fast as the user-supplied first and second derivatives (deriv2) method.

The linear-form restrictions

Not all likelihood functions can be written in the lf-restricted way. The lf method places two restrictions on the form of
the likelihood function:

Stata Technical Bulletin 11

lnL(b;y;X) =
NX
j=1

ln l(b; yj ;xj)

ln l(b; yj ;xj) = ln l(xjb; yj)

The first restriction is that the log-likelihood can be expressed as a sum of the log-likelihoods for each observation; i.e., the
observations are independent. Programmingwise, it means that you write a program not to calculate lnL, the overall log-likelihood
function; you write a program to calculate ln l, the log-likelihood of an individual observation. ml itself will compute lnL by
summing the individual components.

Aside: Obtaining likelihood values observation-by-observation allows ml to better monitor the convergence
and feasibility of b. It is not uncommon in likelihood problems to choose, along the way, a b that results
in infeasible values of ln l for some of the observations and, in forming sums, it is too easy to sum across
such observations and treat their contribution as 0. ml watches for this problem.

The second restriction, ln l(b; yj ;xj) = ln l(xjb; yj), is the linear-form restriction. It states that only the inner product
xjb enters the likelihood function. (Note that we write xj as a row vector and b as a column vector.) While this eliminates the
great majority of imaginable likelihood functions, it still allows estimation of many likelihood functions of interest to researchers.
(The lf method is actually slightly less restrictive in that it allows you to define multiple linear forms; we will discuss this at
greater length later in this article.)

This restriction has two benefits: (1) it allows optimization to proceed more quickly in terms of computer time, and (2) it
makes the program you write to evaluate ln l simpler.

The reason for the performance benefit is that numerical optimizers (or, at least the class of numerical optimizers used by
Stata) require derivatives @ ln l=@b and @

2 ln l=@b2. The first is a k-dimensional vector and the second a k � k symmetric
matrix. Calculating the numerical derivatives in the general problem requires k+ k(k + 1)=2 calculations. With the linear-form
restriction, however, one can write

@ ln l

@b
=

@ ln l

@(xjb)
xj

@
2 ln l

@b2
=

@
2 ln l

@(xjb)2
x0
j
xj

Thus, ml need only calculate two numerical derivatives per iteration. Even for moderate values of k the time savings is substantial.
Consider a model with 2 RHS variables and an intercept, meaning k = 3. Without this restriction, an optimizer must calculate
9 numerical derivatives instead of just 2, meaning 4.5 times the work. For a model with k = 12, the general case requires 90
derivative calculations or 45 times the 2 required with the linear-form restriction.

The linear-form restriction makes the programming of the likelihood function easier because the program you write need
only receive xjb and not xj and b separately. The linear form xjb is nothing more than a scalar value per observation and so
can be stored as a variable in the dataset. Thus, your log-likelihood evaluation program need not concern itself with the identities
of the variables in the model or even how many variables there are. A typical log-likelihood evaluation program reads, in its
entirety,

program define myll

local lnf "`1'"

local Xb "`2'"

quietly replace `lnf' = some function of $S_mldepn and `Xb'

end

The program receives two arguments: `1', the name of the variable where ln l(xjb; yj) is to be stored, and `2', the name of
a variable containing xjb. The name of the variable corresponding to yj (if there is such a variable) is passed in the global
macro S mldepn. The first two lines of our sample program simply assign more readable names to the two arguments and then
the third line calculates the likelihood values. This program could be made even shorter:

program define myll

quietly replace `1' = some function of $S_mldepn and `2'

end

although it is not quite as readable.

12 Stata Technical Bulletin [STB-34]

Case 1: Single equations

Let us consider likelihoods that meet the linear-form restriction ln l(b; yj ;xj) = ln l(xjb; yj). Binary probit and logit fall
into this category. You might be tempted to think that linear regression also falls into this category because

yj = xjb+ uj

so the log-likelihood for an individual observation is

ln l(b; yj ;xj) = ln f(yj � xjb)

where f is the (unstandardized) normal density. This likelihood was obtained by rewriting the regression as uj = yj �xjb and
then noting that uj is distributed normally.

Linear regression, however, is not an example of a lf single equation because, in addition to the parameters b, the variance
�
2 of the normal density is also to be estimated. We will get to that case later.

For purposes of describing the programming of maximum-likelihood estimators let us define

Single Equation: There is a one-to-one correspondence between the parameters b to be estimated and the
RHS variables xj , and the way xj enters the model is via the inner product xjb. In addition, there is some
outcome variable yj (with no estimated parameters associated with it).

Linear regression is thus not “single equation” because in addition to b, �2 is also to be estimated and it has no corresponding
x variable. Linear regression when �

2 is known, however, would be an example of a “single equation”.

Here is the outline for programming single-equation estimators. First, define the program to calculate the log-likelihoods:

program define myll

local lnf "`1'"

local Xb "`2'"

quietly replace `lnf' = some function of $S_mldepn and `Xb'

end

where some function is the log-likelihood for an individual observation. The program myll receives two arguments: the first is
the name of a variable into which myll is to store the calculated log-likelihood and the second is the name of a variable into
which ml has already stored the values of xjb (using the current estimate of b). The name of the first variable is put into the
local macro lnf, and the name of the second variable is put into the local macro Xb; again, this is only done to improve the
readability of the code. The global macro S mldepn contains the name of the outcome (dependent) variable.

Second, one estimates the model by typing

. ml begin

. ml function myll

. ml method lf

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. ml model b = myeq (b is a name of your choosing; I like b)

. ml sample mysamp (mysamp could be any new variable name)

. ml maximize f V (f and V are names of your choosing; I like the names f and V)

. ml post myest (myest could be any name of your choosing)

. ml mlout myest

Let me explain the purpose of each of these commands:

ml begin merely says “Here begins a new ml problem; forget any previous ml problem I have told you.”

ml function myll declares that the program we have written to calculate the log-likelihood is called myll. We do not have to
call the program myll, but whatever we have named the program, we have to tell ml.

ml method lf is to be coded just like that. This statement says to use the lf method for maximizing the likelihood function.

eq myeq: lhsvar rhsvar1 rhsvar2 : : : states the “equation” to be estimated. eq is not really a ml command; eq is just a command
of Stata that stores “equations”; it is the next statement that links the equation to ml.

Stata Technical Bulletin 13

ml model b = myeq links the equation to what ml is supposed to do. When we gave the eq command, we defined an equation
named myeq that contained “lhsvar rhsvar1 rhsvar2 : : : ”, and when we gave the ml model b = myeq command, we told
ml that it is to use the equation named myeq. For instance, we might type

. eq myeq: foreign mpg weight

. ml model b = myeq

The result of this is to define foreign as the outcome variable and mpg and weight as the covariates with associated
parameters. In math, we have just stated

log-likelihood = ln l(b0 + b1mpgj + b2weightj ; foreignj)

where b0, b1, and b2 are to be estimated. The definition of ln l is given by our myll program and ml knows that because
we previously declared ml function myll.

The name b in ml model b = myeq is any name of our choosing; it is the name under which ml will store the estimated
parameter vector, and I typically name the vector b. What you name the vector makes no difference. If the vector specified
already exists, it will be replaced. If it does not exist, it will be created.

ml sample mysamp tells ml to identify the estimation sample now. mysamp is the name of a new variable that ml will create,
and its only purpose is so that later ml will know which observations to use and which to ignore. In this case, all ml
sample mysamp does is look for missing values of foreign, mpg, and weight, but if we wanted to restrict the sample in
some other way, now is when we would do that:

. ml sample mysamp if rep78>=3

ml maximize f V performs the optimization, which is to say, finds b to maximize the likelihood function. To do this, ml needs
two more names to work with and I supplied f and V. f will be the name of a scalar containing the optimized value of the
log-likelihood. V will be a matrix containing the negative inverse of second derivatives (the estimated variance matrix). I
could name f and V anything but typically choose f and V.

After ml maximize f V is executed, the estimates exist.

Vector b (named b because of the ml model statement) contains the estimated parameters.

Scalar f (named f because of the ml maximize statement) contains the log-likelihood value.

Matrix V (named V because of the ml maximize statement) contains the variance matrix.

I could just look at each of these using Stata’s scalar list and matrix list commands. Thus, the commands that follow
the ml maximize are optional; they simply make the output more readable.

ml post myest tells ml to save these estimation results as “official Stata estimation results” and call them myest. I could call
them anything I wanted. For interactive use, the name plays little role so I just use myest. ml post is one step along the
way to displaying pretty output, but it does something else, too. By posting the results as “official”, I can now use any
post-estimation command on them. I could, for instance, later use test.

ml mlout myest displays the estimation results.

The ml commands themselves are straightforward although you must remember to give them in the right order. Some variation
is allowed but the rules are so complicated I just give them in the order shown — but sometimes I will move the eq command
to the top:

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. ml begin

. ml function myll

. ml method lf

. ml model b = myeq

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

14 Stata Technical Bulletin [STB-34]

Case 2: Two equations

Let us now consider a variation on the single-equation model:

log-likelihood = ln l(x1jb1;x2jb2; y1j ; y2j)

Again I am defining “equation” in the same specific way I did in Case 1; there is a one-to-one correspondence between the
estimated parameters (now b1 and b2) and the RHS variables (now x1 and x2). There need not be the same number of variables
in x1 and x2.

