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dm59 ‘ Collapsing datasets to frequencies
Nicholas J. Cox, University of Durham, UK FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Syntax
collfreq varlist [weight] [if exp] [in rcmge] [, freq(string) zero nomiss ]

fweights are allowed.

Options

freq(string) specifies a name for the frequency variable. If not specified, freq and _freq are tried in turn. The name must be
new.

zero specifies that combinations with frequency zero are wanted.

nomiss specifies that observations with missing values on any of the variables in varlist will be dropped. If not specified, all
observations possible are used.

Remarks

Given a list of variables, collfreq produces a new dataset consisting of all combinations of that list that exist in the data
together with a new variable that contains the frequency of each combination.

Sometimes it is desired to collapse a dataset into frequency form. Several observations identical on one or more variables
will be replaced by one such observation together with the frequency of the corresponding set of values. For example, in
certain generalized linear models the frequency of some combination of values is the response variable, so we need to produce
that response variable. The set of covariate values associated with each frequency is sometimes called a covariate class. Such
collapsing is reversible for the variables concerned, as the original data could be reconstituted by using expand (see [R] expand)
with the variable containing the frequencies of each covariate class.

The existing general-purpose command collapse (see [R] collapse) can be used to produce these frequencies, but only with
some extra work beforehand (and frequently afterwards). The motivation for collfreq is that it produces the desired results
more directly and more quickly.

Examples

First let us illustrate the use of collapse for this problem. Suppose we wish to collapse the auto data to a set of frequencies
of the two variables rep78, which takes values 1, 2, 3, 4 and 5, and foreign, which takes values labeled ‘Domestic’ and
‘Foreign’. We first generate a variable that is identically 1, and then count (or alternatively sum) that variable over distinct
combinations of rep78 and foreign.

. gen freq = 1
. collapse (count) freq , by(rep78 foreign)

. list
rep78  foreign freq

Domestic 2

Domestic

Domestic 2

Foreign

Domestic

Foreign

Domestic

Foreign

Domestic

Foreign

e
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The main advantage of collfreq over collapse is that this can be done more directly in one line:
. collfreq rep78 foreign
By default, collfreq uses the variable name freq for the new variable containing the frequencies. If freq is in use, then
_freq is tried. If that is also in use, then the user is reminded to specify a new variable name via the freq( ) option.

There are three further advantages of collfreq. First, it is faster than collapse for what it does. Second, the zero option
makes it easier to have explicit zeros for combinations of variables that do not arise in the data. This could be achieved by
using £i11in (see [R] fillin):
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. fillin rep78 foreign

. drop _fillin

. replace freq = 0 if freq == .
(2 real changes made)

. list

rep78  foreign freq

1. 1 Domestic 2
2. 1 Foreign 0
3. 2 Domestic 8
4. 2  Foreign 0
5. 3 Domestic 27
6. 3 Foreign 3
7. 4 Domestic 9
8. 4 Foreign 9
9. 5 Domestic 2
10. 5 Foreign 9
11. . Domestic 4
12. . Foreign 1

Once again, however, collfreq with the zero option is more direct:

. collfreq rep78 foreign, zero

The final advantage of collfreq is that it is easier to ignore observations with missing values. This can be done by using
the nomiss option. In contrast, with the collapse approach, some preparatory action is needed. In the current example, it
would be easy to drop the observations with missing values:

. drop if rep78 == . | foreign == .

With a larger set of variables, a more efficient approach would be to flag such observations using mark and markout before
dropping them. But mark and markout are likely to be unfamiliar to Stata users who are not Stata programmers, and collfreq
with the nomiss option is a simpler alternative.

collfreq destroys the data in memory, as does collapse.

sbe19.1 Tests for publication bias in meta-analysis

Thomas J. Steichen, RJIRT, FAX 910-741-1430, steicht@rjrt.com
Matthias Egger, University of Bristol, FAX (011) 44-117-928-7325, m.egger @bristol.ac.uk
Jonathan Sterne, UMDS, London, FAX (011) 44-171-955-4877, j.sterne @umds.ac.uk

Modification of the metabias program

This insert documents four changes to the metabias program (Steichen 1998). First, the weighted form of the Egger et
al. (1997) regression asymmetry test for publication bias has been replaced by the unweighted form. Second, an error has been
corrected in the calculation of the asymmetry test p values for individual strata in a stratified analysis. Third, error trapping has
been modified to capture or report problem situations more completely and accurately. Fourth, the labeling of the Begg funnel
graph has been changed to properly title the axes when the ci option is specified. None of these changes affects the program
syntax or operation.

The first change was made because, while there is little theoretical justification for the weighted analysis, justification

for the unweighted analysis is straightforward. As before, let (¢;,v;), @ = 1,...,k, be the estimated effect sizes and sample
variances from k studies in a meta-analysis. Egger et al. defined the standardized effect size as t} = ¢;/ v;'/2, and the precision
1 -1

as s~ =1/ v;'/2. For the unweighted form of the asymmetry test, they fit £* to s~ using standard linear regression and

the equation t* = « + ,83*1. A significant deviation from zero of the estimated intercept, @, is then interpreted as providing
evidence of asymmetry in the funnel plot and of publication bias in the sampled data.

Jonathan Sterne (private communication to Matthias Egger) noted that this “unweighted” asymmetry test is merely a
reformulation of a standard weighted regression of the original effect sizes, ¢;, against their standard errors, vil/ 2, where the
weights are the usual 1/v;. It follows then that the “weighted” asymmetry test is merely a weighted regression of the original
effect sizes against their standard errors, but with weights 1/v;2. This form has no obvious theoretical justification.

We note further that the “unweighted” asymmetry test weights the data in a manner consistent with the weighting of the
effect sizes in a typical meta-analysis (i.e., both use the inverse variances). Thus, bias is detected using the same weighting
metric as in the meta-analysis.

For these reasons, this insert restricts metabias to the unweighted form of the Egger et al. regression asymmetry test for
publication bias.
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The second change to metabias is straightforward. A square root was inadvertently left out of the formula for the p
value of the asymmetry test that is calculated for an individual stratum when option by () is specified. This formula has been
corrected. Users of this program should repeat any stratified analyses they performed with the original program. Please note that
unstratified analyses were not affected by this error.

The third change to metabias extends the error-trapping capability and reports previously trapped errors more accurately
and completely. A noteworthy aspect of this change is the addition of an error trap for the ci option. This trap addresses the
situation where epidemiological effect estimates and associated error measures are provided to metabias as risk (or odds) ratios
and corresponding confidence intervals. Unfortunately, if the user failed to specify option ci in the previous release, metabias
assumed that the input was in the default (theta, se_theta) format and calculated incorrect results. The current release checks for
this situation by counting the number of variables on the command line. If more than two variables are specified, metabias
checks for the presence of option ci. If ci is not present, metabias assumes it was accidentally omitted, displays an appropriate
warning message, and proceeds to carry out the analysis as if ci had been specified.

Warning: The user should be aware that it remains possible to provide theta and its variance, var_theta, on the command
line without specifying option var. This error, unfortunately, cannot be trapped and will result in an incorrect analysis. Though
only a limited safeguard, the program now explicitly indicates the data input option specified by the user, or alternatively, warns
that the default data input form was assumed.

The fourth change to metabias has effect only when options graph(begg) and ci are specified together. graph(begg)
requests a funnel graph. Option ci indicates that the user provided the effect estimates in their exponentiated form, exp(theta)—
usually a risk or odds ratio, and provided the variability measures as confidence intervals, (I, ul). Since the funnel graph always
plots theta against its standard error, metabias correctly generated theta by taking the log of the effect estimate and correctly
calculated se_theta from the confidence interval. The error was that the axes of the graph were titled using the variable name (or
variable label, if available) and did not acknowledge the log transform. This was both confusing and wrong and is corrected in
this release. Now when both graph(begg) and ci are specified, if the variable name for the effect estimate is RR, the y-axis is
titled “log[RR]” and the z-axis is titled “s.e. of: log[RR]”. If a variable label is provided, it replaces the variable name in these
axis titles.

References

Egger, M., G. D. Smith, M. Schneider, and C. Minder. 1997. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315:
629-634.

Steichen, T. J. 1998. sbel9: Tests for publication bias in meta-analysis. Stata Technical Bulletin 41: 9-15. Reprinted in The Stata Technical Bulletin
Reprints vol. 7, pp. 125-133.

sbe24 metan—an alternative meta-analysis command

Michael J. Bradburn, Institute of Health Sciences, Oxford, UK, m.bradburn @icrf.icnet.uk
Jonathan J. Deeks, Institute of Health Sciences, Oxford, UK, j.deeks@icrf.icnet.uk
Douglas G. Altman, Institute of Health Sciences, Oxford, UK, d.altman@icrf.icnet.uk

Background

When several studies are of a similar design, it often makes sense to try to combine the information from them all to gain
precision and to investigate consistencies and discrepancies between their results. In recent years there has been a considerable
growth of this type of analysis in several fields, and in medical research in particular. In medicine such studies usually relate
to controlled trials of therapy, but the same principles apply in any scientific area; for example in epidemiology, psychology,
and educational research. The essence of meta-analysis is to obtain a single estimate of the effect of interest (effect size) from
some statistic observed in each of several similar studies. All methods of meta-analysis estimate the overall effect by computing
a weighted average of the studies’ individual estimates of effect.

metan provides methods for the meta-analysis of studies with two groups. With binary data, the effect measure can be the
difference between proportions (sometimes called the risk difference or absolute risk reduction), the ratio of two proportions (risk
ratio or relative risk), or the odds ratio. With continuous data, both observed differences in means or standardized differences in
means (effect sizes) can be used. For both binary and continuous data, either fixed effects or random effects models can be fitted
(Fleiss 1993). There are also other approaches, including empirical and fully Bayesian methods. Meta-analysis can be extended
to other types of data and study designs, but these are not considered here.

As well as the primary pooling analysis, there are secondary analyses that are often performed. One common additional
analysis is to test whether there is excess heterogeneity in effects across the studies. There are also several graphs that can be
used to supplement the main analysis.
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Recently Sharp and Sterne (1997) presented a program to carry out some of the above analyses, and further programs have
been submitted to perform various diagnostics and further analyses. The differences between metan and these other programs
are discussed below.

Data structure

Consider a meta-analysis of k studies. When the studies have a binary outcome, the results of each study can be presented
in a 2 X 2 table (Table 1) giving the numbers of subjects who do or do not experience the event in each of the two groups (here
called intervention and control).

Table 1. Binary data

Study i; 1< < k Event No event
Intervention a; b;
Control ¢ d;

If the outcome is a continuous measure, the number of subjects in each of the two groups, their mean response, and the
standard deviation of their responses are required to perform meta-analysis (Table 2).

Table 2. Continuous data

Study i; (1< ¢ < k) Group size Mean response Standard deviation
Intervention ni; miq sdy;
Control Na; Mo sdo;

Analysis of binary data using fixed effect models

There are two alternative fixed effect analyses. The inverse variance method (sometimes referred to as Woolf’s method)
computes an average effect by weighting each study’s log odds ratio, log relative risk, or risk difference according to the inverse
of their sampling variance, such that studies with higher precision (lower variance) are given higher weights. This method uses
large sample asymptotic sampling variances, so it may perform poorly for studies with very low or very high event rates or
small sample sizes. In other situations, the inverse variance method gives a minimum variance unbiased estimate.

The Mantel-Haenszel method uses an alternative weighting scheme originally derived for analyzing stratified case—control
studies. The method was first described for the odds ratio by Mantel and Haenszel (1959) and extended to the relative risk and
risk difference by Greenland and Robins (1985). The estimate of the variance of the overall odds ratio was described by Robins,
Greenland, and Breslow (1986). These methods are preferable to the inverse variance method as they have been shown to be
robust when data are sparse, and give similar estimates to the inverse variance method in other situations. They are the default in
the metan command. Alternative formulations of the Mantel-Haenszel methods more suited to analyzing stratified case—control
studies are available in the epitab commands.

Peto proposed an assumption free method for estimating an overall odds ratio from the results of several large clinical
trials (Yusuf, Peto, et al. 1985). The method sums across all studies the difference between the observed (O[a;]) and expected
(E[a;]) numbers of events in the intervention group (the expected number of events being estimated under the null hypothesis
of no treatment effect). The expected value of the sum of O — E under the null hypothesis is zero. The overall log odds ratio
is estimated from the ratio of the sum of the O — E and the sum of the hypergeometric variances from individual trials. This
method gives valid estimates when combining large balanced trials with small treatment effects, but has been shown to give
biased estimates in other situations (Greenland and Salvan 1990).

If a study’s 2 x 2 table contains one or more zero cells, then computational difficulties may be encountered in both the
inverse variance and the Mantel-Haenszel methods. These can be overcome by adding a standard correction of 0.5 to all cells
in the 2 x 2 table, and this is the approach adopted here. However, when there are no events in one whole column of the 2 x 2
table (i.e., all subjects have the same outcome regardless of group), the odds ratio and the relative risk cannot be estimated, and
the study is given zero weight in the meta-analysis. Such trials are included in the risk difference methods as they are informative
that the difference in risk is small.

Analysis of continuous data using fixed effect models

The weighted mean difference meta-analysis combines the differences between the means of intervention and control groups
(mq; — mg;) to estimate the overall mean difference (Sinclair and Bracken 1992). A prerequisite of this method is that the
response is measured in the same units using comparable devices in all studies. Studies are weighted using the inverse of the
variance of the differences in means. Normality within trial arms is assumed, and between trial variations in standard deviations
are attributed to differences in precision, and are assumed equal in both study arms.

An alternative approach is to pool standardized differences in means, calculated as the ratio of the observed difference in
means to an estimate of the standard deviation of the response. This approach is especially appropriate when studies measure
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the same concept (e.g., pain or depression) but use a variety of continuous scales. By standardization, the study results are
transformed to a common scale (standard deviation units) that facilitates pooling. There are various methods for computing the
standardized study results: Glass’s method (Glass, et al. 1981) divides the differences in means by the control group standard
deviation, whereas Cohen’s and Hedges’ methods use the same basic approach, but divide by an estimate of the standard deviation
obtained from pooling the standard deviations from both experimental and control groups (Rosenthal 1994). Hedges’ method
incorporates a small sample bias correction factor (Hedges and Olkin 1985). An inverse variance weighting method is used in all
the formulations. Normality within trial arms is assumed, and all differences in standard deviations between trials are attributed
to variations in the scale of measurement.

