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dm45.2 Changing string variables to numeric: correction

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Syntax

destring
�
varlist

� �
, noconvert noencode float

�
Remarks

destring was published in STB-37. Please see Cox and Gould (1997) for a full explanation and discussion. It was translated
into the idioms of Stata 6.0 by Cox (1999). Here the program is corrected so that it can correctly handle any variable labels that
include double quotation marks. Thanks to Jens M. Lauritsen, who pointed out the need for this correction.

References
Cox, N. J. 1999. dm45.1: Changing string variables to numeric: update. Stata Technical Bulletin 49: 2.

Cox, N. J. and W. Gould. 1997. dm45: Changing string variables to numeric. Stata Technical Bulletin 37: 4-6. Reprinted in The Stata Technical
Bulletin Reprints, vol. 7, pp. 34–37.

dm72.1 Alternative ranking procedures: update

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk
Richard Goldstein, richgold@ix.netcom.com

The egen functions rankf( ), rankt( ) and ranku( ) published in STB-51 (Cox and Goldstein 1999) have been revised
so that the variable labels of the new variables generated refer respectively to “field”, “track” and “unique” ranks. For more
information, please see the original insert.

References
Cox, N. J. and R. Goldstein. 1999. Alternative ranking procedures. Stata Technical Bulletin 51: 5–7.

dm73 Using categorical variables in Stata

John Hendrickx, University of Nijmegen, Netherlands, j.hendrickx@mailbox.kun.nl

Introduction

Dealing with categorical variables is not one of Stata’s strongest points. The xi program can generate dummy variables
for use in regression procedures, but it has several limitations. You can use any type of parameterization, as long as it is the
indicator contrast (that is, dummy variables with a fixed reference category). Specifying the reference category is clumsy, third
order or higher interactions are not available, and the cryptic variable names make the output hard to read.

The new program desmat described in this insert was created to address these issues. desmat parses a list of categorical
and/or continuous variables to create a set of dummy variables (a DESign MATrix). Different types of parameterizations can be
specified, on a variable-by-variable basis if so desired. Higher order interactions can be specified either with or without main
effects and nested interactions. The dummy variables produced by desmat use the unimaginative name x *, which allows them
to be easily included in any Stata procedure but is hardly an improvement over xi’s output. Instead, a companion program
desrep is used after estimation to produce a compact overview with informative labels. A second companion program tstall

can be used to perform a Wald test on all model terms.

Example

Knoke and Burke (1980, 23) present a four-way table of race by education by membership by vote turnout. We can construct
their data by

. #delimit ;

. tabi 114 122 \

> 150 67 \

> 88 72 \

> 208 83 \

> 58 18 \

> 264 60 \

> 23 31 \

> 22 7 \
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> 12 7 \

> 21 5 \

> 3 4 \

> 24 10, replace;

(output omitted )

Pearson chi2(11) = 104.5112 Pr = 0.000

. #delimit cr

. rename col vote

. gen race=1+mod(group(2)-1,2)

. gen educ=1+mod(group(6)-1,3)

. gen memb=1+mod(group(12)-1,2)

. label var race "Race"

. label var educ "Education"

. label var memb "Membership"

. label var vote "Vote Turnout"

. label def race 1 "White" 2 "Black"

. label def educ 1 "Less than High School" 2 "High School Graduate" 3 "College"

. label def memb 1 "None" 2 "One or More"

. label def vote 1 "Voted" 2 "Not Voted"

. label val race race

. label val educ educ

. label val memb memb

. label val vote vote

. table educ vote memb [fw=pop], by(race)

----------------------+---------------------------------------------

| Membership and Vote Turnout

| ------- None ------- ---- One or More ---

Race and Education | Voted Not Voted Voted Not Voted

----------------------+---------------------------------------------

White |

Less than High School | 114 122 150 67

High School Graduate | 88 72 208 83

College | 58 18 264 60

----------------------+---------------------------------------------

Black |

Less than High School | 23 31 22 7

High School Graduate | 12 7 21 5

College | 3 4 24 10

----------------------+---------------------------------------------

Their loglinear model VM–VER–ERM can be specified as

. desmat vote*memb vote*educ*race educ*race*memb

desmat will produce the following summary output:

Note: collinear variables are usually duplicates and no cause for alarm

vote (Not Voted) dropped due to collinearity

educ (High School Graduate) dropped due to collinearity

educ (College) dropped due to collinearity

race (Black) dropped due to collinearity

educ.race (High School Graduate.Black) dropped due to collinearity

educ.race (College.Black) dropped due to collinearity

memb (One or More) dropped due to collinearity

Desmat generated the following design matrix:

nr Variables Term Parameterization

First Last

1 _x_1 vote ind(1)

2 _x_2 memb ind(1)

3 _x_3 vote.memb ind(1).ind(1)

4 _x_4 _x_5 educ ind(1)

5 _x_6 _x_7 vote.educ ind(1).ind(1)

6 _x_8 race ind(1)

7 _x_9 vote.race ind(1).ind(1)

8 _x_10 _x_11 educ.race ind(1).ind(1)

9 _x_12 _x_13 vote.educ.race ind(1).ind(1).ind(1)

10 _x_14 _x_15 educ.memb ind(1).ind(1)

11 _x_16 race.memb ind(1).ind(1)

12 _x_17 _x_18 educ.race.memb ind(1).ind(1).ind(1)
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Note that the information on collinear variables will usually be irrelevant because the dropped variables are only duplicates.
desmat reports this information nevertheless in case variables are dropped due to actual collinearity rather than simply duplication.
The 18 dummy variables use the “indicator contrast,” that is, dummy variables with the first category as reference. See below
for other types of parameterizations. The dummies can be included in a program as follows:

glm pop _x_*, link(log) family(poisson)

which produces the following results:

Residual df = 5 No. of obs = 24

Pearson X2 = 4.614083 Deviance = 4.75576

Dispersion = .9228166 Dispersion = .951152

Poisson distribution, log link

------------------------------------------------------------------------------

pop | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

_x_1 | .0209327 .1106547 0.189 0.850 -.1959466 .237812

_x_2 | .2318663 .107208 2.163 0.031 .0217426 .4419901

_x_3 | -.7678299 .1197021 -6.415 0.000 -1.002442 -.5332181

_x_4 | -.296346 .122656 -2.416 0.016 -.5367473 -.0559446

_x_5 | -.7932972 .1459617 -5.435 0.000 -1.079377 -.5072175

_x_6 | -.191805 .141013 -1.360 0.174 -.4681855 .0845755

_x_7 | -.8444554 .163886 -5.153 0.000 -1.165666 -.5232447

_x_8 | -1.510868 .197221 -7.661 0.000 -1.897414 -1.124322

_x_9 | .0700793 .2444066 0.287 0.774 -.4089487 .5491074

_x_10 | -.4455942 .3384535 -1.317 0.188 -1.108951 .2177626

_x_11 | -1.188121 .4732461 -2.511 0.012 -2.115666 -.2605759

_x_12 | -.5003494 .4320377 -1.158 0.247 -1.347128 .3464289

_x_13 | .7229824 .4324658 1.672 0.095 -.1246349 1.5706

_x_14 | .6475193 .1384515 4.677 0.000 .3761594 .9188792

_x_15 | 1.396652 .1611304 8.668 0.000 1.080843 1.712462

_x_16 | -.5248042 .2527736 -2.076 0.038 -1.020231 -.029377

_x_17 | .1695274 .4096571 0.414 0.679 -.6333859 .9724406

_x_18 | .7831378 .5068571 1.545 0.122 -.210284 1.77656

_cons | 4.760163 .0858069 55.475 0.000 4.591985 4.928342

------------------------------------------------------------------------------

The legend produced by desmat could be used to associate the parameters with the appropriate variables. However, it is
easier to use the program desrep to summarize the results using informative labels:

. desrep

Effect Coeff s.e.

vote

Not Voted 0.021 0.111

memb

One or More 0.232* 0.107

vote.memb

Not Voted.One or More -0.768** 0.120

educ

High School Graduate -0.296* 0.123

College -0.793** 0.146

vote.educ

Not Voted.High School Graduate -0.192 0.141

Not Voted.College -0.844** 0.164

race

Black -1.511** 0.197

vote.race

Not Voted.Black 0.070 0.244

educ.race

High School Graduate.Black -0.446 0.338

College.Black -1.188* 0.473

vote.educ.race

Not Voted.High School Graduate.Black -0.500 0.432

Not Voted.College.Black 0.723 0.432

educ.memb

High School Graduate.One or More 0.648** 0.138

College.One or More 1.397** 0.161

race.memb

Black.One or More -0.525* 0.253

educ.race.memb

High School Graduate.Black.One or More 0.170 0.410
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College.Black.One or More 0.783 0.507

_cons 4.760** 0.086

xi creates a unique stub name for each model term, making it easy to test their significance. After using desmat, the program
tstall can be used instead to perform a Wald test on each model term. Global macro variables term* are also available for
performing tests on specific terms only.

. tstall

Testing vote:

( 1) _x_1 = 0.0

chi2( 1) = 0.04

Prob > chi2 = 0.8500

Testing memb:

( 1) _x_2 = 0.0

chi2( 1) = 4.68

Prob > chi2 = 0.0306

Testing vote.memb:

( 1) _x_3 = 0.0

chi2( 1) = 41.15

Prob > chi2 = 0.0000

Testing educ:

( 1) _x_4 = 0.0

( 2) _x_5 = 0.0

chi2( 2) = 29.73

Prob > chi2 = 0.0000

(output omitted )

Testing race.memb:

( 1) _x_16 = 0.0

chi2( 1) = 4.31

Prob > chi2 = 0.0379

Testing educ.race.memb:

( 1) _x_17 = 0.0

( 2) _x_18 = 0.0

chi2( 2) = 2.39

Prob > chi2 = 0.3025

Syntax of desmat

desmat model
�
, default parameterization

�
The model consists of one or more terms separated by spaces. A term can be a single variable, two or more variables joined

by period(s), or two or more variables joined by asterisk(s). A period is used to specify an interaction effect as such, whereas
an asterisk indicates hierarchical notation, in which both the interaction effect itself and all possible nested interactions and
main effects are included. For example, the term vote*educ*race is expanded to vote educ vote.educ race vote.race

educ.race vote.educ.race.

The model specification may be followed optionally by a comma and a default type of parameterization. A parameterization
can be specified as a name, of which the first three characters are significant, optionally followed by a specification of the
reference category in parentheses (no spaces). The reference category should refer to the category number, not the category
value. Thus for a variable with values 0 to 3, the parameterization dev(1) indicates that the deviation contrast is to be used with
the first category (that is, 0) as the reference. If no reference category is specified, or the category specified is less than 1, then
the first category is used as the reference category. If the reference category specified is larger than the number of categories,
then the highest category is used. Notice that for certain types of parameterizations, the “reference” specification has a different
meaning.

Parameterization types

The available parameterization types are specified as name or name(ref) where the following choices are available.

dev(ref) indicates the deviation contrast. Parameters sum to zero over the categories of the variable. The parameter for ref is
omitted as redundant, but can be found from minus the sum of the estimated parameters.

ind(ref) indicates the indicator contrast, that is, dummy variables with ref as the reference category. This is the parameterization
used by xi and the default parameterization for desmat.
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sim(ref) indicates the simple contrast with ref as reference category. The highest order effects are the same as indicator contrast
effects, but lower order effects and the constant will be different.

dif(ref) indicates the difference contrast, for ordered categories. Parameters are relative to the previous category. If the first
letter of ref is ‘b’, then the backward difference contrast is used instead, and parameters are relative to the previous category.

hel(ref) indicates the Helmert contrast, for ordered categories. Estimates represent the contrast between that category and the
mean value for the remaining categories. If the first letter of ref is ‘b’, then the reverse Helmert contrast is used instead,
and parameters are relative to the mean value of the preceding categories.

orp(ref) indicates orthogonal polynomials of degree ref . The first dummy models a linear effect, the second a quadratic, etc.
This option calls orthpoly to generate the design (sub)matrix.

use(ref) indicates a user-defined contrast. ref refers to a contrast matrix with the same number of columns as the variable has
categories, and at least one fewer rows. If row names are specified for this matrix, these names will be used as variable
labels for the resulting dummy variables. (Single lowercase letters as names for the contrast matrix cause problems at the
moment; for example, use(c). Use uppercase names or more than one letter, for example, use(cc) or use(C).)

dir indicates a direct effect, used to include continuous variables in the model.

Parameterizations per variable

Besides specifying a default parameterization after specification of the model, it is also possible to specify a specific
parameterization for certain variables. This is done by appending =par[(ref)] to a single variable, =par[(ref)].par[(ref)]
to an interaction effect, =par[(ref)]*par[(ref)] to an interaction using hierarchical notation. A somewhat silly example:

. desmat race=ind(1) educ=hel memb vote vote.memb=dif.dev(1), ind(9)

The indicator contrast with the highest category as reference will be used for memb and vote since the default reference category
is higher than the maximum number of categories of any variable. The variable race will use the indicator contrast as well but
with the first category as reference, other effects will use the contrasts specified. Interpreting this mishmash of parameterizations
would be quite a chore.

Useful applications of the parameterization per variable feature could be to specify that some of the variables are continuous
while the rest are categorical, specifying a different reference category for certain variables, specifying a variable for the effects
of time as a low order polynomial, and so on.

On parameterizations

Models with categorical variables require restrictions of some type in order to avoid linear dependencies in the design
matrix, which would make the model unidentifiable (Bock 1975, Finn 1974). The parameterization, that is, the type of restriction
used does not affect the fit of the model but does affect the interpretation of the parameters. A common restriction is to drop the
dummy variable for a reference category (referred to here as the indicator contrast). The parameters for the categorical variable
are then relative to the reference category. Another common constraint is the deviation contrast, in which parameters have a sum
of zero. One parameter can therefore be dropped as redundant during estimation and found afterwards using minus the sum of
the estimated parameters, or by reestimating the model using a different omitted category.

In many cases, the parameterization will be either irrelevant or the indicator contrast will be appropriate. The deviation
contrast can be very useful if the categories are purely nominal and there is no obvious choice for a reference category, e.g.,
“country” or “religion”. If there is a large number of missing cases, it can be useful to include them as a separate category
and see whether they deviate significantly from the other categories by using the deviation contrast. The difference contrast can
be useful for ordered categories. In loglinear models, twoway interaction effects using the difference contrast produce the local
odds ratios (Agresti 1990). Stevens (1986) gives examples of using the Helmert contrast and user-defined contrasts in Manova
analyses.

A parameterization is created by constructing a contrast matrix C, in which the new parameters, �, are defined as a linear
function of the full set of indicator parameters, �. Given that A = XC, where A is an unrestricted indicator matrix and X
is a full rank design matrix, then X can be derived by X = AC 0(CC 0). Given this relationship, there are also formulas for
generating X directly using a particular contrast (for example, Bock 1975, 300).

Such equations are to define dummy variables based on the deviation, simple, and Helmert contrasts. In the case of a
user-defined contrast, the appropriate codings are found by assuming a data vector consisting only of the category values. This
means that A = I , the identity matrix, and that the codings are given by C 0(CC 0). These codings are then used to create
the appropriate dummy variables. Forming dummies based on the indicator contrast is simply a matter of dropping the dummy
variable for the reference category. Dummies based on the orthogonal polynomial contrast are generated using orthpoly. These
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dummies are normalized by dividing them by
p
m, where m is the number of categories, for comparability with SPSS and the

SAS version of desmat.

In certain situations, it might be necessary to ascertain the codings used in generating the dummy variables, for example,
when a user-defined contrast has been specified. Since the dummies have constant values over the categories of the variable
that generated them, the codings can be summarized using table var, contents(mean x 4 mean x 5). The minimum or
maximum may of course be used instead of mean, or in a second run as a check.

The simple contrast and the indicator contrast

The simple contrast and the indicator contrast both use a reference category. What then is the difference between the two?
Both produce the same parameters and standard errors for the highest order effect. In the example above, the estimates for
vote.educ.race and educ.race.memb are the same whether the simple or indicator contrast is used, but all other estimates
are different.

The difference is that the parameters for the indicator contrast are relative to the reference category whereas the values
for the simple contrast are actually relative to the mean value within the categories of the variable. For example, the systolic
blood pressure (systolic in systolic.dta; see, e.g., ANOVA) has the following mean values for each of the four categories
of the variable drug: 26.06667, 25.53333, 8.75, and 13.5. In a one way analysis of systolic by drug, the constant using the
indicator contrast with the first category as reference is 26.067. Using the simple contrast, the constant is 18.4625, the mean of
the four category means, regardless of the reference category.

Calculating predicted values is a good deal more involved using the simple contrast. Using the simple contrast, drug has
the following codings:

b1 b2 b3

drug==1 -.25 -.25 -.25

drug==2 .75 -.25 -.25

drug==3 -.25 .75 -.25

drug==4 -.25 -.25 .75

Given the estimates cons= 18.463, b1= �.533, b2= �17.317, b3= �12.567, the predicted values are calculated as

drug==1: 18.463 -.250*-.533 -.250*-17.317 -.250*-12.567 = 26.067

drug==2: 18.463 .750*-.533 -.250*-17.317 -.250*-12.567 = 25.533

drug==3: 18.463 -.250*-.533 +.750*-17.317 -.250*-12.567 = 8.750

drug==4: 18.463 -.250*-.533 -.250*-17.317 +.750*-12.567 = 13.500

If the indicator contrast is used, the b parameters have the same value but the constant is 26.067, the mean for the first category.
The predicted values can be calculated simply as

drug==1: 26.067 = 26.067

drug==2: 26.067 -.533 = 25.533

drug==3: 26.067 -17.317 = 8.750

drug==4: 26.067 -12.567 = 13.500

The flip side of this is that lower-order effects will depend on the choice of reference category if the indicator contrast is used
but not for the simple contrast. Tests for the significance of lower-order terms will also depend on the reference category if the
indicator contrast is used. In the sample program above, tstall will produce different results for all terms except the highest
order, vote.educ.race and educ.race.memb, if another reference category is used. Using the simple contrast, or one of the
other predefined contrasts such as the deviation or difference contrast, will give the same results for these tests.