The program to calculate the likelihoods now reads

program define myll

local lnf "`1'"

local X1b1 "`2'"

local X2b2 "`3'"

local y1 : word 1 of $S_mldepn

local y2 : word 2 of $S_mldepn

quietly replace `lnf' = some function of `y1', `y2', `X1b1', `X2b2'

end

As compared to the single-equation case, we are now passed three arguments (where to store the log-likelihood calculation
along with x1b1 and x2b2) and $S mldepn now contains two variable names. The latter is rather inconvenient because we
have to take it apart. To separate the variable names in $S mldepn, we use the extended macro function word # of string. This
inconvenience is overshadowed by the fact that the code above easily can be generalized to any number of equations.

In terms of what we type to estimate the model, that now becomes

. ml begin

. ml function myll

. ml method lf

. eq myeq1: lhsvar1 rhsvar11 rhsvar12 : : :

. eq myeq2: lhsvar2 rhsvar21 rhsvar22 : : :

. ml model b = myeq1 myeq2

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

This is nearly identical to what we typed in the single-equation case, the differences being

1. where we previously defined only one equation, now we define two;

2. where we previously typed ml model b = myeq, now we type ml model b = myeq1 myeq2 because
there are two equations.

Case 3: Three and more equations

The two-equation case generalizes to any number of equations. If you have three equations, your myll program will receive
four arguments (where to store the result along with the evaluations of x1b1, x2b2, and x3b3); $S mldepn will contain three
variable names (y1, y2, and y3); and in terms of the ml commands, you just define all three equations and then, when you define
the model, you type

. ml model b = myeq1 myeq2 myeq3

Case 4: Ancillary parameters

So far we have restricted ourselves to cases where there is a one-to-one correspondence between estimated parameters b and
explanatory variables x. As I mentioned earlier, often there are more parameters than that. In linear regression, the log-likelihood
is

log-likelihood = �1

2

�
yj � xjb

�

�2
� ln(

p
2� �)

Stata Technical Bulletin 15

where, in addition to b, there is an extra parameter � to be estimated.

I am going to show you the easiest way to deal with these ancillary parameters, but before I do, I want to show you that
you could estimate this models with nothing more than what you already know. I want to show you this not as an aside but
because it is important to understanding the way we actually do it.

The trick is to introduce a second equation and then mostly to ignore it. The second equation would be

LHS : trashj ; RHS : �x2j ; where x2j = 1 for all j

That is, pretend we tricked ml into thinking there are two equations. That does not mean there mathematically have to be two
equations; since we get to write the program myll that calculates the log-likelihood, what we do with the second equation is
up to us. Let’s assume the likelihood we are really interested in maximizing is

log-likelihood = ln l(xjb; �; yj)

To make it fit into two-equation framework, we rewrite this as

log-likelihood = ln l(xjb;x2j�; yj ; trashj)

where x2j = 1 for all j and the contents of trashj are irrelevant; both of these variables are merely introduced to satisfy ml’s
constraints.

Here are the ml commands we would use:

. gen trash = (pick a number, say 42)

. gen one = 1

. ml begin

. ml function myll

. ml method lf

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. eq myeq2: trash one (the phony equation)

. ml model b = myeq myeq2

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

Here is how we would write myll:

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma "`3'"

local y : word 1 of $S_mldepn

quietly replace `lnf' = some function of `y', `Xb', `sigma'

end

That is, in myll, we would simply ignore the second dependent variable trash. We have arranged for the second equation to
equal � by making it onej � � = 1� � = �.

What I have written above will not work, but that is only because I ignored an implicit assumption of my previous definition
of an “equation”. I said that an “equation” has a one-to-one correspondence between parameters b to be estimated and the RHS

variables x. This assumes that x includes a constant x0j = 1, because, unless you take some special action, ml automatically
includes an intercept in each of your equations.

That is, when we typed

. eq myeq: foreign mpg weight

16 Stata Technical Bulletin [STB-34]

we defined

1. foreign as the outcome variable;

2. mpg and weight as the covariates;

3. the linear combination b0 + b1mpg+ b2weight as the evaluation of the “equation”.

There is a way to define an “equation” with no intercept, but you seldom want that. Most “equations” include an intercept.

You can also define equations to include only an intercept. Consider the statement

. eq myeq: foreign

which means

1. foreign is the outcome variable;

2. there are no covariates;

3. the linear combination b0 is the evaluation of the “equation”.

So here is how we could estimate the log-likelihood ln l(xjb; �; yj):

. gen trash = (pick a number, say 42)

. ml begin

. ml function myll

. ml method lf

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. eq myeq2: trash (the phony equation)

. ml model b = myeq myeq2

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

and our corresponding likelihood-evaluation program would read

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma "`3'"

local y : word 1 of $S_mldepn

quietly replace `lnf' = some function of `y', `Xb', `sigma'

end

To summarize, an ancillary parameter can be handled by introducing an equation for it. The newly introduced equation
contains only an intercept. To make this work, we had to introduce new variable trash containing literally anything. We needed
it as a placeholder in the eq statement, but thereafter we ignored it.

Actually, we do not have to provide a trash variable because ml can be told that there is no dependent variable associated
with an equation. Hence, here is a better way we could code this problem (I’ve marked the statements that have changed):

(we no longer generate trash)
. ml begin

. ml function myll

. ml method lf

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. eq sigma: (changed)

. ml model b = myeq sigma, depv(10) (changed)

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

Note the depv(10) option on the ml model statement. The 10 does not mean the number ten, it means 1 and 0. It states that
the first equation (myeq) has 1 dependent variable and the second equation (sigma) has none.

Stata Technical Bulletin 17

Our myll program can now read

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma "`3'"

quietly replace `lnf' = some function of $S_mldepn, `Xb', `sigma'

end

If you compare this with the previous example, you will see that we have omitted

local y : word 1 of $S_mldepn

$S mldepn now contains only one variable name so we can just use it directly. The previous version of myll would also work;
it is just that decomposing $S mldepn is no longer necessary.

To summarize, each ancillary parameter is handled by introducing a new “equation” — an “equation” with no dependent
variable — into the code. This is not just trickery; there is a real advantage to thinking this way. We have just written a program
to maximize

log-likelihood = ln l(xjb; �; yj)

Say that later we wish to consider a variation on this model and let �j = x2jb2. That is, we want to parameterize � and let
it vary with x2. We can do this and we do not have to rewrite myll! All we do is change what we type when we define the
equations; instead of typing

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. eq sigma:

. ml model b = myeq sigma, depv(10)

we could type

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. eq sigma: x2var1 x2var2 : : :

. ml model b = myeq sigma, depv(10)

Case 5: Multiple ancillary parameters

Multiple ancillary parameters are handled by simply introducing more equations. Consider a problem with two ancillary
parameters:

log-likelihood = ln l(xjb; �1; �2; yj)

where b, �1, and �2 are to be estimated. The estimation code reads

. ml begin

. ml function myll

. ml method lf

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. eq sigma1:

. eq sigma2:

. ml model b = myeq sigma1 sigma2, depv(100)

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

and the corresponding myll program reads

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma1 "`3'"

local sigma2 "`4'"

quietly replace `lnf' = some function of $S_mldepn, `Xb', `sigma1', `sigma2'

end

18 Stata Technical Bulletin [STB-34]

Case 6: Multiple ancillary parameters and multiple equations

This can all be put together. Consider

log-likelihood = ln l(x1jb;x2jb; �1; �2; y1j ; y2j)

where b1, b2, �1, and �2 are to be estimated. Here we have two real equations to be estimated and two ancillary parameters.
The estimation code reads

. ml begin

. ml function myll

. ml method lf

. eq myeq1: lhsvar1 rhsvar11 rhsvar12 : : :

. eq myeq2: lhsvar2 rhsvar21 rhsvar22 : : :

. eq sigma1:

. eq sigma2:

. ml model b = myeq1 myeq2 sigma1 sigma2, depv(1100)

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

and the corresponding myll program reads

program define myll

local lnf "`1'"

local X1b1 "`2'"

local X2b2 "`3'"

local sigma1 "`4'"

local sigma2 "`5'"

local y1 : word 1 of $S_mldepn

local y2 : word 2 of $S_mldepn

quietly replace `lnf' = some function of `y1', `y2', `X1b1', `X2b2', `sigma1', `sigma2'

end

The constant() option: Specifying whether equations include an intercept

We have discussed creation of equations containing an intercept only and no dependent variable; that is how we handle
ancillary parameters. Let us now consider equations with a dependent variable but having no intercept. This has nothing to do
with ancillary parameters; sometimes we simply want to estimate models without an intercept (nocons in Stata parlance).