Test for heterogeneity

For all the above methods, the consistency or homogeneity of the study results can be assessed by considering an appropriately
weighted sum of the differences between the k individual study results and the overall estimate. The test statistic has a 2
distribution with k — 1 degrees of freedom (DerSimonian and Laird 1986).

Analysis of binary or continuous data using random effect models

An approach developed by DerSimonian and Laird (1986) can be used to perform random effect meta-analysis for all the
effect measures discussed above (except the Peto method). Such models assume that the treatment effects observed in the trials
are a random sample from a distribution of treatment effects with a variance 72. This is in contrast to the fixed effect models
which assume that the observed treatment effects are all estimates of a single treatment effect. The DerSimonian and Laird
methods incorporate an estimate of the between-study variation 72 into both the study weights (which are the inverse of the sum
of the individual sampling variance and the between studies variance 72) and the standard error of the estimate of the common
effect. Where there are computational problems for binary data due to zero cells the same approach is used as for fixed effect
models.

Where there is excess variability (heterogeneity) between study results, random effect models typically produce more
conservative estimates of the significance of the treatment effect (i.e., a wider confidence interval) than fixed effect models. As
they give proportionately higher weights to smaller studies and lower weights to larger studies than fixed effect analyses, there
may also be differences between fixed and random models in the estimate of the treatment effect.

Tests of overall effect

For all analyses, the significance of the overall effect is calculated by computing a z score as the ratio of the overall effect
to its standard error and comparing it with the standard normal distribution. Alternatively, for the Mantel-Haenszel odds ratio
and Peto odds ratio method, x? tests of overall effect are available (Breslow and Day 1980).

Graphical analyses

Three plots are available in these programs. The most common graphical display to accompany a meta-analysis shows
horizontal lines for each study, depicting estimates and confidence intervals, commonly called a forest plot. The size of the
plotting symbol for the point estimate in each study is proportional to the weight that each trial contributes in the meta-analysis.
The overall estimate and confidence interval are marked by a diamond. For binary data, a I’Abbé plot (L’ Abbé et al. 1987)
plots the event rates in control and experimental groups by study. For all data types a funnel plot shows the relation between the
effect size and precision of the estimate. It can be used to examine whether there is asymmetry suggesting possible publication
bias (Egger et al. 1997), which usually occurs where studies with negative results are less likely to be published than studies
with positive results.

Each trial 7 should be allocated one row in the dataset. There are three commands for invoking the routines; metan, funnel,
and labbe, which are detailed below.

Syntax for metan
metan varlist [if exp] [in range] [, options]

This main meta-analysis routine requires either four or six variables to be declared. When four variables are specified,
analysis of binary data is performed. When six, the data are assumed continuous. Following the syntax of Tables 1 and 2, the
varlist should be either

abcd
or

nl ml sdl n2 m2 sd2
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Scaling and pooling options for metan

Options for binary data

rr pool risk ratios (the default).

or pool odds ratios.

rd pool risk differences.

fixed specifies a fixed effect model using the method of Mantel and Haenszel (the default).
fixedi specifies a fixed effect model using the inverse variance method.

peto specifies that Peto’s assumption free method is used to pool odds ratios.

random specifies a random effect model using the method of DerSimonian and Laird, with the estimate of heterogeneity being
taken from the Mantel-Haenszel model.

randomi specifies a random effect model using the method of DerSimonian and Laird, with the estimate of heterogeneity being
taken from the inverse variance fixed effect model.

cornfield computes confidence intervals for odds ratios by the Cornfield method, rather than the (default) Woolf method.

chi2 displays the chi-squared statistic (instead of z) for the test of significance of the pooled effect size. This is available only
for odds ratios pooled using Peto or Mantel-Haenszel methods.

Options for continuous data

cohen pools standardized mean differences by the method of Cohen (the default).
hedges pools standardized mean differences by the method of Hedges.

glass pools standardized mean differences by the method of Glass.

nostandard pools unstandardized mean differences.

fixed specifies a fixed effect model using the inverse variance method (the default).

random specifies a random effect model using the DerSimonian and Laird method.

General output options for metan

ilevel() specifies the significance level (e.g., 90, 95, 99) for the individual trial confidence intervals.

olevel() specifies the significance level (e.g., 90, 95, 99) for the overall (pooled) confidence intervals.

ilevel and olevel need not be the same, and by default are equal to the significance level specified using set level.
sortby () sorts by given variable(s).

label ([namevar=variable containing name string]l [,yearvar=variable containing year string]) labels the data by its name,
year, or both. However, neither variable is required. For the table display, the overall length of the label is restricted to 16
characters.

nokeep denotes that Stata is not to retain the study parameters in permanent variables (see Saved results from metan below).
notable prevents the display of the table of results.
nograph prevents the display of the graph.

Graphical display options for forest plot in metan

xlabel() defines x-axis labels.

force() forces the z-axis scale to be in the range specified in xlabel().

boxsha() controls box shading intensity, between 0 and 4. The default is 4, which produces a filled box.
boxsca() controls box size, which by default is 1.

texts () specifies font size for text display on graph. The default size is 1.

saving(filename) saves the forest plot to the specified file.

nowt prevents the display of study weight on the graph.

nostats prevents the display of study statistics on the graph.
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nooverall prevents the display of overall effect size on the graph (automatically enforces the nowt option).
t1(), t20), b1 () add titles to the graph in the usual manner.

Note that for graphs on the log scale (that is, ORs or RRs), values outside the range | 1078, 108] are not displayed. A confidence
interval which extends beyond this will have an arrow added at the end of the range; should the effect size and confidence
interval be completely off this scale, they will be represented as an arrow.

Saved results from metan
The following results are stored in global macros:
$S_1  pooled effect size (ES) $sS_7 x? test for heterogeneity
$S_2  standard error of ES $S.8 degrees of freedom (x? heterogeneity)
$S_3  lower confidence limit of pooled ES $S.9 p(x? heterogeneity)
$S_4  upper confidence limit of pooled ES $S_10  x? value for ES (OR only)

$S_5  z value for ES $s_.11  p(x? for ES) (OR only)
$s6 p(2) $S 12  estimate of 72, between study variance (D&L only)

Also, the following variables are added to the dataset by default (to override this use the nokeep option):

Variable name Definition

_ES Effect size (ES)

_seES Standard error of ES

_LCI Lower confidence limit for ES
_UCI Upper confidence limit for ES
_WT Study weight

_SS Study sample size

Syntax for funnel
funnel [precision_var eﬁ‘ect_size] [if exp] [in range] [, options]

If the funnel command is invoked following metan with no parameters specified it will produce a standard funnel plot of
precision (1/SE) against treatment effect. Addition of the noinvert option will produce a plot of standard error against
treatment effect. The alternative sample size version of the funnel plot can be obtained by using the sample option (this
automatically selects the noinvert option). Alternative plots can be created by specifying precision_var and effect_size. If
the effect size is a relative risk or odds ratio, then the xlog graph option should be used to create a symmetrical plot.

Options for funnel

All options for graph are valid. Additionally, the following may be specified:

sample denotes that the y-axis is the sample size and not a standard error.

noinvert prevents the values of the precision variable from being inverted.

ysqrt represents the y-axis on a square-root scale.

overall(x) draws a dashed vertical line at the overall effect size given by x.

Syntax for labbe
labbe a b ¢ d [if exp] [in range] [weight=weightvar] [, options]

Options for labbe

By default, the size of the plotting symbol is proportional to the sample size of the study. If weight is specified, the plotting size
will be proportional to weightvar. All options for graph are valid. Additionally, the following two options may be used:

nowt declares that the plotted data points are to be the same size.
percent displays the event rates as percentages rather than proportions.
One note of caution: depending on the size of the studies, you may need to rescale the graph (using the psize () graph option).

There are differences between metan and meta (Sharp and Sterne 1998). First, metan requires a more straightforward
data format than meta: meta requires calculation of the effect size and its standard error (or confidence interval) for each trial,
whilst metan calculates effect sizes from 2 X 2 tables for binary data, and from means, standard deviations, and samples sizes
for continuous data. All commonly used effect sizes (including standardized effect sizes for continuous data) are available as
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options in metan. Secondly, where meta provides inverse variance, empirical Bayes and DerSimonian and Laird methods for
pooling individual studies, metan additionally provides the commonly used Mantel-Haenszel and Peto methods (but does not
provide an empirical Bayes method). There are also differences in the format and options for the forest plot.

Example 1: Interventions in smoking cessation

Silagy and Ketteridge (1997) reported a systematic review of randomized controlled trials investigating the effects of physician
advice on smoking cessation. In their review, they considered a meta-analysis of trials which have randomized individuals to
receive either a minimal smoking cessation intervention from their family doctor or no intervention. An intervention was
considered to be “minimal” if it consisted of advice provided by a physician during a single consultation lasting less than 20
minutes (possibly in combination with an information leaflet) with at most one follow-up visit. The outcome of interest was

cessation of smoking. The data are presented below:

. describe

Contains data from examplel.dta

obs: 16
vars: 6 20 Nov 1997 14:58
size: 544 (95.8), of memory free)
1. name stri0 %10s
2. year float %9.0g
3. a float %9.0g
4. r1 float %9.0g
5. ¢ float %9.0g
6. r2 float %9.0g
Sorted by:
. list
name year a rl c r2
1. Slama 1990 1 104 1 106
2. Porter 1972 5 101 4 90
3. Demers 1990 15 292 5 292
4. Stewart 1982 11 504 4 187
5. Page 1986 8 114 5 68
6. Slama 1995 42 2199 5 929
7. Haug 1994 20 154 7 109
8. Russell 1979 34 1031 8 1107
9. Wilson 1982 21 106 11 105
10. McDowell 1985 12 85 11 78
11. Janz 1987 28 144 12 106
12. Wilson 1990 43 577 17 532
13. Vetter 1990 34 237 20 234
14. Higashi 1995 53 468 35 489
15. Russell 1983 43 761 35 659
16. Jamrozik 1984 77 512 58 549

We start by producing the data in the format of Table 1, and pooling risk ratios by the Mantel-Haenszel fixed effect method.

. gen b=rl-a

. gen d=r2-c

metan a b ¢ d, rr label(namevar=name,yearvar=year) xlabel(0.1,0.2,0.5,1,2,5
> ,10) force texts(1.25) til(Impact of physician advice in) t2(smoking cessation)

Study | RR  [95} Conf. Interval] % Weight
Slama (1990) | 1.01923 .064601 16.0808 .400756
Porter (1972) | 1.11386 .308545 4.02109 1.71164
Demers (1990) | 3 1.1047 8.14701 2.02305
Stewart (1982) | 1.02034 .328944  3.16494 2.3609
Page (1986) | .954386 .325327 2.7998 2.53436
Slama (1995) | 3.5487 1.40851  8.94089 2.84442
Haug (1994) | 2.02226 .886205 4.61468 3.31687
Russell (1979) | 4.56329 2.12242 9.81126 3.12181
Wilson (1982) | 1.89108 .960226  3.72432 4.47179
McDowell (1985) | 1.00107 .468999  2.13676 4.64183
Janz (1987) | 1.71759 .916596  3.21857 5.59332
Wilson (1990) | 2.33214 1.34685 4.03825 7.15746
Vetter (1990) | 1.67848 .995947 2.82876 8.14372
Higashi (1995) | 1.58223 1.062563 2.37852 13.8506
Russell (1983) | 1.0639 .689426 1.64178 15.1785
Jamrozik (1984) | 1.42353 1.03495 1.95799 22.649
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M-H pooled RR | 1.67635 1.44004 1.95145

Heterogeneity chi-squared = 21.51 (d.f. = 15) p = 0.121
Test of RR=1 : z= 6.66 p = 0.000

Impact of physician advice in Risk ratio
smoking cessation (95% Gl % Weight
Study —

Slama (1990) 1.02 (0.06,16.08) 0.4
Porter (1972) 1.11 (0.31,4.02) 1.7
Demers (1990) L e  3.00(1.10,8.15) 2.0
Stewart (1982) o 1.02 (0.33,3.16) 2.4
Page (1986) N 0.95 (0.33,2.80) 2.5
Slama (1995) 4 & 3.55(1.41,8.94) 2.8
Haug (1994) P 2.02 (0.89,4.61) 3.3
Russell (1979) a 4.56(2.12,9.81) 3.1
Wilson (1982) .- 1.89 (0.96,3.72) 4.5
McDowell (1985) i 1.00 (0.47,2.14) 4.6
Janz (1987) e 1.72 (0.92,3.22) 5.6
Wilson (1990) e 2.33 (1.35,4.04) 7.2
Vetter (1990) e 1.68 (1.00,2.83) 8.1
Higashi (1995) o 1.58 (1.05,2.38) 13.9
Russell (1983) 1.06 (0.69,1.64) 15.2
Jamrozik (1984) - 1.42 (1.03,1.96) 22.6
Overall (95% Cl) < 1.68 (1.44,1.95)

A .2 .5 1 2 5 10
Risk ratio

Figure 1. Forest plot for Example 1.

It appears that there is a significant benefit of such minimal intervention. The nonsignificance of the test for heterogeneity
suggests that the differences between the studies are explicable by random variation, although this test has low statistical power.
The L’ Abbé plot provides an alternative way of displaying the data which allows inspection of the variability in experimental
and control group event rates.

labbe a b ¢ d , xlabel(0,0.1,0.2,0.3) ylabel(0,0.1,0.2,0.3) psize(50) ti(Impact of physician
> advice in smoking cessation:) t2(Proportion of patients ceasing to smoke) 11(Physician

> intervention group patients) b2(Control group patients)
( See Figure 2 below)

A funnel plot can be used to investigate the possibility that the studies which were included in the review were a biased
selection. The alternative command metabias (Steichen 1998) additionally gives a formal test for nonrandom inclusion of studies
in the review.

