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dm65.1 Update to a program for saving a model fit as a dataset

Roger Newson, Guy’s, King’s and St Thomas’ School of Medicine, London, UK, roger.newson@kcl.ac.uk

Abstract: The parmest command introduced in Newson (1999) has been updated for Stata 6.0.

Keywords: confidence intervals, estimation results.

Introduced in Newson (1999), parmest saves the most recent estimation results to a dataset with one observation per
parameter and is typically used (together with graph) to produce confidence interval plots. It has been updated for Stata 6.0.
Two bugs have been corrected. First, parmest now works on estimation results from multi-equation models (such as those fitted
by mlogit), which previously caused it to fail. Second, when the results are saved using the saving() option, parmest no
longer saves any temporary variables with confusing names. To rule out these bugs and many others, parmest has been tested
extensively using the Stata 6.0 certification script utility (see the on-line help cscript).

Saved results

parmest now saves in r():

Scalars
r(dof) Degrees of freedom for t distribution used for confidence intervals (0 if normal distribution used)
r(nparm) Number of parameters estimated
r(level) Value of level option (confidence level for CIs)

Macros
r(eform) Value of eform option (eform if set, otherwise empty)

Acknowledgment

I would like to thank Vince Wiggins of Stata Corporation for his helpful advice about handling equation names containing
spaces (which are often produced by mlogit for outcomes with value labels).

References
Newson, R. 1999. dm65: A program for saving a model fit as a dataset. Stata Technical Bulletin 49: 2–5. Reprinted in Stata Technical Bulletin

Reprints, vol. 9, pp. 19–23.

dm82 Simulating two- and three-generation families

Jisheng Cui, University of Melbourne, Australia, j.cui@gpph.unimelb.edu.au

Abstract: The commands simuped2 and simuped3 for simulating two- and three-generation families are introduced and
illustrated.

Keywords: family data, generations, simulation.

Introduction

Simulation of family data (pedigree) is sometimes required in genetic epidemiology research. Generation of family data using
Stata has advantages over using other computer languages because of the random number generators of probability distributions
built into Stata. Here we present two programs, simuped2 and simuped3. The former is used to simulate two-generation families,
and the latter is used to simulate three-generation families. Figures 1 and 2 give schematic illustrations of the pedigree structure
of the families generated by these programs. A circle represents a female, while a square represents a male. There is a marriage
in the second generation in Figure 2.

(Continued on next page)
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Figure 1. Schematic illustration of a two-generation family. Figure 2. Schematic illustration of a three-generation family.

Syntax

simuped2 #Age1 #Std1 #Age2 #Std2
�
, reps(#) saving(filename) alle(#) sib(#)

�

simuped3 #Age1 #Std1 #Age2 #Std2 #Age3 #Std3
�
, reps(#) saving(filename) alle(#) sib(#) si3(#)

�

Description

simuped2 and simuped3 are immediate commands used for generating two- and three-generation family data, respectively.
For each person in a family, the sex is generated by a probability of 0.5. The age of a person is generated according to a normal
distribution, with means #Age1, #Age2, and #Age3 for the first, second, and third generations. The standard deviations of the ages
are given by #Std1, #Std2, and #Std3, respectively.

The number of siblings in a generation is a random number, distributed according to a Poisson distribution. The mean sizes
of the siblings in the second- and third-generation are given by sib(#) and si3(#), respectively.

Hardy–Weinberg equilibrium is assumed for the genotypic distribution of people in the first generation (see, for example,
Elandt-Johnson 1971). The allele frequency of a biallelic locus A is given by the argument alle(#), denoted as p. The frequencies
of genotypes AA, Aa and aa in the first generation are given by p

2, 2p(1 � p) and (1 � p)2, respectively. The genotype of
a person in the second- and third-generation is generated according to the Mendelian inheritance, that is, a person inherits the
allele A from the father (or mother) with probability 0.5.

The simulated family data are saved in a file specified by saving(filename), and the number of replications is specified by
reps(#).

Options

reps(#) specifies the number of simulated families. The default value is 100.

saving(filename) specifies the file into which the simulated data are saved. The default file name is temp.dta.

alle(#) specifies the allele frequency of a biallelic locus A. The default value is 0.1.

sib(#) specifies the mean number of siblings in the second generation. The default value is 3.

si3(#) specifies the mean number of siblings in the third generation. It is only used in simuped3. The default value is 3.

Remarks

simuped2 and simuped3 simulate the basic quantities of a person, such as age, sex, and genotype, which are useful in
genetic epidemiology research. Further quantities of interest, such as the disease status of a person, can be simulated based
on these basic family data. However, it sometimes requires specific models for the affect of a disease and the model of the
natural mortality of a person. We do not include the disease status in the programs because that would not make simuped2 and
simuped3 of as general use.
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Example 1

We simulate 1000 two-generation families. The mean age and standard deviation of people in the first- and second-generation
are 70, 10 and 40, 10, respectively. The frequency of an allele A is assumed to be 0.05. The mean number of siblings in the
second generation is 5. The simulated family data are saved into the file output.dta.

. simuped2 70 10 40 10, reps(1000) sav(output) alle(0.05) sib(5)

. use output

. describe

Contains data from output.dta

obs: 6,818

vars: 6 23 Oct 2000 07:51

size: 177,268 (83.0% of memory free)

-------------------------------------------------------------------------------

1. famid float %9.0g

2. id float %9.0g

3. degree float %9.0g

4. female float %9.0g

5. age float %9.0g

6. genotype str2 %9s

-------------------------------------------------------------------------------

Sorted by:

. list

famid id degree female age genotype

1. 1 1 1 0 73 aa

2. 1 2 1 1 75 aa

3. 1 3 2 0 28 aa

4. 1 4 2 1 43 aa

5. 1 5 2 1 25 aa

6. 2 1 1 0 64 aa

7. 2 2 1 1 58 aa

8. 2 3 2 0 38 aa

9. 2 4 2 1 46 aa

10. 2 5 2 0 51 aa

(output omitted )
6809. 999 2 1 1 51 aa

6810. 999 3 2 0 50 aa

6811. 999 4 2 1 38 aa

6812. 999 5 2 0 37 aa

6813. 999 6 2 1 41 aa

6814. 1000 1 1 0 74 aa

6815. 1000 2 1 1 70 aa

6816. 1000 3 2 1 38 aa

6817. 1000 4 2 1 41 aa

6818. 1000 5 2 1 38 aa

A total of 6,818 individuals are generated in the 1,000 families. The variable famid represents the family identification of the
simulated family, while id represents the personal identification within each family, degree represents the generation a person
belongs to, female is one or zero depending on whether or not a person is a female, age represents the simulated age, and
genotype represents a person’s genotype.

Example 2

We simulate 2,000 three-generation families. The mean age of people in the first-, second- and third-generation are 80,
50 and 20, respectively. Their standard deviation is assumed to be 10 across all generations. The frequency of an allele A is
assumed to be 0.1. The mean number of siblings in the second- and third-generation are 4 and 3.5, respectively.

. set memory 50m

. simuped3 80 10 50 10 20 10, reps(2000) alle(0.1) sib(4) si3(3.5)

. use temp

. describe

Contains data from temp.dta

obs: 29,667

vars: 8 23 Oct 2000 18:38

size: 1,008,678 (98.1% of memory free)

-------------------------------------------------------------------------------

1. famid float %9.0g

2. id float %9.0g

3. degree float %9.0g
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4. family float %9.0g

5. female float %9.0g

6. marry float %9.0g

7. age float %9.0g

8. genotype str2 %9s

-------------------------------------------------------------------------------

Sorted by:

. list

famid id degree family female marry age genotype

1. 1 1 1 1 0 1 85 aa

2. 1 2 1 1 1 1 68 aa

3. 1 3 1 2 0 1 83 Aa

4. 1 4 1 2 1 1 65 Aa

5. 1 5 2 1 1 0 51 aa

6. 1 6 2 1 0 0 61 aa

7. 1 7 2 1 1 0 43 aa

8. 1 8 2 1 1 0 33 aa

9. 1 9 2 1 1 1 4 aa

10. 1 10 2 1 1 0 25 aa

(output omitted )
29658. 2000 10 2 2 0 1 53 aa

29659. 2000 11 2 2 1 0 64 aa

29660. 2000 12 2 2 1 0 32 aa

29661. 2000 13 2 2 0 0 39 aa

29662. 2000 14 3 0 0 0 30 aa

29663. 2000 15 3 0 0 0 12 aa

29664. 2000 16 3 0 0 0 34 aa

29665. 2000 17 3 0 0 0 5 aa

29666. 2000 18 3 0 1 0 27 aa

29667. 2000 19 3 0 0 0 11 aa

In this example, we do not specify the output file, so the simulated family data are saved into temp.dta. The extra variable
named marry is produced by simuped3 compared with simuped2. It indicates the marriage status of a person.

References
Elandt-Johnson, R. 1971. Probability Models and Statistical Methods in Genetics. New York: John Wiley & Sons.

gr45 A turnip graph engine

Steven Woloshin, VA Outcomes Group, VA Medical Center, White River Junction, VT, steven.woloshin@dartmouth.edu

Abstract: A new graphical description called a turnip graph for studying the distribution of a variable is introduced and illustrated.

Keywords: descriptive statistics, histogram, stem and leaf plot, turnip plot.

Syntax

turnip varname
�
if exp

� �
, resolution(#) truev(#) graph options

�
Description

turnip creates a turnip-style graph for the variable varname. The range of the variable is divided into intervals which are
placed on the vertical axis of the plot. Symbols are plotted horizontally next to each interval reflecting the number of observations
in that interval. Thus one can use this plot in conjunction with histograms, boxplots, stem-and-leaf plots, and so on, to study the
distribution of a variable.

Options

resolution(#) specifies the resolution of the graph, that is, the width of the intervals to be used. The default value is 0.4s,
where s is the standard deviation of the variable. Since resolution rounds the data, the graph in essence displays the
frequency of observations falling within each resolution unit. The user can avoid any such rounding (that is, display the
frequency of each value in the data) by specifying the resolution width as any negative number.

truev(#) specifies a value that can be used to divide a variable into three parts: one exactly equal to truev, one that is greater
than truev, and one that is less than truev. For example, suppose you are trying to display change scores and want to
show which observations are above or below zero. Using truev(0) ensures that only zero values are graphed at zero;
other values which would round to zero are set at the next appropriate category of varname.
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graph options are any of the standard graphics options except for by. In addition to the usual function of yline, turnip allows
users to specify special values; specifically, mean or median. If either of these is specified, the corresponding value is
added to ylabel so the value is displayed on the y-axis. Note that the default x-axis label ranges between plus and minus
twice the maximum number of observations in an interval, while the default y-axis label adds 25% of the range above and
below the maximum and minimum values of the variable.

Examples

Issuing the command

. turnip mpg

gives the output for the mpg variable in Stata’s auto data

# of observations per turnip row is the frequency below:

mpg | Freq. Percent Cum.

------------+-----------------------------------

11.57101 | 2 2.70 2.70

13.88521 | 8 10.81 13.51

16.19941 | 8 10.81 24.32

18.51361 | 17 22.97 47.30

20.82781 | 8 10.81 58.11

23.14201 | 12 16.22 74.32

25.45621 | 8 10.81 85.14

27.77042 | 3 4.05 89.19

30.08462 | 4 5.41 94.59

34.71302 | 3 4.05 98.65

41.65562 | 1 1.35 100.00

------------+-----------------------------------

Total | 74 100.00

options: xlabel(-16 16) ylabel(9 45 )

resolution: 2.314201283894056

and the graph in Figure 1; see below.