In particular, let us consider
log-likelihood = ln l(xjb; �; yj)

where b and � are to be estimated, and b contains no intercept. We write the program to evaluate the log-likelihood in the same
way as if b did contain an intercept:

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma "`3'"

quietly replace `lnf' = some function of $S_mldepn, `Xb', `sigma'

end

The specification that b contains no intercept affects only the ml model statement:

. ml begin

. ml function myll

. ml method lf

. eq myeq: lhsvar rhsvar1 rhsvar2 : : :

. eq sigma:

. ml model b = myeq sigma, depv(10) constant(01) (changed)

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

Stata Technical Bulletin 19

Note the constant(01) option, which is read as constant 0 and 1. The first digit refers to the first equation and the second to
the second. The constant 0 for the first equation means that there is to be no intercept in myeq. The constant 1 for the second
equation means that there is to be an intercept in sigma.

The rules for filling in the constant() option are

1. It has as many arguments are there are equations. The first argument corresponds to the first equation,
the second to the second equation, and so on.

2. The arguments are the digits 1 or 0, and the arguments are run together. Thus, 101 is three arguments.

3. An argument of 1 means the equation is to contain a constant. An argument of 0 means the equation
is not to contain a constant.

4. If you omit the constant() option, results are as if you coded constant(11: : :1); that is, all
equations are to contain a constant.

The depv() option: specifying the number of dependent variables

When you specify an equation

. eq myeq: varname1 varname2 varname3 : : :

varname1 is normally interpreted as being the dependent variable and the remaining names are interpreted as being independent
variables. The equation could just as well be interpreted as containing no dependent variables; that is, varname1, varname2,
: : : , could all be interpreted as being independent variables. Alternatively, the equation could be interpreted as containing two
dependent variables, varname1 and varname2, and the remaining variables interpreted as independent variables.

How the equation is interpreted is determined by the depv() option on the ml model statement. In dealing with ancillary
parameters — when we wanted the equation named sigma interpreted as containing no dependent variables — we coded

. model b = myeq sigma, depv(10)

The depv() arguments work like the constant() arguments; the digits are positional. We specified depv() as 1 for the first
equation and 0 for the second, meaning myeq was to be interpreted as containing one dependent variable and sigma interpreted
as containing no dependent variables. Unlike the constant() option, we are not limited to the digits 0 and 1. The possible
arguments for depv() are 0, 1, 2, : : : , 9.

Consider a likelihood function with two dependent variables but only one set of explanatory variables (and an ancillary
parameter):

log-likelihood = ln l(xjb; �; y1j ; y2j)

where b and � are to be estimated. For instance, the true dependent variable yj might be unobserved and y1j and y2j might
be the observed bounds of an interval known to contain yj . The program to evaluate this likelihood function would read

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma "`3'"

local y1 : word 1 of $S_mldepn

local y2 : word 2 of $S_mldepn

quietly replace `lnf' = some function of `y1', `y2', `Xb', `sigma'

end

and the corresponding ml commands would be

. ml begin

. ml function myll

. ml method lf

. eq myeq: y1var y2var rhsvar1 rhsvar2 : : :

. eq sigma:

. ml model b = myeq sigma, depv(20)

. ml sample mysamp

. ml maximize f V

. ml post myest

. ml mlout myest

20 Stata Technical Bulletin [STB-34]

The depv(20) option on the ml model statement specifies that the first equation (myeq) contains two dependent variables and
the second equation (sigma) none.

The eq command

In all the examples above I have specified equations by typing

. eq myeq: varname1 varname2 : : :

and then later I have referred to the equation by typing

. ml model b = myeq : : :

eq allows a shorthand. I can omit the name of the equation and simply type

. eq varname1 varname2 : : :

and doing this is equivalent to typing

. eq varname1: varname1 varname2 : : :

That is, the first variable specified plays a dual role, being part of the contents of the equation and being the name of the equation
as well. If I adopted this shorthand, then I would have to remember to specify the correct name of the equation when I referred
to it on the ml model statement:

. ml model b = varname1 : : :

For instance, I could type

. eq myeq: foreign mpg weight

. ml model b = myeq

or I could type

. eq foreign mpg weight

. ml model b = foreign

It makes no difference.

Calculating log-likelihood functions

In the log-likelihood programs shown above we have shown the actual calculation of the function taking place on one line.
For instance, in the single-equation with ancillary parameter case, we showed,

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma "`3'"

quietly replace `lnf' = some function of $S_mldepn, `Xb', `sigma'

end

In practice, real likelihood functions are difficult to write in a single replace statement. Obviously, one can split the
calculation into multiple statements; it is merely important that, at the conclusion of your program, `lnf' be filled in. Temporary
variables are often used:

program define myll

local lnf "`1'"

local Xb "`2'"

local sigma "`3'"

tempvar part1 part2 part3

quietly gen double `part1' = some function of $S_mldepn, `Xb', `sigma'

quietly gen double `part2' = some function of $S_mldepn, `Xb', `sigma'

quietly gen double `part3' = some function of $S_mldepn, `Xb', `sigma'

quietly replace `lnf' = `part1'*(`part2'+`part3')

end

Stata Technical Bulletin 21

The important thing to note here is that all intermediate calculations are stored in double precision. The temporary variables
`part1', `part2', and `part3' were defined by generate double statements, not mere generates. Had the double been
omitted, the intermediate values would have been stored in float precision. Float precision is not adequate for the numerical
optimization technique used by the lf method.

It is also important to remember that you are to return the log of the likelihood, not the likelihood itself. For some likelihood
functions, this simply amounts to taking the ln() of a calculated result. Whenever possible, however, it is better to evaluate the
log function analytically. For example, it is a bad idea to code the log-likelihood for linear regression as

log-likelihood = ln
� 1p

2� �
exp

h
�1

2

�
yj � xjb

�

�2i�

One should code the formula after analytic simplification:

log-likelihood = �1

2

�
yj � xjb

�

�2
� ln(

p
2� �)

You must remember that the lf method will use your program not just to obtain values for the log-likelihood function,
but that it will use the values returned by your function to calculate numeric derivatives. You want your function to evaluate
correctly for as wide a range of values as you can manage and taking logs analytically typically arranges that.

People who do not have a numerical background often assume that z = ln(exp(z)) is true, at least approximately and that
is the responsibility of good software to ensure the statement is adequately true. In Stata, for instance, ln(exp(-100)) differs
from �100 by less than 1.5� 10�14. But now consider ln(exp(-800)). exp(-800) evaluates to exactly 0 (the true answer is
less than 10�320) and ln(0) evaluates to missing. Similarly, z = ln(exp(z)) stops being even approximately true for z � 705
because exp(705) is missing (it is too large). Only thoughtful programming can avoid such situations from arising.

os16.1 Importing Stata graphs into word processors on the Macintosh: Part 2

Chinh Nguyen, Stata Corp., FAX (409) 696-4601, tech@stata.com

In STB-32 os16, I discussed how to get around the limitations of the Macintosh and Stata in getting publication-quality
results with Stata’s graphs. I also compared how the top DTP packages faired importing Stata’s graphs. Stata 5.0 has been released
since that time and many of the limitations of the Macintosh and Stata raised in the article have been addressed. Namely,
Stata can now use Macintosh and Windows fonts in its graphs. Stata’s method of drawing circles has been changed as well to
accommodate peculiarities in Microsoft Word, Microsoft PowerPoint, and Deneba Canvas. Although these improvements make
the results of importing Stata’s graphs much better, there are still some limitations with Word 6.0 that users should be aware of.
In this article, I will discuss those limitations, their causes, and how to avoid them.

The Macintosh and vertical text

The ability to use Macintosh and Windows fonts in Stata’s graphs was one of the most requested features for Stata prior
to 5.0 and was one of the first things we worked on. Implementing it was more difficult on the Macintosh because of a very
surprising limitation — the Macintosh has no built-in support for handling vertical text. So how does Stata draw vertical text? It
does this by drawing the text horizontally into a bitmap, rotating it by �90�, and then stamping it onto the graph — the same
method used by other Macintosh applications. This method works well for displaying and printing graphs from Stata but is not
ideal for copying graphs to the Clipboard. Because the vertical text is a bitmap, it cannot be directly edited as text from a DTP

package. In most cases, the inability to edit the vertical text is not that great of a limitation since Stata usually puts it in one
area. You can simply replace the text by removing the bitmap from the graph and inserting your own vertical text in its place
using a DTP package.

Another shortcoming this method of drawing vertical text is that it will only print it at the resolution of the bitmap rather
than the resolution of the printer. If you have a 1200 dpi (dots per inch) printer but the bitmap was drawn at a resolution of
300 dpi, the best it would be printed at is 300 dpi. This only applies to the vertical text of Stata graphs printed from another
application — the rest of the graph prints at the highest resolution possible. Graphs printed from Stata always print at the highest
resolution possible including vertical text. For drawing vertical text into the Clipboard, we chose 300 dpi for the resolution as a
compromise between print quality and memory limitations. Anything much higher would potentially cause memory crashes.