. funnel , xlog ylabel(0,2,4,6) xlabel(0.5,1,2,5) x1i(1) overall(1.68) b2(Risk Ratio)
( See Figure 3 below)

Impact of physician advice in smoking cessation:

Proportion of patients ceasing to smoke 6 o !
i
:
i
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i
o :
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«» | o
kot :
2 o
5 Pe
w ' o
2 i °
- ' o
27 | o
o b :
o |
i
i
P |
i
i
o '
T T T T T T T T
0 A 2 3 .5 1 2 5
Control group patients Risk Ratio
Figure 2. I’ Abbé plot for Example 1. Figure 3. Funnel plot for Example 1.

Interpretation of funnel plots can be difficult, as a certain degree of asymmetry is to be expected by chance.

Example 2

D’Agostino and Weintraub (1995) reported a meta-analysis of the effects of antihistamines in common cold preparations
on the severity of sneezing and runny nose. They combined data from nine randomized trials in which participants with new
colds were randomly assigned to an active antihistamine treatment or placebo. The effect of the treatment was measured as the
change in severity of runny nose following one day’s treatment. The trials used a variety of scales for measuring severity. Due
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to this, standardized mean differences are used in the analysis. We choose to use Cohen’s method (the default) to compute the
standardized mean difference.

. use example2

. list nl1 meanl sdl n2 mean2 sd2

nl meanl sdl n2 mean?2 sd2
1. 11 .273 .786 16 -.188 .834
2. 128 .932 .593 136 .81 .5566
3. 63 .73 .745 64 .578 LT73
4. 22 .35 1.139 22 .339 .744
5. 16 .422 2.209 15 -.17 1.374
6. 39 .256 1.666 41 .537 1.614
7. 21 2.831 1.753 21 1.396 1.285
8. 13 2.687 1.607 8 1.625 2.089
9. 194 .49 .895 193 .264 .828

. metan nl meanl sdl n2 mean2 sd2, xlabel(-1.5,-1,-0.5,0,0.5,1,1.5)
> t1(Effect of antihistamines on cold severity)

Study | SMD [95% Conf. Intervall % Weight

1 | .565548 -.217963 1.34906 2.48229
2 | .212457 -.029593 .454508 26.0094
3 | .2002 -.148532 .548932 12.5302
4 | .011435 -.579522 .602391 4.36346
5 | .236853 -.470186 .943892 3.04828
6 | -.17139 -.610612 .267833 7.89901
7 | .933687 .295162 1.57221 3.73754
8 | .590111 -.310379 1.4906 1.87925
9 | .262109 .061989 .462229 38.0506

I-V pooled SMD | .234284 .11084 .357728

Heterogeneity chi-squared = 9.86 (d.f. = 8) p = 0.275

Test of SMD=0 : z= 3.72 p = 0.000

Effect of antihistimines on cold severity gtandardised Mean diff.

o o ;
Study — (95% CI) % Weight
1 0.57 (-0.22,1.35) 2.5
2 0.21 (-0.03,0.45) 26.0
o ( )
3 o 0.20 (-0.15,0.55) 12.5
4 b 0.01 (-0.58,0.60) 4.4
5 0.24 (-0.47,0.94) 3.0
6 . -0.17 (-0.61,0.27) 7.9
7 0.93 (0.30,1.57) 3.7
8 0.59 (-0.31,1.49) 1.9
9 {} 0.26 (0.06,0.46) 38.1
Overall (95% Cl) <> 0.23 (0.11,0.36)

| | | | | | |
-1.5 -1 -.5 0 .5 1 1.5
Standardised Mean diff.

Figure 4. Forest plot for Example 2.
The patients given antihistamines appear to have a greater reduction in severity of cold symptoms in the first 24 hours of
treatment. Again the between-study differences are explicable by random variation.

Formulas

Individual study responses: binary outcomes

For study ¢ denote the cell counts as in Table 1, and let ny; = a; + b; , ny; = ¢; + d; (the number of participants in the
treatment and control groups respectively) and N; = ny; + ng; (the number in the study). For the Peto method the individual
odds ratios are given by

OR; = exp {(a; — Bla]) /v;}
with its logarithm having standard error

se{ln(OR;)} = /1/v;

where E[a;] = n1;(a; 4+ ¢;)/N; (the expected number of events in the exposure group) and
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vi = [n1inzi(ai + ¢;)(bi + d;)]/[NZ(N; — 1)] (the hypergeometric variance of a;).
For other methods of combining trials, the odds ratio for each study is given by
67%,- = a;d; /bic;
the standard error of the log odds ratio being
se{n(OR;)} = \/T/a; + 1/b; + 1/c; + 1/d;
The risk ratio for each study is given by
RR; = (ai/m1;)/(ci/nai)
the standard error of the log risk ratio being
se{In(RR;)} = \/T/a; + 1/c; — 1/ny; — 1/na;
The risk difference for each study is given by
]/%Bi = (a;/n1;) — (¢;/n9;) with standard error se(ﬁﬁi) = \/aibi/n?i + ¢id;/n3,

where zero cells cause problems with computation of the standard errors, 0.5 is added to all cells (a;,b;,¢;,d;) for that study.

Individual study responses: continuous outcomes
Denote the number of subjects, mean and standard deviation as in Table 1, and let
Ni =ny; +ng;

and

si = \/((n1; — 1)sdf; + (n2i — 1)sd3;) /(N; — 2)
be the pooled standard deviation of the two groups. The weighted mean difference is given by
WMD = my; — mgy; with standard error se( WMD \/sd i/ + sd3, /na;

There are three formulations of the standardized mean difference. The default is the measure suggested by Cohen (Cohen’s
d) which is the ratio of the mean difference to the pooled standard deviation s;; i.e.,

d = (my; — ma;)/s; with standard error se(d \/N/ (n1;n9;) @/Z(Ni -2)
Hedges suggested a small-sample adjustment to the mean difference (Hedges adjusted g), to give
/g\i = ((mh — mgl)/sz)(l — 3/(4N1 — 9)) with standard error se g1 \/N/ ’I’Lhnzl @\ZZ/Z(Nz — 394)

Glass suggested using the control group standard deviation as the best estimate of the scaling factor to give the summary measure
(Glass’s A), where

A; = (m1; — ma;)/sds;, with standard error se( \/N/ (n1ing;) + A2 ?/2(ng; — 1)

Mantel-Haenszel methods for combining trials

For each study, the effect size from each trial @ is given weight w; in the analysis. The overall estimate of the pooled
effect, @prp is given by

Orr=(30 wibi) /(3 wi)
For combining odds ratios, each study’s OR is given weight

w; = bjc; /N;,
and the logarithm of OR g has standard error given by

se{ln(@MH)} =/(PR)/2R2 + ((PS + QR)/2(R x 9)) + (QS) /252
where

R=>a;d;/N; S = > bic;/N;

PR =Y (a; +d;)a;d;/N? PS =Y (a; + d;)bic;/N?

QR =Y (b; + ¢;)a;d; /N? QS = > (b; + ¢;)bici/N?
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For combining risk ratios, each study’s RR is given weight
w; = (n1ic;) /N
and the logarithm of RR m g has standard error given by
se{ln(RRy )} = VP/(R x 5)
where
P =Y (nyinai(a; + ¢;) — a;c;N;) /N? R =) ainy/N; S =>"cinii/N;
For risk differences, each study’s RD has the weight
w; = nying; /N
and RD m g has standard error given by
se{RDuu} = /(P/Q?)
where
P =Y (a;ibin3; + c;idin3;) /n1in2; NZ; Q =Y nung/N;
The heterogeneity statistic is given by
Q =Y wi(B; — Orrm)?

where 0 is the log odds ratio, log relative risk or risk difference. Under the null hypothesis that there are no differences in
treatment effect between trials, this follows a y? distribution on k& — 1 degrees of freedom.

Inverse variance methods for combining trials

Here, when considering odds ratios or risk ratios, we define the effect size ; to be the natural logarithm of the trial’s OR
or RR; otherwise, we consider the summary statistic (RD, SM D or W M D) itself. The individual effect sizes are weighted
according to the reciprocal of their variance (calculated as the square of the standard errors given in the individual study section
above) giving

w; = l/se(@-)2
These are combined to give a pooled estimate
Orv = (Do wifi) /(D wi)
with
Se{/e\jv} = 1/\/ Zwi

The heterogeneity statistic is given by a similar formula as for the Mantel-Haenszel method, using the inverse variance
form of the weights, w;

Q= wi(f; —brv)*

Peto’s assumption free method for combining trials
Here, the overall odds ratio is given by
ORpeto = exp{> w; n(OR;)/ S w;}

where the odds ratio OR; is calculated using the approximate method described in the individual trial section, and the weights,
w; are equal to the hypergeometric variances, v;.

The logarithm of the odds ratio has standard error
se{In(ORpeto)} = 1/4/>  w;
The heterogeneity statistic is given by

Q =Y wi{(InOR)2 — (In ORpero)?}

DerSimonian and Laird random effect models

Under the random effect model, the assumption of a common treatment effect is relaxed, and the effect sizes are assumed
to have a distribution
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0; ~ N(67 7_2)
The estimate of 72 is given by

72 = max{[Q — (k — DI/ wi — (C(w])/ Zwi)l, 0}
The estimate of the combined effect for heterogeneity may be taken as either the Mantel-Haenszel or the inverse variance

estimate. Again, for odds ratios and risk ratios, the effect size is taken as the natural logarithm of the OR and RR. Each study’s
effect size is given weight

w; = 1/(se(8;)? +72)
The pooled effect size is given by

Opr = (L wih)/ (X wi)

and

se{lpr} =1//S w;

Note that in the case where the heterogeneity statistic @ is less than or equal to its degrees of freedom (k — 1), the estimate
of the between trial variation, 72, is zero, and the weights reduce to those given by the inverse variance method.

Confidence intervals

The 100(1 — @)% confidence interval for 8 is given by

~ ~

0 —se(®)®(1 —/2), to 6+se(6)d(1—a/2)

where 6 is the log odds ratio, log relative risk, risk difference, mean difference or standardized mean difference, and @ is the
standard normal distribution function. The Cornfield confidence intervals for odds ratios are calculated as explained in the Stata
manual for the epitab command.

Test statistics
In all cases, the test statistic is given by
z= 5/ se(é\)
where the odds ratio or risk ratio is again considered on the log scale.
For odds ratios pooled by method of Mantel and Haenszel or Peto, an alternative test statistic is available, which is the X2

test of the observed and expected events rate in the exposure group. The expectation and the variance of a; are as given earlier
in the Peto odds ratio section. The test statistic is

x* = {3(ai — Elai])}?/ 3- var(ai)
on one degree of freedom. Note that in the case of odds ratios pooled by method of Peto, the two test statistics are identical;
the x? test statistic is simply the square of the z score.
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sg85 Moving summaries

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk
Syntax

movsumm varname [if exp] [in range] [weight], gen(newvar) result(#)
[ window(#) end mid { binomial | oweight (string) } wrap]

fweights and aweights are allowed.

Description

movsumm produces a new variable containing moving summaries of varname for overlapping windows of specified length.
varname will usually (but not necessarily) be a time series with regularly spaced values. Possible summaries are those produced
by summarize and saved in _result().

It is the user’s responsibility to place observations in the appropriate sort order first.

Options
gen(newvar) specifies newvar as the name for the new variable. It is in fact a required option.

result (#) specifies which _result () from summarize is to be used. It is in fact a required option. See the table below. Note
the typographical error in the Stata 5.0 manual entry [R] summarize: _result(10) contains the 50th percentile (median).

# meaning # meaning

1 number of observations 10 50th percentile (median)
2 sum of weight 11 75th percentile

3 mean 12 90th percentile

4 variance 13 95th percentile

5 minimum 14 skewness

6 maximum 15 kurtosis

7 Sth percentile 16 Ist percentile

8 10th percentile 17 99th percentile

9 25th percentile 18 sum of variable

window (#) specifies the length of the window, which should be an integer at least 2. The default is 3. By default, results for
odd-length windows are placed in the middle of the window and results for even-length windows are placed at the end of
the window. The defaults can be overridden by end or mid.

end forces results to be placed at the end of the window.

mid forces results to be placed in the middle of the window, or in the case of windows of even length just after it: in the 2nd
of 2, the 3rd of 4, the 4th of 6, and so on.
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binomial specifies that binomial weights are used. For a window of length k, these are

*)

2k—1"7

i=1,...,k

oweight (string) specifies the user’s own weights for values in the window. These should be numbers separated by spaces (not
commas). The number of weights should equal that specified by window(). Thus ow(0.3 0.4 0.3) specifies weights of
0.3, 0.4, 0.3.

binomial and oweight () are mutually exclusive. Neither may be combined with other weights specified by [w = ]. Each is
treated as specifying analytic weights, i.e. they are rescaled to sum to the number of observations.

wrap specifies that beginning and end values should be calculated by wrapping around. Thus with window length 3 and 12
observations the window for observation 1 would be 12, 1, 2 and the window for observation 12 would be 11, 12, 1. The
justification for this option would be that the data are periodic, for example time of day or time of year.

Explanation

movsumm will principally be useful for processing variables which are time series, such as temperatures or sales measured at
or for different points or periods of time. However, it could also be applied to similar one-dimensional spatial series, if instead
of time we have say some measure of distance or depth, or more generally to any response that has been sorted according to
the value of some covariate. In what follows, it is assumed that the user has observations already sorted according to time or
whatever else provides an order. If not, then use sort (see [R] sort) beforehand.

Note that movsumm takes no account of the exact spacing of the observations. In most applications, the data will come
regularly spaced (for example, every day, month, year). In other applications movsumm may still provide useful results, but it
should be remembered that the window may vary in length (in time, space, whatever), even though it contains a fixed number
of observations.

In time series analysis, it is common, especially for basic descriptive or exploratory work, to summarize the series within a
window which is moved along the series. The summary indicates the state of affairs within the window, that is, locally or over
a short period. movsumm is concerned with windows that overlap. For example, if the window is of length 7, the first window
consists of observations 1 through 7, the second 2 through 8, and so on. movsumm could also be used for calculations involving
disjoint windows, but it is already easy to do most such calculations in Stata. The most basic method is simply to use generate
in conjunction with by. Other possibilities are provided under egen.