We can produce a similar graph with greater resolution and with a horizontal line at the median of mpg by

. turnip mpg, res(1.5) yline(median)

# of observations per turnip row is the frequency below:

mpg | Freq. Percent Cum.

------------+-----------------------------------

12 | 2 2.70 2.70

13.5 | 6 8.11 10.81

15 | 2 2.70 13.51

16.5 | 8 10.81 24.32

18 | 9 12.16 36.49

19.5 | 11 14.86 51.35

21 | 5 6.76 58.11

22.5 | 8 10.81 68.92

24 | 4 5.41 74.32

25.5 | 8 10.81 85.14

28.5 | 4 5.41 90.54

30 | 2 2.70 93.24

31.5 | 1 1.35 94.59

34.5 | 3 4.05 98.65

40.5 | 1 1.35 100.00

------------+-----------------------------------

Total | 74 100.00

options: yline(20) xlabel(-10 10) ylabel( 20 9 43 )

resolution: 1.5

yline: 20 (median)

which gives the graph in Figure 2.

(Continued on next page)
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Figure 1. A simple turnip plot for mpg for the auto data. Figure 2. Higher resolution graph for mpg with line at median.

Finally, we do a turnip plot for only foreign cars with a specified x-axis label and a horizontal line at the mean.

. turnip mpg if foreign==1, xlabel(-10 10) yline(mean)

# of observations per turnip row is the frequency below:

mpg | Freq. Percent Cum.

------------+-----------------------------------

13.88521 | 1 4.55 4.55

16.19941 | 2 9.09 13.64

18.51361 | 2 9.09 22.73

20.82781 | 2 9.09 31.82

23.14201 | 4 18.18 50.00

25.45621 | 5 22.73 72.73

27.77042 | 1 4.55 77.27

30.08462 | 2 9.09 86.36

34.71302 | 2 9.09 95.45

41.65562 | 1 4.55 100.00

------------+-----------------------------------

Total | 22 100.00

options: xlabel(-10 10) yline(24.7) ylabel( 24.77272727272727 11 44 )

resolution: 2.314201283894056

yline: 24.77272727272727 (mean)

This gives the plot in Figure 3.
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Figure 3. Turnip plot for foreign cars with specified x-axis label and a horizontal line at the mean.
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Acknowledgment

Turnip graphs are the graph of choice in the Dartmouth Atlas of Healthcare (American Hospital Publishing Inc., Chicago,
IL 1996). The term turnip graph was coined by Jack Wennberg and colleagues at the Center for the Evaluative Clinical Sciences,
Dartmouth Medical School, because the display sometimes reminded them of turnips. Other suggested names included carrots,
flying saucers, and the Stealth Bomber.

sbe19.3 Tests for publication bias in meta-analysis: erratum

Thomas J. Steichen, RJRT, steicht@rjrt.com

Abstract: This insert provides a correction to the help file for the metabias command introduced in Steichen (1998) and
modified in Steichen et al. (1998) and Steichen (2000).

Keywords: meta-analysis, publication bias, Egger, Begg.

Description

As one form of data input, metabias allows the user to provide effect estimates, theta, and standard errors, se theta. The
published help file included a note stating that data in binary count format could be converted to the effect format used in
metabias by use of program metan (Bradburn et al. 1998). This note stated that metan automatically adds variables for theta
and se theta to the raw dataset, naming them ES and seES, and that these variables could be provided to metabias using its
default input method.

This is not correct. When processing binary data, metan automatically adds variables for exp(theta) and se theta, that is,
it is exp(theta) that is stored in variable ES, not theta. The user must manually transform these exponentiated values back to
theta format using Stata’s log() function (or, equivalently, ln() function) before providing them to metabias. This additional
step is now documented in the help file.

Acknowledgment

I am grateful to Dr. John Moran for indirectly alerting me to this error.

References
Bradburn, M. J., J. J. Deeks, and D. G. Altman. 1998. sbe24: metan—an alternative meta-analysis command. Stata Technical Bulletin 44: 4–15.

Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 86–100.

Steichen, T. J. 1998. sbe19: Tests for publication bias in meta-analysis. Stata Technical Bulletin 41: 9–15. Reprinted in Stata Technical Bulletin
Reprints, vol. 7, pp. 125–133.

——. 2000. sbe19.2: Updates of tests for publication bias in meta-analysis. Stata Technical Bulletin 57: 4.

Steichen, T. J., M. Egger, and J. Sterne. 1998. sbe19.1: Tests for publication bias in meta-analysis. Stata Technical Bulletin 44: 3–4. Reprinted in
Stata Technical Bulletin Reprints, vol. 8, pp. 84–85.

sbe39.1 Nonparametric trim and fill analysis of publication bias in meta-analysis: erratum

Thomas J. Steichen, RJRT, steicht@rjrt.com

Abstract: This insert provides a correction to metatrim (Steichen 2000) and to its help file. metatrim implements the Duval
and Tweedie (2000) nonparametric “trim and fill” method of accounting for publication bias in meta-analysis.

Keywords: meta-analysis, publication bias, nonparametric, data augmentation.

Description

As one form of data input, metatrim allows the user to provide effect estimates, theta, and standard errors, se theta. Both
Steichen (2000) and its accompanying help file included a note stating that data in binary count format could be converted to
the effect format used in metatrim by use of program metan (Bradburn et al. 1998). This note stated that metan automatically
adds variables for theta and se theta to the raw dataset, naming them ES and seES, and that these variables could be provided
to metatrim using its default input method.

This is not correct. When processing binary data, metan automatically adds variables for exp(theta) and se theta. That is,
it is exp(theta) that is stored in variable ES, not theta. The user must manually transform these exponentiated values back to
theta format using Stata’s log() function (or, equivalently, ln() function) before providing them to metatrim. This additional
step is now documented in the help file.
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Acknowledgment

I am grateful to Dr. John Moran for alerting me to this error.

References
Bradburn, M. J., J. J. Deeks, and D. G. Altman. 1998. sbe24: metan—an alternative meta-analysis command. Stata Technical Bulletin 44: 4–15.

Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 86–100.

Duval, S. and R. Tweedie. 2000. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of the American
Statistical Association 95(449): 89–98.
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sg84.3 Concordance correlation coefficient: minor corrections

Thomas J. Steichen, RJRT, steicht@rjrt.com
Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Abstract: This insert fixes some bugs and corrects some defaults affecting detailed user control of graphical output in the program
for concordance correlation. The numerical calculations were not changed.

Keywords: concordance correlation, graphics, measurement comparison.

Description

concord computes the concordance correlation coefficient for agreement on a continuous measure obtained by two persons
or methods and provides optional graphical displays. A full description of the method and of the operation of the command was
given by Steichen and Cox (1998a), with revisions and updates in Steichen and Cox (1998b, 2000).

This insert fixes some small bugs affecting detailed user control of graphical display through the connect(), symbol(),
and pen() options. It also corrects a few of the corresponding default values.

Specifically, the default graph options for graph(loa) now include connect(lll.l), symbol(iiioi), and pen(35324)

for the lower confidence interval limit, mean difference, upper confidence interval limit, data points, and regression line (if
requested) respectively, along with default titles and labels. Further, the visual characteristics of the data points and line in the
normal probability plot now follow those of the data points and regression line in the associated loa (limits-of-agreement) plot.

Acknowledgment

We are grateful to Sónia Dória Nóbrega for alerting us to the bugs.

References
Steichen, T. J. and N. J. Cox. 1998a. sg84: Concordance correlation coefficient. Stata Technical Bulletin 43: 35–39. Reprinted in Stata Technical

Bulletin Reprints, vol. 8, pp. 137–143.

——. 1998b. sg84.1: Concordance correlation coefficient, revisited. Stata Technical Bulletin 45: 21–23. Reprinted in Stata Technical Bulletin Reprints,
vol. 8, pp. 143–145.

——. 2000. sg84.2: Concordance correlation coefficient: update for Stata 6. Stata Technical Bulletin 54: 25–26. Reprinted in Stata Technical Bulletin
Reprints, vol. 9, pp. 169–170.

sg97.2 Update to formatting regression output

John Luke Gallup, Harvard University, jgallup@hiid.harvard.edu

Abstract: An update to the outreg command is described.

Keywords: regression output.

I have updated outreg, a program described in Gallup (1998, 1999) that writes regression output to a text file. New
features allow including user-specified statistics and notes, 10% asterisks, table and column titles, scientific notation for coefficient
estimates, and reporting of confidence interval and marginal effects. I have also fixed bugs in the reporting results from dprobit,
heckman, and heckprob regressions, and outreg can now be used after dlogit2, dprobit2, and dmlogit2. Because outreg

has been so extensively modified, we describe its full syntax.
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Syntax

outreg

�
varlist

�
using filename

�
, nolabel title(textlist) ctitle(textlist) nonotes addnote(textlist)

bdec(numlist) bfmt(textlist) coefastr

�
se j pvalue	 ci tdec(#) noparen bracket�

noaster j 3aster j 10pct	 sigsymb(textlist) nocons nonobs noni nor2 adjr2 rdec(#)

addstat(text, #
�
, text, #, : : :

�
) adec(#) eform marginal onecol xstats

comma append replace

�
outreg is available after any estimation command. A textlist is a list of text separated by commas. It is similar to a numlist or

a varlist, but commas are required. Each text element in the list does not need to be enclosed in quotation marks unless
the text contains commas or parentheses.

Description

outreg formats regression output as it is presented in most documents: t statistics or standard errors in parentheses under
each coefficient, asterisks indicating coefficients statistically different from zero, and summary statistics like R-squared at the
bottom. The formatted output is written to a tab- or comma-separated ASCII file, which can then be loaded into word processing
or spreadsheet programs to be converted directly to a table. For example, the output file can be opened in Microsoft Word, the
text selected, and then converted to a table by choosing “Table”, then “Convert Text to Table”. Note that when loading the
output into a spreadsheet, the parentheses around the t statistics may convert to negative numbers.

outreg should work after any Stata estimation command. Like predict, outreg makes use of internally saved estimation
results, so it should be invoked immediately after the estimation. In addition to coefficient estimates, by default outreg will
report t statistics with asterisks for standard significance levels (1% and 5%), numbers of observations, true R-squareds (no
pseudo R-squareds), and the number of groups in panel estimation. The user can add their own chosen titles (title and ctitle),
statistics (addstat), and notes (addnote) to the table, and change many other aspects of the output.

outreg rewards the use of variable labels (and value labels for mlogit, svymlog, and dlogit2). The variable labels
are used in the output table (unless nolabel is chosen), providing more intelligible variable descriptions than 8-letter names.
If different variables are assigned the same variable label (not usually done intentionally), and more than one regression is
appended together, the coefficients and t statistics will not be properly ordered. The solution is to use distinct variable labels or
the nolabel option.

If filename is specified without an extension, .out is assumed.

Several regressions with differing variables can be combined into a single table with the append option.

If a varlist is specified, only the regression coefficients corresponding to the variables in varlist will be included in the table.
The intercept coefficient is included as well unless the nocons option is chosen. This is probably most useful for excluding
numerous dummy variable coefficients. Time series prefixes are not allowed when using an explicit varlist.