You may be thinking to yourself that the Macintosh does support vertical text because you can easily add it to your
documents using your favorite DTP package. That’s not entirely true. It is internally supported by your DTP package but outside
of your DTP package, it is not recognized as true vertical text. If you were to copy vertical text from one package and paste

22 Stata Technical Bulletin [STB-34]

it into another, you would either get horizontal text, horizontal text stacked vertically, or a bitmap representation of the text.
Figure 1 shows a FreeHand 5.5 document with vertical text that has been selected, copied, and pasted back into the document.
Figure 2 shows the same text after it was copied from FreeHand and pasted into PageMaker 6.0. You’ll notice that the text is
now horizontal. This is the reason that Stata chose to draw the text as a bitmap rather than draw it as horizontal text. If the text
were drawn horizontally, it would require that every imported graph would have to be edited and the text on the y-axis rotated.

Figure 1. FreeHand 5.5 document. Figure 2. PageMaker 6.0 document.

There was the possibility of drawing the text horizontally and stacking it vertically but there were a few problems with this
method. The idea behind this method was to have each letter of text drawn on a separate line. The problem was that when the text
was drawn as one string (so that it may be edited as a whole later), some letters such as ‘i’ and ‘l’ were so narrow that they would
appear on the same line. That made the text very difficult to read and visually unappealing. There was always the possibility of
drawing the text one character at a time but that would have made each character an individual drawing object. If it was edited
later, you would have to select each character object for modification rather than one single object (which is what I believe
happens with Excel). Besides the obvious problems with this method, a graph in Stata for the Macintosh would look different
from a graph in Stata for Windows. This would introduce an inconsistency across Statas on different platforms — something that
greatly concerns us and a situation we try to stay away from as much as possible.

Word 6.0 and Stata graphs

Users of Word 6.0 for the Macintosh have another problem when importing Stata graphs. Pasting a graph into Word
document and then printing it basically gives the intended results. But Word introduces a few oddities when it imports the
graphs. As an example, Figure 3 illustrates a Stata graph as it is directly printed from Stata. We would expect that Word would
give us the exact same output but Figure 4 shows what happens after a graph has been pasted to and printed from Word.

Weight (lbs.)
1760 4840

1 2

4 1

Weight (lbs.)
1760 4840

1 2

4 1

Figure 3. Graph printed from Stata. Figure 4. Graph printed from Word.

The first difference you’ll notice is that Word prints the graphs with thicker lines. That’s not such a problem as we would
have increased the line thickness anyway. But if you would have wanted thinner lines, it wouldn’t be possible with Word without
tedious editing. The most obvious problem with Word’s output is that some of the symbols in the scatterplot printed from Word
are ovals rather than circles. What is the cause of this? Perhaps the method for drawing the graph for printing is different from

Stata Technical Bulletin 23

the method for drawing the graph for the Clipboard? No. The exact same routines for drawing the graph are used regardless of
whether it is to be printed, drawn to the screen, or drawn to the Clipboard. The only differences are the characteristics of the
destination to be drawn to.

I initially discovered this problem while testing the graph copying feature of Stata with Word 6.0. To verify the fault was
not with Stata, I switched to the Clipboard viewer from the desktop by selecting Show Clipboard from the Edit menu. Yet, the
Clipboard viewer showed the same odd problem — some of the circles appeared as ovals. Undaunted, I fired up FreeHand 5.5
and pasted the graph there. Again the circles appeared as ovals! But then I used the magnifier and zoomed in on the ovals and
found they were circles. Printing gave the expected results — the circles were truly circles.

When the Macintosh shows the graph in the Clipboard viewer, it has to scale the image down from 300 dpi to 72 dpi. It
appears that this scaling is causing distortions to some of the circles due to rounding error. When I changed the code to draw
to the Clipboard at 72 dpi, the circles always showed up as circles in both the Clipboard and Word. So it seems that Word has
an internal resolution of 72 dpi and images transferred at a higher resolution have a possibility for distortion. Other applications
use a much higher resolution so you won’t see the distortion you see in Word.

So, on the one hand, graphs containing vertical text copied to the Clipboard at 72 dpi print very poorly because they contain
low-resolution bitmaps. On the other hand, graphs containing circles copied to the Clipboard at 300 dpi have some of their
circles distorted by Word and do not show up as intended. A future solution to the conflict may be to offer a choice between
72 dpi and 300 dpi for copying to the Clipboard.

Now let’s move on to the next oddity of Word. Figure 5 shows a different graph printed from Stata. Figure 6 shows the
graph after it was copied to the Clipboard, pasted into a Word document and then double-clicked so it could be edited from
Word’s graphics editor. You’ll notice a few problems. The tick marks are no longer completely vertical (marks 1.0, 4.0, and 9.0
on the x-axis) or horizontal (mark 50 on the y-axis). You’ll also notice that the segments in the spline are somewhat disjointed.

ƒ (kHz)
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0

5 0

100

150

200

250

2 0 2 0

3 0

5 0

8 0

180

250250

200

9 2

5 8

4 4
4 0

3 4

ƒ (kHz)
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0

50

100

150

200

250

20 20
30

50

80

180

250250

200

92

58

44 40
34

Figure 5. Graph printed from Stata. Figure 6. Graph from Word’s graphic editor.

Again, this appears to be a problem with Word’s internal resolution for images. When the graph is entered into Word’s
graphic editor, it is converted to Word’s internal format for images. Word is converting the graph into its own metric and in
the process, distorting many of the drawing objects due to rounding error. This situation is not unique to Stata and has been
reproduced in many other packages including the highly-regarded graphing package Deltagraph 4.0 when used with Word.

Tips for better output

How can you avoid this if you use Word 6.0 and have no other drawing package available to you? You should minimize
the modifications needed to your graphs by using labels and the graph options available when drawing the graphs. For example,
for the graph in Figure 5, I wanted to include the symbol for frequency, f , in the x-axis title. Prior to 5.0, this was not possible
because Stata only recognized standard ASCII characters. I would have had to edit the graph in another package and enter any
non-ASCII characters myself. But Stata 5.0 is now 8-bit clean which allows non-ASCII characters to be entered. To create the
title for the x-axis, I used Stata 5.0 and labeled the variable with the symbol f .

But there is currently nothing you can do when drawing a graph in Stata to avoid Word’s distortion of the circles. You
could try specifying a different plotting symbol but the same problem with Word would probably happen with other symbols.
In that case, you should still go with the recommendation of the last article — create an EPS (encapsulated postscript) file of
your graph. (see [U] 33 More on Stata for Macintosh). Although it is much less convenient than simply copying and pasting,
it gives the exact same output of printing the graph directly from Stata. Figure 7 shows an example of creating an EPS file in
Stata and printing it from Word. You can see that it is identical to the graph in Figure 3.

24 Stata Technical Bulletin [STB-34]

Weight (lbs.)
1760 4840

1 2

4 1

Figure 7. Graph saved as an EPS file printed from Word.

Although the output of EPS files is superior, it still has some weaknesses. It is difficult to modify the files because there
are still very few DTP applications that can edit them, and EPS files tend to be much larger than the same image as a PICT file.

People complain Word 6.0 is bloated and slow, but many are forced to use it because of its popularity in business and
education. Despite its faults, Word is a very capable word processor and its mishandling of hi-resolution images won’t prevent
you from publishing high-quality graphs if you follow some of the suggestions from this article.

sbe13 Age-specific reference intervals (“normal ranges”)

Eileen Wright, Royal Postgraduate Medical School, UK, ewright@rpms.ac.uk
Patrick Royston, Royal Postgraduate Medical School, UK, proyston@rpms.ac.uk

Introduction

Age-specific reference intervals (RIs) are in common use in medical practice, where it is assumed that values which lie
outside the RI may indicate individuals with some disorder. In the analysis of aspects of body size such as height and weight,
age-specific RIs are often referred to as “growth charts”. Other applications include the assessment of fetal size for possible
intrauterine growth retardation (Altman and Chitty 1993) and in risk screening for heart disease according to serum cholesterol
concentration (Mann et al. 1988). To construct RIs, a sample from an appropriate reference population, usually assumed to consist
of “normal” individuals, is needed. The measurement of interest may depend on factors such as age, sex, height, or weight,
but correction for age is usually the most important. A 100p% age-specific RI is defined to be the region, symmetric about the
median curve in the probability scale, encompassed by the 100 � (1� p) =2-th and 100 � (1 + p) =2-th centile curves. For
example, a 94% RI is bounded by 3rd and 97th centile curves.

As an example, Figure 1 shows observations of fetal kidney volume, measured by ultrasonography, together with an estimated
median curve and a 94% gestational age-specific RI. A description of how it was created is given later in this article.

Many methods have been proposed for the construction of age-specific RIs (see Wright and Royston (1995) for a review of
some of these). The transformation of a measurement towards normality is a popular approach due to the familiarity of the normal
distribution and its convenient mathematical properties. The method described here is based upon this idea. The parameters of a
chosen statistical distribution, based on transformation, are modeled as fractional polynomial functions of age, and estimation is
by maximum likelihood. Smooth centile curves with explicit formulae and individual SD-scores (residuals, which should have a
standard normal distribution) are easily obtained.

The method is implemented as an ado-file, xriml, which is a regression-like command with the following basic syntax:

xriml yvar
�
xvar

� �
if exp

��
in range

�
, dist(distribution code)

�
major options minor options

�

Full details are given in the section entitled Syntax of the xriml command.