Most frequently, the summary calculated in each window is some measure of level, such as a mean or median. In particular,
various means, whether weighted or not, are called moving averages or running means. More generally, the calculation of the
moving measure of level is often called smoothing or filtering. Smoothing is a large area within statistical science and many
Stata commands offer some kind of smoothing, but the two closest in spirit to movsumm are provided in egen and smooth.

egen with the ma option calculates equally weighted moving averages for windows with odd numbers of observations. See
[R] egen. smooth principally offers various nonlinear smoothers based on medians. See [R] smooth. smooth also allows one
or more applications of Hanning, a linear smoother or moving average with weights i : % : %. Those weights are binomial
coefficients 1 : 2 : 1, divided by their sum 4, so that they add to 1. By repeated applications of Hanning, any desired binomial
smoother can be produced with smooth, as any other binomial coefficients can be obtained by convolution. This fact was

exploited in the bsmplot command published in Cox (1997).

Other moving averages could be implemented in Stata by ad hoc one-line commands. Suppose you wanted equally-weighted
averages of a variable x for windows of length 4. These are not obtainable through the ma option of egen, because 4 is even,
not odd.

. gen ave4 = (1/4) * (x[_n-3] + x[_n-2] + x[_n-1] + %)

is one direct way to do it. Note that there is a minor issue: where should the result be put? In this case, the average is put at
the end of the window to which it refers. The new variable ave4 will contain some missing values, in this case at the beginning
of the series, because for the first three observations there are fewer than 4 values to use. In some cases, it may be important to
fill in missing values in some way, but frequently people do not bother, because the aim of the procedure is just to get an idea
of the general structure of the data, and a lack of results at either end of the series is thus of little concern.
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Even in the case of Hanning, Stata would be faster at doing

. gen bin3 = (1/4) * (x[_n-1]1 + 2 * x + x[_n+1])

than at doing

. smooth H x, gen(bin3)

or

. movsumm x, gen(bin3) bin w(3) r(3)

because the first is much more direct than the second or third.

However, even though Stata is typically quicker doing the direct calculation, the difference in time is often much less than
the time spent by the user working out the syntax required. Why then use movsumm?

First, as a tool for calculating moving averages, whether weighted or unweighted (that is, equally weighted), movsumm is
much more general than either egen with ma or smooth, given that windows can be any length desired, the result can be put at
the end or in the middle of the window, and weights within the window can be specified.

The two last points need expansion. movsumm has an idea of the natural place to put its results. If the length of the window
is odd (3, 5, 7, etc.), there is a natural midpoint to the window, and that is where movsumm puts results by default. If the length
of the window is even (2, 4, 6, etc.), there is no such midpoint. In any case, my guess is that most people using even-length
windows are likely to be economists and others using monthly or quarterly data and thus windows of length 4 or 12. The
accompanying idea is essentially: at the end of the year, or the quarter, how have we done? Hence the default for even-length
windows is that movsumm puts its results at the end of each window, which seems the natural place. If you disagree with these
choices for defaults, you can override them by using either the end option or the mid option.

movsumm offers two possibilities for weights according to position in the window: binomial weights, with the binomial
option, or the user’s own weights, spelled out in the oweight ( ) option. Note that such weights cannot be combined with other
weights specified by [w = ]. The latter may be fweights or aweights, but weights supplied by binomial or oweight ( ) are
treated as aweights.

There is one exception to the statement that movsumm is more general than its two nearest relatives. movsumm does no
surgery at either end of the series to replace missing values. If that is important to you, check out those commands, or devise
your own surgery.

Second, although it is less common in practice than the calculation of moving averages, other summary statistics may be
required for each window. With movsumm you can pick up any result left behind by summarize in _result( ). The full list is
given in the explanation of the result( ) option.

Suppose we want totals of monthly sales in the previous quarter. The sum is left by summarize in _result(18), so we
type
. movsumm monsales, w(4) r(18) gen(qgtrsales)
Once again, Stata will be slower at doing this than at doing

. gen qtrsales = monsales + monsales[_n-1] + monsales[_n-2] + monsales[_n-3]

but by the time you have typed the longer command, the difference is immaterial.
The list of results obtainable implies other possibilities. If you wanted a moving standard deviation for windows of length
7, that is two steps:

. movsumm x, gen(varx) w(7) r(4)

. gen sdx = sqrt(varx)

summarize leaves the variance behind in _result(4). If you wanted a moving interquartile range for windows of length 7,
that is three steps:

. movsumm x, gen(upqgx) w(7) r(i1)
. movsumm x, gen(logx) w(7) r(9)

. gen iqrx = upgx - logx

summarize leaves the lower and upper quartiles behind in _result(9) and _result(11).

Third, movsumm allows the special treatment that is often appropriate for periodic variables. If time is time of year or time
of day, then that scale is circular. January follows December just as February follows January. Hence it may seem sensible that
windows wrap around. The wrap option specifies that beginning and end values should be calculated in this way. Thus with a
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window of 3 and 12 observations, the window for observation 1 would be 12, 1, 2 and the window for observation 12 would
be 11, 12, 1. movsumm temporarily creates enough extra observations to ensure that the user has a complete set of results.

Suppose that we want binomial smoothing with window length 7, wrapped around:

. movsumm temp, w(7) r(3) gen(bin7temp) bin wrap

Examples

In practice, the point of using movsumm is to create variables for graphing or other analysis. As a real example, we use data
from the accompanying file gltemp.dta, which contains average temperatures for each year from 1851 to 1997 for the world
and the Northern and Southern hemispheres. Each temperature variable is expressed as deviations from the 1961-90 mean, in
°C. (In climatology, 30 year averages starting in the first year of a decade are conventional reference levels.) The data were
downloaded from http://www.meto.govt.uk/sec5/CR div/Tempertr/index.html.

We generate binomially weighted means and standard deviations for window lengths of 21 years. The binomial weighting
means that values get progressively less weight away from the midpoint of each window.

. movsumm global, r(3) bin g(bin21) w(21)
. movsumm global, r(4) bin g(var21) w(21)

. gen sd21 = sqrt(var21)
(20 missing values generated)

. graph global bin21 sd21 year , sy(oii) c(.ss) xlab ylab

Global temp, deg C wrt 1961-90

T T T T
1850 1900 1950 2000
year

Figure 1

The means and standard deviations are plotted at the center of each window. While changes in the mean are striking, the
standard deviation appears to fluctuate around a constant value.

References
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sg86 Continuation-ratio models for ordinal response data

Rory Wolfe, Royal Children’s Hospital, Australia, wolfer@cryptic.rch.unimelb.edu.au

Background

In modeling an ordinal outcome (with J categories), it is often reasonable to think of some continuum underlying the
categories of the ordinal scale. The observations are then thought of as being crude measures of a response variable that is defined
on the underlying continuum but is unmeasurable. Each ordinal observation indicates that the underlying response variable lies
between two “cut-points” on the continuum. There are J — 1 cut-points in total, dividing the continuum into J separate parts,
each corresponding to an outcome category.

This approach leads naturally to consideration of models based on cumulative probabilities, ; = Pr(Ordinal outcome <
Category j), two of which can be fitted in Stata 5.0 using the commands ologit and oprobit. The only difference between
the models fitted by these commands is in the link function used to transform the cumulative probabilities to a continuum where
they can be modeled by a linear combination of explanatory effects. The former command fits a model that employs the logit
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link whereas the latter fits a probit-link model. With the new command, ocratio, it is possible to fit a third model which uses
the complementary-log-log link function.

The primary purpose of introducing ocratio is to make available an alternative type of model, based on quantities other
than cumulative probabilities, with which to model ordinal data. These models are based on continuation-ratio probabilities

d; = Pr(Ordinal outcome = category j|Outcome is category j or greater)

and motivation for their use is given by McCullagh and Nelder (1989). To summarize their discussion, consider an ordinal
response Y, the number of inseminations required for a milch cow to become pregnant. This outcome is the manifest of a series
of binary outcomes, success or failure of artificial insemination, observed on the first, second, third, etc. attempted insemination.
Starting with n cows, each with probability m; of getting pregnant from the first insemination, suppose we observe a total of y;
pregnancies at this stage. A second insemination will take place in » — y; cows and the probability of a pregnancy at this stage
is g /(1 — 1) with yo observed pregnancies. At the next stage there are n — y; — y2 cows with probability 73 /(1 — 71 — m2)
of getting pregnant. This sequence continues until all cows are pregnant.

Now consider a binary regression model for each insemination j (assuming all cows are pregnant after the fourth insemination).
If the row vector x; contains values of explanatory variables for the ith cow and (3; is a parameter vector describing the effect
of the explanatory variables on the binary outcome, then we have

link(mi1) =k1 + X1
link(mg/(l — 'yﬂ)> =Kg + X;02

link(mg/(l - %‘2)) =rK3 + X;[03

where m;4/(1 — v;3) = 1 and the ks are the usual “baseline-effect” parameters. These models can be fitted using the binomial
likelihood functions

L(l) o H,/T;’_Jlil (1 _ 7ril).7J1;2+yi3-i-y1;4
7
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L e 1— %

(2)0(1:[(1—7Q‘1> ( l—7ri1)

Yi3 Yia
T3 i3

b TT (e ) (1)

®) 1:[(17mﬂ'i2 I —mjp — 2

respectively. The three models are equivalent to a single continuation-ratio model of the form

hnk(él]):n]—xlﬁ] j:],...,J—]
for the ordinal responses Y;. The corresponding multinomial likelihood function

L .eag. Yi1,_Yi2, _Yi3 _Yi4
L(mijy;) o H”ﬂ T T3 Ty
i

is used to fit the continuation-ratio model. Note that this is in fact the product of the likelihood functions, hence fitting the
continuation-ratio model by maximum likelihood can be achieved using a routine for binary regression.

The sign in the continuation-ratio model is reversed from those in the binary regression models so that the effect parameters
are positive if they cause a shift to higher categories (and hence are qualitatively similar to those from a cumulative probability
model). The new command ocratio fits a model of the form

link((;ij):nj—xi,@ jzl,...,J—l

where the explanatory effects are assumed to be constant across the response categories. An option is provided to test this
assumption of constancy of effects by inspecting the likelihood-ratio between the first and third models above. Three link
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functions are available with the command; logit, probit and complementary-log-log. The § parameters from the logit model can
be interpreted as log odds ratios of continuation-ratio probabilities and an option is provided to display these as odds ratios.

A curiosity in the family of continuation-ratio models is the fact that the complementary-log-log link model is equivalent
to the cumulative probability counterpart (as demonstrated in Laara and Matthews 1985). While the explanatory effects in both
models are equal, the x; parameters of the continuation-ratio complementary-log-log model are transformations of the cut-point
parameters of the ordered complementary-log-log model. This model can be displayed in either form with ocratio.

Syntax

ocratio depvar [varlist] [weight] [if exp] [in range] [, link (linkname) eform test

level(#) cumulative ]

ocrpred [type] newvarlist [, xb prob ]

where linkname is one of logit | probit | cloglog.

fweights are allowed with ocratio and provide a very useful way of dealing with data that are stored in a contingency table
format (see the example below).

ocratio shares most features of estimation commands; see [U] 26 Estimation and post-estimation commands. To obtain
predictions from the model, however, ocrpred should be used rather than predict.

Options for use with ocratio

link (linkname) specifies the link function. The default is 1ink(logit) unless cumulative is requested in which case it is
link(cloglog).

eform displays the exponentiated coefficients with corresponding standard errors and confidence intervals as described in
[R] maximize. For the logit link, exponentiation results in odds ratios of continuation-ratio probabilities; for the cloglog
link, exponentiation results in ratios of discrete hazard functions.

test requests the calculation of the likelihood-ratio test of whether the effects of the explanatory variables are constant across
the categories of the response variable.

level (#) specifies the confidence level in percent, for confidence intervals. The default is 1level(95) or as set by set level.

cumulative requests the fitting of the continuation-ratio cloglog model and the display of the cut-points from the equivalent
ordered cloglog model.

Options for use with ocrpred

xb requests the linear predictor, and one name should be supplied in newvarlist. This is the default if no options are specified
with ocratio.

prob requests the predicted probabilities for each response category. There should be J names supplied in newvarlist where J
is the value of $S_3 (i.e., the number of response categories) from the previous ocratio command. An easy way of doing
this is by using ranges, e.g., ocrpred p1-p8, prob.

Example: Pneumoconiosis in miners

We consider the data presented by McCullagh and Nelder (1989, 179) on the relationship between exposure in years and
the degree of pneumoconiosis in coalface workers.

We define a variable period containing the exposure period in years (and logt containing the log-transformed values of
period), a variable response which takes values from 1 to 3 corresponding to the three degrees of pneumoconiosis and count
which contains the observed counts for each combination of period and response. We follow McCullagh and Nelder in fitting
a continuation-ratio logit model in terms of logt using the command

. ocratio response logt [fweight=count], link(logit)

with the resulting output
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Continuation-ratio logit Estimates Number of obs = 453

chi2(1) = 94.01

Prob > chi2 = 0.0000

Log Likelihood = -205.5741 Pseudo R2 = 0.1861

response | Coef . Std. Err. z P>|z]| [95% Conf. Intervall

logt | 2.321359 .3268181 7.103 0.000 1.680808 2.961911
_cutl | 8.733798  1.128289 (Ancillary parameters)

_cut2 | 8.051302 1.179676

The coefficient for the log-transformed period effect can be displayed as an odds ratio by redisplaying the output with

. ocratio, eform

which produces (ignoring the leading statistics and ancillary parameters)

(output omitted )
response | Odds ratio Std. Err. z P>|z]| [95% Conf. Intervall
logt | 10.18952 3.330118 7.103 0.000 5.369891 19.33489

The x? statistic at the top of the output summarizes the improvement in fit over a model which contains no explanatory
effects. The pseudo-R2statistic is described in the Stata manual under maximize and should be used as a rough guide only to
describe how much of the variation in the outcome is described by the current model. The fitted probabilities for each category
of the outcome can be obtained using

. ocrpred pil-pi3, prob

and fitted categories could be obtained using combinations of these categories, e.g., choosing the fitted category as j' where
my = max(m;), j=1,...,J, or .u.sing a scored category with > 5 Im; /J. The log-likelihood for the model can then be
recomputed from these fitted probabilities.