The desrep command

desmat produces a legend associating dummy variables with model terms, but interpreting the results using this would be
rather tedious. Instead, a companion program desrep can be run after estimation to produce a compact summary of the results
with longer labels for the effects. Only the estimates and their standard deviations are reported, together with one asterisk to
indicate significance at the 0.05 level and two asterisks to indicate significance at the 0.01 level. The syntax is

desrep
�
exp
�
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Desrep is usually used without any arguments. If e(b) and e(V) are present, it will produce a summary of the results. If
the argument for desrep is exp it will produce multiplicative parameters, e.g., incident-rate ratios in Poisson regression, and
odds ratios in logistic regression. The parameters are transformed into exp(b) and their standard errors into exp(b)*se, where
b is the linear estimate and se its standard error.

desmat adds the characteristics [varn] and [valn] to each variable name, corresponding to the name of the term and the
value of the category, respectively. If valn is defined for a variable, this value will be printed with two spaces indented. If not,
the variable label, or the variable name if no label is present, is printed with no indentation. desrep does not depend on the
prior use of desmat and can be used after any procedure that produces the e(b) and e(V) matrices.

The tstall command

tstall is for use after estimating a model with a design matrix generated by desmat to perform a Wald test on all model
terms. The syntax is

tstall
�
equal

�
The optional argument equal, if used, is passed on to testparm as an option to test for equality of all parameters in a

term. The default is to test whether all parameters in a term are zero.

desmat creates global macro variables term1, term2, and so on, for all terms in the model. tstall simply runs testparm
with each of these global variables. If the global variables have not been defined, tstall will do nothing. The global variables
can of course also be used separately in testparm or related programs.

Note

The Stata version of desmat was derived from a SAS macro by the same name that I wrote during the course of my PhD
dissertation (Hendrickx 1992, 1994). The SAS version is available at http://baserv.uci.kun.nl/˜johnh/desmat/sas/.

References
Agresti, A. 1990. Categorical Data Analysis. New York: John Wiley & Sons.

Bock, R. D. 1975. Multivariate Statistical Methods in Behavioral Research. New York: McGraw–Hill.

Finn, J. D. 1974. A General Model for Multivariate Analysis. New York: Holt, Rinehart and Winston.

Hendrickx, J. 1992. Using SAS macros and PROC IML to create special designs for generalized linear models. Proceedings of the SAS European
Users Group International Conference. pp. 634–655.

——. 1994. The analysis of religious assortative marriage: An application of design matrix techniques for categorical models. Nijmegen University
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dm74 Changing the order of variables in a dataset

Jeroen Weesie, Utrecht University, Netherlands, j.weesie@fss.uu.nl

This insert describes the simple utility command placevar for the changing of the order of variables in a dataset. Stata
already has some of these commands. order changes the order of the variables in the current dataset by moving the variables
in a list of variables to the front of the dataset. move relocates a variable varname1 to the position of variable varname2 and
shifts the remaining variables, including varname2, to make room. Finally, aorder alphabetizes the variables specified in varlist
and moves them to the front of the dataset. The new command placevar generalizes the move and order commands.

Syntax

placevar varlist
�
, first last after(varname) before(varname)

�
Description

placevar changes the order of the variables in varlist relative to the other variables. The order of the variables in varlist
is unchanged.

Options

first moves the variables in varlist to the beginning of the list of all variables.

last moves the variables in varlist to the end of the list of all variables.
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after(varname) moves the variables in varlist directly after varname. varname should not occur in varlist.

before(varname) moves the variables in varlist directly before varname. varname should not occur in varlist.

Example

We illustrate placevar with the automobile data:

. use /usr/local/stata/auto

(1978 Automobile Data)

. ds

make price mpg rep78 hdroom trunk weight length

turn displ gratio foreign

We can put price, weight, and make at the end of the variables by

. placevar price weight make, last

. ds

mpg rep78 hdroom trunk length turn displ gratio

foreign price weight make

We can then move displ and gratio to the beginning with

. placevar displ gratio, first

. ds

displ gratio mpg rep78 hdroom trunk length turn

foreign price weight make

We can move hdroom through turn to a position just after foreign with

. placevar hdroom-turn, after(foreign)

. ds

displ gratio mpg rep78 foreign hdroom trunk length

turn price weight make

Finally, we can move gratio through trunk to the position just before displ with

. placevar gratio-trunk, before(displ)

. ds

gratio mpg rep78 foreign hdroom trunk displ length

turn price weight make

ip18.1 Update to resample

John R. Gleason, Syracuse University, loesljrg@accucom.net

The command resample in Gleason (1997) has been updated in a small but very useful way. The major syntax of resample
is now

resample varlist
�
if exp

� �
in range

� �
, names(namelist) retain

�
The new option retain is useful for resampling from two or more subsets of observations in a dataset.

resample draws a random sample with replacement from one or more variables, and stores the resample as one or more
variables named to resemble their parents; see Gleason (1997) for a precise description of the naming rule. By default, an existing
variable whose name satisfies the rule is silently overwritten; this simplifies the process of repeatedly resampling a dataset, as
in bootstrapping.

So, for example, a command such as

. resample x y in 1/20

will, on first use, draw a random sample of (x, y) pairs from observations 1; : : : ; 20, and store it in observations 1; : : : ; 20 of
the (newly created) variables x and y . A second use of the command above overwrites observations 1; : : : ; 20 of x and y

with a new random resample of (x, y) pairs from observations 1; : : : ; 20; in both cases, observations 21; : : : ; N of the variables
x and y will have missing values. The command

. resample x y in 21/l
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will place a random sample of (x, y) pairs from observations 21; : : : ; N in the variables x and y , and replace observations
1; : : : ; 20 of x and y with missing values.

However, it is sometimes useful to resample from two or more subsets of observations and have all the resamples available
simultaneously. The retain option makes that possible. In the example just given, the command

. resample x y in 21/l, retain

would place a random sample of (x, y) pairs from observations 21; : : : ; N in the variables x and y , without altering the contents
of observations 1; : : : ; 20 of the variables x and y .

In addition, the syntax has also been expanded slightly so that the command

. resample ?

will produce a brief reminder of proper usage by issuing the command which resample.

References
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ip29 Metadata for user-written contributions to the Stata programming language

Christopher F. Baum, Boston College, baum@bc.edu
Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

One of Stata’s clear strengths is the extensibility and ease of maintenance resulting from its nonmonolithic structure. Since
the program consists of a relatively small executable “kernel” which invokes ado-files to provide much of its functionality, the
Stata programming language may be readily extended and maintained by its authors. Since ado-files are plain text, they may be
easily transported over networks such as the Internet. This has led to the development of “net-aware” Stata version 6, in which
the program can enquire of the Stata Corporation whether it is lacking the latest updates, and download them with the user’s
permission. Likewise, software associated with inserts from the Stata Technical Bulletin may be “net-installed” from Stata’s web
site. The knowledge base, or metadata, of official information on Stata’s capabilities is updated for each issue of the STB, and
“official updates” provide the latest metadata for Stata’s search command, so that even if you have not installed a particular
STB insert, the metadata accessed by search will inform you of its existence.

A comprehensive collection of metadata cataloging users’ contributions to Stata is more difficult to produce. Stata’s
extensibility has led to the development of a wide variety of additional Stata components by members of the Stata user
community, placed in the public domain by their authors and generally posted to Statalist. Statalist is an independently operated
listserver for Stata users, described in detail in the Statalist FAQ (see the References). In September 1997, a RePEc “series,”
the Statistical Software Components Archive, was established on the IDEAS server at http://ideas.uqam.ca. RePEc, an
acronym for Research Papers in Economics, is a worldwide volunteer effort to provide a framework for the collection and
exchange of metadata about documents of interest to economists; be those documents the working papers (preprints) written by
individual faculty, the articles published in a scholarly journal, or software components authored by individuals on Statalist. The
fundamental scheme is that of a network of “archives,” generally associated with institutions, each containing metadata in the
form of templates describing individual items, akin to the automated cataloging records of an electronic library collection. The
information in these archives is assembled into a single virtual database, and is then accessible to any of a number of RePEc
“services” such as IDEAS. A service may provide access to the metadata in any format, and may add value by providing powerful
search capabilities, download functionality in various formats, etc. RePEc data are freely available, and a service may not charge
for access to them.

The Statistical Software Components Archive (SSC-IDEAS) may be used to provide search and “browsing” capabilities to
Stata users’ contributions to the Stata programming language, although it is not limited to Stata-language entries. The “net-aware”
facilities of Stata’s version 6 make it possible for each prolific Stata author in the user community to set up a download site
on their web server and link it to Stata’s “net from” facility. Users may then point and click to access user-written materials.
What is missing from this model? A single clear answer to the question “Given that Stata does not (yet) contain an aardvark

command, have Stata users produced one? And from where may I download it?” If we imagine 100 users’ sites linked to Stata’s
“net from” page, the problem becomes apparent.

By creating a “template” for each user contribution and including those templates in the metadata that produces the
SSC-IDEAS archive listing, we make each of these users’ contributions readily accessible. The IDEAS “search” facility may be
used to examine the titles, authors, and “abstracts” of each contribution for particular keywords. The individual pages describing
each contribution provide a link to the author’s email address, as well as the .ado and .hlp files themselves. If an author has
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placed materials in a Stata download site, the SSC-IDEAS entry may refer to that author’s site as the source of the material, so
that updates will be automatically propagated. Thus, we consider that the primary value added of the SSC-IDEAS archive is its
assemblage of metadata about users’ contributions in a single, searchable information base. The question posed above regarding
the aardvark command may be answered in seconds via a trip to SSC-IDEAS from any web browser.

It should be noted that materials are included in the SSC-IDEAS archive based on the maintainer’s evaluation of their
completeness, without any quality control or warranty of usefulness. If a Statalist posting contains a complete ado-file and help
file in standard Stata format, with adequate contact information for the author(s), it will be included in the archive as long as its
name does not conflict with an existing entry. Authors wanting to include a module in the archive without posting–due to, for
example, its length–or wanting an item included via its URL on a local site, rather than placing it in the archive–should contact
the maintainer directly (mailto:baum@bc.edu). Authors retain ownership of their archived modules, and may request that they
be removed or updated in a timely fashion.

Large utilities archlist, archtype, and archcopy

The “net-aware” features of Stata’s version 6 imply that most version 6 users will be using net install to acquire
contributions from the SSC-IDEAS archive. Consequently, the materials in the archive are described in two sets of metadata: first,
the RePEc “templates” from which the SSC-IDEAS pages are automatically produced; and second, stata.toc and .pkg files
which permit these materials to be net installed, are generated automatically from the templates. This duality implies that much
of the information accessible to a user of SSC-IDEAS is also available from within net-aware Stata.

The archlist command may be used in two forms. The command alone produces a current list of all Stata net-installable
packages in the SSC-IDEAS archive, with short descriptors. If the command is followed by a single character (a-z, ) the listing
for packages with names starting with that character is produced.

The archtype command permits the user to access the contents of a single file on SSC-IDEAS, specified by filename.

The archcopy command permits the user to copy a single file from SSC-IDEAS to the STBPLUS directory on their local
machine. It should be noted that net install is the preferable mechanism to properly install all components of a package, and
permits ado uninstall at a later date.

The archtype and archcopy commands are essentially wrappers for the corresponding Stata commands type and copy,
and acquire virtue largely by saving the user from remembering (or looking up), and then typing, the majority of the address of
each file in SSC-IDEAS, which for foo.ado would be

http://fmwww.bc.edu/repec/bocode/f/foo.ado

Therefore, archtype and archcopy inherit the characteristics of Stata’s type and copy; in particular, archcopy will not create
a directory or folder of STBPLUS if it does not previously exist, unlike net install.

It should also be noted that after the command archlist letter, which produces a listing of modules in the SSC-IDEAS

archive under that letter, the command net install may be given to install any of those modules. This sequence of commands
obviates the need to use net from wherever to navigate to the SSC-IDEAS link, whether by URL or using the help system on a
graphical version of Stata.

Syntax

archlist
�
using filename

� �
, replace

�
archlist letter

archtype filename

archcopy filename
�
, copy options

�
Description

These commands require a net-aware variant of Stata 6.0.

archlist lists packages downloadable from the SSC-IDEAS archive. If no letter is specified, it also logs what it displays, by
default in ssc-ideas.lst. Therefore, it may not be run quietly without suppressing its useful output. Any logging previously
started will be suspended while it is operating. If a single letter (including ) is specified, archlist lists packages whose names
begin with that letter, but only on the screen. Further net commands will reference that directory of the SSC-IDEAS link.

archtype filename types filename from the SSC-IDEAS archive. This is appropriate for individual .ado or .hlp files.
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archcopy filename copies filename from the SSC-IDEAS archive to the appropriate directory or folder within STBPLUS,
determined automatically. This is appropriate for individual .ado or .hlp files.

In the case of archtype and archcopy, the filename should be typed as if you were in the same directory or folder, for
example as foo.ado or foo.hlp. The full path should not be given.

Options

replace specifies that filename is to be overwritten.

copy options are options of copy. See help for copy.

Examples

The somewhat lengthy output of these commands is suppressed here to save space.

. archlist using ssc.txt, replace

. archlist a

. archtype whitetst.hlp

. archcopy whitetst.ado

. archcopy whitetst.hlp

Acknowledgments

Helpful advice was received from Bill Gould, Thomas Krichel, Jens Lauritsen and Vince Wiggins.

References
SSC-IDEAS archive, at URL http://ideas.uqam.ca/ideas/data/bocbocode.html

Statalist FAQ, at URL http://www.stata.com/support/statalist/faq/

sbe31 Exact confidence intervals for odds ratios from case–control studies

William D. Dupont, Vanderbilt University, bill.dupont@vanderbilt.edu
Dale Plummer, Vanderbilt University, dale.plummer@mcmail.vanderbilt.edu

Syntax

exactcc varcase varexposed
�
weight

� �
if exp

� �
in range

� �
, level(#) exact tb woolf by(varname)

nocrude bd pool nohom estandard istandard standard(varname) binomial(varname)
�

exactcci #a #b #c #d
�
, level(#) exact tb woolf

�
fweights are allowed.

Description

These commands and their options are identical to Stata’s cc and cci (see [R] epitab) except that additional output is
provided. The default output includes Cornfield’s confidence interval for the odds ratio calculated both with and without a
continuity correction. These intervals are labeled “adjusted” and “unadjusted,” respectively. We also provide Yates’ continuity
corrected chi-squared test of the null hypothesis that the odds ratio equals 1. When the exact option is given, the exact confidence
interval for the odds ratio is also derived, as well as twice the one-sided Fisher’s exact p-value. Analogous confidence intervals
for the attributable or preventive fractions are provided.

Methods

Let m1 and m0 be the number of cases and controls in a case–control study, n1 and n0 be the number of subjects who are,
or are not, exposed to the risk factor of interest, a be the number of exposed cases, and  be the true odds ratio for exposure in
cases compared to controls. Then Clayton and Hills (1993, 171) give the probability of observing a exposed cases given m1,
m0, n1 and n0, which is

f (aj ) = K a

a! (n1 � a)! (m1 � a)! (n0 �m1 + a)!
(1)
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In equation (1),K is the constant such that the sum of f(a) over all possible values of a equals one. LetPL( ) =
P

i�a
f(ij )

and PU ( ) =
P

i�a
f(ij ). Then the exact 100(1��)% confidence interval for  is ( L;  U ) where the limits of the confidence

interval are chosen so that PL( U ) = PU ( L) = �=2 (see Rothman and Greenland 1998, 189).

Cornfield provides an estimate of ( L;  U ) that is based on a continuity corrected normal approximation (see Breslow and
Day 1980, 133). Stata provides an analogous estimate that uses an uncorrected normal approximation (Gould 1999). We refer
to these estimates as Cornfield’s adjusted and unadjusted estimates, respectively. We estimate  L as follows. Let  0 and  1 be
the lower bound of the confidence interval using Cornfield’s unadjusted and adjusted estimates, respectively. Let p0 = PU ( 0)
and p1 = PU ( 1). We use the secant method to derive  L iteratively (Pozrikidis 1998, 208). That is, we let

 i+1 =  i � (pi � �=2)

�
 i �  i�1

pi � pi�1

�
(2)

pi+1 = PU ( i+1) (3)

and then solve equations (2) and (3) for i = 1; 2; : : : ; 100. These equations converge to  L and �=2, respectively. We stop
iterating and set  L =  i+1 when j i+1 �  ij < 0.005 i+1 ; exactcci abandons the iteration and prints an error message if
convergence has not been achieved within 100 iterations. However, we have yet to discover a 2� 2 table where this happens.
The estimates  0 and  1 are themselves calculated iteratively by programs that can return missing or nonpositive values. If this
happens we set  0 equal to the Woolf’s estimate of the lower bound of the confidence interval and  1 = 0.75 0. We estimate
 U in an analogous fashion. The formula for Yates’ continuity corrected �2 statistic is given in many introductory texts (see,
for example, Armitage and Berry 1994, 137).

Examples

We illustrate the use of exactcci with an example from Table 17.3 of Clayton and Hills (1993, 172).

. exactcci 3 1 1 19, level(90) exact

Proportion

| Exposed Unexposed | Total Exposed

-----------------+------------------------+----------------------

Cases | 3 1 | 4 0.7500

Controls | 1 19 | 20 0.0500

-----------------+------------------------+----------------------

Total | 4 20 | 24 0.1667

| |

| Point estimate | [90% Conf. Interval]

|------------------------+----------------------

| | Cornfield's limits

Odds ratio | 57 | 2.63957 . Adjusted

| | 5.378964 . Unadjusted

| | Exact limits

| | 2.44024 1534.137

| | Cornfield's limits

Attr. frac. ex. | .9824561 | .6211504 . Adjusted

| | .8140906 . Unadjusted

| | Exact limits

| | .5902042 .9993482

Attr. frac. pop | .7368421 |

+-----------------------------------------------

chi2(1) = 11.76 Pr>chi2 = 0.0006

Yates' adjusted chi2(1) = 7.26 Pr>chi2 = 0.0071

1-sided Fisher's exact P = 0.0076

2-sided Fisher's exact P = 0.0076

2 times 1-sided Fisher's exact P = 0.0152

These results give exact confidence intervals that are in complete agreement with those of Clayton and Hills. The next example
is from Gould (1999):

(Continued on next page)
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. exactcci 11 3 106 223, exact

Proportion

| Exposed Unexposed | Total Exposed

-----------------+------------------------+----------------------

Cases | 11 3 | 14 0.7857

Controls | 106 223 | 329 0.3222

-----------------+------------------------+----------------------

Total | 117 226 | 343 0.3411

| |

| Point estimate | [95% Conf. Interval]

|------------------------+----------------------

| | Cornfield's limits

Odds ratio | 7.713836 | 1.942664 35.61195 Adjusted

| | 2.260934 26.20341 Unadjusted

| | Exact limits

| | 1.970048 43.6699

| | Cornfield's limits

Attr. frac. ex. | .8703628 | .485243 .9719195 Adjusted

| | .557705 .961837 Unadjusted

| | Exact limits

| | .4923982 .9771009

Attr. frac. pop | .6838565 |

+-----------------------------------------------

chi2(1) = 12.84 Pr>chi2 = 0.0003

Yates' adjusted chi2(1) = 10.86 Pr>chi2 = 0.0010

1-sided Fisher's exact P = 0.0007

2-sided Fisher's exact P = 0.0007

2 times 1-sided Fisher's exact P = 0.0014

The adjusted and unadjusted Cornfield’s limits agree with those published by Gould to three significant figures. Also, the adjusted
limits are closer to the exact limits than are the unadjusted limits. Our final example comes from Table 4.6 of Armitage and
Berry (1994, 138).