Text-related options

nolabel specifies that variable names rather than variable labels be used to identify coefficients. It also suppresses the value
labels of the dependent variable in mlogit and svymlog.

title(textlist) specifies a title or titles at the top of the regression table. The maximum title length is 80 characters. Additional
characters will be cut off. Longer titles can be put in two or more title lines. When regression results are appended together,
the table title(s) must be specified in the first outreg call; titles specified in subsequent outreg calls using the append

option will be ignored. Note that when converting the outreg text output to a table in a word processor or a spreadsheet,
it is easier to leave the title row out of the text selected for conversion.

ctitle(textlist) specifies the regression title above the coefficient column. By default if no column title is specified, the label
or name of the dependent variable is displayed. Multiple column titles are only appropriate for multi-equation regressions,
using one title per equation, and then only if not onecol.

nonotes specifies that notes explaining the t statistics (or standard errors) and asterisks not be included.

addnote(textlist) specifies user-added notes to be displayed in new lines at the bottom of the outreg table. When regression
results are appended together, addnote must be specified in the first outreg call; addnotes specified in subsequent outreg
calls using the append option will be ignored. addnote is consistent with nonotes. A blank line can be inserted by
including a blank within quotes as a note.
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One technical note is in order. Text which includes quotation marks within the text (by means of double quotation) in
title, ctitle, and addnote displays correctly in single regression tables but does not display correctly when subsequent
regressions are appended using the append option.

Coefficient options

bdec(numlist) specifies the number of decimal places reported for coefficient estimates. It also specifies the decimal places
reported for standard errors or confidence intervals if se or ci is chosen. The default value is 3. The minimum value is
0, and the maximum is 11. If one number is specified in numlist, it will apply to all coefficients. If multiple numbers are
specified, the first number will determine the decimals reported for the first coefficient; the second number, the decimals
for the second coefficient; and so on. If there are fewer numbers in the numlist than coefficients, the last number in the
numlist will apply to all the remaining coefficients.

bfmt(textlist) specifies the format type for coefficient estimates (and standard errors or confidence intervals, if se or ci is
chosen). Possible format types include e for scientific notation (for example, 1.00e+3), f or fc for fixed format (with
commas for thousands with fc), and g or gc for general format (with commas for thousands with gc). The default for bfmt
is fc. If multiple format types are specified, they are applied to the coefficients the way that multiple bdec parameters
are applied. This option is mainly to allow scientific notation. For an explanation of Stata numeric formats, see [U] 15.5.1
Numeric formats.

coefastr specifies that asterisks for significance levels are appended to regression coefficients rather than to t statistics or
standard errors.

Options for statistics, standard error, etc.

se specifies that standard errors rather than t statistics are reported.

pvalue specifies that p-values (of t statistics) rather than t statistics are reported.

ci specifies that confidence intervals of coefficients rather than t statistics are reported.

tdec(#) specifies the number of decimal places reported for t statistics (or for p-values if pvalue is specified). It also specifies
the decimal places reported for R-squared or adjusted R-squared if they are not specified in rdec. The default value for
tdec is usually 2, but 3 if pvalue is specified. The minimum value is 0, and the maximum is 11.

noparen specifies that no parentheses be placed around t statistics or standard errors.

bracket specifies that square brackets be used rather than parentheses around t statistics or standard errors.

noaster specifies that no asterisks denoting 1% and 5% significance levels be reported.

3aster specifies 3 asterisks for 1%, 2 asterisks for 5%, and 1 asterisk for 10% significance levels.

10pct specifies a plus sign for 10% significance levels in addition to the default 2 asterisks for 1%, and 1 asterisk for 5%
significance levels.

sigsymb(textlist) specifies symbols for 1% and 5% significance levels (and 10% significance level if 10pct is also chosen).
The specified symbols replace the asterisks. Quotation marks around the new symbols are optional if the characters “,” and
“)” are avoided. Omitting symbols will prevent the significance level from being labeled (see also noaster). For example,
to display only 1% significance levels, one could use outreg using table1, sigsymb(*).

Options for statistics

nocons specifies that the intercept (constant) coefficient estimate not be reported.

nonobs specifies that the number of observations in the estimation not be reported.

noni specifies that the number of groups in a panel data regression not be reported (for example, the number of groups specified
by the i() variable in xtreg).

nor2 specifies that no R-squared (or adjusted R-squared) be reported. This option is only meaningful when Stata calculates a
true R-squared.

adjr2 specifies that the adjusted R-squared be reported rather than the regular R-squared.

rdec(#) specifies the number of decimal places reported for the R-squared or adjusted R-squared. The default value for rdec
is the value for tdec. The minimum value is 0, and the maximum is 11.
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addstat(text, #
�
, text, #, : : :

�
) specifies user-added statistics to be displayed in new lines below the R-squared (if shown).

The user must specify both a name and a value for the statistic. Users can report significance levels of test statistics as a
second statistic to be shown on the line below the first statistic.

adec(numlist) specifies the number of decimal places reported for user-added statistics (in addstat). The default value for
rdec is the value for tdec. The minimum value is 0, and the maximum is 11. If one number is specified in numlist, it will
apply to all statistics. If multiple numbers are specified in numlist, they are applied to the user-added statistics as in bdec.

eform specifies that the exponential form of coefficients be reported. This corresponds to the or option for logit, clogit, and
glogit estimation, irr for poisson estimation, rrr for mlogit, hr for cox hazard models, and eform for xtgee, but
it can be used to exponentiate the coefficients after any estimation; see Methods and Formulas in [R] maximize.

marginal specifies that the marginal effects rather than the coefficient estimates are reported. This is done automatically after
dprobit.

onecol specifies that multi-equation models (for example, mlogit, reg3) be formatted in one column rather than the default
of multiple columns, one column per equation. It also reports extra statistics included in the e(b) vector.

xstats specifies that the extra statistics included in the e(b) matrix be reported. Extra statistics for multi-equation models (for
example, heckman, heckprob, and biprobit) are not reported; a user can use addstat or onecol. If there are no extra
statistics in the e(b) matrix, xstats is ignored. This option is largely superseded by addstat.

Other options

comma specifies that the ASCII file output be separated by commas rather than by tabs. This can cause problems if any of the
user-defined text has commas in it (such as variable labels, title, ctitle, addstat, or addnote).

append specifies that new estimation output be appended to an existing output file. In general, the same outreg options should
be used in the original regression output and each appended regression. The notes at the bottom of the table explaining the
t statistics or standard errors and asterisks are correct for the first estimation in the output file. If subsequently appended
estimation results use different options (such as a switch to noaster, or changes the estimation’s robust option), the notes
will not be appropriate for all the columns. This problem can be addressed with a combination of nonotes and addnote.

replace specifies that it is okay to replace filename if it already exists.

Examples

We begin by using Stata’s automobile data.

. generate weight2=weight^2

. regress mpg weight weight2 foreign

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 3, 70) = 52.25

Model | 1689.15372 3 563.05124 Prob > F = 0.0000

Residual | 754.30574 70 10.7757963 R-squared = 0.6913

---------+------------------------------ Adj R-squared = 0.6781

Total | 2443.45946 73 33.4720474 Root MSE = 3.2827

------------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

weight | -.0165729 .0039692 -4.175 0.000 -.0244892 -.0086567

weight2 | 1.59e-06 6.25e-07 2.546 0.013 3.45e-07 2.84e-06

foreign | -2.2035 1.059246 -2.080 0.041 -4.3161 -.0909003

_cons | 56.53884 6.197383 9.123 0.000 44.17855 68.89913

------------------------------------------------------------------------------

. outreg using outreg1

. !more outreg1.out

Mileage (mpg)

Weight (lbs.) -0.017

(4.18)**

weight2 0.000

(2.55)*

Car type -2.204

(2.08)*

Constant 56.539

(9.12)**

Observations 74

R-squared 0.69

Absolute value of t-statistics in parentheses

* significant at 5%; ** significant at 1%
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Next we use some of the outreg options.

. outreg weight weight2 using outreg1, se bdec(4) bfmt(e) tdec(3) nonotes replace

. !more outreg1.out

Mileage (mpg)

Weight (lbs.) -1.6573e-02

(3.9692e-03)**

weight2 1.5912e-06

(6.2489e-07)*

Constant 5.6539e+01

(6.1974e+00)**

Observations 74

R-squared 0.691

Finally, here is an example I used in my research which investigates the relationship of a dependent variable y on four X
variables and shows how outreg can be used to produce the kinds of tables needed in publications.

. regress y x1-x2

. outreg using table4, title("Three Regression Variants")

> addnote("", "Run at $S_TIME, $S_DATE", Using data from $S_FN) replace

. regress y x1-x3

. outreg using table4, append

. regress y x1 x3-x4

. test x3 x4

. outreg using table4, append addstat("F test, x3=x4=0", r(F), Prob > F, r(p)) adec(2,3)

. type table4.out

Three Regression Variants

(1) (2) (3)

y y y

x1 0.686 0.723 -0.388

(4.47)** (3.79)** (0.62)

x2 -3.781 -3.809

(25.66)** (22.21)**

x3 4.107 57.701

(0.33) (1.84)

x4 21.560

(1.86)

Constant 1.330 0.224 -45.005

(0.40) (0.05) (1.82)

Observations 100 100 100

R-squared 0.99 0.99 0.99

F test, x3=x4=0 1.78

Prob > F 0.174

Absolute value of t-statistics in parentheses

* significant at 5% level; ** significant at 1% level

Run at 12:10:19, 18 Apr 2000

Using data from xydata.dta
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Description

This insert provides the program clad for estimating Powell’s (1984) censored least absolute deviations estimator (CLAD)
and bootstrap estimates of its sampling variance. The CLAD estimator is a generalization of the least absolute deviations (LAD)
estimator, which is implemented in Stata in the command qreg. Unlike the standard estimators of the censored regression model
such as tobit or other maximum likelihood approaches, the CLAD estimator is robust to heteroscedasticity and is consistent and
asymptotically normal for a wide class of error distributions. See Arabmazar and Schmidt (1981) and Vijverberg (1987) for
empirical examples of the magnitude of the bias resulting from the tobit estimator in the presence of nonnormal error distributions.

This program sidesteps the issue of programming analytical standard errors and provides instead bootstrapped estimates of
the sampling variance. Rogers (1993) shows that the standard errors reported by Stata for qreg are not robust to violations of
homoscedasticity or independence of the residuals and proposes a bootstrap alternative. We follow Rogers for the CLAD estimator
and propose two bootstrap estimates of the standard errors. The first is the standard bootstrap which assumes that the sample
was selected using a simple random design. The second is a bootstrap estimate which assumes that the sample was selected in
two stages and which replicates the design by bootstrapping in two stages.

An advantage of the two-stage bootstrap estimates available in clad is that if the sample was collected using a two-stage
process, then the estimated standard errors will be robust to this design effect. Kish (1995) and Cochran (1997) show the
importance of correcting mean values for design effects. Scott and Holt (1982) show that the magnitude of the bias for the
estimated variance–covariance matrix for ordinary least squares estimates can be quite large when it is erroneously assumed that
the data were collected using a simple random sample; if in fact a two-stage design had been used.

Syntax

clad varlist
�
if exp

� �
in range

� �
, reps(#) psu(varname) ll

�
(#)

�
ul

�
(#)

�
dots saving(filename)

replace level(#) quantile(#) iterate(#) wlsiter(#)
�

Options

reps(#) specifies the number of bootstrap replications to be performed. The default value is 100.

psu(varname) specifies the variable identifying the primary sampling unit. If no variable is specified, then the bootstrap replication
is a single-stage, simple random draw on the sample.

ll

�
(#)

�
and ul

�
(#)

�
are as in Stata’s tobit command and indicate the censoring point. ll() indicates left censoring and

ul() indicates right censoring. If ll or ul is specified without a specific censoring value, then clad assumes that the
lower limit is the minimum observed in the data (if ll is specified) and the upper limit is the maximum (if ul is specified).
If nothing is specified for a lower or upper bound, clad assumes that the lower limit is zero. clad only functions with
lower or upper censoring; one cannot specify censoring at both the lower and upper bound.

dots prints a dot to the screen for each bootstrap replication; thereby allowing the user to estimate, after a few replications, the
time to completion.

saving(filename) creates a Stata datafile (.dta file) containing the bootstrap sample of the parameter estimates.

replace overwrites the Stata datafile specified in saving(), if it already exists.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive. Numbers larger than
1 are interpreted as a percent. The default value of 0.5 corresponds to the median.

iterate(#) specifies the maximum number of iterations that will be allowed to find a solution. The default value is 16,000,
and the range is 1 to 16,000.

wlsiter(#) specifies the number of weighted least squares iterations that will be attempted before the linear programming iterations
are started. The default value is 1. If there are convergence problems—something we have never observed—increasing this
value should help.