. gen unwtll_i=log(pil)*(response==1)+log(pi2)*(response==2)+log(pi3)*(response==3)

. gen 11_i=(unwtll_i)*count

. gen 1l=sum(11_i)

. di "Log-likelihood = " 11[_N]

Technical notes

The error “matsize too small” may be encountered when using the test option but is remedied by issuing the set matsize
command, e.g., set matsize 150. Also, when ocratio fits a model, the original data vectors of length n are expanded to
length (J — 1) X n, so if J and n are large this can take an appreciable amount of time and there is potential for storage
problems.

Saved results

S_1 Log-likelihood ratio for test of effect constancy assumption
S_2 Test degrees of freedom
S_3 Number of distinct response categories (with nonzero counts)

Note that S_1 and S_2 are only defined if the test option is specified.

Discussion

While the cumulative probability models may be used to model any ordinal response, interpretation of the model parameters
is most straightforward for those ordinal responses which can be thought of as crude representations of some underlying continuous
unobserved variable. The models are an appealing choice when the response categories are not of interest in their own right but
only in what they tell us about a latent variable. The continuation-ratio models fitted using ocratio can also be employed to
model any ordinal response but their interpretation is most straightforward when the ordinal scale represents a series of binary
outcomes. These models are most appealing when the specific categories of the response scale are of interest in their own right.

References
Laara, E. and J. Matthews. 1985. The equivalence of two models for ordinal data. Biometrika 72: 206-207.
McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. 2d ed. London: Chapman & Hall.
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sg87 Windmeijer's goodness-of-fit test for logistic regression

Jeroen Weesie, Utrecht University, J.Weesie @fss.ruu.nl
A popular goodness-of-fit statistic for binary models such as the logistic regression model is Pearson’s X2, defined as

X2 i mi(y; — i)’

2 w17y

where ¢ runs over the covariate patterns, m; is the number of replications under ¢, y; is the proportion of observed successes in
1, and 7; the estimated probability of success in 4.

It is useful to distinguish two cases. In the first case, the number m; of observations with the same covariate pattern
(replications), and hence the same expected probability, is “large” for every ¢. This is typically the case if there are only a few
and discrete covariates. Then, according to standard asymptotic theory, X ? is approximately x? distributed with m — p degrees
of freedom, where again m is the number of covariate patterns, and p is the number of (independently) fitted parameters. Hosmer
and Lemeshow (1989) refer to this result as m-asymptotics. Stata supports this statistic in the command 1fit.

In the second case, there are only rare observations with the same covariate pattern (“replications”). This is usually the
case with continuous covariates or with many discrete covariates. In this case, it is not useful to aggregate within covariate
pattern, and we write m; = 1 for each ¢, and so m equals the number of observations n. Without providing a formal theory,
some authors suggest approximating X 2 with a x2-distribution with n — p degrees of freedom (cf. Hosmer and Lemeshow 1989
on n-asymptotics). Below, 1 will refer to this test as the Pearson test. Hosmer and Lemeshow provide a X 2-like test statistic
in which observations are grouped on the predicted probabilities rather than on the covariates. Again, a distribution theory on
this test statistic is not available. Based on extensive simulations, Hosmer and Lemeshow suggest comparing their test statistic
with a x? distribution with m — 2 degrees of freedom, where m is the number of groups. Stata supports this statistic in 1fit,
group (#).

Thus, both goodness-of-fit tests for logistic regression with continuous covariates that are currently supported by Stata
lack a firm formal basis in statistical theory. It seems to be little known that McCullagh (1986) and Windmeijer (1990) have
derived asymptotic theory for the X 2-statistic for discrete choice models such as the logistic regression model. This theory is
directly applicable to cases with continuous covariates. In particular, these authors show that under suitable regularity conditions a
normalization of X2 is asymptotically normally distributed, and, hence, the square of the normalized statistic is Xz(l)-distributed.
More specifically, it can be shown that

(X2 - ")2 2

H, = — — 1

Here
e~ 1-27
2 i -1
= — E — 0,0
" i=1 mi(1 —m) i O

where

with x; the covariate vector for 2’s observation, and
1 n
!
Q, == g mi(1 — 7))
n ~
1=

is the mean Fisher-information. Using this asymptotic result, one could construct a goodness-of-fit test that rejects a logistic
regression model if H,, is large, say H,, > 3.84 (at a = 0.05). Rejecting the model by itself does not, of course, suggest
improved models. For instance, important variables may be missing, the logit link may not be appropriate, etc.

A number of remarks on this asymptotic result and the associated test are in order. First, o2 is in general not equal to 2,
as would be expected if the X? itself was approximately x? distributed. Thus, in general, X2 is not x? distributed. Examples
are easily constructed in which the x? approximation is arbitrarily inaccurate (See Windmeijer 1990 for an example with
o2 — 0.034). Second, the approximating x*(1) distribution of H,, does not depend directly on the number of observations and
the number of estimated parameters. It comes to mind to compare the result of McCullagh and Windmeijer to the approximation
of a y2-distributed variate Y} with a normal variate

Vi, — k
V2k

~ N(0,1)
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which is asymptotically true for large degrees of freedom k, but not accurate for small k£ (See Hoaglin 1977 for details and
improved normal approximations of the x? distribution). This suggests that the asymptotic x2(1) distribution of H,, may be
reasonably accurate for very large numbers of observations only. Third, v,, is degenerate for m = 0 or 7 = 1. Windmeijer (1990)
suggests excluding observations with extreme (estimated) probabilities in computing H,, (see the option eps of my command
1fitx2).

Windmeijer (1990) also derives the normalizing constants of Pearson’s X ? statistic for other binary regression models such
as probit-regression (cf. probit in Stata) and complementary-log-regression. Windmeijer (1994) generalizes these results to a
multinomial logistic regression model (cf. mlogit in Stata) and to conditional logistic regression (cf. clogit in Stata). Currently,
Stata does not provide goodness-of-fit statistics for the polytomous case. I hope to provide implementations of Windmeijer’s
goodness-of-fit tests in the near future.

I wrote a command 1fitx2 that computes Windmeijer’s goodness-of-fit test based on the normalization H,, of Pearson’s
X2, Like 1fit, it can be called only after logistic. It will automatically use the same sample as logistic. Note that currently
1fitx2 does not support weights or out-of-sample usage.

Syntax
1fitx2 [, eps (#)]

Option

eps (#) specifies that all observations with expected probability p <eps or p > 1—eps are excluded from computing the X2
statistic. The default value of eps is 1e-5.

Example 1

As a first example, I consider the same data that are used to illustrate the 1fit command in the Stata Reference Manual.
These data come from a study of the risk factors associated with low birth weight. After estimating a logistic regression model
with eight covariates, one can obtain three goodness-of-fit tests, the first two of which are copied literally from the manual.

. 1fit
Logistic model for low, goodness-of-fit test
number of observations = 189
number of covariate patterns = 182
Pearson chi2(173) = 179.24
Prob > chi2 = 0.3567

. 1fit, group(10)

Logistic model for low, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 189
number of groups = 10
Hosmer-Lemeshow chi2(8) = 9.65
Prob > chi2 = 0.2904

. 1fitx2

Logistic model for low, Pearson~

2]

goodness-of-fit test

number of observations = 189
Pearson’s X2 = 182.023

Prob > chi2(180) = 0.4438 Beware: Invalid!
Windmeijers H = normalized(X2) = 0.692
Prob > chi2(1) = 0.4054

We conclude that neither of the three goodness-of-fit tests rejects the model. Note that in the output of 1fitx2, we also
include the invalid approximate p value, based on a x%(n — p) distribution, including a warning message that it will generally
be too inaccurate to be of any practical use.

Example 2

Both as a second illustration of the command 1fitx2 and as a step towards the analysis of the conditions under which
different goodness-of-fit statistics are appropriate, I conducted some simple Monte Carlo simulation studies that

1. study the distribution of Pearson’s X? and Windmeijer’s H (as produced by 1fitx2) for different sample sizes, and

2. compare the goodness-of-fit tests due to Pearson, Hosmer and Lemeshow, and Windmeijer.
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In the first of these experiments, synthetic datasets are constructed by sampling from

z~N<—1,1>
2

1
gl ~ Bin (1, 2P0 F2)
1+ exp(l+2)

For each of these simulated datasets, the true logistic regression model with covariate z and the constant is estimated, and
Pearson’s X2 and Windmeijer’s H are computed. Next to moments and tail probabilities of the distributions of X2 and H, we
also tested whether H is x2(1)-distributed using an Anderson—Darling test (Royston 1996). In the next table, we report some
results of this study based on 1000 replications for each of the sample sizes n = 40, n = 100, and n = 1000.

Pearson’s X 2 Windmeijer’s H Proportion H{y rejected Anderson—Darling
n mean variance mean variance a=.10 a = .05 a=.01 A2 p
40 394 16.6 .86 6.60 .059 .049 .027 73.0 .000
100 99.5 41.0 1.04 4.93 .076 .042 .014 22 .069
1000 999.8 130.0 1.01 2.25 .095 .048 .010 0.4 .820

If X2 were approximately x? distributed, the variance of X? would be approximately twice the mean of X?2. From the
second and third column of the table it is obvious that the y? distribution is indeed a very poor approximation of X 2. From the
other columns of the table, we can conclude that the x?(1) distribution provides a reasonable approximation for the distribution
of Windmeijer’s H for n = 100 and, in particular, for n = 1000; the variance of H is approximately twice the mean of H; the
tail-probabilities of H are reasonably close to the nominal levels, and Anderson—Darling’s test rejects Hy only barely (n = 100)
or not at all (n = 1000). Note though that for small sample size (here n = 40), the x2(1) of H is very poor indeed.

In our second experiment, we elaborate on one of the examples of Windmeijer (1990). Here synthetic datasets are constructed
that consist of observations that are generated according to the logistic regression specification

z~N <—1,1>
2
LP =z + vlIn(|z])

y ~ Bin (1, 76XP(LP) >
1+ exp(LP)

On a synthetic dataset, I estimated a logistic regression model with z as the only covariate in addition to the constant.
Consequently, if v # 0, the estimated model is misspecified due to the omitted variable In(|z|). v measures the extent to which
the estimated model is misspecified. For various values of -y, 1000 datasets were generated, the logistic regression model was
estimated, and the Pearson, the Hosmer—Lemeshow and the Windmeijer tests were computed for a = .10, a = .05, and o = .01.
Above, 1 discussed the suspicion that Windmeijer’s asymptotic result may be accurate only for large number of observations.
Thus, in the simulation I varied the sample size between 40 and 1000. Finally, since all inference in the logistic regression model
is conditional on the covariates, as in the first example, the z covariates were generated only once for each sample size.

In Weesie (1998), I published an extension, simul2, of simul that facilitates conducting full-factorial parameterized Monte
Carlo simulations. This example also serves as an illustration of these extensions. With simul2, one should write a simulation
program that depends on the scalars gamma (true coefficient of In(|z|)) and the sample size Nobs, and issue a simulation command
with the additional argument par (gamma 0-1/0.25, Nobs 100 1000). As an illustration of simul2, the main part of the code
for running the simulation is listed below. (The actual code is slightly more complicated because it has to deal adequately with
the case in which z perfectly predicts y, where logistic produces nonstandard output.)

* simulation example Windmeijer 1990, p73 (using -simul2-)

* parameters

*  gamma measures the size of the omitted variable 1levels: 0-1/0.25

*  Nobs is the sample size levels: 40 200 1000

program define logsim
if ll\l’ll == ll?ll
* setup information for driver -simul2-
global S_1 "gamma Nobs P pP HL pHL W pW"
exit
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* synthetic data according to Windmeijer’s model 2
gen 1lp = 1 + z + gammaxln(abs(z))
gen y = uniform() > 1/(1+exp(-1p))

* fit logistic regression model to cases 1..Nobs
logistic y z if _n <= Nobs

* Pearson’s test
1fit
scalar pP = chiprob(Nobs-2,$S_3)

* Hosmer-Lemeshow statistic
1fit, gr(10)
scalar pHL = chiprob($S_4,$5_3)

* Windmeijer s statistic
1fitx2
scalar pW = chiprob(1,$S_3)

* post results for driver program
post “1° gamma Nobs P pP HL W pHL pW
drop 1lp y

end

In our simulation code, we set the seed of the random generator to ensure that results will be reproducible, and generate
a common variate z—all inference is conditional on the covariates.

set seed 1432

drop _all

set obs 1000

gen z = -0.5 + invnorm(uniform())

We are now ready to run the simulation with gamma running between O and 1 in steps of .25, and Nobs running over the
levels 40, 100, and 1000.
. simul2 logsim, rep(1000) par(gamma 0-1/0.25, Nobs 40 100 1000) dots report

The command simul2 summarizes its main inputs and displays progress markers as the simulation runs.
Simulation program: logsim

Parameter #values values

gamma 5 0 0.25 0.50 0.75 1

Nobs 3 40 100 1000

number of conditions: 15

replications per condition: 1000

[0,40] ... (output omitted )

[0.25,40] .vvvevnvennnnnnnnnn (output omitted )
(output omitted )

[1,1000] ... .o (output omitted )

To estimate the power of the tests, we compute proportions of rejections at different significance levels:

* compute proportions of rejections for alpha = 0.01, 0.05, and 0.10

for 01 05 10, 1(any): gen prP@ = pP < 0.@
for 01 05 10, 1(any): gen prHL@ = pHL < 0.@
for 01 05 10, 1l(any): gen prW@ = pW < 0.@

The table below describes the proportions of simulations in which the respective tests rejected the logistic regression model
at .10, .05, and .01 significance levels, based on 1000 replications for each of the gamma, Nobs conditions.