Stata Technical Bulletin 25

K
id

n
e

y
 v

o
lu

m
e

 (
m

m
3

)

Length of gestation (weeks)
12 18 24 30 36 42

5000

10000

15000

20000

25000

30000

Figure 1. Kidney volume vs. age with 94% RI and median.

Method

Suppose the data consist of N pairs of observations, assumed to be a random sample from the population of interest, where
Y is the measurement of interest and T is age. Y is a continuous variable and T may be continuous or ordinal. The data should
be cross-sectional; i.e. there should be no more than one measurement per individual. The fetal kidney volume measurements,
used to estimate the RI, are plotted against gestational age in Figure 1.

Normal model

We consider first a normal model. Let �T and �T be the age-varying population mean and standard deviation (SD) of Y
as functions of T . Then the standardized variable

Z =
Y � �T

�T

has mean 0 and SD 1 at all ages. If Y is normally distributed then Z has a standard normal distribution, N (0; 1). A 100pth
centile curve for Y is calculated from qp, the 100pth percentile of N (0; 1) as

Cp = �T + qp�T

When the data are not normally distributed and Y has positive values, log transformation of Y will reduce positive
skewness and may also reduce heteroscedasticity (age-related changes in variance). Figure 2 shows the substantial reduction in
heteroscedasticity which results when fetal kidney volume is log transformed. Centile estimates calculated in the log scale should
be back-transformed by exponentiation to give estimates in the original scale.

lo
g

(k
id

n
e

y
 v

o
lu

m
e

)

Length of gestation (weeks)
12 18 24 30 36 42

5

6

7

8

9

10

Figure 2. Log(kidney volume) vs. age.

Now consider the choice of suitable regression functions for �T and �T , which we call the M and S curves respectively.
Each parameter curve is modeled using fracpoly (see [R] fracpoly in the Stata Reference Manuals), which determines the

26 Stata Technical Bulletin [STB-34]

best-fitting fractional polynomial (FP) powers of T for a given yvar. The selection of FPs is discussed in the manual and Royston
and Altman (1994).

Firstly a suitable FP is found for the mean, then for the SD, since incorrect modeling of �T will give inaccurate estimates
of �T . The M curve may be found by fractional polynomial regression of Y on T . For the log fetal kidney volume data, a
second degree FP with powers (0; 0:5) is selected by fracpoly, and appears to fit well. Figure 3 shows the fitted mean curve,
whose equation is �̂M ;0 + �̂M ;1 logT + �̂M ;2

p
T :

lo
g

(k
id

n
e

y
 v

o
lu

m
e

)

Length of gestation (weeks)
12 18 24 30 36 42

5

6

7

8

9

10

Figure 3. Mean curve with powers (0,0.5).

If Y is normally distributed, the expected value of the “scaled absolute residuals”, A =
p
�=2 jY � �T j, is equal to the

SD (Altman 1993), so the fitted values from a regression of A on T may be used to estimate the S curve. The scaled absolute
residuals from the mean curve fit of Figure 3 are plotted against T in Figure 4. An FP of first degree with power 3 fits the data
well, so that the equation for the S curve is �̂S;0 + �̂S;1T

3. In fact, a straight line is almost as good a fit as the FP.

S
c

a
le

d
 a

b
s

o
lu

te
 r

e
s

id
u

a
ls

Length of gestation (weeks)
12 18 24 30 36 42

0

.5

1

1.5

Figure 4. SD curve with power (3).

Once satisfactory powers of T have been chosen for both �T and �T , the regression coefficients for each curve may
be estimated by maximum likelihood (using appropriate equations in ml). The best powers for each curve could be found by
maximizing the likelihood using a grid search over every combination of powers, but the large number of models to be fitted
makes the procedure unacceptably slow in Stata. For the 424 observations of log fetal kidney volume and gestational age, a
normal model using powers (0; 0:5) for M and (1) (i.e. a straight line) for S is fitted using xriml as follows:

. xriml lnkidvol gaw, fp(m:0 0.5,s:1) dist(n)

Iteration 0: Log Likelihood = -88.611681

Iteration 1: Log Likelihood = -88.573762

Iteration 2: Log Likelihood = -88.573759

Normal Regression Number of obs = 424

Log Likelihood = -88.5737590

Stata Technical Bulletin 27

--

lnkidvol | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

Mcurve |

Xm_1 | 15.28276 .8573101 17.826 0.000 13.60247 16.96306

Xm_2 | -4.522462 .3210681 -14.086 0.000 -5.151744 -3.89318

_cons | -18.13476 1.153769 -15.718 0.000 -20.39611 -15.87342

---------+--

Scurve |

Xs_1 | -.0043249 .0015222 -2.841 0.004 -.0073084 -.0013415

_cons | .4294115 .0488307 8.794 0.000 .3337051 .5251179

--

Final deviance = 177.148 (424 observations.)

xriml silently creates new variables in the data as follows. The fitted parameter curves are stored in M ml and S ml, the
standardized values (also known as SD-scores) are put into Z ml and the default centile estimates (3rd and 97th) are placed in
C3 ml and C97 ml. The routine automatically plots the centile and median curves superimposed on the raw data, as shown in
Figure 5 for the log fetal kidney volume data. When it is unclear whether a higher degree FP may be a better fit for a particular
parameter, it is advisable to fit both models using xriml and compare the difference in final deviances to a chi-squared distribution
with number of degrees of freedom equal to twice the number of extra terms in the larger model. Note that in the above output,
dist(n) indicates the fitting of a normal model—other possibilities are discussed in the section entitled Extensions.

lo
g

(k
id

n
e

y
 v

o
lu

m
e

)

Length of gestation (weeks)
12 18 24 30 36 42

5

6

7

8

9

10

Figure 5. 94% RI and median for log(kidney volume).

It is important to assess model fit. The normality of the SD-scores in Z ml may be checked subjectively using a normal plot
(qnorm), or more formally using the Shapiro – Wilk W (swilk) or Shapiro – Francia W

0 (sfrancia) tests. For the log fetal
kidney volume example, the W test has a p-value of 0:64. The normal plot appears reasonably linear (see Figure 6). In cases
where there appear to be departures from normality, the non-normal skewness and/or kurtosis in the data need to be accounted
for using a more complex model, as discussed in the next section.

To assess the fit of the M and S curves, running line smooth curves (running, Sasieni 1995) of Z ml and Z ml squared
against T may, respectively, show any obvious trends or departures from the expected values of 0 and 1. When either the M

or the S curve appears to fit poorly, an FP of higher degree may be tried. Figures 7 and 8 show running line smooths of Z ml

and Z ml squared. There are no obvious systematic trends or peculiarities, and we may conclude informally from the plots that
the M and S curves are satisfactory.

If the normal model appears to fit well, the centiles may be back transformed to the original scale and the resulting median
and reference interval plotted as in Figure 1 for the fetal kidney volume data.

28 Stata Technical Bulletin [STB-34]

Z
_

m
l

:
N

o
rm

a
l

m
o

d
e

l

Inverse Normal
-4 -2 0 2 4

-4

-2

0

2

4

Figure 6. Normal plot of Z ml for kidney volume data.

Z
_

m
l

Length of gestation (weeks)
12 18 24 30 36 42

-.2

-.1

0

.1

.2

Figure 7. Local linear smooth of Z ml vs. age.

Z
_

m
l

s
q

u
a

re
d

Length of gestation (weeks)
12 18 24 30 36 42

.6

.8

1

1.2

1.4

Figure 8. Local linear smooth of Z ml squared vs. age.

Exponential normal models

A fitted normal model with non-normal skewness or kurtosis in its standardized (Z) values will lead to inaccurate centile
estimates. To accommodate skewness, an exponential normal (EN) model may be fitted (Manly 1976). The amount of skewness
is controlled by a parameter called
T . Non-normal kurtosis may be coped with using an extension of the EN model called the
MEN model, which involves a so-called modulus transformation (John and Draper 1980) with a parameter �T . The sequence of

Stata Technical Bulletin 29

models—normal, EN and MEN—have standardized values which may be written respectively as

Z =
Y � �T

�T

U =
exp (
TZ)� 1

T

V = sign (U)
1

�T

h
(1 + jU j)�T � 1

i

Expressions for the centile estimates for the EN and MEN distributions may be found by algebraically inverting these formulae.
For the EN and MEN distributions, �T and �T are no longer the mean and SD but are the median and a standard deviation-like
scale parameter. Greater mathematical detail of these models is given in Royston (1996) and Royston and Wright (1996).

The parameters of the distributions are essentially independent and so the FP powers of T selected for the M and S curve
in the normal model (as described above) are suitable for the EN and MEN models also. The
T and �T shape parameters
are referred to as G and D curves. To investigate non-normal skewness, we recommend fitting an EN model with a constant
estimated value of
T and the chosen powers of M and S; and comparing the deviance with that of the corresponding normal
model. To assess non-normal kurtosis, the deviance of the MEN model with constant �T should be compared with that of the EN

model. Goodness-of-fit tests may still reveal non-normality in the standardized values. In these situations, further modeling of
the
T and �T parameters may be required and we suggest fitting linear, then quadratic terms for them. Although important age
variations in skewness and kurtosis are not common in practice, when either does exist simple polynomials are usually adequate
models for them (Royston and Wright 1996).