Examples

To illustrate the use of clad, we use data from the 1988 Ghana Living Standard Survey (GLSS) and consider a somewhat
nonsensical regression. The sample considered is 1,581 households, and the dependent variable, loffinc, is the log of household,
nonfarm income. Since some households are fully engaged in farming, this variable has 528 observations with zeros recorded.
This variable is regressed on the log of the size of the household, lsize, and two geographic dummy variables, urban and
coastal. When we issue clad we obtain the results below.
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. clad loffinc lsize urban coastal, ll(0) reps(200)

Initial sample size = 1581

Final sample size = 1580

Pseudo R2 = .05048178

Bootstrap statistics

Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]

---------+-------------------------------------------------------------------

lsize | 200 1.149846 .0554115 .2544479 .6480861 1.651606 (N)

| .7073701 1.689895 (P)

| .6859084 1.624102 (BC)

---------+-------------------------------------------------------------------

urban | 200 2.375166 .0128999 .3375226 1.709586 3.040746 (N)

| 1.642076 3.120919 (P)

| 1.677854 3.184893 (BC)

---------+-------------------------------------------------------------------

coastal | 200 1.287741 -.0094159 .2830439 .7295905 1.845891 (N)

| .7311435 1.863342 (P)

| .7339153 1.90661 (BC)

---------+-------------------------------------------------------------------

const | 200 6.443694 -.0810437 .6198413 5.221394 7.665994 (N)

| 4.956254 7.557803 (P)

| 5.371459 7.730506 (BC)

-----------------------------------------------------------------------------

N = normal, P = percentile, BC = bias-corrected

The first line of output tells us that the original sample size is 1,581 and in the second line we learn that the algorithm for
estimation dropped one case from the sample. An important caveat to the pseudo R-squared reported on the third line, is that
this is the reported statistic from the last iteration of the qreg command on the final sample size. It is not the pseudo R-squared
for the original sample, but we have opted to report this statistic to provide some indication of how the model is performing.

In the example above, no sample design information is passed to clad and the program calls Stata’s bsample utility to
resample the data 200 times. In order to maintain the same sample size in each bootstrap resample, clad ignores observations
where the dependent variable is missing. The results from bsample are then passed to the bstat command to generate the
standard Stata bootstrap output. For more information about the normal, percentile, and bias-corrected percentile confidence
intervals, see bstrap in the Stata manuals. For an introduction to the bootstrap principle, see Efron and Tibshirani (1993). In
order to reproduce results from clad, it is necessary first to set the random number seed; see generate in the Stata reference
manuals for more information.

The reported standard errors above will be correct if the sample comes from a simple random draw. This is not the case
with the GLSS data, which was collected using a two-stage design. clad can generate bootstrap estimates of the standard errors
which are robust to the two-stage design by passing the information about the primary sampling unit (PSU) to clad. For example,
we correct the standard errors above for this aspect of the sample in the example below.

. clad loffinc lsize urban coastal, ll(0) reps(200) psu(clust)

Initial sample size = 1581

Final sample size = 1580

Pseudo R2 = .05048178

Bootstrap statistics

Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]

---------+-------------------------------------------------------------------

lsize | 200 1.149846 .0916958 .395014 .3708959 1.928797 (N)

| .6573149 2.076703 (P)

| .6507832 2.053507 (BC)

---------+-------------------------------------------------------------------

urban | 200 2.375166 .0562143 .6152112 1.161996 3.588336 (N)

| 1.285434 3.658858 (P)

| 1.12299 3.495041 (BC)

---------+-------------------------------------------------------------------

coastal | 200 1.287741 .0386539 .5439033 .2151873 2.360294 (N)

| .2898641 2.466994 (P)

| .0728349 2.216781 (BC)

---------+-------------------------------------------------------------------

const | 200 6.443694 -.1804084 1.04149 4.389922 8.497466 (N)

| 3.942665 8.130428 (P)

| 4.440762 8.347237 (BC)

-----------------------------------------------------------------------------

N = normal, P = percentile, BC = bias-corrected

It is worth noting that introducing information about the sample design only affects the estimates of the standard errors.
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The dramatic increase in the size of the standard errors is not that surprising as the design effect for the dependent variable is
approximately 3.8, and there is little in the observation matrix which will explain the intracluster correlation.

Methods and Formulas

The Powell (1984) CLAD estimator is found by minimizing

X
jyi �max(0; x0i�)j (1)

The consistency of this estimator rests on the fact that medians are preserved by monotone transformations of the data, and (1)
is a monotone transformation of the standard least absolute deviations (LAD) regression. The properties of the LAD estimator are
presented in Koenker and Basset (1978). The LAD estimator is implemented in Stata with the qreg command.

The estimation technique used in clad for the CLAD estimator is Buchinsky’s (1991) iterative linear programming algorithm
(ILPA). (For a critique of and alternative to this algorithm, see Fitzenberger 1997.) The first step of the ILPA is to estimate a
quantile regression for the full sample, then delete the observations for which the predicted value of the dependent variable is less
than zero. Another quantile regression is estimated on the new sample, and again negative predicted values are dropped. More
generally, observations are dropped if the predicted value is less than the censoring value when the left tail of the distribution is
censored, or they are dropped if the predicted value is greater than the censoring value when the right tail of the distribution is
censored. Buchinsky (1991) shows that if the process converges, then a local minimum is obtained. Convergence occurs when
there are no negative predicted values in two consecutive iterations.

The two bootstraps are implemented as follows. For the simple random sample (SRS) we simply use Stata’s bsample utility
to bootstrap the CLAD point estimates. The SRS, two-stage bootstrap follows this process. In the first stage it counts the number
of unique PSUs, say k, and then using Stata’s uniform function, randomly selects with replacement k (not necessarily unique)
PSUs. At this point, it counts the number of times each PSU has been selected, and this is stored for later use. To implement
the second stage, the program first counts the number of ultimate sampling units (USUs), say m, in each selected PSU and then
randomly selects m USUs from each selected PSU. If a PSU is selected more than once, say � times, then in the second stage the
program randomly selects �m USUs from the selected PSU. As a final note, we warn that clad can be quite time consuming
since the entire algorithm described above is repeated for each bootstrap resampling of the data.
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sg154 Confidence intervals for the ratio of two binomial proportions by Koopman’s method

Duolao Wang, London School of Hygiene and Tropical Medicine, London, UK, duolao.wang@lshtm.ac.uk

Abstract: This article introduces the koopman and koopmani commands, which compute confidence intervals for the ratio of
two binomial proportions based on two independent binomially distributed random variables using Koopman’s method.

Keywords: Koopman’s method, odds ratio, confidence intervals.
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Koopman’s method

Let X and Y be two independent binomial variates based on sample sizes m and n and parameters p1 and p2, respectively.
Let � = p1=p2. Koopman (1984) proposed a method for constructing confidence intervals for � based on a chi-squared test.
Koopman’s method has been widely used in medical research for evaluating drug efficacy and treatment effects.

Assume we test for H0 : � = �0 against HA : � 6= �0. For this problem there is no uniformly most powerful test as extreme
values may occur in the sample, but a chi-squared test seems a reasonable choice. The test statistic U�0 is then given by

U�0(x; y) =
(x�mbp1)2
mbp1(1� bp1) + (y � nbp2)2

nbp2(1� bp2)
where bp1 and bp2 are the maximum likelihood estimates under the restriction � = �0. It can be proved that

bp1 = �0(m+ y) + x+ n� �f�0(m+ y) + x+ ng2 � 4�0(m+ n)(x+ y)
�1=2

2(m+ n)

and bp2 = bp1=�0.

For � = 1, the statistic U�0(x; y) is the traditional Pearson chi-square. Rearranging U�0(x; y) results in

U�0(x; y) =
(x�mbp1)2
mbp1(1� bp1)

�
1 +

m(�0 � bp1)
n(1� bp1)

�

This shows that under H0, U�0(x; y) has asymptotically for m!1 and n!1, a chi-squared distribution with 1 degree
of freedom independent of �0 (Bishop et al. 1977). Hence, an approximate 1�� two-sided confidence region for � is given by

fU�0(x; y) < �
2
1;1��g

where �21;1�� is the 1� � fractile of the chi-squared distribution with 1 degree of freedom. Since U is a convex function of �,
this is an asymmetric interval (�l; �u), where

U�l(x; y) = U�u(x; y) = �
2
1;1��

and
�l < �u

As U�l(x; y) reduces to the usual chi-squared when � = 1, this interval will always agree with the chi-squared test.

Because there is no explicit expression for the inverse function of U , the values of �l and �u have to be solved by numerical
procedures. The main concern of the command koopman is to obtain �l and �u by using repeated bisection as suggested by
Koopman (1984).

Syntax

koopman var event var group
�
weight

� �
if exp

� �
in range

� �
, level(#)

�
koopmani #x #m #y #n

�
, level(#)

�
koopman allows fweights.

Description

koopman computes confidence intervals for the ratio of two binomial proportions based on two independent binomially
distributed random variables using Koopman’s method. Point estimates and confidence intervals for the odds ratio are calculated.
event var contains a one if the observation represents an event and 0 otherwise. group var indicates the group to which each
observation belongs. The variable must have only two values. Observations with missing values are not used.

koopmani is the immediate form of koopman.
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Options

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

Examples

The likelihood ratio that a diagnostic procedure will detect a certain disease is defined as the ratio of the fraction of true
positives to the fraction of false positives. To determine this likelihood ratio, �, for which mainly high values are of interest,
m = 40 diseased persons were tested from whom x = 36 had a positive test, and n = 80 nondiseased persons were tested from
whom y = 16 had a positive test. We can now use koopman to compute the point estimate of � and its confidence intervals.

. koopmani 36 40 16 80

| Event | Proportion

| Yes No | Total Yes

-----------------+------------------------+----------------------

Group1 | 36 4 | 40 0.9000

Group2 | 16 64 | 80 0.2000

-----------------+------------------------+----------------------

Total | 52 68 | 120 0.4333

| |

| Point estimate | [95% Conf. Interval]

-----------------|------------------------+----------------------

Odds Ratio | 4.5 | 2.939633 7.152252

-----------------------------------------------------------------

. koopmani 36 40 16 80, level(99)

| Event | Proportion

| Yes No | Total Yes

-----------------+------------------------+----------------------

Group1 | 36 4 | 40 0.9000

Group2 | 16 64 | 80 0.2000

-----------------+------------------------+----------------------

Total | 52 68 | 120 0.4333

| |

| Point estimate | [99% Conf. Interval]

-----------------|------------------------+----------------------

Odds Ratio | 4.5 | 2.598043 8.283284

-----------------------------------------------------------------

koopman works like koopmani except that it obtains the entries in the tables by summing data. We specify three variables.
The first represents whether the event occurred, the second represents which group the observation belongs to, and the third
variable a weight that gives the total number of subjects in this observation. An observation may reflect a single subject or a
group of subjects. If an observation represents a single subject, we have the individual data in which the weight for each subject
is 1.