Pearson Hosmer—Lemeshow Windmeijer
n vy .100 .050 010 .100 .050 .010 .100 .050 .010
0 .034 .017 012 119 .050 .012 .067 .047 .029
0.25 .010 .003 .002 112 .056 .005 .042 .024 .009
40 0.50 .004 .000 .000 136 .068 .009 .062 .025 .005
0.75 .005 .003 .002 228 113 .018 .103 .051 .012
1.00 .006 .004 .002 310 .169 .025 .189 113 .024
0 .011 .007 .003 077 .042 .008 .030 .020 012
0.25 .012 .009 .004 .083 .033 .006 .039 .028 011
100 0.50 .015 .008 .003 071 036 .005 .029 .020 .008
0.75 .025 .014 .008 074 .038 .010 .036 .027 .018
1.00 .027 .019 .008 .092 043 .006 .030 .022 .013
0 .000 .000 .000 .096 .050 .008 .109 .064 .022
0.25 .000 .000 .000 578 A57 217 .597 457 205
1000 0.50 .000 .000 .000 .998 995 .965 .966 931 .819
0.75 .000 .000 .000 1.000 1.000 1.000 .949 927 .864

1.00 .000 .000 .000 1.000 1.000 1.000 712 .655 .535
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Again, we see that the Pearson test performs very badly. The difference between the Hosmer—Lemeshow and Windmeijer
tests are rather small. Windmeijer’s test seems to be less biased than the test by Hosmer—Lemeshow, e.g., the probability of
invalid rejections of Hy is closer to the significance level o for Windmeijer’s test than for the Hosmer—Lemeshow test. On
the other hand, the Hosmer—Lemeshow test seems to be somewhat more powerful in detecting omitted variables. Note that the
power of the Windmeijer test seems to be nonmonotonic in the size of the omitted variable. I encountered this curious fact also
in a number of other simulations that are not reported here. Finally, at the relatively small sample sizes 40 and 100, all tests had
substantial biases and little power.

It is tempting to interpret this table as “Hosmer—Lemeshow and Windmeijer’s test are roughly equivalent,” and, hence, we
can restrict to using one of these goodness-of-fit tests. This is of course not valid since the tests are not as highly correlated
as might be expected from their common relation to the Pearson test. Consider as an example, the condition gamma=.25 and
Nobs=1000. In our 1000 replications, we found the following cross-classification of test results:

Windmeijer
accept Hy reject Hy
Hosmer—Lemeshow accept Hy 290 167
reject Hy 167 376

Thus, the tests by Hosmer—Lemeshow and by Windmeijer are rank-correlated at a modest level of .32. Consequently, it
makes good sense to use both tests.

Example 3

In the third simulation, I compare the power of the three goodness-of-fit tests against a misspecification of the link function.
In addition, I also include Pregibon’s link test (in Stata’s 1linktest command) since that may be expected to be more powerful
against this particular type of model misspecification. I analyzed the stochastic model

x ~ N(0,1)
yle ~ f(z)

for the three link functions

logit : f1(2) = %

probit : fa(z) = ®(2/1.6)
complementary — log : f3(z) = exp(—exp(—z + In(In2)))

Note that the probit-link is scaled by a constant 1.6 to make the probit link as much as possible comparable to the logit link. The
complementary-log link was shifted by In(In 2) in order to make the marginal distributions of y under the three link-specifications
the same (namely, the unconditional probability Pr(y = 1) = .5 in each case).

In the simulation, we again varied sample size between 40, 100, and 1000. For each synthetic dataset, a logistic regression
model with covariates 1 and x was fit, and the three goodness-of-fit tests and the link test were computed at the significance
levels .10, .05, and .01. In the next table, proportions of rejections among 1000 replications are reported.

Pearson Hosmer-Lemeshow Windmeijer link test
n link .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
logit .030 .018 .012 .090 .043 .006 .060 .046 .027 .090 .047 .001
40 probit .027 .014 .003 .089 .033 .004 031 .019 .009 .068 .023 .001
comp-log .086 .056 .025 .105 .057 013 051 .036 .025 .090 .042 .003
logit .005 .003 .003 113 .042 .003 .045 .028 016 .069 .025 .005
100 probit .006 .004 .001 .109 .050 .013 .031 .020 .007 051 .019 .001
comp-log .019 .017 .012 .082 .039 .010 .000 .000 .000 .043 .012 .001
logit .001 .000 .000 077 .041 .007 .085 .041 011 .085 .040 012
1000 probit .000 .000 .000 .107 .052 012 .102 .041 .004 .091 .045 .006
comp-log .097 .051 013 275 182 .062 170 118 .058 .560 415 .195

The conclusions on the tests by Pearson, Hosmer—Lemeshow, and Windmeijer are comparable to the previous experiment:
Pearson performs poorly. Windmeijer’s test has less bias than Hosmer—Lemeshow, but Hosmer—Lemeshow is more powerful.
The logit link and the probit link cannot be distinguished by any of the tests. The dedicated link test is more powerful than the
omnibus goodness-of-fit tests for the complementary-log misspecification of the link function.
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sg88 Estimating generalized ordered logit models

Vincent Kang Fu, UCLA, vfu@pop.ben2.ucla.edu

Description

The command gologit estimates a regression model for ordinal variables that I call the generalized ordered logit model.
Stata’s ologit command also estimates a regression model for ordinal variables, but the model that ologit estimates imposes
what is called the proportional odds assumption on the data. The generalized ordered logit model relaxes this assumption. The
proportional odds assumption is that explanatory variables have the same effect on the odds that the dependent variable is above
any dividing point. gologit relaxes the proportional odds assumption by allowing the effects of the explanatory variables to
vary with the point where the categories of the dependent variable are dichotomized.

Researchers have given the generalized ordered logit model brief attention (e.g., Agresti 1984, Brant 1990, Clogg and
Shihadeh 1994, McCullagh and Nelder 1989, Maddala 1983), but usually pass over it in favor of the more restrictive proportional
odds model, even though it is not clear that the proportional odds assumption generally holds (Long 1997). The model gologit
estimates is very similar to a model proposed by Peterson and Harrell (1990), although they conceptualize it slightly differently.

Syntax

gologit depvar varlist [weight] [if exp] [in range]

[, cluster (varname) level(#) or gobust]

This command shares the features of all estimation commands. gologit typed without arguments redisplays previous results.
The options level(#) and or may be given when redisplaying results.

aweights, fweights, and pweights are allowed. Using pweights or cluster () implies the robust option.
ghts, ghats, pwelig g pwelg p P

Coefficients are estimated using Stata’s ml interface. Stata’s ologit command is used to produce starting values. The actual
values taken on by the dependent variable are irrelevant except that larger values are assumed to correspond to “higher”
outcomes.

Options

cluster (varname) specifies that the observations are independent across groups (clusters) but not necessarily within groups.
varname specifies to which group each observation belongs; e.g., cluster (personid) in data with repeated observations
on individuals. See [U] 26.10 Obtaining robust variance estimates. cluster can be used with pweights to produce
estimates for unstratified cluster-sampled data. Specifying cluster implies robust.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is 1level(95) or as set by set level.

or reports the estimated coefficients transformed to odds ratios, i.e., exp(b) rather than b. Standard errors and confidence intervals
are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified
at estimation or when redisplaying previously estimated results.

robust specifies the Huber—White sandwich estimator of variance is to be used in place of the traditional calculation; see [U] 26.10
Obtaining robust variance estimates. robust combined with cluster allows observations which are not independent
within cluster (although they may be independent between clusters).
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Remarks

More formally, suppose we have an ordinal dependent variable Y which takes on the values 0, 1,2, ..., m. The generalized
ordered logit model estimates a set of coefficients and a constant for each of the m — 1 points at which the dependent variable
can be dichotomized. These sets of coefficients By correspond to a set of cumulative distribution functions:

P(Y<k)=F(-XBy) k=1,...,m

From this set of cumulative distribution functions, it is straightforward to derive formulas for the probabilities that Y will
take on each of the values 0,1,...,m:

a

F(-XBy)

(=XB;) — F(=XB)

j) = F(=XBj41) — F(—XB;)  j=1,....m—1
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(Y =0)
Y =1
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The generalized ordered logit model uses the logistic distribution as the cumulative distribution, although other distributions
are certainly possible. The logistic distribution allows researchers to interpret this model in terms of logits:

log[P(Y > k)/P(Y < k)] = X By k=1,...,m
The proportional odds property of Stata’s ologit command restricts the By coefficients to be the same for every
k=1,...,m

Note that unlike models such as OLS regression and binary logit, the generalized ordered logit model imposes explicit
restrictions on the range of the X variables. Since probabilities are by definition constrained to be between 0 and 1, valid
combinations of the X variables must satisfy the following inequalities:

—XBy > —XB;
—XB3 > —XBs
_XBm > _XBm—l

Example

Consider the familiar auto data. These data contain information on 1978 repair records of automobiles. Here is a table of
the data:

. tab rep78

Repair |

Record 1978 | Freq. Percent Cum.
1] 2 2.90 2.90
2 | 8 11.59 14.49
3| 30 43.48 57.97
4 | 18 26.09 84.06
5 | 11 15.94 100.00

Total | 69 100.00

Since small cell sizes are a big problem for gologit, let us combine the two lowest categories (poor, fair) with the middle
category (average). The new variable has three categories: average or worse, good, and excellent. Here is a table of the data we
will be modeling with each category given a descriptive label:

. tab rep78
Repair |
Record 1978 | Freq. Percent Cum.
avg/wors | 40 57.97 57.97
good | 18 26.09 84.06
excellen | 11 15.94 100.00

Total 69 100.00
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Assume that we wish to know if repair records are related to where the car was manufactured (foreign or domestic), its
length (as a proxy for size), and its engine displacement. Using gologit, we would estimate the following model:

. gologit rep78 foreign length displ

Iteration 0: Log Likelihood = -66.194631
Iteration 1: Log Likelihood = -50.481626
Iteration 2: Log Likelihood = -47.270644
Iteration 3: Log Likelihood = -46.002971
Iteration 4: Log Likelihood = -45.871464
Iteration 5: Log Likelihood = -45.8704
Iteration 6: Log Likelihood = -45.8704
Generalized Ordered Logit Estimates Number of obs = 69
Model chi2(6) = 40.65
Prob > chi2 = 0.0000
Log Likelihood = -45.8704000 Pseudo R2 = 0.3070
rep78 | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
mleql |
foreign | 3.659307  1.029914 3.553  0.000 1.640713 5.677901
length | .0372637 .0278299 1.339 0.181 -.0172819 .0918093
displ | -.0068156 .0069198 -0.985 0.325 -.020378 -0067469
_cons | -7.093281  4.459775 -1.591 0.112 -15.83428 1.647717
mleq?2 |
foreign | .17568222  1.162968 0.151  0.880 -2.103553 2.455197
length | .1879727 .0678996 2.768 0.006 .054892 .3210535
displ | -.094616 .0315209 -3.002 0.003 -.1563959  -.0328362
_cons | -21.75103 7.993136 -2.721  0.007 -37.41729 -6.08477

The coefficients under the heading mleql correspond to the first dividing point, between average or worse and good. The
coefficients under the heading mleq2 correspond to the second dividing point, between good and excellent.

In essence, the coefficients correspond to the two possible cumulative binary logits that can be formed from this three-category
dependent variable. The coefficients in mleql correspond to the logit formed from the two categories (good, excellent) and
(average or worse). The coefficients in mleq2 correspond to the logit formed from the two categories (excellent) and (good,
average or worse). If the dependent variable had more categories, gologit would produce additional panels of coefficients
corresponding to the additional dividing points.

The estimates indicate that foreign cars are significantly more likely than domestic cars to have 1978 repair records that
are good or excellent instead of average or worse. However, foreign and domestic cars do not differ in the likelihood of having
excellent instead of good or worse repair records.

Longer cars are more likely to have excellent repair records than to have good or worse repair records, although length has
no effect on the likelihood of a car having an average or worse versus a good or better repair record.

Cars with larger engine displacements are more likely to have good or worse repair records than to have excellent repair
records. However, engine displacement has no effect on the likelihood of being above or below the other dividing point, between
average or worse and good.

These results indicate that the relationship between repair record and the explanatory variables is quite complex. None of
the explanatory variables has a consistent, uniform effect on repair record. Thus, it would be inappropriate to conclude that
foreign cars have better repair records, although these results would justify the conclusion that foreign cars are more likely than
domestic cars to have good or excellent instead of average or worse repair records.

Since the proportional odds model estimated by ologit is a bit easier to interpret, we may wish to see if these data violate
the proportional odds assumption. To do that, we can perform a Wald test of whether the coefficients under the heading mleql
are equal to the coefficients under the heading mleq2.

. test [mleql=mleq2]

(1) [mleqilforeign - [mleq2]lforeign = 0.0
( 2) [mleqillength - [mleq2]length = 0.0
( 3) [mleqildispl - [mleq2]displ = 0.0
chi2( 3) = 8.32
Prob > chi2 = 0.0399

The chi-square statistic is significant at conventional levels, suggesting that these data do violate the proportional odds
assumption. Consequently, the model estimated by ologit is inappropriate for these data.
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sg89 ‘ Adjusted predictions and probabilities after estimation ‘

Kenneth Higbee, Stata Corporation, khigbee @stata.com

Syntax
adjust var [= #| [var [= #] ...] [if exp| [in range| , by(varlist) | {xblpr} {stdp|stdf|noerror}

generate(newvar] [newvarZ]) xblabel ( [“] text[”]) prlabel( [“] text[”]) stdplabel ( [“] text[”])

stdflabel([“] text[”]) tabdisp_options ]

where the allowed tabdisp options are: format (%fint), center, left, cellwidth(#), csepwidth(#), scsepwidth(#), and
stubwidth (#). For details, see the manual or on-line help for tabdisp.

Description

After an estimation command, adjust provides adjusted predictions of x(3 (the means in a linear-regression setting) or
probabilities (available after certain estimation commands). The estimate is computed for each level of the by variable(s) setting
the variable(s) specified in var [= #] [var [= #] ...] to their mean or to the specified number if the = # part is used. Variables
used in the estimation command but not included in either the by variable list or the adjust variable list are left at their current
values, observation by observation. In this case, adjust displays the average estimated prediction or probability for each level
of the by variables.