. exactcci 21 16 1 4, exact

Proportion

| Exposed Unexposed | Total Exposed

-----------------+------------------------+----------------------

Cases | 21 16 | 37 0.5676

Controls | 1 4 | 5 0.2000

-----------------+------------------------+----------------------

Total | 22 20 | 42 0.5238

| |

| Point estimate | [95% Conf. Interval]

|------------------------+----------------------

| | Cornfield's limits

Odds ratio | 5.25 | .463098 . Adjusted

| | .6924067 . Unadjusted

| | Exact limits

| | .444037 270.5581

| | Cornfield's limits

Attr. frac. ex. | .8095238 | -1.15937 . Adjusted

| | -.4442378 . Unadjusted

| | Exact limits

| | -1.252065 .9963039

Attr. frac. pop | .4594595 |

+-----------------------------------------------

chi2(1) = 2.39 Pr>chi2 = 0.1224

Yates' adjusted chi2(1) = 1.14 Pr>chi2 = 0.2857

1-sided Fisher's exact P = 0.1435

2-sided Fisher's exact P = 0.1745

2 times 1-sided Fisher's exact P = 0.2871

The values of Yates’ continuity corrected �2 statistic and p-value agree with those published by Armitage and Berry (1994,
140), as do the one- and two-sided Fisher’s exact p-value. Note that Yates’ p-value agrees with twice the one-sided Fisher’s
exact p-value to two significant figures even though the minimum expected cell size is only 2.4.

Remarks

Many epidemiologists, including Rothman and Greenland (1998, 189) and Breslow and Day (1980, 128) define a 95%
confidence interval for a parameter to be the range of values that cannot be rejected at the 5% significance level. A more
traditional definition is that it is an interval that spans the true value of the parameter with probability 0.95. These definitions
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are equivalent for a normally distributed statistic whose mean and variance are unrelated. For a discrete statistic whose mean
and variance are interrelated, however, these definitions can lead to different intervals. Let us refer to these definitions as the
nonrejection and coverage definitions, respectively. The nonrejection 95% confidence interval always spans the true value of the
parameter with at least 95% but possibly greater certainty (see Rothman and Greenland 1998, 189, 221–222). Exact confidence
intervals are defined using the nonrejection definition. In all contingency tables that we have examined to date, the exact interval
for the odds ratio is better approximated by Cornfield’s adjusted confidence interval than by his unadjusted interval. This does
not, however, contradict the observation of Gould (1999) that the coverage probability of the adjusted interval can exceed 95%.
This is because the exact interval itself can have this over-coverage property. Statisticians who wish to approximate the exact
interval will prefer to use Cornfield’s adjusted interval. Those who seek an interval that comes as close as possible to spanning
the true odds ratio with 95% certainty may well prefer to use his unadjusted interval.

Controversy has surrounded the use of Yates’ continuity correction for decades. Grizzle (1967) and Camilli and Hopkins
(1978) performed simulation studies that indicated that the Type I error probability for the corrected �2 statistic was less than
the nominal value. They and Haviland (1990) argue that the continuity correction should not be used for this reason. Rebuttals
to these papers have been published by Mantel and Greenhouse (1968) and Mantel (1990). Tocher (1950) showed that uniformly
most powerful unbiased tests are obtained by conditioning on the observed marginal totals of a contingency table. The simulation
studies of Grizzle, and Camilli and Hopkins are not conditioned on the observed marginal total of exposed case and control
subjects. Many statisticians accept the Conditionality Principle, which states that if an ancillary statistic exists whose distribution
is unaffected by the parameter of interest, then inferences about this parameter should be conditioned on this ancillary statistic
(Cox and Hinkley 1974, 38). In case–control studies the marginal total of exposed cases and controls is not a true ancillary
statistic for the odds ratio, but it is similar to one in the sense that knowing the total number of exposed subjects tells us
nothing about the value of the odds ratio. This fact provides a justification for using Fisher’s exact test in case–control studies
even though the total number of exposed subjects is not fixed by the experimental design. Rothman and Greenland (1998, 251)
state that “Although mildly controversial, the practice [of conditioning on the number of exposed subjects] is virtually universal
in epidemiologic statistics.” Rothman and Greenland (1998, 185), Breslow and Day (1980, 128), Mantell (1990) and others
suggest doubling the one-sided Fisher’s exact p-value for two-sided tests. Yates’ continuity correction is used to approximate the
hypergeometic distribution of Fisher’s exact test by a normal distribution. Yates’ p-value provides an excellent approximation to
twice the one-tailed Fisher’s p-value over a wide range of contingency tables; for this purpose it is far more accurate than the
p-value from the uncorrected statistic (Dupont 1986). Note that doubling the one-sided exact p-value has the desirable property
that this statistic is less than 0.05 if and only if the exact 95% confidence interval excludes one. The other p-values from
exactcci do not share this property.

Our intent in the preceding paragraphs is not to rehash old arguments but to point out that knowledgeable statisticians can
and do disagree about the use of continuity corrections in calculating confidence intervals for the odds ratio or p-values for
testing null hypotheses. We believe that Stata, and its community of statisticians, will be strengthened by allowing STB readers
to decide for themselves whether or not to use these corrections.
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sg119 Improved confidence intervals for binomial proportions

John R. Gleason, Syracuse University, loesljrg@accucom.net

Stata’s ci and cii commands provide so-called exact confidence intervals for binomial proportions, i.e., for the parameter
p in the binomial distribution B(n; p). ci and cii compute Clopper–Pearson (1934) intervals which are “exact” in that their
actual coverage probability is never less than the nominal level, whatever the true value of p. But it is widely known that
Clopper–Pearson (CP) intervals are almost everywhere conservative; for most values of p, the actual coverage probability is
well above the nominal level. More importantly, from a practical view, “exact” intervals tend to be wide. These facts have
spawned a variety of alternative binomial confidence intervals. This insert presents two new commands propci and propcii

that implement, in addition to the CP and Wald (see below) intervals, three alternative confidence intervals each of which has
practical advantages over the CP and Wald intervals.

Overview

The best-known interval for p is of course bp� z�=2pbp(1� bp)=n, where bp is the sample proportion and z�=2 is the value
of a standard normal distribution having area �=2 to its right. This is known as the Wald interval for p, in deference to its
connection with the Wald test of a hypothesis about p. But the Wald interval has poor coverage properties even for large n, as
has been demonstrated repeatedly. (An excellent source is Vollset 1993, who examined the performances of the Wald and CP

intervals, along with those of ten competing intervals.) In particular, at certain isolated values of p, the actual coverage of the Wald
interval plunges well below the nominal confidence level. A graph of coverage probability versus p will consequently present
deep, downward spikes. For example, even at n = 1000 the actual coverage probability of the interval bp� 1.96

pbp(1� bp)=n
can drop to near 0.80.

Many non-CP confidence intervals attempt to dampen these coverage spikes, typically with only partial success; see Vollset
(1993). A common strategy is to replace the sample proportion bp = x=n with (x+ b)=(n+ 2b) for some b > 0, and then apply
the Wald formula. This biases the center of the resulting interval toward 1=2 and can greatly improve its worst-case coverage
probability. Agresti and Coull (1998) proposed a particularly simple and appealing variant of this idea for 95% confidence
intervals. Set b = 2, ~p = (x+ 2)=(n+ 4), and use the interval ~p� z0:025

p
~p(1� ~p)=(n+ 4). (For confidence other than 95%,

one would substitute the appropriate z�=2, presumably.) The estimator ~p can be traced to Wilson (1927), so we refer to the
associated interval as the Wilson interval. While setting b = 2 does greatly improve the minimum coverage of the Wald interval,
there is a flaw; except for bp rather near 1=2, the Wilson interval can be even wider than the CP interval.

On practical grounds, this creates an enigma; given that the CP interval is both “exact” and easily computed (say, by ci and
cii), why use an approximate interval even wider than the already conservative CP interval? It turns out that b = 2 is simply too
large a bias except when bp is near 1=2; allowing b to decrease as bp departs 1=2 solves the problem. A simple, effective choice
(Gleason 1999a) is b� = 2.64(bp(1� bp))0:2; so, let p� = (x+ b�)=(n+ 2b�) and refer to p� � z�=2

p
p�(1� p�)=(n+ 2b�) as

the enhanced-Wald confidence interval.

Another approach to improved binomial confidence intervals is the classic arcsine transformation. Vollset (1993) showed
that while the arcsine interval improves upon the Wald interval in some respects, it too suffers deep coverage spikes even
for large n. But biasing bp before transforming largely removes this deficiency (Gleason 1999a). Specifically, for 0 < x < n,
compute b�� = max(x; n� x)=(4n), p�� = (x+ b��)=(n+ 2b��), and T = arcsin(

p
p��). Then calculate T � 0.5z�=2=

p
n,

and back-transform the resulting limits. (The cases x = 0 and x = n are handled in the next paragraph.) Let us call this the
enhanced-arcsine interval.

Finally, there is the matter of endpoint adjustment which, as Vollset (1993) showed, can greatly improve performance. If
x 2 f0; 1; n� 1; ng, one or both of the CP limits can be easily computed and should be used in preference to the limits of any
approximate interval (Blyth 1986). Precisely, at x = n the CP interval is [(�=2)1=n; 1], and at x = n� 1 the CP upper limit is
(1��=2)1=n; similar expressions hold for x = 0 and x = 1. While there is little reason to quibble with these limits, using them
in connection with a non-CP method requires some care to ensure that the end result satisfies an eminently sensible condition:
Confidence limits for p should be nondecreasing in x. That is, upper and lower limits for any given x < n should be no greater
than those for x+ 1. Ordinarily this is not a problem until one mixes limits from two different methods; precisely what endpoint
adjustment requires.

These issues do complicate the topic of confidence intervals for p, but at least there is potential for practical gain. The
following conclusions can be drawn about endpoint adjusted binomial confidence intervals:
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� The Wald interval has poor worst-case coverage probability but it is very narrow when x is near 0 or n.

� The Wilson 95% confidence interval (Agresti and Coull 1998) has minimum coverage much closer to 95% than does the
Wald interval. However, Wilson intervals are often wider than, but rarely much narrower than the CP interval. In addition,
Wilson 90% intervals have mediocre minimum coverage probability.

� The enhanced-arcsine and enhanced-Wald intervals have much improved minimum coverage probability though both can
be slightly liberal, usually for p near 1=2. But for p beyond about 0.9 or 0.1, both methods tend to give minimum coverage
above the nominal level and intervals narrower than the CP interval.

� In fact, the expected intervals from the enhanced-arcsine and enhanced-Wald methods are (almost) always narrower than
the expected CP interval. The advantage in expected length is often near 5% but can reach more than 15%. This translates
to a 10% to 35% increase in effective sample size relative to the CP interval and, often, an even greater increase relative
to the Wilson interval.

� The enhanced Wald interval generally has coverage probability slightly better than, and expected interval length slightly
worse than the enhanced arcsine interval.

See Gleason (1999a) for additional detail on these confidence interval methods, and comparisons among them.

New commands for binomial confidence intervals

The commands propci and propcii compute confidence intervals for the binomial parameter p using the CP “exact”
method, or any of four endpoint-adjusted approximate methods; Wald, enhanced Wald, Wilson, or enhanced arcsine. Their design
mimics that of the commands oddsrci and oddsrcii (Gleason 1999b). propci has syntax

propci
�
weight

� �
if exp

� �
in range

�
, cond(cond)

�
level(#) none all arcsin ewald

exact wald wilson
�

propcii n x
�
, level(#) none all arcsin ewald exact wald wilson

�
fweights are allowed in propci.

propcii is the immediate form of propci. The arguments n and x are the sample size and count that define the proportionbp = x=n. The options are identical to their counterparts for propci; as with ci and cii, propci calls propcii to display
confidence intervals.

Each of the commands also has an alternative syntax that displays a quick reminder of usage:

propci ?

propcii ?

Options

cond() is required. cond is any Boolean (true–false) condition whose truth value defines the proportion of interest. cond can be
an arbitrarily complex expression and it may contain embedded double-quote (") characters; the only requirement is that
it evaluate to true or false. Internally, propci creates a temporary variable with a command resembling ‘gen byte Var =

(cond)’, and then uses tabulate to count the various values of Var.

level is the desired confidence level specified either as a proportion or as a percentage. The default level is the current setting
of the system macro S level.

The remaining options choose confidence interval methods for the proportion bp defined by cond. Any combination of methods
can be specified; all selects each of the five available methods, and none chooses none of them (useful to see just bp).
exact is the default method (for the sake of consistency with the ci command), but ewald is almost certainly a better
choice.

Example

To illustrate, consider the dataset cancer.dta supplied with Stata 6.0:

. use cancer

(Patient Survival in Drug Trial)
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. describe

Contains data from /usr/local/stata/cancer.dta

obs: 48 Patient Survival in Drug Trial

vars: 4

size: 576 (99.9% of memory free)

-------------------------------------------------------------------------------

1. studytim int %8.0g Months to death or end of exp.

2. died int %8.0g 1 if patient died

3. drug int %8.0g Drug type (1=placebo)

4. age int %8.0g Patient's age at start of exp.

-------------------------------------------------------------------------------

Sorted by:

Suppose we are interested in the proportion of patients who were at least 65 years old at the outset and who died during the
study, considering only patients who received one of the two active drugs. For that proportion, we’d like a 99% confidence
interval from each available method:

. propci if drug > 1, cond(died & (age >= 65)) all lev(.99)

Select cases: if drug > 1

Condition : died & (age >= 65)

Condition | Freq. Percent Cum.

------------+-----------------------------------

False | 26 92.86 92.86

True | 2 7.14 100.00

------------+-----------------------------------

Total | 28 100.00

Exact (Clopper-Pearson) 99% CI: [0.0038, 0.2911]

Wald (normal theory) 99% CI: [0.0002, 0.1968]

EWald (Enhanced Wald) 99% CI: [0.0002, 0.2605]

Wilson (Agresti-Coull) 99% CI: [0.0002, 0.2756]

Arcsin transform-based 99% CI: [0.0016, 0.2531]

Notice that there are appreciable differences in the widths of the various intervals. Given the knowledge that n = 28 and x = 2,
the command propcii 28 2, arc lev(97.5) computes a 97.5% confidence interval for the same proportion using the enhanced
arcsine method.

Saved Results

propcii saves in r(), whether or not called from propci. Thus, following the call to propci above:

r(lb Arcsi) lower limit of arcsin interval
r(ub Arcsi) upper limit of arcsin interval
r(lb Wilso) lower limit of Wilson interval
r(ub Wilso) upper limit of Wilson interval
r(lb EWald) lower limit of extended-Wald interval
r(ub EWald) upper limit of extended-Wald interval
r(lb Wald) lower limit of Wald interval
r(ub Wald) lower limit of Wald interval
r(lb Exact) lower limit of exact interval
r(ub Exact) upper limit of exact interval
r(level) confidence level
r(p hat) value of bp
r(N) sample size
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sg120 Receiver Operating Characteristic (ROC) analysis

Mario Cleves, Stata Corporation, mcleves@stata.com

Syntax

roctab refvar classvar
�
weight

� �
if exp

� �
in range

� �
, bamber hanley detail lorenz table binomial

level(#) norefline nograph graph options
�

rocfit refvar classvar
�
weight

� �
if exp

� �
in range

� �
, level(#) nolog maximize options

�
rocplot

�
, confband level(#) norefline graph options

�
roccomp refvar classvar

�
classvars

� �
weight

� �
if exp

� �
in range

� �
, by(varname) binormal level(#)

test(matname) norefline separate nograph graph options
�

fweights are allowed, see [U] 14.1.6 weight.

Description

The above commands are used to perform Receiver Operating Characteristic (ROC) analyses with rating and discrete
classification data.

The two variables refvar and classvar must be numeric. The reference variable indicates the true state of the observation
such as diseased and nondiseased or normal and abnormal, and must be coded 0 and 1. The rating or outcome of the diagnostic
test or test modality is recorded in classvar, which must be at least ordinal, with higher values indicating higher risk.

roctab is used to perform nonparametric ROC analyses. By default, roctab plots the ROC curve and calculates the area
under the curve. Optionally, roctab can display the data in tabular form and can also produce Lorenz-like plots.

rocfit estimates maximum-likelihood ROC models assuming a binormal distribution of the latent variable.

rocplot may be used after rocfit to plot the fitted ROC curve and simultaneous confidence bands.

roccomp tests the equality of two or more ROC areas obtained from applying two or more test modalities to the same
sample or to independent samples. roccomp expects the data to be in wide form when comparing areas estimated from the same
sample, and in long form for areas estimated from independent samples.

Options for roctab

bamber specifies that the standard error for the area under the ROC curve be calculated using the method suggested by Bamber
(1975). Otherwise, standard errors are obtained as suggested by DeLong, DeLong and Clarke-Pearson (1988).

hanley specifies that the standard error for the area under the ROC curve be calculated using the method suggested by Hanley
and McNeil (1982). Otherwise, standard errors are obtained as suggested by DeLong, DeLong and Clarke-Pearson (1988).

detail outputs a table displaying the sensitivity, specificity, percent of subjects correctly classified, and two likelihood-ratios
for each possible cut-point of classvar.

lorenz specifies that a Lorenz-like curve be produced, and Gini and Pietra indices reported.

table outputs a 2� k contingency table displaying the raw data.

binomial specifies that exact binomial confidence intervals be calculated.

level(#) specifies the confidence level, in percent, for the confidence intervals; see [R] level.

norefline suppresses the plotting of the 45 degree reference line from the graphical output of the ROC curve.

nograph suppresses graphical output of the ROC curve.

graph options are any of the options allowed with graph, twoway.

Options for rocfit and rocplot

level(#) specifies the confidence level, in percent, for the confidence intervals and confidence bands; see [R] level.

nolog prevents rocfit from showing the iteration log.
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maximize options controls the maximization process; see [R] maximize. You should never have to specify them.

confband specifies that simultaneous confidence bands be plotted around the ROC curve.

norefline suppresses the plotting of the 45 degree reference line from the graphical output of the ROC curve.

graph options are any of the options allowed with graph, twoway.