. clear

. use koopman

. list

event group pop

1. 1 1 36

2. 0 1 4

3. 1 2 16

4. 0 2 64

. koopman event group [freq=pop], level(90)

| Event | Proportion

| Yes No | Total Yes

-----------------+------------------------+----------------------

Group1 | 36 4 | 40 0.9000

Group2 | 16 64 | 80 0.2000

-----------------+------------------------+----------------------

Total | 52 68 | 120 0.4333

| |

| Point estimate | [90% Conf. Interval]

-----------------|------------------------+----------------------

Odds Ratio | 4.5 | 3.136696 6.632661

-----------------------------------------------------------------
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Saved results

koopman and koopmani save in r():

Scalars
r(x) number of events in group 1
r(m) total number of subjects in group 1
r(y) number of events in group 2
r(n) total number of subjects in group 2
r(theta) odds ratio between group 1 and 2
r(theta l) lower bound of CI for theta
r(theta u) upper bound of CI for theta

References
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sg155 Tests for the multinomial logit model

Jeremy Freese, University of Wisconsin-Madison, jfreese@ssc.wisc.edu
J. Scott Long, Indiana University, jslong@indiana.edu

Abstract: The command mlogtest designed to simplify the use of several tests associated with the multinomial logit model is
introduced and illustrated.

Keywords: multinomial logit model, Hausman, likelihood-ratio test, Wald test.

Introduction

There are several tests that are commonly used in association with the multinomial logit model (MNLM hereafter). First,
we can test that all of the coefficients associated with an independent variable are simultaneously equal to zero (that is, test that
a variable has no effect). Second, we can test whether the independent variables differentiate between two outcomes; this test
is commonly used to determine if two outcomes can be combined. Third, we can assess the assumption of the independence of
irrelevant alternatives (IIA) using either a Hausman test or the LR test proposed by McFadden et al. (1976) and improved by
Small and Hsiao (1985). While each of these tests can be computed using either the test, lrtest, or hausman commands in
Stata or the smhsiao command of Nick Winter (available at the SSC-IDEAS archive), in practice computing these tests can be
awkward and/or tedious. The mlogtest command is designed to simplify the use of these tests. mlogtest is a post-estimation
command that requires that mlogit is the last model estimated.

Given the difficulties of interpretation associated with the MNLM, it is tempting to search for a more parsimonious model by
excluding variables or combining outcome categories based on a series of statistical tests. While mlogtest facilitates computing
tests that can be used in a specification search, great care is required. First, these tests all involve multiple coefficients. While
the overall test might indicate that as a group the parameters are not significantly different from zero, an individual parameter
can still be substantively and statistically significant. Accordingly, one needs to carefully examine the individual coefficients
involved in each test before deciding to revise a model. Second, as with all searches that use repeated, sequential tests, there is
a danger of overfitting the data. When models are constructed based on prior testing using the same data, significance levels
should only be used as rough guidelines.

Syntax

mlogtest

�
, detail iia hausman lr wald combine lrcomb smhsiao set(varlist

�n varlist: : :
�
) all base

�
Options

detail reports the full hausman output for the IIA test. The default is to provide only a summary of the results.

iia specifies that both tests of the IIA assumption should be performed.

hausman requests Hausman tests of the IIA assumption.

lr requests that LR tests for each independent variable should be performed.

wald requests that Wald tests for each independent variable should be performed.

combine requests Wald tests of whether dependent categories can be combined.
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lrcomb requests LR tests of whether dependent categories can be combined. This option uses constrained estimation and overwrites
constraint 999 if it is already defined.

smhsiao requests Small–Hsiao tests of the IIA assumption.

set(varlist
�n varlist: : :

�
) specifies that a set of variables is to be considered together for the LR test or Wald test. The

backslash is used to specify multiple sets of variables. This option is particularly useful when a categorical independent
variable is entered as a set of dummy variables.

all requests that all available tests should be performed.

base also conducts an IIA test omitting the base category of the original mlogit estimation. This is done by reestimating the
model using the largest remaining category as the base category, although the original estimates are restored to memory
afterward.

Utility procedures

mlogtest uses several utility ado-files that are also used in other programs by the authors. In this section we briefly
describe these ado-files.

perhs.ado returns the number of right-hand-side variables and their names for regression models.

pecats.ado returns the names and values of the categories for models with ordinal, nominal, or binary outcomes. For mlogit
it indicates the value of the reference category.

Example

The data for this example are from the 1993 and 1994 General Social Survey. The nominal variable (kidvalue) is the
respondent’s choice of which of the following is most important for a child to learn to prepare him or her for life: “to obey”
(kidvalue = 1), “to think for himself or herself” (kidvalue = 2), “to work hard” (kidvalue = 3), or “to help others when
they need help” (kidvalue = 4). The fifth option, “to be popular”, was excluded because it was very rarely chosen. The
independent variables are respondent’s sex (female), race (black and othrrace, with the reference category being white),
education (degree), and whether the respondent has any children of her or his own (anykids). We begin by estimating the
MNLM.

. mlogit kidvalue female black othrrace degree anykids, nolog

Multinomial regression Number of obs = 2978

LR chi2(15) = 300.14

Prob > chi2 = 0.0000

Log likelihood = -3396.3518 Pseudo R2 = 0.0423

------------------------------------------------------------------------------

kidvalue | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

obey |

female | -.2605371 .1048637 -2.485 0.013 -.4660662 -.0550079

black | .3297048 .1452035 2.271 0.023 .0451112 .6142984

othrrace | .5711209 .2872073 1.989 0.047 .0082049 1.134037

degree | -.7040498 .0577797 -12.185 0.000 -.817296 -.5908037

anykids | -.0401693 .1202552 -0.334 0.738 -.2758652 .1955265

_cons | -.0847716 .1376452 -0.616 0.538 -.3545513 .1850081

---------+--------------------------------------------------------------------

workhard |

female | -.4657661 .1104007 -4.219 0.000 -.6821476 -.2493846

black | .1975939 .1714529 1.152 0.249 -.1384475 .5336354

othrrace | 1.621659 .2233146 7.262 0.000 1.183971 2.059348

degree | -.1824923 .0479872 -3.803 0.000 -.2765455 -.0884391

anykids | .0052844 .1243124 0.043 0.966 -.2383635 .2489323

_cons | -.8719322 .1472885 -5.920 0.000 -1.160612 -.5832521

---------+--------------------------------------------------------------------

helpoth |

female | -.3530656 .1165728 -3.029 0.002 -.5815441 -.1245871

black | -.1156104 .1892914 -0.611 0.541 -.4866148 .255394

othrrace | .8759096 .2791998 3.137 0.002 .328688 1.423131

degree | -.3875589 .0549027 -7.059 0.000 -.4951661 -.2799517

anykids | -.1913028 .1286881 -1.487 0.137 -.4435269 .0609214

_cons | -.5615834 .1493388 -3.760 0.000 -.8542821 -.2688846

------------------------------------------------------------------------------

(Outcome kidvalue==thnkself is the comparison group)

In the following examples, we use a series of mlogtest commands to estimate several tests. Alternatively, we could have
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requested any combination of tests by combining options or requested all possible tests with the single command: mlogtest,
all.

Tests of independent variables

We first conduct a LR test for each independent variable.

. mlogtest, lr

**** Likelihood-ratio tests for independent variables

Ho: All coefficients associated with given variable(s) are 0.

kidvalue | chi2 df P>chi2

---------+-------------------------

female | 23.558 3 0.000

black | 7.231 3 0.065

othrrace | 51.944 3 0.000

degree | 211.133 3 0.000

anykids | 2.323 3 0.508

-----------------------------------

For example, we can reject the hypothesis that gender does not affect the values considered important for children at the .01
level, or the effect of gender is significant (p < .01). Next, we conduct a Wald test for each independent variable. We also use
the set option to test the hypothesis that the coefficients for the two dummy variables indicating race are simultaneously equal
to zero.

. mlogtest, wald set(black othrrace)

**** Wald tests for independent variables

Ho: All coefficients associated with given variable(s) are 0.

kidvalue | chi2 df P>chi2

---------+-------------------------

female | 23.451 3 0.000

black | 7.317 3 0.062

othrrace | 54.177 3 0.000

degree | 174.002 3 0.000

anykids | 2.359 3 0.501

---------+---------------------------

set_1: | 60.988 6 0.000

black |

othrrace |

-----------------------------------

Tests of IIA

Either the Hausman or Small–Hsiao tests can be used to test the IIA assumption. We begin with the Hausman test. The
base option specifies that all tests should be computed using the most frequently observed remaining category as the base value;
see Methods and formulas for details. We do not use the detail option, which provides all of the output from the successive
calls to Stata’s hausman command.

. mlogtest, hausman base

**** Hausman tests of IIA assumption

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.

Omitted | chi2 df P>chi2 evidence

---------+------------------------------------

obey | 7.764 12 0.803 for Ho

workhard | -4.090 12 --- for Ho

helpoth | 9.154 12 0.690 for Ho

thnkself | 884.043 12 0.000 against Ho

----------------------------------------------

Note: If chi2<0, the estimated model does not

meet asymptotic assumptions of the test.

Note the considerably different results depending on the category considered. In our experience, negative test statistics are very
common; Hausman and McFadden (1984, 1226) note this possibility and conclude that a negative result is evidence that IIA has
not been violated. When we run Small–Hsiao tests, we see that these results vary considerably from those of the Hausman tests.

. mlogtest, smhsiao base
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**** Small-Hsiao tests of IIA assumption

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.

Omitted | lnL(full) lnL(omit) chi2 df P>chi2 evidence

---------+---------------------------------------------------------

obey | -1041.535 -1039.193 4.683 6 0.585 for Ho

workhard | -1107.167 -1103.476 7.381 6 0.287 for Ho

helpoth | -1178.179 -1175.128 6.101 6 0.412 for Ho

thnkself | -744.697 -740.162 9.069 6 0.170 for Ho

-------------------------------------------------------------------

Since the Small–Hsiao test is based on the creation of random half-samples from one’s data, the test may differ substantially
with successive calls of the command. For example, when we run the tests again, we obtain

. mlogtest, smhsiao base

**** Small-Hsiao tests of IIA assumption

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.

Omitted | lnL(full) lnL(omit) chi2 df P>chi2 evidence

---------+---------------------------------------------------------

obey | -1098.851 -1089.556 18.589 6 0.005 against Ho

workhard | -1164.440 -1153.210 22.459 6 0.001 against Ho

helpoth | -1169.482 -1165.634 7.695 6 0.261 for Ho

thnkself | -786.601 -774.531 24.141 6 0.000 against Ho

-------------------------------------------------------------------

The set seed command can be used before mlogtest in a do-file to have it produce the same results with each successive
run. For example, set seed 339487731.

Tests for combining dependent categories

Finally, we test whether the independent variables differentiate pairs of outcome categories using a Wald test. Note that all
pairs of outcomes have been evaluated.

. mlogtest, combine

**** Wald tests for combining outcome categories

Ho: All coefficients except intercepts associated with given pair

of outcomes are 0 (i.e., categories can be collapsed).

Categories tested | chi2 df P>chi2

------------------+------------------------

obey-workhard | 81.629 5 0.000

obey- helpoth | 31.332 5 0.000

obey-thnkself | 167.265 5 0.000

workhard- helpoth | 19.637 5 0.001

workhard-thnkself | 79.317 5 0.000

helpoth-thnkself | 65.716 5 0.000

-------------------------------------------

Alternatively, LR tests can be computed with the lrcomb option as in the next example.

. mlogtest, lrcom

**** LR tests for combining outcome categories

Ho: All coefficients except intercepts associated with given pair

of outcomes are 0 (i.e., categories can be collapsed).