Options

by (varlist) is required and specifies the variable(s) whose levels determine the subsets of the data for which adjusted predictions
are to be computed. The variables in the by option are not required to be involved in the original estimation command.

xb indicates that the linear prediction from the estimation command is to be used. This produces predicted values (means in the
linear-regression setting) and is equivalent to the xb option of predict. Realize that depending on the estimation command,
the xb values may not be in the original units of the dependent variable.

pr is an alternative to xb and indicates that predicted probabilities are to be computed. The pr option is only allowed after a
few commands (blogit, bprobit, dprobit, logistic, logit, and probit). The default is xb if pr is not specified.

stdp, stdf, and noerror specify the kind of standard error reported for each mean. stdp, the default, uses the standard
error of the linear prediction and is available only with the xb option. stdf uses the standard error of the forecast which
is the standard error of the linear prediction plus the residual. stdf may be specified only with the xb option and after
linear-regression estimation commands (boxcox, corc, fit, hlu, prais, regdw, regress, and rreg). noerror specifies
that no error term is to be used and hence no standard errors for the means reported in the table.

generate (newvarl [newvarZ]) generates one or two new variables. If one variable is specified, then the adjusted predictions
for each observation are generated in newvarl (holding the appropriate variables to their means or other specified values).
If pr is specified, then the predictions are probabilities. If newvar2 is specified, then the standard errors from either the
stdp or stdf option are placed in the second variable.

xblabel (“text”), prlabel (“text”), stdplabel (“text”), and stdflabel (“text”) allow you to change the labels for xb, pr,
stdp, and stdf in the output produced by adjust. This also changes the variable labels for the variables created by the
generate option.
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Remarks

If you have restricted your estimation command to a portion of the data using if or in, then you will generally want to use
the same conditions with adjust. However, there may be legitimate reasons for using different data to perform the estimation
and to obtain adjusted predictions.

An interesting way to use adjust is after using xi with the estimation command. Another interesting use of adjust is
to specify a categorical variable both in the variable list being set to a specific value and as a by variable. This is helpful in
examining the predictions for several groups as if they were set at a particular group’s value (possibly also holding some other
variables to certain values also).

adjust is implemented to follow the same estimation commands as listed in the help for predict. However, adjust
currently is not allowed after anova (because we can not obtain the variable names from the beta vector), areg (because predict
doesn’t handle the absorbed variable as expected), and multiple-equation estimation commands. adjust only uses predict. It
does not use any specialized predict commands such as fpredict, glmpred, and xtpred.

adjust is similar to adjmean and adjprop whose latest versions are illustrated in STB-43 (Garrett 1998). There are some
differences between this command and those. First, adjmean and adjprop internally use regress and logistic and are not
available for other estimation commands. In comparison, adjust does not perform the estimation command, but instead is a
post estimation command and will work after a large number of single equation estimation commands. A second difference is
that adjust lets you specify up to seven variables in the by option. adjust also allows by variables that were not used in the
estimation command. Variables used in the estimation command are left at their individual values if the variables are not specified
in the adjust command. Another difference is that adjmean and adjprop compute confidence intervals and optionally display
them in a graph, while adjust does not. adjust really is a front end process for predict. It sets up the values at which
predictions are desired and then displays them using tabdisp. This means that adjust does not provide confidence intervals
directly, but will provide stdp or stdf estimates of error under the same conditions that predict would produce them.

The adjusted predictions are displayed using the tabdisp command. In addition to the adjust command options that allow
you to control the labeling of the prediction and error, several options from tabdisp can be specified for control over the final
appearance of the table. These output control options are not used in the examples that follow.

Examples

The ubiquitous Stata auto dataset is used in the following examples to illustrate the adjust command.

Example 1

Let’s pretend that we want to understand automobile price as a function of whether the car was manufactured domestically.
We might first look at the average price for domestic and foreign cars.

. table foreign, c(mean price sd price)

+
+

Car type | mean(price) sd(price)
Domestic | 6072.423 3097.104

Foreign | 6384.682 2621.915

These average prices do not seem very far apart. However, we really don’t think that these averages are telling us the full story
since there are other variables that have impact on the price of automobiles. As an (admittedly fake) first attempt at modeling
automobile price we decide to perform a regression.

. regress price mpg weight turn foreign

Source | Ss df MS Number of obs = 74
' F( 4, 69) = 19.23

Model | 334771309 4 83692827.3 Prob > F = 0.0000
Residual | 300294087 69 4352088.22 R-squared = 0.5271
+ Adj R-squared = 0.4997

Total | 635065396 73 8699525.97 Root MSE = 2086.2
price | Coef.  Std. Err. t P>It] [95% Conf. Intervall
mpg | -.4660076  73.51407 -0.006 0.995 -147.1226 146.1905
weight |  4.284532  .7404967 5.786 0.000 2.807282 5.761782
turn | -229.2059 114.2423 -2.006 0.049 -457.1131 -1.298687
foreign | 3221.415 706.4847 4.560 0.000 1812.017 4630.813
_cons | 1368.197  4887.597 0.280 0.780 -8382.291 11118.68
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We now ask ourselves what the price of domestic and foreign cars would be if they were compared at identical values of the
variables: turn, weight, and mpg under this regression model. We decide to compare them with these three variables set at
their mean value. The adjust command provides us with the answer.

. adjust mpg weight turn, by(foreign)

Covariates set to mean: mpg = 21.297297, weight = 3019.4595, turn = 39.648647

Car type | xb S.E.

Domestic | 5207.539 320.8226

Foreign | 8428.954 552.5154

We see that under this regression model foreign cars are predicted to be more expensive than domestic cars when compared at
the average value of mpg, weight, and turn. The prediction standard errors are also presented in the output. What if instead
we wanted to know the forecast standard errors?

. adjust mpg weight turn, by(foreign) stdf

Covariates set to mean: mpg = 21.297297, weight = 3019.4595, turn = 39.648647

Car type | xb S.E.(f)

Domestic | 5207.539 2110.691

Foreign | 8428.954 2158.092

Understand the difference between these two tables. The reported means are the same but their reported standard errors differ.
The first table uses stdp, the standard error of the linear prediction. This standard error measures our uncertainty as to the mean
and that uncertainty is caused by our uncertainty of the estimated model coefficients. Were our model estimated on an infinite
population, we would be certain as to the model’s coefficients and hence the mean of each population. These standard errors
would then be zero.

Even if we knew the mean with certainty—even if the stdp standard errors were zero—we would be uncertain as to the
price of each individual car. This is because individual cars have individual prices drawn from a distribution whose mean we
would know; price; = pu; + €;.

In the second table the reported standard errors are noticeably larger than those in the first. These standard errors reflect our
total uncertainty as to the price of individual cars, , /ai + o2. This uncertainty is based on our uncertainty as to the mean itself,

o,—the prediction’s standard error—and the inherent uncertainty because of the unmeasured characteristics of the individual
cars themselves, o, the residual standard error. These two components, appropriately combined, are called the forecast standard
erTor.

We might also want to know the predicted cost for domestic and foreign cars when some of the variables are set at particular
values. For instance if we want to compare the predicted price when mpg is 25, turn is 35.2, and weight is at its mean value,
we would do the following:

. adjust mpg=25 weight turn=35.2, by(foreign) noerror

Covariate set to mean: weight = 3019.4595
Covariates set to value: mpg = 25, turn = 35.2

Car type | xb
Domestic | 6225.47

Foreign |  9446.885

We include the noerror option simply to illustrate that including it suppresses any standard error calculation. In practice,
we would have specified stdp or stdf.

Let’s imagine that we now want to find out the predicted average price of foreign and domestic cars under this regression
model when mpg and weight are set to their overall means but the turn variable is left alone: meaning it takes on the values
observed car by car.
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. adjust mpg weight, by(foreign) gen(pred err)

Created variables: pred, err
Variable left as is: turn
Covariates set to mean: mpg = 21.297297, weight = 3019.4595

+
+

Car type | xb S.E.

Domestic | 4796.421 564.7897
Foreign | 9400.686 643.9684

Specifying the gen(pred err) generated prediction and error variables that we can use subsequently. Lets take a look at a few
observations and compare them to the actual price and the predicted price using predict without any constraints.

. predict pred2 , xb

. list foreign turn price pred2 pred err in 47/58

foreign turn price pred2 pred err
47. Domestic 42 5798 7585.93  4668.595 373.002
48. Domestic 42 4934  6600.487  4668.595 373.002
49. Domestic 45 5222  4798.425 3980.978 628.3688
50. Domestic 40 4723 5901.609 5127.007  314.9057
51. Domestic 43 4424 6156.588  4439.389  445.2716
52. Domestic 41 4172  3484.962  4897.801  325.7249
53. Foreign 37 9690  8226.297 9036.04  548.7275
54. Foreign 36 6295 5196.463 9265.246 589.1915
55. Foreign 34 9735 8138.971 9723.657  719.4052
566. Foreign 35 6229 6711.028 9494.451  647.5291
57. Foreign 32 4589  5893.468 10182.07 890.1414
58. Foreign 34 5079 6554.16  9723.657  719.4052

You can see that there are differences in the predictions from the predict command and those from adjust. predict uses
each observation’s individual values for the variables in the regression model. adjust substitutes certain values for some or all
of the variables in the regression model depending on what was specified in the adjust command. The first produces predicted
values for the cars. The second produces predicted values for the cars with certain characteristics changed.

Say we wish to look at the predicted cost of domestic and foreign cars by repair record (rep78) under the current regression
model holding mpg and weight to their mean and allowing turn to vary. adjust allows us to do this even though we have
not included rep78 in the regression model.

. adjust mpg weight, by(foreign rep78)

Variable left as is: turn
Covariates set to mean: mpg = 21.289856, weight = 3032.0291

Table cells contain: xb and S.E.

| Repair Record 1978
Car type | 1 2 3 4 5

Domestic | 4951.659 4407.295 4790.366 4722.454 6097.688
| 341.7415 541.8098 567.7991 579.3939 590.864
|

Foreign | 9471.907 9548.31 9420.973
| 641.199 673.0413 639.7968

This is an example of a two-way table produced by adjust. Up to seven-way tables are possible.

You may have noticed that the means of mpg and weight in this run of adjust are not the same as in the previous runs.
This is due to the fact that the rep78 variable (which was not a part of the regression) has five missing values and adjust
does casewise deletion when confronted with missing values.

What if we wanted to find the predicted cost of foreign and domestic cars under this regression model while setting weight
to its mean, letting mpg and turn vary, and pretending for the moment that all of the cars are domestic? adjust handles this
since it allows variables to be set to a specific value and also used in the by option.

. adjust weight foreign=0, by(foreign)
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Variables
Covariate
Covariate

left as is: mpg, turn
set to mean: weight = 3
set to value: foreign =

019.4595
0

Car type

xb S.E.

Domestic
Foreign

4797.107
6177.651

645.453
803.438

6
2

In this table we are obtaining the predicted prices of all cars as if they were domestic. The $6,177 prediction, for instance,
is the average predicted price of our sample of foreign cars were they instead domestic and if they had average weight. The
foreign-car sample has a different prediction than the domestic-car sample because the cars in the two samples have different
mpg and turn and we left these differences just as we observed them.

We now do the same thing except we treat all cars as if they were foreign by typing

. adjust weight foreign=1, by(foreign)

Variables
Covariate
Covariate

left as is: mpg, turn
set to mean: weight = 3
set to value: foreign =

019.4595
1

Car type | xb S.E.
Domestic | 8018.522 823.5443
Foreign 9399.066 841.2903

Put either way, the tables report the same difference in prices due to mpg and turn between the domestic and foreign car
samples: 9399.066 — 8018.522 = 1380.544 or 6177.651 — 4797.107 = 1380.544.

The output from these two adjust commands can be compared with the following:

. adjust weight, by(foreign)

Variables
Covariate

left as is: mpg, turn
set to mean: weight = 3

019.4595

Car type xb S.E.
Domestic | 4797.107 645.4536
Foreign 9399.066 841.2903

Example 2

What if we decide to include the rep78 variable in the regression model of Example 1? An easy way to do that is with xi.

. Xxi : regress price mpg weight turn I.rep78

I.rep78 Irep78_1-5 (naturally coded; Irep78_1 omitted)
Source | SS df MS Number of obs = 69
} F(C 7, 61) = 6.34
Model | 242819042 7 34688434.6 Prob > F = 0.0000
Residual | 333977917 61 5475047.82 R-squared = 0.4210
+ Adj R-squared = 0.3545
Total | 576796959 68 8482308.22 Root MSE = 2339.9
price | Coef.  Std. Err. t P>|t] [95% Conf. Intervall
mpg | -86.24749 84.98694 -1.015 0.314 -256.1894 83.6944
weight | 3.39851 .8279604 4.105 0.000 1.742901 5.05412
turn | -321.7209 136.6736 -2.354 0.022 -595.0167 -48.42516
Irep78_2 | 1143.126 1860.47 0.614 0.541 -2577.113 4863.365
Irep78_3 | 1074.757 1715.121 0.627 0.533 -2354.84 4504 .353
Irep78_4 | 1541.853 1759.521 0.876 0.384 -1976.527 5060.234
Irep78_5 | 2813.323 1849.747 1.521 0.133 -885.4748 6512.121
_cons | 9030.873 5599.464 1.613 0.112 -2165.946 20227.69
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Now we wish to return to our two-way adjusted table in Example 1 and perform the same kind of adjusted predictions under
this new regression model. We will set mpg and weight to their mean values and allow turn to vary and obtain the predictions
for domestic and foreign cars by repair record.

. adjust mpg weight, by(foreign rep78)

Variables left as is: turn, Irep78_2, Irep78_3, Irep78_4, Irep78_5
Covariates set to mean: mpg = 21.289856, weight = 3032.0291

Table cells contain: xb and S.E.

| Repair Record 1978
|

Car type 1 2 3 4 5

Domestic | 4308.501 4687.54 5156.861 5528.633 8730.428
| 1660.918 919.0236 737.6397 863.02 891.2327
|

Foreign | 7206.343 7780.68 8873.416
|

769.9142 821.4432 930.6635

+

adjust can take advantage of the original rep78 variable in the by option. You will notice that the output says that the xi
created variables are left as is along with the turn variable. This is true, but with the rep78 variable in the by option adjust
still produces the results we desire.

If you have used xi in your estimation command, you can freely use the original variables that xi operated on in the by
option. The same is not true for setting these variables to specific values. In that case you must use the names produced by xi.
As an example lets say that we wish to create the same adjusted prediction table as before but we now want to treat all the data
as if it had a repair record of 3. Here is how we would do it.