To illustrate the use of these more elaborate models, we consider the American HANES I Survey of Health and Nutrition
(Hamill et al. 1977). As part of the survey, the heights of 2274 girls aged between 1 and 11 years were recorded (see Figure 9).

W
e

ig
h

t
(k

g
)

Age (years)
1 3 5 7 9 11

0

20

40

60

80

Figure 9. Weight vs. age.

Fractional polynomial regression of log(height) on age suggests suitable powers for the M and S curves to be (�2; 1) and
(1) respectively. The deviance obtained from xriml for the normal model is �2366:69 and the Shapiro Wilk test applied to the
corresponding standardized values (Z ml) has P < 0:0001. The EN model is a significant improvement on the normal model;
the deviance is reduced by 75:49: The Shapiro Wilk test (P = 0:0006) still indicates non-normality. The MEN model is an even
better fit than the EN model, the deviance reduction being 11:50, and a W test of the standardized values shows no significant
non-normality (P = 0:12). A normal plot for Z ml for this model is given in Figure 10.

The output for the final model is as follows:

. xriml loght age, fp(m:-2 1,s:1) di(men)

Iteration 0: Log Likelihood = 1190.8117

Iteration 1: Log Likelihood = 1224.5177

Iteration 2: Log Likelihood = 1226.8225

Iteration 3: Log Likelihood = 1226.8414

Iteration 4: Log Likelihood = 1226.8419

Modulus exp-Normal Regression Number of obs = 2273

Log Likelihood = 1226.8418577

30 Stata Technical Bulletin [STB-34]

--

loght | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

Mcurve |

Xm_1 | -.2494223 .0239616 -10.409 0.000 -.2963861 -.2024586

Xm_2 | .1154281 .0016735 68.975 0.000 .1121481 .118708

_cons | 2.308695 .0105783 218.248 0.000 2.287962 2.329428

---------+--

Scurve |

Xs_1 | .0082277 .0007748 10.619 0.000 .0067091 .0097463

_cons | .0832634 .0046861 17.768 0.000 .0740788 .0924481

---------+--

Gcurve |

_cons | -.121107 .0163471 -7.408 0.000 -.1531466 -.0890673

---------+--

Dcurve |

_cons | .8201514 .0505691 16.218 0.000 .7210377 .919265

--

Final deviance = -2453.684 (2273 observations.)

Note that any parameter curves for a given distribution which do not have specified powers of age in the fp option will be
estimated by a constant, e.g. G and D are constants in the MEN model fitted above.

Z
_

m
l

:
M

E
N

 m
o

d
e

l

Inverse Normal
-4 -2 0 2 4

-4

-2

0

2

4

Figure 10. Normal plot of Z ml for weight data.

In some contexts, such as assessment of child size, the aim is to provide estimates of a range of centiles and not just a
median and reference interval. In Figure 11, the 0.5th, 3rd, 10th, 50th, 90th, 97th, and 99.5th centiles on the original scale are
plotted for the final model described above. Centiles may be calculated in xriml using the option centile(0.5 3 10 50 90

97 99.5). An alternative is the centcalc routine, which requires variables containing the estimated parameters but needs no
further maximum likelihood fitting. The command in this example is as follows :

. centcalc M_ml S_ml, gamma(G_ml) delta(D_ml) di(men) cent(0.5 3 10 50 90 97 99.5)

W
e

ig
h

t
(k

g
)

Age (years)
1 3 5 7 9 11

0

20

40

60

80

Figure 11. 0.5, 3, 10, 50, 90, 97, 99.5 centiles for weight vs. age.

Stata Technical Bulletin 31

Comparison with qreg

Stata’s qreg command performs parametric quantile regression with an estimation procedure based on the L1-norm. For a
given centile (or quantile), a linear equation is estimated for the explanatory variable in terms of one or more covariates. Since
this is an alternative to the method proposed here, a brief comparison is made using the fetal kidney volume data.

Quantile regression models for the 3rd, 50th, and 97th centiles of log kidney volume were fitted using qreg with the
logarithm and square root of gestational age (found to be suitable FP powers above) as covariates. The resulting curves and those
obtained from xriml are shown in Figures 12 and 13—the former figure illustrates the curves on the log scale and the latter on
the original scale. (The full lines denote the xriml fit and the broken lines the qreg fit.) There is little difference between the
two sets of curves, with the larger discrepancies at the higher gestational ages.

lo
g

(k
id

n
e

y
 v

o
lu

m
e

)

Length of gestation (weeks)
12 18 24 30 36 42

5

6

7

8

9

10

Figure 12. 94% RI and median for log(kidney volume) (full line: xriml, dotted line: qreg).

K
id

n
e

y
 v

o
lu

m
e

 (
m

m
3

)

Length of gestation (weeks)
12 18 24 30 36 42

5000

10000

15000

20000

25000

30000

Figure 13. 94% RI and median for kidney volume (full line: xriml, dotted line: qreg).

The formulae for SD-scores and arbitrary centile estimates obtainable from the parametric approach in xriml are useful,
for example when reporting the results for others to use. This feature is not available with qreg, though of course equations
may be found for centile curves individually.

Extensions

The fitting of the normal, EN, and MEN distributions is described above. However, the dist option in xriml allows
the fitting of a further three models—the three-parameter shifted-log-normal (SL) and power-normal (PN) distributions and the
four-parameter modulus-power-normal (MPN) distribution. The basic principle is the same—the parameters are related to the
median, standard deviation, skewness, and, in the four-parameter model, the kurtosis. Royston (1991) estimated the mean using
least squares, then if necessary modeled non-normality using an origin-shifted logarithmic transformation. With xriml, a similar
model may be fitted more conveniently by maximum likelihood in a single step.

Models based on the EN distribution for log Y are closely related to LMS models (Cole 1988 and Cole and Creen 1992) in
which Y is assumed to follow a power-normal (PN) or Box–Cox power transformation model. The main distinction is that the

32 Stata Technical Bulletin [STB-34]

median of Y is modeled on the original scale in the LMS approach but on a log scale in the EN model for log Y . To mimic the
LMS method, dist(pn) should be used in conjunction with the cv option, for which the S curve is a coefficient of variation
(standard deviation divided by the median). An extension of the PN model which involves a modulus transformation and an
additional shape parameter is called the MPN model (analogous to the relation between the EN and MEN models). Note that the
PN and MPN models may be used only with data which are positively-valued—this restriction does not apply to the other models.
Further details of the distributions and the relationships between them are given by Royston (1996).

The measurement of interest may depend on covariates in addition to age. The simplest case is that of a binary covariate,
such as sex. Adding the option covar(m:sex) to an xriml command will add a term for sex to the M curve. Covariates may
be included for the S, G, and/or D curves in similar fashion. Note however that the parameter curves for the two sexes are
assumed parallel, which may be unrealistic. To fit curves with different shapes or slopes, new variables which contain suitable
FP powers of age for males and females separately must be generated and included as covariates for the appropriate parameter
curve.

The se option calculates approximate standard errors for the parameter and centile estimates. This allows calculation of
confidence limits which indicate the precision of the centile estimates.

Syntax of the xriml command

xriml yvar
�
xvar

� �
if exp

��
in range

�
, dist(distribution code)

�
major options minor options

�

Options

dist(distribution code) is not optional. Valid distribution codes are normal (n), exponential-normal (en), modulus exponential-
normal (men), power-normal (or Box – Cox) (pn), modulus power-normal (mpn), and shifted log-normal (sl).

The major options (most used options) are

centile(# [# [# : : :]]) fp([m:term,] [s:term,] [g:term,] [d:term])

The minor options (less used options), in alphabetic order, are

covars(covar list) cv init([g:#,] [d:#]) ltolerance(#) nograph

noscaling saving(filename[, replace]) se

Major options

centile(# [# [# : : :]]) defines the centiles of yvar condition on xvar required, separated by commas or spaces. Default is 3
and 97; i.e., a 94% reference interval.

fp([m:term,] [s:term,] [g:term,] [d:term]) specifies the fractional polynomial power(s) in xvar for the M; S, G, and D

regression models. term is of the form [powers] # [# : : :] or fix #. The word powers is optional. The powers should
be separated by spaces, for example fp(m:powers 0 1,s:powers 2), or equivalently fp(m:0 1,s:2). If powers or fix
are not specified for any curve, the curve is assumed to be a constant (cons) estimated from the data. fix # implies that
the corresponding curve is not to be estimated from the data, but is to be fixed at #. fix is valid only with the g: and d:

parameters. Default is constants for each curve.

Minor options

covars([m:mcovars,] [s:scovars,] [g:gcovars,] [d:dcovars]) includes mcovars (scovars, gcovars, dcovars) as predictors in the
regression model for the M (S, G, D, if applicable) curves.

cv parameterizes the S curve to be a coefficient of variation (CV, standard deviation divided by median), rather than a standard
deviation.