Categories tested | chi2 df P>chi2

------------------+------------------------

obey-workhard | 89.431 5 0.000

obey- helpoth | 32.089 5 0.000

obey-thnkself | 212.672 5 0.000

workhard- helpoth | 20.523 5 0.001

workhard-thnkself | 80.259 5 0.000

helpoth-thnkself | 70.485 5 0.000

-------------------------------------------

As with the Wald and LR tests for each independent variable, the two tests for combining categories generally provide very
similar results, although many researchers prefer the LR test.

Overall, these examples illustrate that mlogtest makes it very simple to compute many tests. At the risk of repetition, we
note that it is not our intention to encourage researchers to combine categories or delete variables without careful consideration
of the substantive issues related to the research.
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Saved results

mlogtest saves in r():

r(combine) contains results of tests to combine categories. Rows represent all contrasts among categories; columns indicate
the categories contrasted, the chi-squared value, the degrees of freedom, and the p-value.

r(iia) contains results of the Hausman test of IIA assumption. Each row is one test. Columns indicate the omitted category of
a given test, the chi-squared value, the degrees of freedom, and the p-value.

r(wald) contains results of the Wald test that all coefficients of an independent variable equal zero.

r(lrtest) contains results of the LR test that all coefficients associated with an independent variable equal zero.

Methods and formulas

This section provides brief descriptions of each of the tests. For further details, check the Stata manual for mlogit, test,
and hausman. Full details along with citations to original sources are found in Long (1997). To make our discussion of the tests
clear, we begin with a brief summary of the multinomial logit model (MNLM).

The multinomial logit model

For simplicity, we consider a model with three outcomes and three independent variables. The MNLM can be thought of as
simultaneously estimating binary logits among all pairs of the outcome categories. For example, with categories A, B, and C

and independent variables x1, x2, and x3, the MNLM is in effect simultaneously estimating three binary models:

ln

�
P (Ajx)
P (Cjx)

�
= �0;AjC + �1;AjCx1 + �2;AjCx2 + �3;AjCx3

ln

�
P (Bjx)
P (Cjx)

�
= �0;BjC + �1;BjCx1 + �2;BjCx2 + �3;BjCx3

ln

�
P (Ajx)
P (Bjx)

�
= �0;AjB + �1;AjBx1 + �2;AjBx2 + �3;AjBx3

Note that three more equations could be listed, comparing C to A, C to B, and B to A. Given that the sum of the probabilities
for the outcomes must equal one, there is an implicit constraint on the three logits. Specifically,

ln

�
P (Ajx)
P (Cjx)

�
� ln

�
P (Bjx)
P (Cjx)

�
= ln

�
P (Ajx)
P (Bjx)

�

in terms of the parameters
�k;AjC � �k;BjC = �k;AjB

mlogit estimates and prints only the nonredundant coefficients, which are determined by the basecategory() option or,
by default, the category with the largest number of cases. The commands mcross (Rogers 1995) and listcoef (Long and
Freese 2000) list coefficients for all comparisons of outcome categories.

Testing the effect of an independent variable

With J dependent categories, there are J � 1 nonredundant coefficients associated with each independent variable xk. The
hypothesis that xk does not affect the dependent variable can be written as

H0 : �k;1jBase = � � � = �k;JjBase = 0

where Base is the base category used in the comparison. Since �k;BasejBase is necessarily zero, the hypothesis imposes constraints
on J � 1 parameters. This hypothesis can be tested with either a Wald or a LR test.

A LR test

First, estimate the full model MF that contains all of the variables, with the resulting LR statistic LR2
F. Second, estimate

the restricted model MR formed by excluding variable xk, with the resulting LR statistic LR2
R. This model has J � 1 fewer

parameters. Finally, compute the difference LR2
RvsF = LR2

F � LR2
R which is distributed as chi-squared with J � 1 degrees of

freedom if the hypothesis that xk does not affect the outcome is true. mlogtest, lr computes this test for each of the K

independent variables by making repeated calls to Stata’s lrtest. Note that this requires estimating K additional multinomial
logit models.
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A Wald test

While the LR test is generally considered to be superior, if the model is complex or the sample is very large, the computational
costs of the LR test can be prohibitive. Alternatively, K Wald tests can be computed without estimating additional models. This
test is defined as follows. Let b�k be the J � 1 coefficients associated with xk. Let cVar(b�k) be the estimated covariance matrix.
The Wald statistic for the hypothesis that all of the coefficients associated with xk are simultaneously zero is computed as

Wk = b�0kcVar(b�k)b�k
If the null hypothesis is true, then Wk is distributed as chi-squared with J � 1 degrees of freedom.

Testing multiple independent variables

This logic of the Wald or LR tests can be extended to simultaneously test that the effects of two or more independent
variables are zero. For example, the hypothesis to test that xk and x` have no effects is

H0 : �k;1jBase = � � � = �k;JjBase = �`;1jBase = � � � = �`;JjBase = 0

The set option in mlogtest specifies which variables are to be simultaneously tested. This is particularly useful when a series
of dummy variables are used to code a nominal or ordinal independent variable.

Testing that two outcomes can be combined

If none of the xk’s significantly affect the odds of outcome m versus outcome n, we say that m and n are indistinguishable
with respect to the variables in the model. If �1;mjn; : : : ; �K;mjn are the coefficients for x1 through xK from the logit of m
versus n, then the hypothesis that outcomes m and n are indistinguishable corresponds to

H0 : �1;mjn = � � ��K;mjn = 0

Note that if the base category used by Stata is not n, these coefficients are not directly available. However, this hypothesis can
be rewritten equivalently using the coefficients with respect to the base category

H0 :
�
�1;mjBase � �1;njBase

�
= � � � = �

�K;mjBase � �K;mjBase
�
= 0

A Wald test for this hypothesis can be computed with Stata’s test command. mlogtest, combine executes and summarizes
the results of J � (J � 1) calls to test for all pairs of outcome categories.

An LR test of this hypothesis can be computed by first estimating the full model that contains all of the variables, with
the resulting LR statistic LR2

F. Then estimate a restricted model MR in which category m is used as the base category and all
the coefficients (except the constant) in the equation for category n are constrained to 0, with the resulting chi-squared statistic
LR2

R. The test statistic is the difference LR2
RvsF = LR2

F � LR2
R, which is distributed as chi-squared with K degrees of freedom.

mlogtest, lrcomb summarizes the results of the J � (J � 1) LR tests for all pairs of outcome categories.

Independence of irrelevant alternatives

The MNLM assumes that the odds for any pair of outcomes are determined without reference to the other outcomes that might be
available. This is known as the independence of irrelevant alternatives property or simply IIA. Hausman and McFadden (1984)
proposed a Hausman-type test of this hypothesis. Basically, this involves the following steps.

1. Estimate the full model with all J outcomes included; these estimates are contained in b�F.

2. Estimate a restricted model by eliminating one or more outcome categories; these estimates are contained in b�R.

3. Let b��F be a subset of b�F after eliminating coefficients not estimated in the restricted model. The Hausman test of IIA is
defined as

HIIA =
�b�R � b��F�0 hcVar(b�R)� cVar(b��F)i�1 �b�R � b��F�

HIIA is asymptotically distributed as chi square with degrees of freedom equal to the number of rows in b�R if IIA is true.
Significant values of HIIA indicate that the IIA assumption has been violated.

Hausman and McFadden (1984, 1226) note that HIIA can be negative when cVar(b�R)� cVar(b��F) is not positive semidefinite and
suggest that a negative HIIA is evidence that IIA holds.
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To compute Small and Hsiao’s test, the sample is divided into two random subsamples of approximately equal size. The
unrestricted MNLM is estimated on both subsamples. The weighted average of the coefficients from the two samples is defined
as follows: b�S1S2u =

�
1p
2

� b�S1u +

�
1� 1p

2

� b�S2u
where b�S1u is a vector of estimates from the unrestricted model on the first subsample and b�S2u is its counterpart for the second
subsample. Next, a restricted sample is created from the second subsample by eliminating all cases with a chosen value of the
dependent variable. The MNLM is estimated using the restricted sample yielding the estimates b�S2r and the likelihood L(b�S2r ).
The Small–Hsiao statistic is the difference:

SH = �2
h
L(b�S1S2u )� L(b�S2r )

i

SH is asymptotically distributed as a chi-squared with the degrees of freedom equal to K + 1, where K is the number of
independent variables.

For both the Hausman test and the Small–Hsiao test, multiple tests of IIA are possible. Assuming that the MNLM is estimated
with base category Base, J � 1 tests can be computed by excluding each of the remaining categories to form the restricted
model. By changing the base category, a test can also be computed that excludes Base. Note that results differ depending on
which base category was used to estimate the model.
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sg156 Mean score method for missing covariate data in logistic regression models
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Abstract: The command meanscor that implements the mean score method of Reilly and Pepe (1995) for incorporating
incomplete cases into logistic regression analysis through a weighted regression model is introduced and illustrated.

Keywords: missing data, mean score method, logistic regression.

Background

Missing data is a common problem in statistical analysis. Perhaps the most popular approach when confronted with missing
data is excluding the incomplete cases from analysis and proceeding to analyze the complete cases using standard methods.
While valid under certain assumptions regarding the missingness mechanism, this approach results in a loss of precision due
to the ignored observations. The mean score method of Reilly and Pepe (1995) allows us to incorporate the incomplete cases
into logistic regression analysis through a weighted regression model. For random missingness, this results in an improvement
in efficiency over the analysis of complete cases only. More importantly, the method is applicable to a wide range of patterns
of missingness known as MAR (missing at random), where missingness may depend on the completely observed variables but
not on the unobserved value of the incompletely observed variable(s).

Syntax

meanscor depvar
�

indepvars
� �

if exp
� �

in range
� �

, first(varlist) second(varlist) odd(#)
�
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Description

The meanscor command performs a weighted logistic regression using the mean score method. This function requires the
complete covariate(s) to be categorical, and the default output contains the regression coefficient estimates and their standard
errors in odds-ratio form.

An important area of application of this function is in the analysis of data from a two-stage study. In this type of study,
some variables are incomplete due to only a subset of the study subjects being sampled at the second stage (Reilly 1996).

Options

first(varlist) specifies the complete covariates.

second(varlist) specifies the incomplete covariates.

odd(#) specifies whether the odds-ratio (odd = 1) or regression coefficients (odd = 0) format is reported. Default value is 1.

Methods and Formulas

The mean score estimates will maximize the weighted likelihood

X
i2C

�
1 +

n
I(zi;yi)

nC(zi;yi)

�
logP�(yijxi)

where n
I(zi;yi) is the number of incomplete observations in each stratum defined by the different levels of response yi and

complete covariates zi, and n
C(zi;yi) is the number of complete observations in each stratum.

As the above equation indicates, the mean score method weights each complete observation according to the total number
of observations in the same stratum.

The asymptotic variance of the mean score estimate is given by

Var(b�) = 1

n

�
I
�1 + I

�1
V I

�1
�

where n is total number of observations, and I is the usual information matrix. V is estimated by the matrix

X
(y;z)

n(y; z)nI(y;z)

nC(y;z)
Var(S� jy; z)

where Var(S�(y; z)) is the variance–covariance matrix of the score in each (y; z) stratum.

We can regard the second term of the variance expression as a penalty for the incompletely observed observations. Hence,
the mean score estimates will have larger variance than the estimates obtained if all observations were complete but smaller
variance than the estimates from an analysis of complete cases only.

Examples

We begin with a simulated dataset. We generated 1,000 observations of a predictor variable x from the standard normal
distribution. The response variable y was then generated as a Bernoulli random variable with p = exp(x)=f1 + exp(x)g. A
dichotomous surrogate variable for x, called z, was generated as one for positive x and zero otherwise.