Options for roccomp

by(varname) is required when comparing independent ROC areas. The by() variable identifies the groups to be compared.

binormal specifies that the areas under the ROC curves to be compared should be estimated using the binormal distribution
assumption. By default, areas to be compared are computed using the trapezoidal rule.

level(#) specifies the confidence level, in percent, for the confidence intervals; see [R] level.

test(matname) specifies the contrast matrix to be used when comparing ROC areas. By default, the null hypothesis that all
areas are equal is tested.

norefline suppresses the plotting of the 45 degree reference line from the graphical output of the ROC curve.

separate is meaningful only with roccomp; it says that each ROC curve should be placed on its own graph rather than one
curve on top of the other.

nograph suppresses graphical output of the ROC curve.

graph options are any of the options allowed with graph, twoway.

Remarks

Receiver Operating Characteristic (ROC) analysis is used to quantify the accuracy of diagnostic tests or other evaluation
modality used to discriminate between two states or conditions. For ease of presentation, we will refer to these two states as
normal and abnormal, and to the discriminatory test as a diagnostic test. The discriminatory accuracy of a diagnostic test is
measured by its ability to correctly classify known normal and abnormal subjects. The analysis uses the ROC curve, a graph
of the sensitivity versus 1� specificity of the diagnostic test. The sensitivity is the fraction of positive cases that are correctly
classified by the diagnostic test, while the specificity is the fraction of negative cases that are correctly classified. Thus, the
sensitivity is the true-positive rate, and the specificity the true-negative rate.

The global performance of a diagnostic test is commonly summarized by the area under the ROC curve. This area can be
interpreted as the probability that the result of a diagnostic test of a randomly selected abnormal subject will be greater than the
result of the same diagnostic test from a randomly selected normal subject. The greater the area under the ROC curve, the better
the global performance of the diagnostic test.

Both nonparametric methods and parametric (semi-parametric) methods have been suggested for generating the ROC curve
and calculating its area. In the following sections we present these approaches, and in the last section present tests for comparing
areas under ROC curves.

The sections below are

Nonparametric ROC curves
Parametric ROC curves
Lorenz-like curves
Comparing areas under the ROC curve

Nonparametric ROC curves

The points on the nonparametric ROC curve are generated by using each possible outcome of the diagnostic test as a
classification cut-point, and computing the corresponding sensitivity and 1 � specificity. These points are then connected by
straight lines, and the area under the resulting ROC curve computed using the trapezoidal rule.

Example

Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to classify, using a nine point
scale, a random sample of 109 tomographic images from patients with neurological problems. The rating scale was as follows:
1–definitely normal, 2–probably normal, 3–questionable, 4–probably abnormal, and 5–definitely abnormal. The true disease
status was normal for 58 of the patients and abnormal for the remaining 51 patients.

Here we list nine of the 109 observations.

. list disease rating in 1/9
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disease rating

1. 1 5

2. 1 4

3. 0 1

4. 1 5

5. 0 1

6. 0 1

7. 1 5

8. 1 5

9. 1 4

For each observation, disease identifies the true disease status of the subject (0= normal, 1= abnormal), and rating contains
the classification value assigned by the reviewer.

We can use roctab to plot the nonparametric ROC curve. By specifying also the table option we obtain a contingency
table summarizing our data.

. roctab disease rating, table

Area under ROC curve = 0.8932
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Figure 1. Nonparametric ROC curve for the tomography data.

| rating

disease | 1 2 3 4 5 | Total

-----------+-------------------------------------------------------+----------

0 | 33 6 6 11 2 | 58

1 | 3 2 2 11 33 | 51

-----------+-------------------------------------------------------+----------

Total | 36 8 8 22 35 | 109

ROC -Asymptotic Normal--

Obs Area Std. Err. [95% Conf. Interval]

------------------------------------------------------

109 0.8932 0.0307 0.83295 0.95339

By default, roctab plots the ROC curve and reports the area under the curve, its standard error and confidence interval.
The nograph option can be used to suppress the ROC plot.

The ROC curve is plotted by computing the sensitivity and specificity using each value of the rating variable as a possible
cut-point. A point is plotted on the graph for each of the cut-points. These plotted points are joined by straight lines to form the
ROC curve and the area under the ROC curve computed using the trapezoidal rule.

We can tabulate the computed sensitivities and specificities for each of the possible cut-points by specifying detail.

(Continued on next page)
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. roctab disease rating, detail nograph

Detailed report of Sensitivity and Specificity

------------------------------------------------------------------------------

Correctly

Cut point Sensitivity Specificity Classified LR+ LR-

------------------------------------------------------------------------------

( >= 1 ) 100.00% 0.00% 46.79% 1.0000

( >= 2 ) 94.12% 56.90% 74.31% 2.1835 0.1034

( >= 3 ) 90.20% 67.24% 77.98% 2.7534 0.1458

( >= 4 ) 86.27% 77.59% 81.65% 3.8492 0.1769

( >= 5 ) 64.71% 96.55% 81.65% 18.7647 0.3655

( > 5 ) 0.00% 100.00% 53.21% 1.0000

------------------------------------------------------------------------------

Each cut-point in the table indicates the ratings used to classify tomographs as being from an abnormal subject. For example,
the first cut-point, (>= 1), indicates that all tomographs rated as 1 or greater are classified as coming from abnormal subjects.
Because all tomographs have a rating of 1 or greater, all are considered abnormal. Consequently, all abnormal cases are correctly
classified (sensitivity= 100%), but none of the normal patients are classified correctly (specificity= 0%). For the second cut-point
(>= 2), tomographs with ratings of 1 are classified as normal and those with ratings of 2 or greater are classified as abnormal.
The resulting sensitivity and specificity are 94.12% and 56.90%, respectively. Using this cut-point we correctly classified 74.31%
of the 109 tomographs. Similar interpretations can be used on the remaining cut-points. As mentioned, each cut-point corresponds
to a point on the nonparametric ROC curve. The first cut-point, (>= 1), corresponds to the point at (1,1) and the last cut-point,
(> 5), to the point at (0,0).

detail also reports two likelihood ratios suggested by Choi (1998); the likelihood ratio for a positive test result (LR+), and
the likelihood ratio for a negative test result (LR–). The likelihood ratio for a positive test result is the ratio of the probability
of a positive test among the truly positive subjects to the probability of a positive test among the truly negative subjects. The
likelihood ratio for a negative test result (LR–) is the ratio of the probability of a negative test among the truly positive subjects
to the probability of a negative test among the truly negative subjects. Choi points out that LR+ corresponds to the slope of the
line from the origin to the point on the ROC curve determined by the cut-point, and similarly LR– corresponds to the slope from
the point (1,1) to the point on the ROC curve determined by the cut-point.

By default, roctab calculates the standard error for the area under the curve using an algorithm suggested by DeLong,
DeLong and Clarke-Pearson (1988), and asymptotic normal confidence intervals. Optionally, standard errors based on methods
suggested by Hanley and McNeil (1982) or Bamber (1975) can be computed by specifying hanley or bamber respectively, and
an exact binomial confidence interval can be obtained by specifying binomial.

. roctab disease rating, nograph bamber

ROC Bamber -Asymptotic Normal--

Obs Area Std. Err. [95% Conf. Interval]

------------------------------------------------------

109 0.8932 0.0300 0.83428 0.95206

. roctab disease rating, nograph hanley binomial

ROC Hanley -- Binomial Exact --

Obs Area Std. Err. [95% Conf. Interval]

------------------------------------------------------

109 0.8932 0.0320 0.81559 0.94180

Parametric ROC curves

Dorfman and Alf (1969) developed a generalized approach for obtaining maximum likelihood estimates of the parameters
for a smooth fitting ROC curve. The most commonly used method, and the one implemented here, is based upon the binormal
model.

The model assumes the existence of an unobserved continuous latent variable that is normally distributed (perhaps after
a monotonic transformation) in both the normal and abnormal populations with means �n and �a, and variances �2

n
and �2

a
,

respectively. The model further assumes that the K categories of the rating variable result from partitioning the unobserved
latent variable by K � 1 fixed boundaries. The method fits a straight line to the empirical ROC points plotted using normal
probability scales on both axes. Maximum likelihood estimates of the line’s slope and intercept, and the K � 1 boundaries are
obtained simultaneously. See Methods and Formulas for details.

The intercept from the fitted line is a measurement of

�a � �n

�a
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and the slope measures
�n

�a

Thus the intercept is the standardized difference between the two latent population means, and the slope is the ratio of the
two standard deviations. The null hypothesis of no difference between the two population means is evaluated by testing if the
intercept= 0, and the null hypothesis that the variances in the two populations are equal is evaluated by testing if the slope= 1.

Example

We use Hanley and McNeil’s (1982) data described in the previous example to fit a smooth ROC curve assuming a binormal
model.

. rocfit disease rating

Fitting binormal model:

Iteration 0: log likelihood = -123.68069

Iteration 1: log likelihood = -123.64867

Iteration 2: log likelihood = -123.64855

Iteration 3: log likelihood = -123.64855

Binormal model Number of obs = 109

Goodness of fit chi2(2) = 0.21

Prob > chi2 = 0.9006

Log likelihood = -123.64855

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+-------------------------------------------------------------------

intercept | 1.656782 0.310456 5.337 0.000 1.048300 2.265265

slope (*) | 0.713002 0.215882 -1.329 0.092 0.289881 1.136123

----------+-------------------------------------------------------------------

_cut1 | 0.169768 0.165307 1.027 0.152 -0.154227 0.493764

_cut2 | 0.463215 0.167235 2.770 0.003 0.135441 0.790990

_cut3 | 0.766860 0.174808 4.387 0.000 0.424243 1.109477

_cut4 | 1.797938 0.299581 6.002 0.000 1.210770 2.385106

==============================================================================

| Indices from binormal fit

Index | Estimate Std. Err. [95% Conf. Interval]

----------+-------------------------------------------------------------------

ROC area | 0.911331 0.029506 0.853501 0.969161

delta(m) | 2.323671 0.502370 1.339044 3.308298

d(e) | 1.934361 0.257187 1.430284 2.438438

d(a) | 1.907771 0.259822 1.398530 2.417012

------------------------------------------------------------------------------

(*) z test for slope==1

rocfit outputs the MLE for the intercept and slope of the fitted regression line along with, in this case, 4 boundaries (because
there are 5 ratings) labeled cut1 through cut4. In addition rocfit also computes and reports 4 indices based on the fitted
ROC curve: the area under the curve (labeled ROC area), �(m) (labeled delta(m)), de (labeled d(e)), and da (labeled d(a)).
More information about these indices can be found in the Methods and Formulas section and in Erdreich and Lee (1981).

Note that in the output table we are testing whether or not the variances of the two latent populations are equal, by testing
if the slope= 1.

In Figure 2 we plot the fitted ROC curve.

(Graph on next page)
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. rocplot

Area under curve = 0.9113 se(area) = 0.0295
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Figure 2. Parametric ROC curve for the tomography data.

Lorenz-like curves

For applications where it is known that the risk status increases or decreases monotonically with increasing values of the
diagnostic test, the ROC curve and associated indices are useful in accessing the overall performance of a diagnostic test. When
the risk status does not vary monotonically with increasing values of the diagnostic test, however, the resulting ROC curve can
be nonconvex and its indices unreliable. For these situations, Lee (1999) proposed an alternative to the ROC analysis based on
Lorenz-like curves and associated Pietra and Gini indices.

Lee (1999) mentions at least three specific situations where results from Lorenz curves are superior to those obtained
from ROC curves: (1) a diagnostic test with similar means but very different standard deviations in the abnormal and normal
populations, (2) a diagnostic test with bimodal distributions in either the normal or abnormal populations, and (3) a diagnostic
test distributed symmetrically in the normal population and askew in the abnormal.

Note that when the risk status increases or decreases monotonically with increasing values of the diagnostic test, the ROC

and Lorenz curves yield interchangeable results.

Example

To illustrate the use of the lorenz option we constructed a fictitious dataset that yields results similar to those presented
in Table III of Lee (1999). The data assumes that a 12 point rating scale was used to classify 442 diseased and 442 healthy
subjects. We list a few of the observations.

. list in 1/7, noobs

disease class pop

1 12 169

0 11 7

1 10 17

0 9 41

1 8 18

0 7 85

0 6 85

The dataset consists of 24 observations, 12 observations from diseased individuals and 12 from nondiseased individuals. Each
observation corresponds to one of the 12 classification values of the rating scale variable, class. The number of subjects
represented by each observation is given by the pop variable, making this a frequency-weighted dataset. The data were generated
assuming a binormal distribution of the latent variable with similar means for the normal and abnormal population, but with the
standard deviation for the abnormal population 5 times greater than that of the normal population.

(Graph on next page)
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. roctab disease class [fweight=pop]

Area under ROC curve = 0.5774
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Figure 3. Nonparametric ROC curve for the artificial data.

The resulting ROC curve is nonconvex or, as termed by Lee, “wiggly.” Lee argues that for this and similar situations, the
Lorenz curve and indices are preferred.

. roctab disease class [fweight=pop], lorenz

Lorenz curve
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Figure 4. The Lorenz curve for the artificial data.

Lorenz Curve

---------------------------

Pietra index = 0.6493

Gini index = 0.7441

Similarly to ROC curves, a more bowed Lorenz curve suggests a better diagnostic test. This “bowedness” is quantified by
the Pietra index which is geometrically equivalent to twice the largest triangle that can be inscribed in the area between the
curve and the diagonal line, and the Gini index which is equivalent to twice the area between the Lorenz curve and the diagonal.
Lee (1999) provides several additional interpretations for the Pietra and Gini indices. Interested individuals should consult the
reference for complete information.

Comparing areas under the ROC curve

The area under multiple ROC curves can be compared using roccomp. The command syntax is slightly different if the ROC

curves are correlated (i.e., different diagnostic tests applied to the same sample) or independent (i.e., diagnostic tests applied to
different samples).

Example with correlated data

Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed to reconstruct CT images
from phantoms. We will call these two algorithms modalities 1 and 2. A sample of 112 phantoms was selected; 58 phantoms
were considered normal, and the remaining 54 phantoms abnormal. Each of the two modalities was applied to each phantom and
the resulting images rated by a reviewer using a six point scale: 1–definitely normal, 2–probably normal, 3–possibly normal,
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4–possibly abnormal, 5–probably abnormal, and 6–definitely abnormal. Because each modality was applied to the same sample
of phantoms the two sets of outcomes are correlated.

We list the first seven observations.

. list in 1/7

mod1 mod2 status

1. 1 1 0

2. 1 2 0

3. 1 3 1

4. 2 1 0

5. 2 1 1

6. 2 2 0

7. 2 3 0

Note that the data are in wide form. This is required when dealing with correlated data. Each observation corresponds to
one phantom. The variable mod1 identifies the rating assigned for the first modality, and mod2 identifies the rating assigned for
the second modality. The true status of the phantoms is given by status=0 if normal, and status=1 if abnormal. Note that
observations with at least one missing rating are dropped from the analysis.

We plot the two ROC curves and compare their areas.

. roccomp status mod1 mod2, symbol(oT)

ROC -Asymptotic Normal--

Obs Area Std. Err. [95% Conf. Interval]

-------------------------------------------------------------------------

mod1 112 0.8828 0.0317 0.82067 0.94498

mod2 112 0.9302 0.0256 0.88005 0.98042

-------------------------------------------------------------------------

Ho: area(mod1) = area(mod2)

chi2(1) = 2.31 Pr>chi2 = 0.1282
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Figure 5. Comparison of ROC curves for the CT images data.

By default, roccomp plots the ROC curves on the same graph. Optionally, the curves can be plotted side by side, each on
its own graph, by specifying separate.

For each curve, roccomp reports summary statistics and provides a test for the equality of the area under the curves using
an algorithm suggested by DeLong, DeLong and Clarke-Pearson (1988).

Although the area under the ROC curve for modality 2 is larger than that of modality 1, the chi-squared test yielded a
significance probability of 0.1282, suggesting that there is no significant difference between these two areas.

The roccomp command can also be used to compare more than two ROC areas. To illustrate this, we modified the previous
dataset by including a fictitious third modality.

. roccomp status mod1 mod2 mod3, symbol(oTS)
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Figure 6. Comparing three modalities for the CT images data.

ROC -Asymptotic Normal--

Obs Area Std. Err. [95% Conf. Interval]

-------------------------------------------------------------------------

mod1 112 0.8828 0.0317 0.82067 0.94498

mod2 112 0.9302 0.0256 0.88005 0.98042

mod3 112 0.9240 0.0241 0.87670 0.97132

-------------------------------------------------------------------------

Ho: area(mod1) = area(mod2) = area(mod3)

chi2(2) = 6.54 Pr>chi2 = 0.0381

By default, roccomp tests whether the areas under the ROC curves are all equal. Other comparisons can be tested by creating a
contrast matrix and specifying test(matname) where matname is the name of the contrast matrix.

For example, assume that we are interested in testing whether the area under the ROC for mod1 is equal to that of mod3.
To do this, we can first create an appropriate contrast matrix and then specify its name with the test() option.

Of course this is a trivial example because we could have just specified
. roccomp status mod1 mod3

without including mod2 and would have obtained the same test results. However, for illustration we will continue with this
example.

The contrast matrix must have its number of columns equal to the number of classvars (i.e., the total number of ROC

curves), a number of rows less than or equal to the number of classvars, and the elements of each row must add to zero.
. matrix C=(1,0,-1)

. roccomp status mod1 mod2 mod3, test(C) nograph

ROC -Asymptotic Normal--

Obs Area Std. Err. [95% Conf. Interval]

-------------------------------------------------------------------------

mod1 112 0.8828 0.0317 0.82067 0.94498

mod2 112 0.9302 0.0256 0.88005 0.98042

mod3 112 0.9282 0.0229 0.88327 0.97305

-------------------------------------------------------------------------

Ho: Comparison as defined by contrast matrix: C

chi2(1) = 5.55 Pr>chi2 = 0.0184

Note that although all three areas are reported, the comparison is made using the specified contrast matrix.