. adjust mpg weight Irep78_2=0 Irep78_3=1 Irep78_4=0 Irep78_5=0, by(foreign rep78)

Variable left as is: turn
Covariates set to mean: mpg = 21.289856, weight
Covariates set to value: Irep78_2 = 0, Irep78_3

3032.0291
1, Irep78_4 = 0, Irep78_5 =0

Table cells contain: xb and S.E.

| Repair Record 1978
Car type | 1 2 3 4 5

Domestic | 5383.258 4619.17 b5156.861 5061.537 6991.862
| 488.3862 727.8113 737.6397 753.6007 700.4694
|

Foreign | 7206.343 7313.583 7134.849
| 769.9142 819.66 759.8754

If you wanted to do the same thing except set the repair record to 1 (the level dropped by xi), then in the adjust command
you set all the xi created variables to zero.

. adjust mpg weight Irep78_2=0 Irep78_3=0 Irep78_4=0 Irep78_5=0, by(foreign rep78)
( output omitted )
And finally for this example, we demonstrate a three-way table produced by adjust.

. gen turngrp = autocode(turn,3,30,51)

. label define tgrp 37 "31-37" 44 "38-44" 51 "42-51"
. label val turngrp tgrp

. label var turngrp "Turn Circle (ft.)"

(Continued on next page)
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. adjust mpg weight, by(rep78 foreign turngrp)

Variables left as is: turn, Irep78_2, Irep78_3, Irep78_4, Irep78_5
Covariates set to mean: mpg = 21.289856, weight = 3032.0291

Table cells contain: xb and S.E.

1012.321 846.7875 704.0888 580.1096 1162.753

8730.428 8873.416
891.2327 930.6635

Repair | Turn Circle (ft.) and Car type
Record | 31-37 38-44 ----- = -—-—-- 42-51 -----
1978 | Domestic  Foreign Domestic  Foreign Domestic  Foreign
1| 4308.501
| 1660.918
|
2 | 5194.25 3843.022
| 861.8954 1007.061
[
3 | 7474.443 7206.343 5044.604 3372.501
| 909.8427 769.9142 564.0601 1154.845
[
4 | 8424.121 7901.325 5528.633 6815.517 4080.889
[
[
[
[

Example 3
To show the use of adjust in producing probabilities, we model the foreign variable as a function of a few of the other
variables.

. logit foreign weight mpg
( iteration log omitted )

Logit Estimates Number of obs = 74
chi2(2) = 35.72

Prob > chi2 = 0.0000

Log Likelihood = -27.175156 Pseudo R2 = 0.3966
foreign | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
weight | -.0039067 .0010116 -3.862 0.000 -.0058894 -.001924
mpg | -.1685869  .0919174 -1.834 0.067 -.3487418 .011568
_cons | 13.70837  4.518707 3.034 0.002 4.851864 22.56487

We can obtain the predicted probability of foreign manufacture by repair record under this logit model setting mpg to its
mean and allowing weight to vary.

. adjust mpg, by(rep78) pr

Variable left as is: weight
Covariate set to mean: mpg = 21.289856

Repair |

Record

1978 | P
1| .1989613
2 | .1173622
3 | .2050817
4 | .4636117
5 | .6904407

If the pr option were not specified, we would have obtained the xb results.

. adjust mpg, by(rep78)

Variable left as is: weight
Covariate set to mean: mpg = 21.289856
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Repair |

Record |

1978 | xb S.E.
1] -1.991596 .6367775
2 | -2.982921 .8305857
3 | -2.769029 1.003742
4 | -1.093055 .9754658
5 | 1.044976 .6983151

It is important to remember that the default for adjust is xb and that pr is available after only a handful of estimation
commands (as provided by predict).

References

Garrett, J. M. 1998. sg33.1: Enhancements for calculation of adjusted means and adjusted proportions. Stata Technical Bulletin 43: 16-24.

ssal2 Predicted survival curves for the Cox proportional hazards model

Joanne M. Garrett, University of North Carolina at Chapel Hill, FAX 919-966-2274, garrettj@med.unc.edu

After fitting a Cox proportional hazards model, we often want to graph the survival probabilities by different categories
of a nominal independent variable, adjusted for other variables in the model. These predictions are based on a single baseline
hazard function, and visually represent the hazard ratio estimated by the Cox model. In Stata, sts graph gives us graphs based
on a stratified Cox model (with the strata option), using the Kaplan—Meier estimates derived from separate baseline hazards
for these categories (see [R] sts graph). If a variable violates the proportional hazards assumption, the stratified model and the
Kaplan—Meier graph would be the appropriate result to report. However, if we want to report hazard ratios and not stratify, we
may prefer a graph that displays the predicted results. A program which does this is called stcoxplt.

Syntax

stcoxplt [if exp] , xvar (xvar) [ adjust (varlist) model nolog noshow graph_options ]

Options

xvar (xvar) is a nominal independent variable; separate predicted survival curves are plotted for categories of this variable.
Dummy variables are created with the lowest category defaulting to the reference group. These variables are named x2,
x3, etc.

adjust (varlist) adjusts the estimates for covariates; any variables listed are centered by default before estimation based on the
observations used in the model, or they may be set to a specified value (e.g., age=40 gender=1).

model displays the output for the Cox model; by default, model results are not displayed.
nolog suppresses the iteration log.
noshow prevents stcoxplt from showing the key st variables.

graph_options are most of the options available in graph; the y-axis is labeled by the program; If symbol() and connect ()
are not specified, default symbols are used and points are not connected.

A second program included in this insert is stkap.ado, which graphs the adjusted Kaplan—Meier estimates. The only
difference between this program and sts graph is the adjustment variables are centered automatically, or set to user-specified
values.

Syntax
stkap [if exp] [ » by(varlist) strata(varlist) adjust(varlist) graph,optiOns]

Options

by (varlist) graphs a separate curve for each category of varlist; produces separate survivor functions by making separate
calculations for each group identified by equal values of the by () variables.

strata(varlist) graphs a separate curve for each category of varlist; stratified estimates (equal coefficients across strata but
baseline hazard unique to each stratum) are then estimated. May be used with adjust () in place of by ().
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adjust (varlist) adjusts the estimates for covariates; any variables listed are centered by default before estimation based on the
observations used in the model, or they may be set to a specified value (e.g., age=40, gender=1).

graph_options are most of the options available in graph.

Examples

All the examples come from a leukemia remission study. The data consist of 42 patients who are followed over time to see
how long (weeks) before they go out of remission (relapse: 1 = yes, 0 = no). Half the patients receive a new experimental
drug treatment and the other half receive the standard drug (trtmentl: 1 = drug A, 0 = standard). White blood cell count,
strongly related to the presence of leukemia, is defined two ways: as the natural log of the white blood cell count (lnw bcc)
and divided into three categories (wbc3cat: 1 = normal, 2 = moderate, 3 = high).

. use leukemia
. describe

Contains data from leukemia.dta

obs: 42 Leukemia Remission Study
vars: 6 19 Feb 1998 10:31
1. weeks byte 7%8.0g Weeks in Remission
2. relapse byte %8.0g yesno Relapse
3. trtmentl byte %8.0g trtilbl Treatment I
4. trtment2 byte %8.0g trt2lbl Treatment II
5. lnwbcc float %9.0g Ln White Blood Cell Count
6. wbc3cat byte 7%9.0g  wbclbl White Blood Cell Count

. stset weeks relapse (as with all st analyses, data must be stset first)

data set name: leukemia.dta
id: - (meaning each record a unique subject)
entry time: -- (meaning all entered at time 0)
exit time: weeks
failure/censor: relapse

Example 1

We graph the predicted survival curves for weeks to relapse by treatment category (Drug A versus standard), adjusted
for 1nwbcc. We use the default symbols, connected with steps, and print the results of the Cox model. Dummy variables a re
created for trtment1. Since trtmentl has two categories, only one dummy variable is needed for the model, and is named x2.

. stcoxplt, xvar(trtmentl) adjust(lnwbcc) xlabel c(JJ) model nolog

failure time: weeks
failure/censor: relapse

Cox regression —-- entry time 0O
No. of subjects = 42 Log likelihood =  -72.27926
No. of failures = 30 chi2(2) = 43.41
Time at risk = 541 Prob > chi2 = 0.0000
weeks |
relapse | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
x2 | .2741535 .1157213 -3.066  0.002 .1198666 .6270315
lnwbce | 4.974592 1.638274 4.872 0.000 2.608751 9.48598

The dummy variable x2 for trtment1 gives us the hazard ratio comparing patients on Drug A (trtmentl = 1) versus
patients on the standard drug (trtmentl = 0), adjusted for lnwbcc. We see, both from the graph in Figure 1 and the model,
that patients on Drug A relapse at a much slower rate than patients on the standard drug treatment.
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Figure 1. Predicted survival curves for weeks to relapse by treatment category (Drug A versus standard), adjusted for lnwbcc
The Kaplan—Meier version of this plot is displayed in Figure 2.

. stkap, strata(trtmentl) adjust(lnwbcc)

Survivor functions, by trtment1
adjusted for Inwbcc
1 1

1.00 I

0.75 r

0.50 r

rug A

0.25 r

0.00 4 Stendard -

T
0 10 20 30 40
Weeks in Remission

Figure 2. Kaplan—Meier version of the plot in Figure 1.

The two graphs look very similar, since trtment1 does not violate the proportional hazards assumption. There are subtle
differences, however. The Cox model predicts survival probabilities for all time points for each group, whether there are failures
at those time points or not. For instance, notice in the Kaplan—Meier graph in Figure 2 that there are no failures for Drug A
before 6 weeks or estimates for the standard drug after 23 weeks. This happens because no patients in the Drug A group relapse
until 6 weeks, and all the patients in the standard drug group have relapsed by 23 weeks. However, in Figure 1 we see predicted
survival probabilities for these time points, even though observed failures have not occurred.

Example 2

We graph the predicted survival curves for weeks to relapse by white blood cell count in three categories (wbc3cat:
1 = normal, 2 = moderate, 3 = high), adjusted for trtment1l. We use the default symbols, connected with steps, and print the
results of the Cox model. Two dummy variables are used for wbc3cat. Normal white blood cell count defaults to the reference
category, x2 compares relapse rates for patients with moderately elevated white blood cell counts (wbc3 cat = 2) to normal
patients, and x3 compares relapse rates for patients with high white blood cell counts (wbc3cat = 3) to normal patients.

(Continued on next page)
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. stcoxplt, xvar(wbc3cat) adj(trtmentl) xlabel c(JJJ) model nolog

failure time: weeks
failure/censor: relapse

Cox regression —-- entry time O

No. of subjects = 42 Log likelihood = -77.476905

No. of failures = 30 chi2(3) = 33.02

Time at risk = b41 Prob > chi2 = 0.0000
weeks |

relapse | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall

x2 | 3.637825 2.201306 2.134 0.033 1.111134 11.91015
I
I

x3 10.92214  7.088783 3.684 0.000 3.06093 38.97284
trtmentl .2834551 .1229874 -2.906 0.004 .1211042 .6634517
o0 wbc3cat==Normal A wbc3cat==Moderate

O wbc3cat==High

1.00

0.75

0.50

0.25

Cox Model Survival Probabilities
By Categories of White Blood Cell Count

0.00

Weeks in Remission
Figure 3. Predicted survival curves for weeks to relapse by white cell counts adjusted for trtmentl.

As we can see from Figure 3 and the hazard ratios in the Cox regression table, higher levels of white blood cell counts
dramatically increase the rate of relapse.

Example 3

There is another variable in this dataset which measures a different drug (trtment2: 1 = drug B, 0 = standard). This
example models trtment2, adjusted for 1nwbcc, and graphs the predicted survival curves for weeks to relapse by treatment
category (Drug B versus standard). The variable x2 compares Drug B to the standard.

. stcoxplt, xvar(trtment2) adj(lnwbcc) xlabel c(JJ) model nolog

failure time: weeks
failure/censor: relapse

Cox regression -- entry time 0
No. of subjects = 42 Log likelihood = -77.306546
No. of failures = 30 chi2(2) = 33.36
Time at risk = 541 Prob > chi2 = 0.0000
weeks |
relapse | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
x2 | .7911487 .3228452 -0.574 0.566 .356565552 1.760391
lnwbcc | 4.997071 1.500524 5.358 0.000 2.774062 9.001501

(Continued on next page)
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O trtment2==Standard A trtment2==Drug B
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Figure 4. weeks to relapse by treatment category.

Although the hazard ratio is less than one (HR = 0.79), implying patients are going out of remission at a slower rate when
on Drug B, the estimate is not significant (p = 0.566). This is confirmed in Figure 4 where the survival curves are very similar
for Drug B versus the standard. However, when we look at the Kaplan—Meier graph, we reach a different conclusion.

. stkap, strata(trtment2) adj(lnwbcc)

Survivor functions, by trtment2
adjusted for Inwbcc
1 1

1.00 r

0.75 r

0.50 r

rug B
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Weeks in Remission

Figure 5. Kaplan—Meier version of Figure 4.

It appears in this graph that patients on Drug B go out of remission more quickly in the earlier weeks of the study (before
week 10), but for patients still in remission at 10 weeks, Drug B may work better than the standard drug. The survival curves
cross. We don’t see this pattern in Figure 4, where every point estimate for the standard treatment is below the point estimate
for Drug B—a constraint imposed by the model. This is an example where reporting the hazard ratio and graph from the Cox
model would be misleading.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an  announcements ip  instruction on programming
cc  communications & letters os  operating system, hardware, &
dm  data management interprogram communication
dt datasets gs  questions and suggestions

gr  graphics tt teaching

in instruction zz  not elsewhere classified
Statistical Categories:

sbe biostatistics & epidemiology ssa survival analysis

sed exploratory data analysis ssi simulation & random numbers
sg  general statistics sss  social science & psychometrics
smv multivariate analysis sts  time-series, econometrics

snp  nonparametric methods svy survey sampling

sqc  quality control sxd experimental design

sqv  analysis of qualitative variables szz not elsewhere classified

srd  robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TgX so submissions using
TEX (or IATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TgX and
your insert contains a significant amount of mathematics, please FAX (409-845-3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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