Stata Technical Bulletin 33

init([g:#,] [d:#]) specifies initial values for the G (g:) and D (d:) curves. Defaults are shown below.

dist Default
code G D

n N/A N/A
sl 0 N/A
pn 1 N/A
en 0.01 N/A
mpn 1 1
men 0.2 1

ltolerance(#) is a convergence criterion for the iterative fitting process. For convergence, the difference between the final
two values of the log-likelihood must be less than ltolerance. Default is 0.001.

nograph suppresses the default plot of yvar against xvar with fitted median and reference limits.

noscaling suppresses automatic scaling of xvar and its powers (see [R] fracpoly).

saving(filename[, replace]) saves the graph to a file (see nograph option above).

se produces standard errors of the M and S (and G and D, if applicable) curves. Standard errors of the estimated reference
limits are also calculated. (Warning: this option is computationally intensive when determining SEs of centiles, and may
take considerable time on a slow computer and/or with a large dataset.)

Saved Results

xriml saves the deviance (�2� log-likelihood of the final model) in S 1.

Syntax of the centcalc command

centcalc mvar svar
�
if exp

� �
in range

� �
, centiles(cent list) dist(njenjmenjpnjmpnjsl)
gamma(#jgvar) delta(#jdvar) cv prefix(stub)

�

Options

centiles(cent list) is the list of estimated centiles (e.g. 50 for the median) to be calculated. Values in cent list must be separated
by commas and/or spaces.

dist(njenjmenjpnjmpnjsl) determines the distributional model (see help xriml for further details). If dist() is not specified,
it is taken from the macro S dist.

gamma(#jgvar) defines the (first) shape parameter as a variable (gvar) or as a number (#). If gamma() is not specified, it is
taken from the macro S gamma.

delta(#jdvar) defines the second shape parameter as a variable (dvar) or as a number (#). If delta() is not specified, it is
taken from the macro S delta.

cv is an option relating to the parameterization of the S curve for the chosen distribution. See xriml for more information.

prefix() is the prefix of the names of the new variables created to hold the estimated centiles, each labelled appropriately (for
example C95 for the 95th centile). Default is C.

Acknowledgment

This research received financial support from project grant number 039911/Z/93/Z from The Wellcome Trust.

References
Altman, D. G. 1993. Construction of age-related reference centiles using absolute residuals. Statistics in Medicine 12: 917–924.

Altman, D. G. and L. S. Chitty. 1993. Design and analysis of studies to derive charts of fetal size. Ultrasound in Obstetrics and Gynecology 3:
378–383.

Cole, T. J. 1988. Fitting smoothed centile curves to reference data (with discussion). Journal of the Royal Statistical Society, Series A 151: 385–418.

Cole, T. J. and P. J. Green. 1992. Smoothing reference centile curves: The LMS method and penalized likelihood. Statistics in Medicine 11: 1305–1319.

34 Stata Technical Bulletin [STB-34]

Hamill, P. V. V., T. A. Drizd, C. L. Johnson, R. B. Reed, and A. F. Roche. 1977. NCHS growth curves for children birth–18 years. Washington DC:
National Center for Health Statistics Vital and Health Series 11 .

John, J. A. and N. R. Draper. 1980. An alternative family of transformations. Applied Statistics 29: 190–197.

Manly, B. F. J. 1976. Exponential data transformations. Statistician 25: 37–42.

Mann, J. I., B. Lewis, J. Shepherd, A. F. Winder, S. Fenster, L. Rose, and B. Morgan. 1988. Blood lipid concentrations and other cardiovascular risk
factors: distribution, prevalence and detection in Britain. British Medical Journal 296: 1702–1706.

Royston, P. 1991. Constructing time-specific reference ranges. Statistics in Medicine 10: 675–690.

Royston, P. 1996. Parametric models for estimating reference intervals in medicine. Technical Report TR-96-07. Statistics Section, Department of
Mathematics, Imperial College.

Royston, P. and D. G. Altman. 1994. sg26: Using fractional polynomials to model curved regression relationships. Stata Technical Bulletin 21: 11–23.

Royston, P. and E. M. Wright. 1996. A parametric method for estimating age-specific reference intervals (“normal ranges”). Journal of the Royal
Statistical Society Series A, submitted.

Sasieni, P. 1995. sed9: Symmetric nearest neighbor linear smoothers. Stata Technical Bulletin 24: 10–14.

Wright, E. M. and P. Royston. 1996. A comparison of statistical methods for age-related reference intervals. Journal of the Royal Statistical Society
Series A, in press.

smv3.1 Discriminant analysis: An enhanced command

Joseph Hilbe, Arizona State University, atjmh@asuvm.inre.asu.edu

A first version of discrim, a program to model discriminant analysis when the response or grouping variable is 0/1
dichotomous, was published in the January 1992 issue of the STB, see Hilbe (1992). Since then it has apparently enjoyed good use
from those who knew of its existence. However, the code is now outdated and suggested enhancements have been proposed — all
of which have been incorporated in this revision.

The manner in which the discriminant estimation is performed in discrim is quite unique. The details of the mathematics
involved are discussed in the original article. Selvin (1995) has presented an excellent overview of discriminant analysis using
the first version of discrim in his recent text. I recommend it to anyone using the discrim command.

Syntax

discrim grpvar
�
varlist

� �
if exp

� �
in range

� �
, predict anova graph detail keep

�

Options

predict provides a confusion matrix of actual vs. predicted group cell counts. Also included is a listing of the following
percentages: (1) correctly predicted, (2) model sensitivity, (3) model specificity, (4) false positive, and (5) false negative.

anova provides an ANOVA of discriminant scores vs. the group variable. Bartlett’s test for equal variances is included.

graph provides a classification graph showing correctly and incorrectly classified cases.

detail creates and lists the following for each retained case:

1. Group actual group value
2. PRED predicted group value
3. DIFF a star indicating misclassified cases
4. LnProb1 logistic probability of grouyp 1 membership
5. DscIndex discriminant index
6. DscScore discriminant score

keep keeps the variables created in the detail option in memory. Since the program drops cases with missing predictor values,
care must be taken if overwriting the original data set.

Saved Results

The standard output includes a listing of various summary statistics together with a display of model discriminant function
and unstandardized coefficients. The summary statistics are saved in S E macros to allow the user to have access to them for

Stata Technical Bulletin 35

subsequent analysis if necessary. A listing of created macros are listed as follows:

S E obs number of observations S E var independent variables
S E ob0 observations in group==0 S E ob1 observations in group==1

S E cn0 centroid 0 S E cn1 centroid 1
S E cng grand centroid S E r2 R-squared
S E mah Mahalanobis S E eig eigenvalue
S E cc canonical correlation S E e2 eta squared
S E lam Wilk’s lambda S E chi chi-squared

Example

For Stata’s auto.dta,

. discrim foreign price mpg weight length turn, anova predict detail

Dichotomous Discriminant Analysis

Observations = 74 Obs Group 0 = 52

Indep variables = 5 Obs Group 1 = 22

Centroid 0 = -0.7503 R-square = 0.5776

Centroid 1 = 1.7734 Mahalanobis = 6.3689

Grand Cntd = 1.0231

Eigenvalue = 1.3675 Wilk's Lambda = 0.4224

Canon. Corr. = 0.7600 Chi-square = 59.8976

Eta Squared = 0.5776 Sign Chi2 = 0.0000

Discrim Function Unstandardized

Variable Coefficients Coefficients

price -0.0008 0.0003

mpg 0.1624 -0.0643

weight 0.0072 -0.0029

length -0.0806 0.0320

turn 0.3136 -0.1243

constant -16.0869 6.8860

----- Predicted -----

Actual | Group 0 Group 1 | Total

---------+--------------------------+--------

Group 0 | 43 9 | 52

Group 1 | 0 22 | 22

---------+--------------------------+--------

Total | 43 31 | 74

---------+--------------------------+--------

Correctly predicted = 87.84 %

Model sensitivity = 82.69 %

Model specificity = 100.00 %

False positive = 0.00 %

False negative = 29.03 %

Discriminant Scores v Group Variable

Analysis of Variance

Source SS df MS F Prob > F

--

Between groups 98.4602843 1 98.4602843 98.46 0.0000

Within groups 72.0000103 72 1.00000014

--

Total 170.460295 73 2.33507253

Bartlett's test for equal variances: chi2(1) = 11.3597 Prob>chi2 = 0.000

PRED = Predicted Group DIFF = Misclassification

LnProb1 = Probability Gr 1 DscScore = Discriminant Score

DscIndex = Discriminant Index

foreign PRED DIFF LnProb1 DscIndex DscScore

1. 0 0 0.0592 2.7660 -0.5845

2. 0 0 0.0041 5.4924 -1.6648

3. 0 0 0.3090 0.8049 0.1926

4. 0 0 0.0341 3.3448 -0.8138

5. 0 0 0.0078 4.8420 -1.4071

6. 0 0 0.0121 4.4051 -1.2340

7. 0 1 * 0.9267 -2.5374 1.5170

8. 0 0 0.0279 3.5520 -0.8959

36 Stata Technical Bulletin [STB-34]

9. 0 0 0.0677 2.6220 -0.5274

10. 0 0 0.0055 5.1908 -1.5453

11. 0 0 0.0202 3.8826 -1.0269

12. 0 1 * 0.6891 -0.7961 0.8270

13. 0 0 0.0689 2.6032 -0.5200

14. 0 1 * 0.7991 -1.3808 1.0587

15. 0 0 0.0083 4.7789 -1.3821

(output omitted)

73. 1 1 0.9910 -4.7000 2.3739

74. 1 1 0.9887 -4.4718 2.2835

References
Hilbe, J. 1992. smv3: Regression-based dichotomous discriminant analysis. Stata Technical Bulletin 5: 13–17.