Perhaps more interesting would be to compare the area from mod1 to the average area of mod2 and mod3.
. matrix C=(1,-.5,-.5)

. roccomp s mod1 mod2 mod3 [fw=pop],test(C)

ROC -Asymptotic Normal--

Obs Area Std. Err. [95% Conf. Interval]

-------------------------------------------------------------------------

mod1 112 0.8828 0.0317 0.82067 0.94498

mod2 112 0.9302 0.0256 0.88005 0.98042

mod3 112 0.9282 0.0229 0.88327 0.97305

-------------------------------------------------------------------------

Ho: Comparison as defined by contrast matrix: C

chi2(1) = 3.50 Pr>chi2 = 0.0613



28 Stata Technical Bulletin STB-52

Other contrasts could be made. For example, we could test if mod3 is better than at least one of the other two by first
creating the following contrast matrix.

. matrix C=(-1, 0, 1 \ 0, -1, 1)

. mat list C

C[2,3]

c1 c2 c3

r1 -1 0 1

r2 0 -1 1

Example with independent data

In the previous example we noted that because each test modality was applied to the same sample of phantoms, the
classification outcomes were correlated. Now assume that we have collected the same data as presented by Hanley and McNeil
(1983), except that we applied the first test modality to one sample of phantoms and the second test modality to a different
sample of phantoms. The resulting measurements are now considered independent.

Here are a few of the observations.

. list in 1/7

status rating mod pop

1. 0 1 1 12

2. 0 1 2 31

3. 1 1 1 1

4. 1 1 2 3

5. 0 2 1 28

6. 0 2 2 19

7. 1 2 2 2

Note that the dataset is in long form. This is required when dealing with independent data. The dataset consists of 24
observations, 6 observations corresponding to abnormal phantoms and 6 to normal phantoms evaluated using the first modality,
and similarly 6 observations corresponding to abnormal phantoms and 6 to normal phantoms evaluated using the second modality.
The number of phantoms corresponding to each observation is given by the pop variable. Once again we have frequency weighted
data. The variable mod identifies the modality and rating is the assigned classification.

We can view our data better utilizing the table command.

. table status rating [fw=pop], by(mod) row col

----------+------------------------------------------------

mod and | rating

status | 1 2 3 4 5 6 Total

----------+------------------------------------------------

1 |

0 | 12 28 8 6 4 58

1 | 1 3 6 13 22 9 54

|

Total | 13 31 14 19 26 9 112

----------+------------------------------------------------

2 |

0 | 31 19 5 3 58

1 | 3 2 5 19 15 10 54

|

Total | 34 21 10 22 15 10 112

----------+------------------------------------------------

The status variable indicates the true status of the phantoms, status=0 if normal and status=1 if abnormal.

We now compare the areas under the two ROC curves.

(Continued on next page)
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. roccomp status rating [fw=pop], by(mod) symbol(oT)
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Figure 7. Comparing independent data.

ROC -Asymptotic Normal--

mod Obs Area Std. Err. [95% Conf. Interval]

-------------------------------------------------------------------------

1 112 0.8828 0.0317 0.82067 0.94498

2 112 0.9302 0.0256 0.88005 0.98042

-------------------------------------------------------------------------

Ho: area(1) = area(2)

chi2(1) = 1.35 Pr>chi2 = 0.2447

Saved Results

roctab saves in r():

Scalars
r(N) number of observations
r(area) area under the ROC curve
r(se) standard error for the area under the ROC curve
r(lb) lower bound of CI for the area under the ROC curve
r(ub) upper bound of CI for the area under the ROC curve
r(pietra) Pietra index
r(gini) Gini index

(Continued on next page)
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rocfit saves in e():

Scalars
e(N) number of observations
e(ll) log likelihood
e(chi2 gf) �

2 goodness-of-fit test
e(df gf) goodness-of-fit test degrees of freedom
e(area) area under the ROC curve
e(se area) standard error for the area under the ROC curve
e(deltam) �(m)

e(se delm) standard error for �(m)

e(de) de index
e(se de) standard error for the de index
e(da) da index
e(se da) standard error for the da index

Macros
e(cmd) rocfit

e(depvar) name of dependent variable
e(chi2type) goodness of fit; type of model �2 test

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

roccomp saves in r():

Scalars
r(N g) number of groups
r(chi2) �

2

r(df) �
2 degrees of freedom

r(p) significance probability
Matrices

r(V) variance–covariance matrix

Methods and Formulas

Assume that we applied a diagnostic test to each of Nn normal and Na abnormal subjects. Further assume that the higher
the outcome value of the diagnostic test, the higher the risk of the subject being abnormal. Let b� be the estimated area under the
curve, and let Xi; i = 1; 2; : : : ; Na and Yj ; j = 1; 2; : : : ; Nn be the values of the diagnostic test for the abnormal and normal
subjects, respectively.

Nonparametric ROC

The points on the nonparametric ROC curve are generated by using each possible outcome of the diagnostic test as a
classification cut-point and computing the corresponding sensitivity and 1 � specificity. These points are then connected by
straight lines, and the area under the resulting ROC curve computed using the trapezoidal rule.

The default standard error for the area under the ROC curve is computed using the algorithm described by DeLong, DeLong
and Clarke-Pearson (1988). For each abnormal subject, i, define

V10(Xi) =
1

Nn

NnX
j=1

 (Xi; Yj)

and for each normal subject, j, define

V01(Yj) =
1

Na

NaX
i=1

 (Xi; Yj)
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where

 (X;Y ) =

(
1 Y < X
1
2

Y = X

0 Y > X

Define

S10 =
1

Na � 1

NaX
i=1

(V10(Xi)� b�)2
and

S01 =
1

Nn � 1

NnX
j=1

(V01(Yj)� b�)2
The variance of the estimated area under the ROC curve is given by

var(b�) = 1

Na

S10 +
1

Nn

S01

The hanley standard error for the area under the ROC curve is computed using the algorithm described by Hanley and
McNeil (1982). It requires the calculation of two quantities, Q1 and Q2, where Q1 is the prob(two randomly selected abnormal
subjects will both have a higher score than a randomly selected normal subject), and Q2 is the prob(one randomly selected
abnormal subject will have a higher score than any two randomly selected normal subjects). Then the Hanley and McNeil
variance of the estimated area under the ROC curve is

var(b�) = b�(1� b�) + (Na � 1)(Q1 � b�2) + (Nn � 1)(Q2 � b�2)
NaNn

The bamber standard error for the area under the ROC curve is computed using the algorithm described by Bamber (1975).
For any two Y values, Yj and Yk , and any Xi value, define

byyx = p(Yj ; Yk < Xi) + p(Xi < Yj ; Yk)� 2p(Yj < Xi < Yk)

and similarly, for any two X values, Xi and Xl, and any Yj value, define

bxxy = p(Xi; Xl < Yj) + p(Yj < Xi; Xl)� 2p(Xi < Yj < Xl)

Then Bamber’s unbiased estimate of the variance for the area under the ROC curve is

var(b�) = 1

4
(Na � 1)(Nn � 1)[p(X 6= Y ) + (Na � 1)bxxy + (Nn � 1)byyx � 4(Na +Nn � 1)(b� � 0:5)2]

Asymptotic confidence intervals are constructed and reported by default, assuming a normal distribution for the area under
the ROC curve.

Exact binomial confidence intervals are calculated as described in [R] ci with p equal to the area under the ROC curve.

Parametric ROC curves

Dorfman and Alf (1969) developed a general procedure for obtaining maximum likelihood estimates of the parameters of
a smooth fitting ROC curve. The most common method, and the one implemented in Stata, is based upon the binormal model.

The model assumes that there is an unobserved continuous latent variable that is normally distributed in both the normal
and abnormal populations. The idea is better explained with the use of the following illustration.
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Figure 8. Illustration of the binormal distribution.

It is assumed that the latent variable for the normal and abnormal subjects are each normally distributed, perhaps after a monotonic
transformation, with means �n and �a, and variances �2

n
and �2

a
, respectively.

This latent variable is assumed to be partitioned into the k categories of the rating variable by k � 1 fixed boundaries. In
Figure 8, the k = 5 categories of the rating variable identified on the bottom result from the partition of the four boundaries Z1

through Z4.

Let Rj for j = 1; 2; : : : ; k, indicate the categories of the rating variable, and let i = 1 if the subject belongs to the normal
group, and i = 2 to the abnormal group.

Then
p(Rj ji = 1) = F (Zl=j)� F (Zl=j�1)

where Zk = (xk � �n)=�n, F is the cumulative normal distribution, F (Z0) = 0 and F (Zk) = 1. Also,

p(Rj ji = 2) = F (bZl=j � a)� F (bZl=j�1 � a)

where b = �n=�a a = (�a � �n)=�a.

The parameters a, b and the k � 1 fixed boundaries Zj are simultaneously estimated by maximizing the log likelihood
function

logL =

2X
i=1

kX
j=1

rij log
�
p(Rj ji)

�
where rij is the number of Rj’s in group i.

The area under the fitted ROC curve is computed as

�

�
ap

1 + b2

�
where � is the standard normal cumulative distribution function.

Point estimates for the ROC curve indices are estimated as follows:

�(m) =
a

b
; de =

2a

b+ 1
; da =

a
p
2p

1 + b2

Variances for these indices are computed using the delta method.

�(m) estimates (�a � �n)=�n, de estimates 2(�a � �n)=(�a � �n), and da estimates
p
2(�a � �n)=(�

2
a
� �2

n
)2.

Simultaneous confidence bands for the entire curve are obtained as suggested by Ma and Hall (1993) by first obtaining
Working–Hotelling confidence bands for the fitted straight line in normal probability coordinates, and then transforming them
back to ROC coordinates.
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Comparing areas under the ROC curve

Areas under ROC curves are compared using an algorithm suggested by DeLong, DeLong and Clarke-Pearson (1988). Letb� = (b�1; b�2; : : : ; b�k) be a vector representing the areas under k ROC curves. For the rth area define

V r

10(Xi) =
1

Nn

NnX
j=1

 (Xr

i
; Y r

j
)

and for each normal subject, j, define

V r

01(Yj) =
1

Na

NaX
i=1

 (Xr

i
; Y r

j
)

where

 (Xr; Y r) =

(
1 Y r < Xr

1
2

Y r = Xr

0 Y r > Xr

Define the k � k matrix S10 such that the (r; s)th element is

S
r;s

10 =
1

Na � 1

NaX
i=1

(V r

10(Xi)� b�r)(V s

10(Xi)� b�s)
and S01 such that the (r; s)th element is

S
r;s

01 =
1

Nn � 1

NnX
j=1

(V r

01(Yi)� b�r)(V s

01(Yi)� b�s)
Then the covariance matrix is

S =
1

Na

S10 +
1

Nn

S01

Let L be a contrast matrix defining the comparison, then

(b� � �)0L0
�
LSL0

��1
L(b� � �)

has a chi-square distribution with degrees of freedom equal to the rank of LSL0.
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sg121 Seemingly unrelated estimation and the cluster-adjusted sandwich estimator

Jeroen Weesie, Utrecht University, The Netherlands, j.weesie@fss.uu.nl

Introduction

Suppose I have estimated two (or more) models, either on different datasets, on overlapping datasets, or on the same dataset.
I want to test whether some relationship between the estimators holds. Such a hypothesis is often that the coefficients estimated
by one estimator are equal (or proportional) to the coefficients estimated by the other estimator. There may be both substantial
and specification-type arguments for assuming such a relationship between the estimators. I provide some examples.

� I estimated an ordinal response model (for example, ologit), and I wonder whether some consecutive categories can be
joined. I recode the dependent variable and estimate again, and I check whether the estimated coefficients are different. At
face value, they look the same, but are the differences indeed not significant?

Also, I wonder whether some category (for example, “neutral” in a 5-point Likert scale) really fits into the scale. I reestimate
the model but exclude the neutral observations. Are the results the same?

� I estimate comparable logit, probit, and gompit models. (In Stata, I could use cloglog.) Do these models yield the same
results, that is, are the coefficients the same, or better yet, proportional?

� I want to test whether the effect of x1 on y1 is the same as the effect of x2 on y2. If y1 and y2 are both “continuous”, I
may turn to multivariate regression (sureg, mvreg, and reg3 in Stata) and Wald testing (test in Stata). But what if y1
and y2 are both binary, so I turn to logit models? And even more complicated, what if y1 is binary and y2 is continuous?

� I want to perform some analysis and I have two different measurements of a concept that I want to use as an independent
variable. Do the results differ significantly, depending on which instrument I use?

� Hausman and McFadden (1984) discuss a probabilistic version of the assumption of independence of irrelevant alternatives
in discrete choice models, namely that the distribution of choices between alternatives in some set A, given that one of
the A-alternatives is chosen, does not depend on extra but nonchosen alternatives B. They propose a test statistic derived
as a Mahalanobis (covariance)-distance between parameter estimates based on decisions from the full set of alternatives
and estimates based on data that ignore some alternatives. But how does one proceed if the observations are clustered, for
example, travel mode decisions of persons within a household?

� I want to analyze whether two different labor market outcome variables (say the continuous variable income and the binary
variable promotion) depend on formal education and labor market experience in a similar way. More precisely, I want to
know whether the ratio of the effects of education and experience on income and on promotion are the same, so that one
can perceive of a one-dimensional “human capital” concept in explaining labor market success.

Hausman (1978) proposed a test that is appropriate to test some of these hypotheses; equality constraints between two
estimators, one of which is efficient under H0, while the other estimator is consistent under both H0 and Ha. This test is
available in Stata via the command hausman. The efficiency requirement is a strong one indeed. White (1982, 1994) has shown
how Hausman’s test can be modified if the requirement that one of the estimators is efficient is not fulfilled. Clogg et al. (1995) is
a relatively nontechnical explication of this test in the context of generalized linear models. I expect that White’s test is actually
superior to Hausman’s test even if one of the estimators is efficient, as in most cases efficiency only holds asymptotically. It
would be interesting to verify (using a number of Monte Carlo experiments, for example) whether this intuition is correct. As
I demonstrate below, White’s test is essentially a fairly straightforward application of Stata’s adjustment for clustering of the
robust or sandwich estimator of the asymptotic variance of estimators.

However, some of the testing problems raised above are not tackled by the Hausman–White test. In this note, I will also
show how the research by Hausman and White can be generalized, admittedly modestly, to deal with, for example

� Hypotheses involving more than two estimators (see Example 3);

� Nonlinear between-estimator hypotheses (see Example 3);

� Pooling a number of inefficient estimators, to obtain a pooled more efficient estimator.

I will also discuss a Stata command that implements White’s generalization of the Hausman test and which can also be
used to deal with some relatively minor generalizations.

Example: Cross-model hypotheses for logit models

In this illustration, I demonstrate how some cross-model hypotheses can be tested using the facilities already in Stata. It
will also be made clear that a new facility is required to perform more general cross-model testing.
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I want to test whether the effects of x1 on a binary y1 is the same as the effect of x2 on a binary y2. In this setting, x1
may equal x2 and y1 may equal y2. I expect that logit regression models are appropriate marginal models for these responses.
For simplicity, I ignore further predictor variables in the marginal models. If the two logit models are fitted on different data,
the estimators are (stochastically) independent, and so a Wald test rejects the null hypothesis if

bb(x1)�bb(x2)qb�2
b̂(x1)

+ b�2
b̂(x2)

is larger than the appropriate �21 threshold. The approach presented applies in the case of models estimated on independent
samples, and provides a convenient way to test cross-model hypotheses. However, as in the examples provided in the introduction,
if the models are fitted on the same data (or on partially overlapping data), the estimators are stochastically dependent and the
above test that ignores the covariance between the estimators is not appropriate.

One may conceive of this problem in a “stacked” way, with double the number of observations, the dependent variable
being y1 in the first half, and y2 in the second half; the predictor variable z1 is set to x1 in the first half of the expanded data,
and to 0 in the rest, and z2 defined analogously. The following diagram illustrates the expanded format

26664
id y1 y2 x1 x2

1 y11 y21 x11 x21
2 y12 y22 x12 x22
3 y13 y23 x13 x23

37775 =)

26666666664

id y z1 z2

1 y11 x11 0

2 y12 x12 0

3 y13 x13 0

1 y21 0 x21
2 y22 0 x22
3 y23 0 x23

37777777775
The observations in the expanded data are clustered by the original subjects, identified with the identifier id. The simplest

way to deal with clustering is via the cluster-modification for the sandwich estimator (see Rogers 1993 and the robust section
in the Stata 6.0 manuals); a more efficient test using the quasi-likelihood method of “generalized estimation equations” is an
obvious alternative, not discussed here. In Stata the data manipulation can easily be accomplished with the stack command:

. gen zero = 0

. gen one = 1

. stack id y1 x1 zero zero id y2 zero x2 one, into(id y z1 z2 mod2)

. logit y z1 z2 mod2, cluster(id)

. test z1 = z2

The variable mod2 is a dummy for the “second model” that is included to allow the intercept in the second model to differ
from that of the first model. In this case, the two logit models were fitted to the same data. It would apply also, without any
modification, to the case in which the two logit models were estimated on overlapping data that result if the y or x variables
are missing on some observations. The resulting test statistic produced by the above code fragment is identical to that obtained
more conveniently via the new suest command which is included in this insert and is discussed below:

. suest fit A: logit y1 x1

. suest fit B: logit y2 x2

. suest combine A B

. test Ax1 = Bx2

The stacking method can be applied not only to logit models, but applies to all estimation commands that support the
cluster option, for example, regress, poisson, and oprobit. The “stacking” approach clearly generalizes to stacking more
than two logit or other models, to testing more general linear hypotheses, and also to testing nonlinear cross-model hypotheses
(in Stata using testnl). There are, however, two disadvantages to the stacking method. First, if the models include ancillary
parameters (for example, in regression: the residual variance; in ordinal response models: the cutpoints; in lognormal survival
time regression: the time scale parameter), these are constrained to be equal between the stacked models. In the approach via
suest, this is relaxed. Second, the stacking method does not generalize, however, to “stack” different models, such as a logit
model and a regression model; different likelihoods are used to model different parts of the data. To analyze this more general
setting, I have to develop the theory somewhat more formally.
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General theory

The starting point is that I have estimated different models on the same data (or, to data that have some overlap), and
hence the estimators are stochastically dependent. I want to test a between-estimator hypothesis H0. To derive a test, I need the
simultaneous distribution of the series of estimators, b = (b1; : : : ; bk), where the estimator bj is defined as “the” solution of

Lj(bj) =
X
i

uij(bj) = 0; j = 1; : : : ; k

I will refer to the uij as the “scores”, but the approach works more generally than for maximum likelihood estimation, and
actually applies to equation estimators and misspecified models as developed in the theory of White (1994). Under “suitable
regularity conditions” (White 1982), the bj are asymptotically normally distributed, with variance estimated consistently by the
sandwich estimator

Vj = AVar(bj) = D�1
j

X
i

uiju
0
ij
D�1
j

where Dj is the Jacobian of Lj in bj . In the context of maximum likelihood estimation, Dj can be estimated consistently by
(minus) the Hessian of the log likelihood or by the Fisher information. If the model is also well specified, the sandwiched term
(
P

i
uiju

0
ij

) converges in probability to Dj , and so Vj may be consistently estimated by D�1
j

.