A random subsample of 500 observations had their x value deleted (set to missing). The dataset, called sim miss.dta is
provided with this insert as an illustration and can be analyzed using the mean score method by

. use sim_miss

. meanscor y x,first(z) second(x)

meanscore estimates

------------------------------------------------------------------------------

| odd-ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

cons | 1.050643 .0751759 0.690 0.490 .9131663 1.208817

x | 2.770173 .282211 10.002 0.000 2.268772 3.382384

------------------------------------------------------------------------------
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We can compare this to the logistic regression analysis using only the complete observations:

. keep if x~=.

. logit y x, or

Logit estimates Number of obs = 500

LR chi2(1) = 92.97

Prob > chi2 = 0.0000

Log likelihood = -299.18928 Pseudo R2 = 0.1345

------------------------------------------------------------------------------

| odd-ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

x | 2.771684 .3326964 8.493 0.000 2.190638 3.506847

------------------------------------------------------------------------------

Note that the mean score estimate above had smaller standard error, reflecting the additional information used in the analysis.
Also, since z is a surrogate for x, it is not used in the complete case analysis.

Next, we consider a real example of an application of the mean score method to a case–control study of the association
between ectopic pregnancy and sexually transmitted diseases; see Reilly and Pepe (1995) for a full description of the data

. use ectopic

. meanscor y gonn-chlam,first(gonn-sexptn) second(chlam)

meanscore estimates

------------------------------------------------------------------------------

| odd-ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

cons | .4543184 .0987123 -3.631 0.000 .2967666 .6955137

gonn | .9495978 .2856096 -0.172 0.863 .5266531 1.712201

contr | .0943838 .0176643 -12.612 0.000 .0654021 .1362082

sexptn | 2.099286 .4938943 3.152 0.002 1.323766 3.329139

chlam | 2.471606 .7808384 2.864 0.004 1.330653 4.590858

------------------------------------------------------------------------------

For comparison, an analysis of complete cases only gives

. keep if chlam ~=.

. logit y gonn-chlam, or

Logit estimates Number of obs = 327

LR chi2(4) = 104.24

Prob > chi2 = 0.0000

Log likelihood = -169.54627 Pseudo R2 = 0.2351

------------------------------------------------------------------------------

| odd-ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gonn | .7445515 .3132037 -0.701 0.483 .3264582 1.698095

contr | .1098308 .0303352 -7.997 0.000 .063918 .1887231

sexptn | 1.93898 .7101447 1.808 0.071 .945853 3.97487

chlam | 2.47682 .7576623 2.965 0.003 1.359912 4.511054

------------------------------------------------------------------------------

References
Reilly, M. 1996. Optimal sampling strategies for two-stage studies. American Journal of Epidemiology 143: 92–100.

Reilly, M. and M. S. Pepe. 1995. A mean score method for missing and auxiliary covariate data in regression models. Biometrika 82: 299–314.

sg157 Predicted values calculated from linear or logistic regression models

Joanne M. Garrett, University of North Carolina, garrettj@med.unc.edu

Abstract: The program predcalc for easily calculating predicted values and confidence intervals from linear or logistic regression
model estimates for specified values of the X variables is introduced and illustrated.

Keywords: regression models, predicted values.

Syntax

predcalc yvar, xvar(xvarlist)
�
level(#) model linear

�
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Description

predcalc (“prediction calculator”) is an easy method of calculating predicted values and confidence intervals from linear or
logistic regression model estimates for specified values of the X variables. If no model has been fit previously (using regress

or logistic), predcalc will set up and run the model based on the Y variable yvar (continuous or binary) and the specified
X’s.

Options

xvar(xvarlist) lists the X variables and their values to use to solve the model equation. The model is based only on the X’s
listed in this option. For example, xvar(age=40 gender=1 chl=250) specifies that the equation for a model including
the variables age, gender, and chl (cholesterol) will be solved using the values of 40 years old, male, and a cholesterol
level of 250.

level(#) specifies the confidence level, in percent, for confidence intervals for predicted values. The default is level(95) or
as set by set level.

model displays the regression table. This option is not needed to estimate the model. It is simply for display purposes.

linear causes a model with a binary outcome to be fit using linear, rather than logistic regression. This is a rarely used option.

Example 1

All the examples come from a cohort study of coronary heart disease (Cassel 1971). The data consist of 609 men who are
followed for seven years to see what variables are risk factors for an elevated systolic blood pressure sbp (measured in mmHg)
or for coronary heart disease chd (1 for yes, 0 for no). Some of the X variables are serum catecholamine level cat (1 for high,
0 for low), smoking status smk (1 for current smoker, 0 for nonsmoker), regular exercise exer (1 for yes, 0 for no), the men’s
age age in years, and cholesterol level chl in mg per 100 ml.

. use chd

. describe

Contains data from chd.dta

obs: 609 Evans County Data

vars: 7 2 Mar 2000 20:45

size: 7,917 (99.1% of memory free)

---------------------------------------------------------------------------

1. sbp int %8.0g Systolic blood pressure

2. chd byte %8.0g hilo Coronary heart disease

3. cat byte %8.0g hilo Serum catecholamine level

4. smk byte %8.0g yesno Smoking status

5. exer byte %8.0g yesno Regular exercise

6. age byte %8.0g Age in years

7. chl int %8.0g Serum cholesterol

---------------------------------------------------------------------------

After fitting a linear regression model we find that older age, high catecholamine, no exercise, and higher cholesterol are
significant predictors of higher systolic blood pressure.

. reg sbp age cat exer chl

Source | SS df MS Number of obs = 609

---------+------------------------------ F( 4, 604) = 85.91

Model | 166731.045 4 41682.7613 Prob > F = 0.0000

Residual | 293038.86 604 485.163675 R-squared = 0.3626

---------+------------------------------ Adj R-squared = 0.3584

Total | 459769.905 608 756.200501 Root MSE = 22.026

----------------------------------------------------------------------

sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------+--------------------------------------------------------------

age | .2724588 .1054554 2.584 0.010 .0653549 .4795627

cat | 33.99951 2.622221 12.966 0.000 28.84973 39.14929

exer | -8.783763 2.173233 -4.042 0.000 -13.05177 -4.515753

chl | .0741253 .0227488 3.258 0.001 .029449 .1188015

_cons | 114.7267 7.441563 15.417 0.000 100.1123 129.3412

----------------------------------------------------------------------

Given this model, suppose we would like to see the predicted systolic blood pressure for a 60 year old with high catecholamine
(cat = 1), no regular exercise (exer = 0), and a cholesterol level of 260. Because sbp is continuous, predcalc defaults to
linear regression and solves the equation using the elements of � multiplied by the specified X values. Also, it calculates a
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confidence interval around the predicted value based on the standard error of the prediction. Each variable in the model is set
to the desired value using the xvar option.

. predcalc sbp, xvar(age=60 cat=1 exer=0 chl=260)

Model: Linear Regression

Outcome: Systolic blood pressure -- sbp

X Values: age=60 cat=1 exer=0 chl=260

Num. Obs: 609

Predicted Value and 95% CI for sbp:

184.35 ( 179.31, 189.38)

The predicted value for systolic blood pressure is 184.35 with a 95% confidence interval of 179.3 to 189.4. Had we not run
the model previously, predcalc would still work. The command first looks for stored estimates, and if they are not found, the
appropriate model is run. The model is not shown unless requested with the model option. In either case, it is a good idea to
check the “X Values” list to make sure that the predicted estimate is based on the model and variables expected, since the model
will contain only on the X’s listed in the xvar option.

Example 2

Next we will use the same model but change some of the values for the X variables. This time, we will request the
predicted systolic blood pressure for a 40 year old with low catecholamine (cat = 0), who exercises regularly (exer = 1), and
has a cholesterol level of 200.

. predcalc sbp, xvar(age=40 cat=0 exer=1 chl=200)

Model: Linear Regression

Outcome: Systolic blood pressure -- sbp

X Values: age=40 cat=0 exer=1 chl=200

Num. Obs: 609

Predicted Value and 95% CI for sbp:

131.67 ( 128.42, 134.91)

This predicted value for systolic blood pressure (131.67) is quite a bit lower than the previous example for an individual with
stronger risk factors for hypertension.

Example 3

Rather than using systolic blood pressure as the outcome, we will look at the dichotomous variable chd for coronary heart
disease (1 for yes, 0 for no). We can use logistic regression, but instead of running the model first, we can use predcalc.
Suppose we want to know the probability of coronary heart disease for a person with strong risk factors: 60 years old, smokes,
does not exercise, and has a cholesterol value of 260. Because chd is binary, a logistic regression model is assumed and run.
The model option prints a copy of the model. (Remember, model is optional and is not needed to run the model. It just displays
the regression table of estimates used to solve the equation).

. predcalc chd, xvar(age=60 smk=1 exer=0 chl=260) model

Logit estimates Number of obs = 609

LR chi2(4) = 30.55

Prob > chi2 = 0.0000

Log likelihood = -204.00576 Pseudo R2 = 0.0697

---------------------------------------------------------------------

chd | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

------+--------------------------------------------------------------

age | 1.046986 .0143708 3.345 0.001 1.019195 1.075534

smk | 2.408027 .7311962 2.894 0.004 1.327989 4.366448

exer | .532516 .1453497 -2.309 0.021 .3118876 .9092162

chl | 1.007934 .0031807 2.504 0.012 1.00172 1.014188

---------------------------------------------------------------------

Model: Logistic Regression

Outcome: Coronary heart disease -- chd

X Values: age=60 smk=1 exer=0 chl=260

Num. Obs: 609

Predicted Value and 95% CI for chd:

0.3177 (0.2141, 0.4432)

The probability of developing coronary heart disease for someone with these attributes is 0.32 with 95% confidence interval
from 0.21 to 0.44.
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Example 4

Using the same model, we request the probability of coronary heart disease for a 40 year old who does not smoke, exercises
regularly, and has a cholesterol value of 200.

. predcalc chd, xvar(age=40 smk=0 exer=1 chl=200)

Model: Logistic Regression

Outcome: Coronary heart disease -- chd

X Values: age=40 smk=0 exer=1 chl=200

Num. Obs: 609

Predicted Value and 95% CI for chd:

0.0249 (0.0118, 0.0518)

For the individual with no strong risk factors, the probability of developing coronary heart disease is only 0.02.

References
Cassel, J. C. 1971. Summary of major findings of the Evans County heart disease study. Archives of Internal Medicine 128(8): 887–889.

snp15.2 Update to Somersd

Roger Newson, Guy’s, King’s and St Thomas’ School of Medicine, London, UK, roger.newson@kcl.ac.uk

Abstract: somersd calculates confidence intervals for rank order statistics. It has been updated to handle long variable lists.

Keywords: Somers’ D, Kendall’s tau, rank correlation, confidence intervals, nonparametric methods.

The command somersd introduced in Newson (2000a) and updated in Newson (2000b) has again been updated, this time
to handle long variable lists (it was previously limited to lists of 8 variables). It has also been improved, streamlined, debugged,
and intensively certified.

References
Newson, R. 2000a. snp15: somersd - Confidence limits for nonparametric statistics and their differences. Stata Technical Bulletin 55: 47–55.

——. 2000b. snp15.1: Update to somersd. Stata Technical Bulletin 57: 35.

snp16 Robust confidence intervals for median and other percentile differences between two groups

Roger Newson, Guy’s, King’s and St Thomas’ School of Medicine, London, UK, roger.newson@kcl.ac.uk

Abstract: A program is presented for calculating robust confidence intervals for median (and other percentile) differences (and
ratios) between values of a variable in two samples. The median difference is the same as that produced by the program
cid, using the Conover method. However, the confidence limits are typically different, being robust to the possibility that
the two population distributions differ in ways other than location, such as having unequal variances. The program uses
somersd.