Selvin, S. 1995. Practical Biostatistical Methods. Belmont, CA: Duxbury.

sts12 A periodogram-based test for white noise

H. Joseph Newton, Texas A&M University, FAX (409) 845-3144, jnewton@stat.tamu.edu

Given a time series data set X1, : : : , Xn, one of the first things an analyst should do is to test the null hypothesis that
the data come from a white noise process of uncorrelated random variables having a constant mean and constant variance. One
common method for doing this test is referred to as Bartlett’s test (see Newton (1988, 172) and Bartlett (1955, 92–94) for details)
and consists of the following steps:

1. Calculate the periodogram of the data set, that is

f̂(!j) =
1

n

�����
nX
t=1

�
Xt � �X

�
e
2�i(t�1)!j

�����
2

at the frequencies !j = (j � 1)=n, j = 1; : : : ; q = [n=2] + 1. Under the null hypothesis of white noise, except for the
values at frequencies 0 and 0.5, these values should look like a random sample from a constant multiple of a �22 distribution
(f̂(0) = 0 and f̂(0:5) is a multiple of a �21).

2. From the periodogram calculate the cumulative periodogram

F̂ (!k) =

P
k

j=1 f̂(!j)P
q

j=1 f̂(!j)
; k = 1; : : : ; q

Note that F̂ (0) = 0, F̂ (!q) = 1 and under white noise, a plot of the cumulative periodogram versus frequency should fall
randomly along a line from (0,0) to (0:5,1).

3. To measure the deviation of F̂ from the expected straight line, we calculate

B =
p
q max
1�k�q

����F̂ (!k)� k

q

����
Under white noise,

lim
n!1

Pr(B � b) =
1X

j=�1

(�1)je�2b2j2 � G(b)

Thus, the null hypothesis of white noise is rejected if the calculated value of B leads to a p-value calculated from the cdf
G less than a specified �.

This test is often presented graphically as follows. On a plot of the cumulative periodogram, one can place the line k=q as
well as parallel lines on either side of this center line at a distance equal to the value of B having G(B) = 1� �. Then white
noise is rejected if and only if the plot of F̂ crosses either of the two parallel lines.

In this insert we present a program called wntestf which performs this analysis as well as the programs bartcdf and
bartq which calculate the cdf and quantile functions of B under the hypothesis of white noise.

Stata Technical Bulletin 37

Syntax of the wntestf command

wntestf varname
�
if exp

� �
in range

� �
, nograph level(#) t(varnamet) xlabel(#,: : :,#) ylabel(#,: : : ,#)

saving(filename) t1title(string) graph options
�

Options

nograph suppresses drawing the graph.

level(#) specifies the confidence level, in percent, for the confidence bands in the graph if the graph is to be drawn. The
default is level(95) or as set by set level; see [U] 26.4 Specifying the width of confidence intervals.

t(varnamet) specifies the variable name that contains the time at which the observation was recorded. This must be specified
once as the variable named here is used to determine the order of the observations in the estimation. Once specified,
however, it need not be specified again except to change the variables identity. Note that the data must be equally spaced
in time.

xlabel(#,: : :,#) is graph, twoway’s xlabel() option for labeling the x-axis. The default is xlabel(0,.1,.2,.3,.4,.5);
see [R] graph axis labels.

ylabel(#,: : :,#) is graph, twoway’s ylabel() option for labeling the y-axis. The default is ylabel(0,.2,.4,.6,.8,1);
see [R] graph axis labels.

saving(string) is graph’s saving() option; see [R] graph saving.

t1title(string) is graph, twoway’s t1title() option for specifying the t1 title. The default title is “Cumulative Periodogram
White Noise Test”; see [R] graph titles.

graph options are any of the other options allowed with graph, twoway; see [R] graph twoway.

Saved Results

The values of B and the p-value 1�G(B) of the test are placed in the global macros S 1 and S 2, respectively.

Syntax for the bartcdf and bartq commands

bartcdf # calculates G(#) and places its value in the global macro S 1.

bartq # calculates the value q of the random variable B such that G(q) = # and places the result in the global macro S 2.

Examples

We start by using Stata’s normal random number generator and testing the true null hypothesis of white noise without
producing the graph:

. set obs 100

. set seed 123456

. gen x = invnorm(uniform())

. gen t = _n

. wntestf x, t(t) nogr

. disp_s

S_1: .4599050096001969

S_2: .9840305472233085

Thus the value of B is 0.4599 which has a p-value of 0.9840, which means we would not reject the white noise hypothesis
for this data set.

In Figure 1, we graph another Gaussian white noise series of 100 observations.

38 Stata Technical Bulletin [STB-34]

t
0 50 100

-2

-1

0

1

2

Figure 1. A normal white noise series of length 100.

In Figure 2, we have plotted a point plot of the 51 values of the periodogram of the data in Figure 1. The frequencies are
0; 1=100; 2=100; : : : ; 50=100 = 0:5. As expected, the points look quite random with a few large values. This is what a random
sample from a �22 population would look like.

xr

xi
0 .1 .2 .3 .4 .5

0

1

2

3

Figure 2. Periodogram of the data in Figure 1.

In Figure 3, we have the result of using the default 95% confidence level. The cumulative periodogram falls entirely within
the confidence band and so again we don’t reject the hypothesis of white noise.

Cumulat ive Periodogram White Noise Test

frequency
0 .1 .2 .3 .4 .5

0

.2

.4

.6

.8

1

Figure 3. Result of wntestf for the data in Figure 1.

Stata Technical Bulletin 39

Finally, in Figure 4 we plot a non-white noise series of length n = 200 formed by

. gen x = invnorm(uniform()) + cos(2*_pi*_n/10)

This is a cosine curve (with amplitude one and period 10 time units) plus a white noise time series. Because the amplitude is
small relative to the variation in the noise, it is not obvious from the data plot that there is a cosine curve embedded in the noise.

t
0 50 100 150 200

-4

-2

0

2

4

Figure 4. A normal white noise series plus a cosine of period 10 and amplitude 1.

That there is a cosine of period 10 is very obvious from Figure 5 where the result of using wntestf is displayed. Note
the large jump in the cumulative periodogram at frequency 0.1 corresponding to the period 10, and that the confidence bands
are crossed at this point, thus leading to rejection of white noise.

Cumulat ive Periodogram White Noise Test

frequency
0 .1 .2 .3 .4 .5

0

.2

.4

.6

.8

1

Figure 5. Result of wntestf for the data in Figure 4

Remarks

wntestf uses several of the graphics primitives in data coordinates described in the insert gr20 described elsewhere in this
issue of the STB.

References
Bartlett, M. S. 1955. An Introduction to Stochastic Processes with Special Reference to methods and Applications. Cambridge: Cambridge University

Press.

Newton, H. J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Pacific Grove, California: Wadsworth & Brooks/Cole.

40 Stata Technical Bulletin [STB-34]

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: Smit Consult
Systems Consultants Address: Scheidingstraat 1

Address: P.O. Box 1169 Postbox 220
Nazerath-Ellit 17100, Israel 5150 AE Drunen

Phone: +972 6554254 Netherlands
Fax: +972 6554254 Phone: +31 416-378 125

Email: sasconsl@actcom.co.il Fax: +31 416-378 385
Countries served: Israel Email: j.a.c.m.smit@smitcon.nl

Countries served: Netherlands

Company: Dittrich & Partner Consulting Company: Timberlake Consultants
Address: Prinzenstrasse 2 Address: 47 Hartfield Crescent

D-42697 Solingen West Wickham
Germany Kent BR4 9DW U.K.

Phone: +49 212-3390 99 Phone: +44 181 462 0495
Fax: +49 212-3390 90 Fax: +44 181 462 0493

Email: available soon Email: 100412.2603@compuserve.com
Countries served: Austria, Germany, Italy Countries served: Ireland, U.K.

Company: Metrika Consulting Company: Timberlake Consultants
Address: Roslagsgatan 15 Satellite Office

113 55 Stockholm Address: Praceta do Comércio,
Sweden N�13–9� Dto. Quinta Grande

Phone: +46-708-163128 2720 Alfragide Portugal
Fax: +46-8-6122383 Phone: +351 (01) 4719337

Email: hedstrom@metrika.se Telemóvel: 0931 62 7255
Countries served: Baltic States, Denmark, Finland, Email: 100412.2603@compuserve.com

Iceland, Norway, Sweden Countries served: Portugal

Company: Ritme Informatique
Address: 34 boulevard Haussmann

75009 Paris
France

Phone: +33 1 42 46 00 42
Fax: +33 1 42 46 00 33

Email: ritme.inf@applelink.apple.com
Countries served: Belgium, France,

Luxembourg, Switzerland