I now define the simultaneous “stacked” estimation equation:

L(b) = (L1(b1); L2(b2); : : : ; Lk(bk)) = 0

Under “suitable regularity conditions” (see White 1982 for details), b is asymptotically jointly normal distributed as well. The
Jacobian and scores of the simultaneous equation are easily expressed in the Jacobian and scores of the separate equations.
Clearly the Jacobian of L,

D(b) = �L=�b

is block diagonal with blocks D1; D2; : : : ; Dk. Observe that the inverse of D(b) is again block diagonal with the inverses of
Dj on the diagonal. The scores u of L are simply obtained as the concatenated scores of the separate equations:

ui = (ui1; ui2; : : : ; uik)

The sandwich estimator for the asymptotic variance of b reads again

V = AVar(b) = D(b)�1
X
i

uiu
0

i
D(b)�1

Taking a closer “partitioned” look at this expression, we see that AVar(bj) is estimated by

D�1
j

X
uiju

0

ij
D�1
j

which is yet again the familiar sandwich estimator for bj based on the separate estimation equation Lj . Thus, considering several
estimators simultaneously in this way, does not affect the estimators of the asymptotic variances of these estimators. But, as a
bonus, we obtain an estimate of the covariance of different estimators. The sandwich estimator of the asymptotic covariance
Vjh of bj and bh is

Vjh = ACov(bj ; bh) = D�1
j

X
i

uiju
0
ih
D�1
h

which is also obtained by White (1982).

It is of some interest to understand that this estimator for the covariance of estimators is “nothing but” an application of
the cluster modification of the sandwich estimator proposed by Rogers (1993). Consider the stacked data format as proposed
in Section 1, and assume that Stata would be able to estimate a “stacked model” in which different models apply to different
observations, for example, a logit model for the first half, and a regression model to the second half, and there exists a one-to-one
cluster relation between the first and second half. If there are no common parameters to both models, the score statistics of
parameters for the stacked models are zero in the half of the data in which they do not occur. In the Rogers method, we have
to add the score statistics of the observations within a cluster. This boils down to concatenating the score statistics at the level
of the cluster!
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Test statistics

Having established the asymptotic distribution of the simultaneous estimator b, one can use the familiar apparatus of
Wald testing to obtain a test for equality constraints between whatever is estimated by the estimators (their probability limits).
First, consider the standard case studied by Hausman (1978) and White (1982); namely k = 2 and an equality hypothesis,
H0 : plim b1 � b2 = 0. We have

V = AVar(b1 � b2) = V1 + V2 � V12 � V 0
12

and so a Wald-type test statistic for H0 can be obtained as

H = (b1 � b2)
0V �(b1 � b2)

which under H0 follows asymptotically a �2 distribution with rank(V ) degrees of freedom (additional regularity conditions are
required if V is not of full rank), and so we will reject H0 if H is large, relative to a �2-derived threshold.

Hausman (1978) has shown that if b1 is efficient (i.e., has minimal asymptotic variance), then ACov(b1 � b2; b1) = 0, and
so AVar(b1 � b2) = V2 � V1. Moreover, due to the efficiency of b1, V2 � V1 is asymptotically positive definite. But in finite
samples (i.e., in all real applications), positive definiteness is not ensured; in that case, Hausman’s test is not well-defined, which
may be confusing to nonstatisticians.

To apply the approach advocated in this note, we not only need the estimators bj and Jacobians Vj , but also the score
statistics uij . These will often be available in software that computes sandwich estimators of (co)variance, and otherwise are
often simple to compute “by hand.” Thus, at the limited costs of the computation of score statistics, we can do without the
efficiency assumption in Hausman (1978), and so can perform a Hausman test more generally than envisaged by Hausman, e.g.,
in the context of clustered observations. As Stata produces score statistics for most estimation commands, it is particularly suited
to perform the generalized Hausman test with little effort. The command suest described below reduces the effort even more.

The approach is not restricted to just two estimators. One can also test hypotheses formulated as other linear equality
constraints (see White 1994, 270). Nonlinear hypotheses may be a more interesting generalization of the Hausman test. In
particular, it may be appropriate to test a proportionality hypothesis of the coefficients of different models, e.g., to test that
ordinary regression and logistic regression on a dichotomized depvar lead to the same conclusions. The details are fully standard
and hence need not be elaborated here; for an illustration in Stata, see Example 3 below.

The suest command

The generalized Hausman-test for cross-estimators hypotheses is implemented in a keyword driven command suest, with
syntax

suest fit name: est cmd

suest save name scorevar 1
�
scorevar 2 : : :

�
suest combine

�
name list

��
, cluster(varname) level(#)

�
suest clear

suest drop name list

suest query

Description

suest combines a series of parameter-estimates and associated (co)variance matrices into a single parameter vector and
simultaneous covariance matrix of the sandwich/robust type that can be analyzed with Stata’s standard post-estimation commands
such as test and testnl. This allows the testing of cross-model hypotheses. One can also compute a two-stage linear-constrained
estimator with cross-model linear constraints via linest (Weesie 1999).

suest does not require that the models are estimated on the same samples, due to explicit selection, or due to missing
values. However if weights are applied, the same weights should be applied to all models.

Key commands

suest fit invokes an estimation command and saves the required results under a name of at most four characters. Currently,
the following estimation commands are supported: clogit2, cloglog, heckman, heckprob, intreg, logistic, logit,
poisson, ologit, mlogit, nbreg, oprobit, probit, regh, scobit, zip.
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Note that regress is not included in the list as it does not compute score statistics. You can use regh (Weesie 1998)
instead.

clogit2 is a special version of clogit, with identical syntax, that is appropriate for conditional logit models with exactly
one positive response per group (e.g., McFadden’s discrete choice model). To obtain a valid estimator for the asymptotic
(co)variance matrix of the estimators, one has to specify the option cluster(varname) with suest combine, where
varname is the group identifier specified with clogit2. If the data are additionally clustered, e.g., the data comprise discrete
choices of multiple members of households, the highest level of clustering should be specified with suest combine.

suest save is for estimation commands too complicated for suest fit to handle, e.g., multiple-equation models. It saves
information from the last estimation command under a name of at most four characters. The estimation command should
support and be invoked with the score() option, specifying that score statistics are computed. These score variables should
be transferred to suest save.

The estimation command should not be invoked with options robust or cluster (see suest combine).

suest combine computes a simultaneous robust (sandwich) covariance matrix for the models in name list. If no name list is
supplied, all saved models are included. If the data are clustered, this should be specified during the generation of the
simultaneous variance–covariance matrix, not during estimation.

The within-model covariance matrix is identical to what would have been obtained by specifying a robust/cluster option
during estimation. suest, however, also estimates the between-model covariances of parameter estimates.

suest combine posts its results just like a proper estimation command. Thus, after suest combine, one may use test

and testnl to test within model and between model hypotheses, vce to display the covariance matrix, etc.

suest typed without arguments after suest combine replays the results, just like other estimation commands.

Utility commands

suest clear drops the objects (matrices, variables, including score statistics) associated with all models.

suest drop drops the objects (matrices, variables, including score statistics) associated with the named models.

suest query lists the names of the saved models.

Options

cluster(varname) specifies that the observations are independent across groups (clusters) but not necessarily within groups.
varname specifies to which group each observation belongs; e.g., cluster(personid) in data with repeated observations
on individuals. cluster() affects the estimated standard errors and variance–covariance matrix of the estimators (VCE),
but not the estimated coefficients; see [U] 23.11 Obtaining robust variance estimates.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

Saved Results

Technically, suest combine is mostly a wrapper for the invocation of robust with a properly defined information matrix
D and with the concatenated score statistics u, with out-of-sample values set to 0. The other suest keyword commands store,
retrieve, and drop information in a number of global objects:

Scalars
SU names names of saved models, separated by a blank
SU name cmd, scores, :::
SU wtp weight type
SU wexp weighting expression

Matrices
SU Vname VCE in model name
SU bname b in model name

Variables
SU Sname identifies sample in model name
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suest combine saves in e():

Scalars
e(N) number of observations
e(N clust) number of clusters

Macros
e(cmd) suest

e(title) title in estimation output
e(wtype) weight type
e(wexp) weight expression
e(clustvar) name of cluster variable
e(vcetype) covariance estimation method

Matrices
e(b) coefficient vector of estimates
e(V) (co)variance matrix of the estimates

Functions
e(sample) marks estimation sample

Example 1

In a first example, I consider testing the assumption of “Independence of Irrelevant Alternatives” as described in the section
on the Hausman test hausman in the Stata Reference Manual. The example involves how the “choice of insurance type among
indemnity, prepaid, and uninsured” depends on age and gender using a multinomial logit model estimated by mlogit. You may
want to skim through this part of the Stata manual before reading on.

. mlogit insure age male, nolog

(output omitted )
. hausman, save

Under the IIA assumption, we would expect no systematic change in the coefficients if we exclude one of the outcomes from
the analysis:

. mlogit insure age male if insure != "Uninsure":insure, nolog

(output omitted )
. hausman, alleqs less cons

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| Current Prior Difference S.E.

---------+-------------------------------------------------------------

age | -.0101521 -.0100251 -.0001269 .

male | .5144003 .5095747 .0048256 .012334

_cons | .2678043 .2633838 .0044205 .

---------+-------------------------------------------------------------

b = less efficient estimates obtained from mlogit.

B = more efficient estimates obtained previously from mlogit.

Test: Ho: difference in coefficients not systematic

chi2( 3) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 0.08

Prob>chi2 = 0.9944

The Stata manual goes on comparing the full model with the model that excludes the outcome “Prepaid”.

. mlogit insure age male if insure != "Prepaid":insure, nolog

(output omitted )
. hausman, alleqs less cons

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| Current Prior Difference S.E.

---------+-------------------------------------------------------------

age | -.0041055 -.0051925 .001087 .0021357

male | .4591072 .4748547 -.0157475 .

_cons | -1.801774 -1.756843 -.0449311 .1333464

---------+-------------------------------------------------------------

b = less efficient estimates obtained from mlogit.

B = more efficient estimates obtained previously from mlogit.
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Test: Ho: difference in coefficients not systematic

chi2( 3) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= -0.18 chi2<0 ==> model estimated on these

data fails to meet the asymptotic

assumptions of the Hausman test

In this last example, we encounter the case that Hausman’s test need not be well-defined as the property underlying the
simplification in Hausman’s test in comparison to the approach advocated in this article holds asymptotically only.

I will now redo the analysis above in suest style. mlogit is supported by suest fit. I fit the full model, and store the
results under name A. Next I estimate the model excluding the outcome Uninsured and the outcome Prepaid, saving the results
under B and C respectively.

. suest fit A: mlogit insure age male, nolog

mlogit insure age male , score(SU_A*) nolog

Multinomial regression Number of obs = 615

LR chi2(4) = 9.05

Prob > chi2 = 0.0598

Log likelihood = -551.32802 Pseudo R2 = 0.0081

------------------------------------------------------------------------------

insure | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

Prepaid |

age | -.0100251 .0060181 -1.666 0.096 -.0218204 .0017702

male | .5095747 .1977893 2.576 0.010 .1219148 .8972345

_cons | .2633838 .2787574 0.945 0.345 -.2829708 .8097383

---------+--------------------------------------------------------------------

Uninsure |

age | -.0051925 .0113821 -0.456 0.648 -.027501 .017116

male | .4748547 .3618446 1.312 0.189 -.2343477 1.184057

_cons | -1.756843 .5309591 -3.309 0.001 -2.797504 -.7161824

------------------------------------------------------------------------------

(Outcome insure==Indemnty is the comparison group)

. suest fit B: mlogit insure age male if insure != "Uninsure":insure

(output omitted )

. suest fit C: mlogit insure age male if insure != "Prepaid":insure

(output omitted )

To perform the suest analogue, I “combine” the estimation results of the models stored under A and B.

. suest combine A B

Simultaneous VCE Obs = 615

------------------------------------------------------------------------------

| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

APrepaid |

age | -.0100251 .0059403 -1.688 0.091 -.0216679 .0016176

male | .5095747 .1988158 2.563 0.010 .1199029 .8992465

_cons | .2633838 .277307 0.950 0.342 -.280128 .8068955

---------+--------------------------------------------------------------------

AUninsur |

age | -.0051925 .0109004 -0.476 0.634 -.0265569 .0161719

male | .4748547 .3677294 1.291 0.197 -.2458817 1.195591

_cons | -1.756843 .4971363 -3.534 0.000 -2.731212 -.782474

---------+--------------------------------------------------------------------

BPrepaid |

age | -.0101521 .0058988 -1.721 0.085 -.0217135 .0014094

male | .5144003 .1996132 2.577 0.010 .1231656 .9056351

_cons | .2678043 .2744018 0.976 0.329 -.2700133 .805622

------------------------------------------------------------------------------

The equation names in the combined estimation results are formed by prefixing the name under which a result is saved to the
equation names. Thus equation APrepaid is equation Prepaid of the model saved under A. Also note that suest reports robust
standard errors rather than the “classic” standard errors reported by default by mlogit, even though suest fit : mlogit was
invoked without the robust option. The robust modification of standard errors was just applied while forming the combined
(simultaneous) (co)variance matrix of the estimators.

I can now perform a generalized Hausman test whether the coefficients in equation APrepaid are equal to the analogous
coefficients in equation BPrepaid. This is simply accomplished with the test command.
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. test [APrepaid=BPrepaid]:_cons age male

( 1) [APrepaid]_cons - [BPrepaid]_cons = 0.0

( 2) [APrepaid]age - [BPrepaid]age = 0.0

( 3) [APrepaid]male - [BPrepaid]male = 0.0

chi2( 3) = 0.89

Prob > chi2 = 0.8267

Note that the generalized Hausman test statistic (0.89) is different than the original Hausman test statistic (0.08). This is due
to different ways in which variances are estimated; in the classic way and assuming efficiency of the full-data estimator in the
original Hausman test, by the robust way in the generalized Hausman test.

In a similar way, I can obtain the Hausman test for the second case.

. suest combine A C

(output omitted )
. test [AUninsur=CUninsur]:_cons age male

( 1) [AUninsur]_cons - [CUninsur]_cons = 0.0

( 2) [AUninsur]age - [CUninsur]age = 0.0

( 3) [AUninsur]male - [CUninsur]male = 0.0

chi2( 3) = 1.49

Prob > chi2 = 0.6843

While the original Hausman test was undefined due to the nondefiniteness of the variance difference of the (co)variance matrices
of the two estimators, the generalized Hausman test obtained via suest is quite well-behaved; it is never undefined.

I can now perform an additional test that is not possible within the standard Hausman framework. With suest, it is possible
to test simultaneously the two hypotheses tested “univariately” above, i.e., I want to test that the three estimators, corresponding
with the models A, B, and C, have the same probability limit (“are equal”). To perform this test, one has to generate the
simultaneous (co)variance matrix of the three estimators.

. suest combine A B C

Simultaneous VCE Obs = 615

------------------------------------------------------------------------------

| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

APrepaid |

age | -.0100251 .0059403 -1.688 0.091 -.0216679 .0016176

male | .5095747 .1988158 2.563 0.010 .1199029 .8992465

_cons | .2633838 .277307 0.950 0.342 -.280128 .8068955

---------+--------------------------------------------------------------------

AUninsur |

age | -.0051925 .0109004 -0.476 0.634 -.0265569 .0161719

male | .4748547 .3677294 1.291 0.197 -.2458817 1.195591

_cons | -1.756843 .4971363 -3.534 0.000 -2.731212 -.782474

---------+--------------------------------------------------------------------

BPrepaid |

age | -.0101521 .0058988 -1.721 0.085 -.0217135 .0014094

male | .5144003 .1996132 2.577 0.010 .1231656 .9056351

_cons | .2678043 .2744018 0.976 0.329 -.2700133 .805622

---------+--------------------------------------------------------------------

CUninsur |

age | -.0041055 .0111185 -0.369 0.712 -.0258974 .0176865

male | .4591072 .3601307 1.275 0.202 -.2467359 1.16495

_cons | -1.801774 .5226351 -3.447 0.001 -2.82612 -.7774283

------------------------------------------------------------------------------

. test [APrepaid=BPrepaid]:_cons age male

(output omitted )
. test [AUninsur=CUninsur]:_cons age male, accumulate

( 1) [APrepaid]_cons - [BPrepaid]_cons = 0.0

( 2) [APrepaid]age - [BPrepaid]age = 0.0

( 3) [APrepaid]male - [BPrepaid]male = 0.0

( 4) [AUninsur]_cons - [CUninsur]_cons = 0.0

( 5) [AUninsur]age - [CUninsur]age = 0.0

( 6) [AUninsur]male - [CUninsur]male = 0.0

chi2( 6) = 1.95

Prob > chi2 = 0.9239

I conclude that there is no evidence that the IIA assumption is violated in any way. Then again, as also discussed in the section
in the manual, the model itself seems to fit so poorly that one has to be careful in deriving any substantive implications.
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I now consider the case that the observations are clustered within households, indicated by the variable hhid (this was not
true in the data used above; I constructed this just for illustrating this important aspect of the generalization of the Hausman test
enabled by suest). Then the “classic” McFadden–Hausman test is no longer appropriate as neither of the estimators is efficient.
The test via suest as proposed in this paper, however, remains valid, and can be obtained with very little change to the example
above. The only thing that has to be changed is that a cluster(subject) option has to be specified with the suest combine

command:

. suest combine A B, cluster(hhid)

Simultaneous VCE Obs = 615

(standard errors adjusted for clustering on hhid)

------------------------------------------------------------------------------

| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

APrepaid |

age | -.0100251 .0060379 -1.660 0.097 -.0218592 .0018089

male | .5095747 .2028564 2.512 0.012 .1119834 .907166

_cons | .2633838 .2850523 0.924 0.355 -.2953084 .822076

---------+--------------------------------------------------------------------

AUninsur |

age | -.0051925 .0106246 -0.489 0.625 -.0260163 .0156313

male | .4748547 .3746916 1.267 0.205 -.2595274 1.209237

_cons | -1.756843 .4847787 -3.624 0.000 -2.706992 -.8066943

---------+--------------------------------------------------------------------

BPrepaid |

age | -.0101521 .0059962 -1.693 0.090 -.0219044 .0016003

male | .5144003 .20382 2.524 0.012 .1149206 .9138801

_cons | .2678043 .282348 0.948 0.343 -.2855877 .8211963

------------------------------------------------------------------------------

. test [APrepaid=BPrepaid]:_cons age male

( 1) [APrepaid]_cons - [BPrepaid]_cons = 0.0

( 2) [APrepaid]age - [BPrepaid]age = 0.0

( 3) [APrepaid]male - [BPrepaid]male = 0.0

chi2( 3) = 0.87

Prob > chi2 = 0.8321

A note on equation names

We have seen that suest prefixes the save-name to the equation name. If an estimation command does not generate an
equation name, that is, uses equation name (underscore), the underscore is not included in the extended name. Also, it is
possible that prefixing the save-name to an equation name yields a string longer than 8 characters, and hence needs to be
truncated. It is possible that equation names then become identical. In this, hopefully exceptional, case suest simply numbers
the equations, prefixed with the save-name.

The assumption of “Independence of Irrelevant Alternatives” also applies to the more general class of “conditional logit
models”, such as McFadden’s discrete choice model. The Stata command clogit that fits these models does not compute score
statistics and hence can not be directly applied for the suest approach. For the case with one-positive-response-per-group, the
scores are

ui =

niX
j=1

(yij � b�ij)xij
where ni is the number of observations in group i, yij 2 f0; 1g is the response of “group” i with yi+ = 1, and xij is the
vector of covariates for alternative j within group i. This implies that the robust estimator of variance can be obtained as if the
alternatives are “clustered” within groups. A command clogit2 is distributed with suest that wraps around clogit, verifies
that the one-response-per-group restriction holds, and returns the score statistic via the option score(). clogit2 displays a
reminder that suest combine should be invoked with a cluster option. If the groups are independent, clustering should be at
the level of the group. If the groups themselves are clustered, for instance, in the case of decisions by multiple members of a
household, clustering is indeed at this higher level, i.e., households, not individuals. The following code fragment illustrates the
IIA test for independent individuals.

. suest fit A: clogit2 transp money time, group(respnr)

. suest fit B: clogit2 transp money time, group(respnr), if code~="car":lcode

. suest combine, cluster(respnr)

. test [A=B]
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Example 2

In this second example, I consider an ordinal probit analysis. I want to test the hypotheses that the coefficients (for
simplicity, I ignore the cut-points) are invariant under joining extreme response categories (1,2) and (4,5) of a Likert scale, i.e.,
a five-category scale in which 3 indicates a neutral response. (A more substantial but also more cumbersome way to deal with
this problem is to modify the ordinal probit model so that subjects are assumed to randomize between categories 1 and 2, and
similarly between categories 4 and 5, if their latent variables fall below threshold 2 or above threshold 4. Such a modification
of ordinal models is an analogue to how psychometric models for multiple choice data are constructed from multinomial models
in order to incorporate “guessing.”)

I illustrate the suest approach to these problems with an ordinal probit analysis of the repair record on the price and origin
of cars in the automobile data distributed with Stata. Since oprobit is supported by suest fit, I can invoke a suest fit

command to fit the full model:

. suest fit A: oprobit rep78 price for, nolog

oprobit rep78 price foreign , score(SU_A*) nolog

Ordered probit estimates Number of obs = 69

LR chi2(2) = 29.42

Prob > chi2 = 0.0000

Log likelihood = -78.982445 Pseudo R2 = 0.1570

------------------------------------------------------------------------------

rep78 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

price | 6.55e-06 .0000459 0.143 0.886 -.0000833 .0000964

foreign | 1.721754 .3311814 5.199 0.000 1.07265 2.370857

---------+--------------------------------------------------------------------

_cut1 | -1.702593 .421363 (Ancillary parameters)

_cut2 | -.7864638 .3492921

_cut3 | .7703836 .3452181

_cut4 | 1.88739 .3944205

------------------------------------------------------------------------------

Next, I have to recode the dependent variable by collapsing values 1 and 2 into 2, and the values of 4 and 5 into 4.

. gen rrep78 = rep78

. recode rrep78 1=2 5=4

and invoke the oprobit model with the recoded dependent variables:

. suest fit B: oprobit rrep78 price for, nolog

oprobit rrep78 price foreign , score(SU_B*) nolog

Ordered probit estimates Number of obs = 69

LR chi2(2) = 26.67

Prob > chi2 = 0.0000

Log likelihood = -56.107058 Pseudo R2 = 0.1920

------------------------------------------------------------------------------

rrep78 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

price | .0000105 .0000487 0.215 0.830 -.0000851 .000106

foreign | 1.834473 .3897461 4.707 0.000 1.070585 2.598361

---------+--------------------------------------------------------------------

_cut1 | -.7554451 .3635206 (Ancillary parameters)

_cut2 | .8140208 .3622057

------------------------------------------------------------------------------

I can now estimate the simultaneous (co)variance matrix and perform a test that the coefficients of the predictor variables (price
and foreign) are the same in the two models:

. suest comb A B

Simultaneous VCE Obs = 69

------------------------------------------------------------------------------

| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

ALP |

price | 6.55e-06 .0000362 0.181 0.856 -.0000644 .0000775

foreign | 1.721754 .3249783 5.298 0.000 1.084808 2.358699

---------+--------------------------------------------------------------------

Acut1 |

_cons | -1.702593 .4310119 -3.950 0.000 -2.547361 -.8578251
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---------+--------------------------------------------------------------------

Acut2 |

_cons | -.7864638 .3336287 -2.357 0.018 -1.440364 -.1325636

---------+--------------------------------------------------------------------

Acut3 |

_cons | .7703836 .3387772 2.274 0.023 .1063924 1.434375

---------+--------------------------------------------------------------------

Acut4 |

_cons | 1.88739 .4151565 4.546 0.000 1.073698 2.701082

---------+--------------------------------------------------------------------

BLP |

price | .0000105 .0000393 0.266 0.790 -.0000666 .0000875

foreign | 1.834473 .3786316 4.845 0.000 1.092369 2.576577

---------+--------------------------------------------------------------------

Bcut1 |

_cons | -.7554451 .3387186 -2.230 0.026 -1.419321 -.0915689

---------+--------------------------------------------------------------------

Bcut2 |

_cons | .8140208 .3416695 2.382 0.017 .1443609 1.483681

------------------------------------------------------------------------------

. test [ALP=BLP]

( 1) [ALP]price - [BLP]price = 0.0

( 2) [ALP]foreign - [BLP]foreign = 0.0

chi2( 2) = 0.32

Prob > chi2 = 0.8505

and so I cannot reject the null-hypothesis that these coefficients are the same.

Note that oprobit and ologit store their estimation results in a nonstandard way; namely, without equation names.
suest actually modifies this; it adds equation name LP to the coefficients of the covariates, and renames the parameter cutx

to cutx: cons. As a consequence, predict for oprobit and ologit may fail after invoking suest.

Example 3

In this third example, I test that analyses using logit and probit regression models “yield the same results”. I employ
again the automobile data and want to predict whether a car is foreign (i.e., non-US built) from its price and repair record. I first
estimate a logit model, and request that suest store the results under the name LOGT.

. suest LOGT: logit foreign price rep78 , nolog

logit foreign price rep78 , nolog score(SU_LOGT)

Logit estimates Number of obs = 69

LR chi2(2) = 29.37

Prob > chi2 = 0.0000

Log likelihood = -27.714924 Pseudo R2 = 0.3464

------------------------------------------------------------------------------

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

price | 6.26e-06 .0001325 0.047 0.962 -.0002533 .0002659

rep78 | 1.970872 .4800167 4.106 0.000 1.030057 2.911687

_cons | -8.088338 2.082646 -3.884 0.000 -12.17025 -4.006427

------------------------------------------------------------------------------

Similarly, I fit a probit model, and store the results under the name PROB:

. suest fit PROB: probit foreign price rep78, nolog

probit foreign price rep78 , nolog score(SU_PROB)

Probit estimates Number of obs = 69

LR chi2(2) = 29.55

Prob > chi2 = 0.0000

Log likelihood = -27.623517 Pseudo R2 = 0.3485

------------------------------------------------------------------------------

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

price | -1.57e-06 .0000756 -0.021 0.983 -.0001497 .0001466

rep78 | 1.147768 .2542272 4.515 0.000 .6494914 1.646044

_cons | -4.684726 1.102448 -4.249 0.000 -6.845483 -2.523968

------------------------------------------------------------------------------

Before we can perform tests, I request suest to estimate the simultaneous (co)variance matrix of the logit and probit estimators:



Stata Technical Bulletin 45

. suest combine LOGT PROB

Simultaneous VCE Obs = 69

------------------------------------------------------------------------------

| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

LOGT |

price | 6.26e-06 .0000981 0.064 0.949 -.0001859 .0001984

rep78 | 1.970872 .4793285 4.112 0.000 1.031406 2.910339

_cons | -8.088338 1.994391 -4.056 0.000 -11.99727 -4.179402

---------+--------------------------------------------------------------------

PROB |

price | -1.57e-06 .0000548 -0.029 0.977 -.0001091 .0001059

rep78 | 1.147768 .2518236 4.558 0.000 .6542024 1.641333

_cons | -4.684726 1.046617 -4.476 0.000 -6.736057 -2.633394

------------------------------------------------------------------------------

Note that the simultaneous estimates for standard errors are slightly different from the “separate” estimates. This is caused by
the use of the robust (sandwiched) estimator for standard errors; they are identical to the standard errors that Stata would have
produced if the robust option was specified with the logit and probit models.

We are now able to inspect the full (co)variance matrix of the logit and probit estimator.

. vce

| LOGT: PROB:

| price rep78 _cons price rep78 _cons

---------+------------------------------------------------------

LOGT |

price | 9.6e-09

rep78 | 3.1e-06 .229756

_cons | -.000084 -.876035 3.9776

PROB |

price | 5.4e-09 1.9e-06 -.000046 3.0e-09

rep78 | 1.3e-06 .120655 -.456556 8.4e-07 .063415

_cons | -.000045 -.459068 2.08531 -.000025 -.239423 1.09541

Inspecting the simultaneous correlation matrix may be more revealing.

. vce, rho

| LOGT: PROB:

| price rep78 _cons price rep78 _cons

---------+------------------------------------------------------

LOGT |

price | 1.0000

rep78 | 0.0660 1.0000

_cons | -0.4274 -0.9164 1.0000

PROB |

price | 0.9957 0.0710 -0.4223 1.0000

rep78 | 0.0543 0.9996 -0.9090 0.0607 1.0000

_cons | -0.4371 -0.9151 0.9990 -0.4357 -0.9084 1.0000

The correlations between the (coefficients associated with) the same predictor variables in the logit and probit models are very,
very high indeed. Thus, one should actually be cautious of the p-value of the Wald-test discussed below, especially in the case
of nonlinear hypotheses.

I can test whether the coefficients of the logit model are equal to the coefficients from the probit model:

. test [LOGT]price=[PROB]price, notest

. test [LOGT]rep78=[PROB]rep78, acc

( 1) [LOGT]price - [PROB]price = 0.0

( 2) [LOGT]rep78 - [PROB]rep78 = 0.0

chi2( 2) = 13.07

Prob > chi2 = 0.0015

This hypothesis has to be strongly rejected. But, remember that the logit and probit are on a different scale. Thus, at best, one
can expect that the coefficients of price and rep78 in the logit model are proportional to the coefficients in the probit model.
Proportionality, however, is a nonlinear hypothesis, which cannot be tested using test. Stata can perform nonlinear Wald-type
tests using the testnl command:

. testnl [LOGT]price/[LOGT]rep78 = [PROB]price/[PROB]rep78



46 Stata Technical Bulletin STB-52

(1) [LOGT]price/[LOGT]rep78 = [PROB]price/[PROB]rep78

chi2(1) = 0.85

Prob > chi2 = 0.3565

Since nonlinear Wald tests are sensitive to specification, it may be appropriate to formulate the hypothesis “in a more linear
way,”

. testnl [LOGT]price*[PROB]rep78 = [PROB]price*[LOGT]rep78

(1) [LOGT]price*[PROB]rep78 = [PROB]price*[LOGT]rep78

chi2(1) = 0.83

Prob > chi2 = 0.3628

I conclude that the null hypotheses that the coefficients from the logit model are proportional to the coefficients from the probit
model cannot be rejected.

Applications to estimation

The simultaneous distribution of estimators derived above are useful for two-stage estimation as well. Consider the case that
we have a number of inefficient estimators, that, under some model, we estimate “the same thing,” i.e., have the same probability
limit. We can “pool” the inefficient estimators to come up with an estimator that is more efficient (has smaller variance) than
any of the original estimators. One way to do this is to compute the simple GLS estimator for the associated linear model
which in essence is an estimator bpooled, that is, a weighted average of the separate estimators b1; : : : ; bk, with the weighting
matrices defined in terms of the variances and covariances of the estimators. This can be accomplished, without additional
matrix programming, with the combination of the suest command and my linest command for two-stage linear-constrained
estimation (Weesie 1999).

A second application to impose cross-model constraints may be instructive as well. Petersen (1988) suggested modeling
continuous-space survival-time problems in terms of the marginal distribution, F , of survival time and the conditional distribution,
G, of the new state, given the old state and the time until the transition. Censored observations are treated in the normal way in
the marginal distribution of survival time and ignored in the transition distribution. If F and G depend on different parameters,
the likelihood “factors” between the two subproblems, and hence can be estimated separately.

To test cross-subproblem hypotheses (“does educational achievement have the same effect on the hazard rate as on the
new occupational prestige,” or, maybe more accurately, “are the effects of variables x1; x2; : : : on the hazard rate for mobility
proportional to the effects of these variables on the new occupational prestige;” this is a formal representation of the substantial
hypothesis that “mobility timing” and “distance of mobility” can be “explained” in the same way) one needs the full (co)variance
matrix pertaining to the two subproblems. The simultaneous (co)variance matrix can be estimated using the suest command
given above. (The fact that one of the models is a conditional model rather than a marginal model does not affect the validity
of the derivation underlying suest.)

If F and G are parameterized with partially overlapping sets of parameters, the likelihood no longer factors over the
subproblems, and so the method outlined by Petersen needs modification. The theory of two-stage equality constrained estimation
provides for a relatively simple modification (Gourieroux and Monfort 1989, Ch. 10). In the first stage of this two-stage estimator,
the cross-subproblem equality constraints are ignored, and the subproblems can be treated separately. Then the simultaneous
(co)variance matrix of the two estimators is estimated using suest. Then, in the second stage, a GLS estimator for the cross-
subproblem equality constraints is imposed (see Weesie (1999) for the Stata command linest). According to statistical theory
(e.g., Gourieroux and Monfort 1989), this two-stage estimator is (asymptotically) equivalent to a truly one-stage constrained
simultaneous estimator.
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sg122 Truncated regression

Ronna Cong, Stata Corporation, rcong@stata.com

Syntax

truncreg has the following syntax:

truncreg depvar varlist
�
weight

� �
if exp

� �
in range

� �
, ll(varname j #) ul(varname j #) noconstant

level(#) marginal at(matname) robust cluster(varname) maximize options
�

aweights, pweights and fweights are allowed; see [U] 18.1.6 weight.

truncreg shares the features of all estimation commands; see [U] 23 Estimation and post-estimation commands.

Syntax for predict

predict
�
type

�
newvarname

�
if exp

� �
in range

� �
, statistic

�
where statistic is

xb xjb, fitted values (the default)

pr(a,b) Pr(a < yj < b)

e(a,b) E(yj j a < yj < b)

stdp standard error of the prediction
stdf standard error of the forecast

where a and b may be numbers or variables; a equal to ‘.’ means �1; b equal to ‘.’ means +1.

These statistics are available both in and out of sample; type predict : : : if e(sample) : : : if wanted only for the estimation
sample.

Description

truncreg estimates a regression model of depvar on varlist from a sample drawn from a restricted part of the population.
Under the normality assumption for the whole population, the error terms in the truncated regression model are truncated normally
distributed. The truncated normal distribution is a normal distribution that has been scaled upward so that the distribution integrates
to one over the restricted range.

Options

ll(varname j #) and ul(varname j #) indicate the truncation points. You may specify one or both. ll() indicates the lower
limit for left truncation; ul() indicates the upper limit for right truncation. Observations with depvar� ll() are left
truncated; observations with depvar� ul() are right truncated; remaining observations are not truncated. See [R] tobit for
a more detailed description.

noconstant suppresses the constant term (intercept) in the model.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level;
see [U] 23.5 Specifying the width of confidence intervals.

marginal estimates the marginal effects in the model in the subpopulation. marginal may be specified when the model is
estimated or when results are redisplayed.
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at(matname) specifies the point around which the marginal effect is to be estimated. The default is to estimate the effect
around the mean of the independent variables. If there are k independent variables, matname should be 1� k. at() may
be specified when the model is estimated or when results are redisplayed.

robust specifies that the Huber/White/sandwich estimator of variance is to be used in place of the conventional MLE variance
estimator. robust combined with cluster() further allows observations which are not independent within cluster (although
they must be independent between clusters).

If you specify pweights, robust is implied; see [U] 23.11 Obtaining robust variance estimates.

cluster(varname) specifies that the observations are independent across groups. varname specifies to which group each
observation belongs. cluster() can be used with pweights to produce estimates for unstratified cluster-sampled data.

cluster() implies robust; specifying robust cluster() is equivalent to typing cluster() by itself.

maximize options control the maximization process; see [R] maximize. Use the trace option to view parameter convergence.
Use the ltol(#) option to relax the convergence criterion; default is 1e�6 during specification searches.

Options for predict

See [R] tobit for a detailed description.

Remarks

Remarks are presented under the headings

Truncated regression
Marginal effects

Truncated regression

Truncated regression estimates a model of a dependent variable on independent variables from a restricted part of a
population. Truncation is essentially a characteristic of the distribution from which the sample data are drawn. If x has a normal
distribution with mean � and standard deviation �, then the density of the truncated normal distribution is

f (x j a < x < b) =
f(x)

�
�
b��

�

�
� �

�
a��

�

�
=

1
�
�
�
x��

�

�
�
�
b��

�

�
� �

�
a��

�

�
where � and � are the density and distribution functions of the standard normal distribution.

Compared with the mean of the untruncated variable, the mean of the truncated variable is greater if the truncation is from
below, the mean of the truncated variable is smaller if the truncation is from above. Moreover, truncation reduces the variance
compared with the variance in the untruncated distribution.

Example

We will demonstrate truncreg using a subset of the Mroz data distributed with Berndt (1991). This dataset contains 753
observations on women’s labor supply. Our subsample is of 250 observations, with 150 market laborers and 100 nonmarket
laborers.

. use labor, clear

. describe

Contains data from labor.dta

obs: 250

vars: 6

size: 7,000 (99.3% of memory free)

-----------------------------------------------------------------------------

1. lfp float %9.0g 1 if woman worked in 1975

2. whrs float %9.0g Wife's hours of work

3. kl6 float %9.0g # of children younger than 6

4. k618 float %9.0g # of children between 6 and 18

5. wa float %9.0g wife's age

6. we float %9.0g wife's educational attainment

-----------------------------------------------------------------------------

Sorted by:
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. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

lfp | 250 .6 .4908807 0 1

whrs | 250 799.84 915.6035 0 4950

kl6 | 250 .236 .5112234 0 3

k618 | 250 1.364 1.370774 0 8

wa | 250 42.92 8.426483 30 60

we | 250 12.352 2.164912 5 17

We first perform an ordinary least squares estimation on the market laborers, i.e., working hours > 0.

. regress whrs kl6 k618 wa we if whrs >0

Source | SS df MS Number of obs = 150

---------+------------------------------ F( 4, 145) = 2.80

Model | 7326995.15 4 1831748.79 Prob > F = 0.0281

Residual | 94793104.2 145 653745.546 R-squared = 0.0717

---------+------------------------------ Adj R-squared = 0.0461

Total | 102120099 149 685369.794 Root MSE = 808.55

------------------------------------------------------------------------------

whrs | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

kl6 | -421.4822 167.9734 -2.509 0.013 -753.4748 -89.48953

k618 | -104.4571 54.18616 -1.928 0.056 -211.5538 2.639666

wa | -4.784917 9.690502 -0.494 0.622 -23.9378 14.36797

we | 9.353195 31.23793 0.299 0.765 -52.38731 71.0937

_cons | 1629.817 615.1301 2.650 0.009 414.0371 2845.596

------------------------------------------------------------------------------

Now, we use truncreg to perform truncated regression with truncation from below zero.

. truncreg whrs kl6 k618 wa we, ll(0)

Note: 100 obs. are truncated

Iteration 0: log likelihood = -1205.6992

Iteration 1: log likelihood = -1200.9872

Iteration 2: log likelihood = -1200.9159

Iteration 3: log likelihood = -1200.9157

Iteration 4: log likelihood = -1200.9157

Truncated regression

Limit: lower = 0 Number of obs = 150

upper = +inf Wald chi2(4) = 10.05

Log likelihood = -1200.9157 Prob > chi2 = 0.0395

------------------------------------------------------------------------------

whrs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

eq1 |

kl6 | -803.0042 321.3614 -2.499 0.012 -1432.861 -173.1474

k618 | -172.875 88.72898 -1.948 0.051 -346.7806 1.030578

wa | -8.821122 14.36848 -0.614 0.539 -36.98283 19.34059

we | 16.52873 46.50375 0.355 0.722 -74.61695 107.6744

_cons | 1586.26 912.355 1.739 0.082 -201.9233 3374.442

---------+--------------------------------------------------------------------

sigma |

_cons | 983.7262 94.44303 10.416 0.000 798.6213 1168.831

------------------------------------------------------------------------------

(Continued on next page)
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If we assume that our data were censored, the tobit model is

. tobit whrs kl6 k618 wa we, ll(0)

Tobit estimates Number of obs = 250

LR chi2(4) = 23.03

Prob > chi2 = 0.0001

Log likelihood = -1367.0903 Pseudo R2 = 0.0084

------------------------------------------------------------------------------

whrs | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

kl6 | -827.7657 214.7407 -3.855 0.000 -1250.731 -404.8009

k618 | -140.0192 74.22303 -1.886 0.060 -286.2128 6.174541

wa | -24.97919 13.25639 -1.884 0.061 -51.08969 1.131316

we | 103.6896 41.82393 2.479 0.014 21.31093 186.0683

_cons | 589.0001 841.5467 0.700 0.485 -1068.556 2246.556

---------+--------------------------------------------------------------------

_se | 1309.909 82.73335 (Ancillary parameter)

------------------------------------------------------------------------------

Obs. summary: 100 left-censored observations at whrs<=0

150 uncensored observations

Technical Note

Whether truncated regression is more appropriate than the ordinary least squares estimation depends on the purpose of that
estimation. If we are interested in the mean of wife’s working hours conditional on the subsample of market laborers, least
squares estimation is appropriate. However, if it is the mean of wife’s working hours regardless of market or nonmarket labor
status that we are interested in, least squares estimates could be seriously misleading.

It should be understood that truncation and censoring are different concepts. A sample has been censored if no observations
have been systematically excluded, but some of the information contained in them has been suppressed. In a truncated distribution,
only the part of the distribution above (or below, or between) the truncation point(s) is relevant to our computations. We need
to scale it up by the probability that an observation falls in the range that interests us to make the distribution integrate to one.
The censored distribution used by tobit, however, is a mixture of discrete and continuous distributions. Instead of rescaling over
the observable range, we simply assign the full probability from the censored region(s) to the censoring point(s). The truncated
regression model is sometimes less well behaved than the tobit model. Davidson and MacKinnon (1993) provide an example
where truncation results in more inconsistency than censoring.

Marginal effects

The marginal effects in the truncation model in the subpopulation can be obtained by specifying the marginal option.
at(matname) specifies the points around which the marginal effects are to be estimated. The default is to estimate the effect
around the mean of the independent variables.

Example

The marginal effects around the mean of the independent variables conditional on subpopulation for our previous truncated
regression is

. truncreg whrs kl6 k618 wa we, marginal

Marginal Effects

Limit: lower = 0 Number of obs = 150

upper = +inf Wald chi2(4) = 10.05

Log likelihood = -1200.9157 Prob > chi2 = 0.0395

------------------------------------------------------------------------------

variable | dF/dx Std. Err. z P>|z| X_at [ 95% C.I. ]

---------+--------------------------------------------------------------------

kl6 | -521.9979 208.903 -2.50 0.012 .173333 -931.44 -112.556

k618 | -112.3785 57.67883 -1.95 0.051 1.31333 -225.427 .669934

wa | -5.734226 9.340322 -0.61 0.539 42.7867 -24.0409 12.5725

we | 10.7446 30.23005 0.36 0.722 12.64 -48.5052 69.9944

_cons | 1031.158 593.0821 1.74 0.082 1 -131.262 2193.58

------------------------------------------------------------------------------

The marginal effects around the mean of independent variables of the entire population may be obtained using the at()

option. Notice that the marginal and the at() options may be specified when results are redisplayed.

. mat accum junk=kl6 k618 wa we, means(B) noc

. truncreg, marginal at(B)
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Marginal Effects

Limit: lower = 0 Number of obs = 150

upper = +inf Wald chi2(4) = 10.05

Log likelihood = -1200.9157 Prob > chi2 = 0.0395

------------------------------------------------------------------------------

variable | dF/dx Std. Err. z P>|z| X_at [ 95% C.I. ]

---------+--------------------------------------------------------------------

kl6 | -201.7607 80.7444 -2.50 0.012 .236 -360.017 -43.5046

k618 | -43.43611 22.2938 -1.95 0.051 1.364 -87.1312 .25894

wa | -2.216371 3.610186 -0.61 0.539 42.92 -9.29221 4.85946

we | 4.152964 11.68441 0.36 0.722 12.352 -18.7481 27.054

------------------------------------------------------------------------------

Technical Note

Whether the marginal effect or the coefficient itself is of interest depends on the purpose of the study. If it is the subpopulation
the analysis is confined to, then marginal effects are of interest. Otherwise, it is the coefficients themselves that are of interest.

Saved Results

truncreg saves in e():

Scalars
e(N) number of observations e(N bf) number of observations before truncation
e(ll) log likelihood e(ic) number of iterations
e(df m) model degrees of freedom e(N clust) number of clusters
e(llopt) lower limit e(ulopt) upper limit
e(chi2) �

2 e(p) p-value for �
2 test

e(sigma) sigma

Macros
e(cmd) truncreg e(clustvar) name of cluster variable
e(vcetype) covariance estimation method e(chi2type) Wald or LR; type of model �2

e(wtype) weight type e(wexp) weight expression
e(depvar) name of dependent variable e(predict) program used to implement predict
e(opt) type of optimization e(user) name of likelihood-evaluator program
e(title) truncated regression

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of the estimators
e(dfdx) marginal effects vector e(V dfdx) variance–covariance matrix of the marginal effects
e(means) means of independent variables e(at) points for calculating marginal effects
e(ilog) iteration log (up to 20 iterations)

Functions
e(sample) marks estimation sample

Methods and Formulas

truncreg is implemented as an ado-file. Greene (2000, 897–905) and Davidson and MacKinnon (1993, 534–537) provide
introductions to the truncated regression model.

Let y = X� + � be the model. y represents continuous outcomes either observed or not observed. Our model assumes
� � N(0; �2I).

Let a be the lower limit, b be the upper limit. The log likelihood is

L = �n
2
log 2��2 � 1

2�2

nX
i=1

(yi � xi�)
2 �

nX
i=1

log

�
�

�
b� xi�

�

�
� �

�
a� xi�

�

��

The marginal effects at xi with truncation from below are

@E [yi j yi > a]

@xi
= �

�
1� �2

i
+ �i�i

�
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where
�i = (a� xi�) =�

�i = �(�i)= [1� �(�i)]

The marginal effects at xi with truncation from above are

@E [yi j yi < b]

@xi
= �

�
1� �2

i
+ �i�i

�
where

�i = (b� xi�) =�

�i = ��(�i)=�(�i)

The marginal effects at xi with truncation from both above and below are

@E [yi j a < yi < b]

@xi
= �

�
1� �2

i
+ �i2�i � (b� a)�(�i1)

� (�(�i2)� �(�i1))

�

where
�i1 = (a� xi�) =�

�i2 = (b� xi�) =�

�i =
�(�i2)� �(�i1)

�(�i2)� �(�i1)
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sg123 Hodges–Lehmann estimation of a shift in location between two populations

Duolao Wang, London School of Hygiene and Tropical Medicine, UK, Duolao.Wang@lshtm.ac.uk

Introduction

The Hodges–Lehmann method (Hodges and Lehmann 1963; Lehmann 1975) is a nonparametric procedure that extends the
Wilcoxon–Mann–Whitney test to the problem of estimating the shift parameter between two populations. This method gives
both a point estimate and a confidence interval for the shift parameter. The Hodges–Lehmann method has been widely used in
medical research for evaluating a treatment effect. In assessing the bioequivalence of two drugs in clinical trials for regulatory
submission, the Hodges–Lehmann method is recommended as a nonparametric alternative when the conditions for parametric
methods are not satisfied. In this article, I present a new command npshift for estimating the shift parameter by a median
unbiased estimate and confidence interval.

Syntax

npshift varname
�
if exp

� �
in range

�
, by(groupvar)

�
level(#)

�
Description

npshift is used to estimate the shift between the two distributions from two independent samples (i.e., unmatched data).
Both a point estimate and a confidence interval are computed for the shift parameter.

Options

by(groupvar) is not optional. It specifies the name of the grouping variable.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.
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Examples

This example uses Stata’s automobile data. As npshift is used for unmatched data, we assume that the experiment was
conducted with 24 cars; 12 cars with and 12 cars without the fuel treatment. We created a dataset with 24 observations. mpg
records the mileage rating and treat records a 1 if the mileage corresponds to untreated fuel and 2 if it corresponds to treated
fuel.

. npshift mpg, by(treat)

Hodges-Lehmann Estimates of Shift Parameters

-----------------------------------------------------------------

Point Estimate of Shift : Theta = Pop_2 - Pop_1 = 2

95% Confidence Interval for Theta: [-1 , 4]

-----------------------------------------------------------------

. npshift mpg, by(treat) level(90)

Hodges-Lehmann Estimates of Shift Parameters

-----------------------------------------------------------------

Point Estimate of Shift : Theta = Pop_2 - Pop_1 = 2

90% Confidence Interval for Theta: [0 , 4]

-----------------------------------------------------------------

Methods and Formulas

The Hodges–Lehmann method is an extension of the Wilcoxon–Mann–Whitney test to the problem of estimating the
shift parameter (by a median unbiased estimate and a confidence interval). The Hodges–Lehmann estimates were developed by
Hodges and Lehmann (1963) and are described in detail in Hollander and Wolfe (1973, 75–82), and in Lehmann (1975, 81–95).
Suppose, that we have two samples of data. Sample 1 consists of m observations, x1; : : : ; xm drawn from the distribution F (x),
and sample 2 consists of n observations, y1; : : : ; yn drawn from the distribution G(y). We assume that G(y) is F (x) shifted
to the right by � units according to the relationship

G(y) = F (y � �)

The shift parameter � is unknown and to be estimated.

To get a point estimate b�, we first need to form the mn differences, yj�xi, for i = 1; : : : ;m and j = 1; : : : ; n and then sort
the differences in ascending order and denote the ordered values of yj �xi as U(1) � U(2) � : : : U(nm). The Hodges–Lehmann
point estimator of � is b� = median

�
U(1); : : : ; U(nm)

	
An asymptotic 100(1��)% confidence interval for � can be found by applying the normal approximation to the distribution

of Mann and Whitney’s statistic. The endpoints (�L; �U ) of the interval are given by

�L = U(C�); �U = U(mn�C�+1);

where C� is determined to satisfy

1� �

 
C� �mn=2p

mn(m+ n+ 1)=12

!
= �=2;

where �() is the cumulative distribution function of the standard normal distribution. In general the value of C in the above
formula is not an integer, so take the integer closest to the value computed from the above formula.

Saved Results

npshift saves in r():

r(m) sample size m for population 1
r(n) sample size n for population 2
r(theta) point estimate of �

r(theta l) lower confidence bound �L

r(theta u) upper confidence bound �U

r(level) confidence level 1��
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: IEM
Systems Consultants Address: P.O. Box 2222

Address: P.O. Box 1169 PRIMROSE 1416
17100 NAZERATH-ELLIT South Africa
Israel

Phone: +972 (0)6 6100101 Phone: +27-11-8286169
Fax: +972 (0)6 6554254 Fax: +27-11-8221377

Email: assc@netvision.net.il Email: iem@hot.co.za
Countries served: Israel Countries served: South Africa, Botswana,

Lesotho, Namibia, Mozambique,
Swaziland, Zimbabwe

Company: Axon Technology Company Ltd Company: MercoStat Consultores
Address: 9F, No. 259, Sec. 2 Address: 9 de junio 1389

Ho-Ping East Road CP 11400 MONTEVIDEO
TAIPEI 106 Uruguay
Taiwan

Phone: +886-(0)2-27045535 Phone: 598-2-613-7905
Fax: +886-(0)2-27541785 Fax: Same

Email: hank@axon.axon.com.tw Email: mercost@adinet.com.uy
Countries served: Taiwan Countries served: Uruguay, Argentina, Brazil,

Paraguay

Company: Chips Electronics Company: Metrika Consulting
Address: Lokasari Plaza 1st Floor Room 82 Address: Mosstorpsvagen 48

Jalan Mangga Besar Raya No. 82 183 30 Taby STOCKHOLM
JAKARTA Sweden
Indonesia

Phone: 62 - 21 - 600 66 47 Phone: +46-708-163128
Fax: 62 - 21 - 600 66 47 Fax: +46-8-7924747

Email: puyuh23@indo.net.id Email: sales@metrika.se
Countries served: Indonesia URL: http://www.metrika.se

Countries served: Sweden, Baltic States,
Denmark, Finland, Iceland,
Norway

Company: Dittrich & Partner Consulting Company: Ritme Informatique
Address: Kieler Strasse 17 Address: 34, boulevard Haussmann

5. floor 75009 Paris
D-42697 Solingen France
Germany

Phone: +49 2 12 / 26 066 - 0 Phone: +33 (0)1 42 46 00 42
Fax: +49 2 12 / 26 066 - 66 +33 (0)1 42 46 00 33

Email: sales@dpc.de Email: info@ritme.com
URL: http://www.dpc.de URL: http://www.ritme.com

Countries served: Germany, Austria, Italy Countries served: France, Belgium,
Luxembourg

(List continued on next page)
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International Stata Distributors

(Continued from previous page)

Company: Scientific Solutions S.A. Company: Timberlake Consulting S.L.
Address: Avenue du Général Guisan, 5 Address: Calle Mendez Nunez, 1, 3

CH-1009 Pully/Lausanne 41011 Sevilla
Switzerland Spain

Phone: 41 (0)21 711 15 20 Phone: +34 (9) 5 422 0648
Fax: 41 (0)21 711 15 21 Fax: +34 (9) 5 422 0648

Email: info@scientific-solutions.ch Email: timberlake@zoom.es
Countries served: Switzerland Countries served: Spain

Company: Smit Consult Company: Timberlake Consultores, Lda.
Address: Doormanstraat 19 Address: Praceta Raúl Brandao, n�1, 1�E

5151 GM Drunen 2720 ALFRAGIDE
Netherlands Portugal

Phone: +31 416-378 125 Phone: +351 (0)1 471 73 47
Fax: +31 416-378 385 Fax: +351 (0)1 471 73 47

Email: J.A.C.M.Smit@smitcon.nl Email: timberlake.co@mail.telepac.pt
URL: http://www.smitconsult.nl

Countries served: Netherlands Countries served: Portugal

Company: Survey Design & Analysis Company: Unidost A.S.
Services P/L Rihtim Cad. Polat Han D:38

Address: 249 Eramosa Road West Kadikoy
Moorooduc VIC 3933 81320 ISTANBUL
Australia Turkey

Phone: +61 (0)3 5978 8329 Phone: +90 (216) 414 19 58
Fax: +61 (0)3 5978 8623 Fax: +30 (216) 336 89 23

Email: sales@survey-design.com.au Email: info@unidost.com
URL: http://survey-design.com.au URL: http://abone.turk.net/unidost

Countries served: Australia, New Zealand Countries served: Turkey

Company: Timberlake Consultants Company: Vishvas Marketing-Mix Services
Address: Unit B3 Broomsleigh Bus. Park Address: CnO S. D. Wamorkar

Worsley Bridge Road “Prashant” Vishnu Nagar, Naupada
LONDON SE26 5BN THANE - 400602
United Kingdom India

Phone: +44 (0)208 697 3377 Phone: +91-251-440087
Fax: +44 (0)208 697 3388 Fax: +91-22-5378552

Email: info@timberlake.co.uk Email: vishvas@vsnl.com
URL: http://www.timberlake.co.uk

Countries served: United Kingdom, Eire Countries served: India