Keywords: robust, confidence interval, median, percentile, difference, ratio, rank-sum, Wilcoxon, two-sample.

Syntax

cendif depvar
�
using filename

� �
weight

� �
if exp

� �
in range

�
, by(groupvar)

�
centile(numlist)

level(#) eform cluster(varname) tdist transf(fz j asin j ideng)
saving(filename

�
,replace

�
) nohold

�
fweights, iweights and pweights are allowed. They are treated as described in Methods and formulas below.

Description

cendif calculates confidence intervals for median differences, and other percentile differences, between values of a Y -
variable in depvar for a pair of observations chosen at random from two groups A and B, defined by the groupvar in the by

option. These confidence intervals are robust to the possibility that the population distributions in the two groups are different
in ways other than location. This might happen if, for example, the two populations had different variances. For positive-valued
variables, cendif can be used to calculate confidence intervals for median ratios or other percentile ratios. cendif requires the
program somersd from Newson (2000).
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Options

by(groupvar) is not optional. It specifies the name of the grouping variable. This variable must have exactly two possible values.
The lower value indicates Group A, and the higher value indicates Group B.

centile(numlist) specifies a list of percentile differences to be reported and defaults to centile(50) (median only). Specifying
centile(25 50 75) will produce the 25th, 50th, and 75th percentile differences.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

eform specifies that exponentiated percentile differences are to be given. This option is used if depvar is the log of a positive-
valued variable. In this case, confidence intervals are calculated for percentile ratios between values of the original positive
variable, instead of for percentile differences.

cluster(varname) specifies the variable which defines sampling clusters. If cluster is defined, then the percentiles are
calculated using the between-cluster Somers’ D, and the confidence intervals are calculated assuming that the data are a
sample of clusters from a population of clusters, rather than a sample of observations from a population of observations.

tdist specifies that the standardized Somers’ D estimates are assumed to be sampled from a t distribution with n� 1 degrees
of freedom, where n is the number of clusters or the number of observations if cluster is not specified.

transf(transformation name) specifies that the Somers’ D estimates are to be transformed, defining a standard error for the
transformed population value from which the confidence limits for the percentile differences are calculated. z (the default)
specifies Fisher’s z (the hyperbolic arctangent), asin specifies Daniels’ arcsine, and iden specifies identity or untransformed.

saving(filename
�
,replace

�
) specifies a dataset, to be created, whose observations correspond to the observed values of

differences between a value of depvar in Group A and a value of depvar in Group B. replace instructs Stata to replace
any existing dataset of the same name. The saved dataset can then be reused if cendif is called later, with using, to save
the large amounts of processing time used to calculate the set of observed differences. The saving option and the using

utility are provided mainly for programmers to use, at their own risk.

nohold indicates that any existing estimation results are to be overwritten with a new set of estimation results, for the use of
programmers. By default, any existing estimation results are restored after execution of cendif.

Remarks

cendif calls somersd (see Newson 2000), which has been updated, in order to take long variable lists. (It was previously
limited to eight variables.)

Methods and formulas

Suppose that a population contains two disjoint subpopulations A and B, and a random variable Y is defined for individuals
from both subpopulations. For 0 < q < 1, a 100qth percentile difference in Y between Populations A and B is defined as a
value � satisfying

D[Y �(�)jX] = 1� 2q (1)

where X is a binary variable equal to 1 for Population A and 0 for Population B, Y �(�) is defined as Y if X = 1 and Y + �

if X = 0, and D[ � j � ] denotes Somers’ D (Somers 1962, Newson 2000). Somers’ D is defined as

D[V jW ] = E [ sign(V1 � V2) sign(W1 �W2) ] =E
�
sign(W1 �W2)

2
�

(2)

where (W1; V1) and (W2; V2) are bivariate data points sampled independently from the same population, and E[ � ] denotes
expectation. In the case of (1), where W = X and V = Y

�(�), Somers’ D is the difference between two conditional probabilities.
Given an individual sampled from Population A and an individual sampled from Population B, these are the probability that the
individual from Population A has the higher Y � value and the probability that the individual from Population B has the higher
Y
� value. Somers’ D is therefore the parameter equal to zero under the null hypothesis tested by the “nonparametric” Wilcoxon

rank-sum test on Y
�(�). In the case where q = 0.5 (and therefore 1 � 2q = 0), a 100qth percentile difference is known as a

median percentile difference and is zero under the null hypothesis tested by a Wilcoxon rank-sum test on Y .

Note that a value of � satisfying (1) is not always unique. If Y has a discrete distribution, then there may be no solution or
a wide interval of solutions. However, the method used here is intended to produce a confidence interval containing any given
� satisfying (1), with a probability at least equal to the confidence level, if such a � exists.

We will assume that there are N1 observations sampled from Population A and N2 observations sampled from Population B,
giving a total of N1 +N2 = N observations. These observations will be identified by double subscripts, so that Yij is the Y
value for the jth observation sampled from the ith population (where i = 1 for Population A and i = 2 for Population B). The
corresponding X values (ones and zeros) will be denoted Xij . The observations will be assumed to have importance weights
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(iweights or pweights) denoted by wij and cluster sequence numbers denoted by cij . cendif follows the usual Stata practice
of assuming an fweight to stand for multiple observations with the same values for all other variables. The clusters may be
nested within the two groups or contain observations from each of the two groups, but the percentile differences will only apply
to observations from distinct clusters. If clusters are present, then the confidence intervals will be calculated assuming that the
sample was generated by sampling clusters independently from a population of clusters, rather than by sampling N observations
independently from the total population of observations or by sampling N1 and N2 observations from Populations A and B,
respectively. (By default, all the wij will be ones, and the cij will be in sequence from 1 to N . The difference between these
three alternatives will not matter.) We will denote by M the number of distinct values of a difference, Y1j � Y2k, observed
between Y values in the two samples belonging to different clusters. The difference values themselves will be denoted by
t1; : : : ; tM . For each h from 1 to M , we define the sum of product weights of differences equal to th as

Wh =
X

j;k:Y1j�Y2k=th

�(cj ; ck)w1jw2k (3)

where �(a; b) is 0 if a = b and 1 if a 6= b. Given a value of � expressed in units of Y , we can define Y �
ij(�) to be Yij if i = 1

and Yij + � if i = 2. The sample Somers’ D of Y �(�) with respect to X is defined as

D
�(�) = bD[Y �(�)jX] =

PN1

j=1

PN2

k=1 �(c1j ; c2k)w1jw2k sign(Y1j � Y2k � �)PN1

j=1

PN2

k=1 �(c1j ; c2k)w1jw2k

=

P
h:th>�

Wh �
P

h:th<�
WhPM

h=1Wh

(4)

where bD[ � j � ] denotes the sample Somers’ D, defined by the methods of Newson (2000). Clearly, given a sample, D�(�) is a
nonincreasing function of �. (Note that only between-cluster differences are included.) Figure 1 shows D�(�) as a function of
� for differences between trunk capacities of American and foreign cars (expressed in cubic feet) in the auto data. The squares
represent the values D�(th) for the observed differences th. Note that D�(�) is discontinuous at the observed differences, and
constant in each open interval between two successive observed differences.
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Figure 1. D�(�) plotted against the difference � in trunk space between American and foreign cars

We aim to include � in a confidence interval for a qth percentile difference if, and only if, the sample D�(�) is compatible
with a population D[Y �(�)jX] equal to 1 � 2q. The methods of Newson (2000), used by the program somersd, typically
use a transformation �( � ), which, for present purposes, may either be the identity, the arcsine or Fishers’ z (the hyperbolic
arctangent). The transformed sample statistic b�(�) = �[D�(�)] is assumed to be normally distributed around the population
parameter �fD[Y �(�)jX]g. In the present application, we assume that if D[Y �(�)jX] = 1� 2q, then the quantity

[ b�(�)� �(1� 2q) ] = SE[b�(�)] (5)

has a standard Normal distribution, where SE[b�(�)] is the sampling standard deviation (or standard error) of �[D�(�)]. If we
knew the value of SE[b�(�)], then a 100(1 � �)% confidence interval for a qth percentile difference might be the interval of
values of � for which

�
�1
�
�(1� 2q)� z� SE[b�(�)]	 � D

�(�) � �
�1
�
�(1� 2q) + z� SE[b�(�)]	 (6)
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where z� is the 100(1� �=2)th percentile of the standard Normal distribution.

To construct such a confidence interval, we proceed as follows. Given a value of D, define

BL(D) = inf f� : D�(�) � Dg ; BR(D) = sup f� : D�(�) � Dg ;

BC(D) =

8<
:
BL(D); if BR(D) =1
BR(D); if BL(D) = �1
[BL(D) +BR(D) ] =2; otherwise

(7)

(By convention, the supremum (or infimum) of a set unbounded to the right (or left) are defined as 1 and �1, respectively.)
Clearly, BL(D) � BC(D) � BR(D), and the values of BL(D) and BR(D) (if finite) can be either the same th or two
successive ones. The confidence interval for the qth percentile difference is centered on the sample qth percentile difference

b�q = BC(1� 2q) (8)

cendif then calls somersd, with the Xij as the predictor variable, and the Y �
ij(
b�q), for the values of q implied by the centile

option, as the predicted variables. The standard errors generated by somersd are used as estimates cSE[b�(b�q)] of the standard

error of b�(�) where � satisfies (1). The lower and upper confidence limits for the qth percentile difference are, respectively,

b�(min)q = BL

�
�
�1
�
�(1� 2q)� z�

cSE[b�(b�q)]	�; b�(max)q = BR

�
�
�1
�
�(1� 2q) + z�

cSE[b�(b�q)]	� (9)

If tdist is specified, then cendif uses the t distribution with N � 1 degrees of freedom (or Nclust� 1 degrees of freedom
if there are Nclust clusters) instead of the normal distribution, so t� replaces z� in (6) and (9). Note that the upper and lower
confidence limits may occasionally be infinite, in the case of extreme percentiles and/or very small sample numbers. (cendif
codes these infinite limits as plus or minus the “magic number” 1E+300, or �10300.) Figure 1 shows the median difference in
trunk capacity, and its confidence limits, as reference lines on the horizontal axis. The estimated median difference is 3 cubic
feet, with 95% confidence limits from 1 to 5 cubic feet. The reference lines on the vertical axis are the optimum, minimum,
and maximum values of D�(�) required for � to be in the confidence interval. These values of D�(�) are saved by cendif

in the matrix r(Dsmat). If the option saving is specified, then cendif also saves an output dataset with M observations
corresponding to the ordered differences th. The variables are diff (containing the th), weight (containing the Wh), Dstar
(containing the D�(th)), and Dstar r, which contains the right-hand limiting value of D�(�),

D
�
R(th) = lim

�!th+
D
�(�) (10)

which is the value of D�(�) in the open interval (th; th+1) for h < M . Conover (1980) presents a method which, for large
samples, is essentially equivalent to (6), in the special case where q = 0:5 and �(D) = D. (This is the method for calculating
confidence intervals for median differences popularized by Campbell and Gardner (1988) and Gardner and Altman (1989), and
available in Stata using Patrick Royston’s cid routine, currently on the Ideas list (Royston 1998).) However, Conover’s method
uses the assumption that the two population distributions are different only in location. This assumption (essentially) enables the
calculation of SE[b�(�)] for large samples and the exact distribution of D�(�) for small samples. It also implies that the median
difference is the difference between medians. In the present case, we are not making this assumption, as the confidence interval
is intended to be robust to the possibility that the two populations are different in ways other than location. (For instance, the
two populations might be unequally variable.) The median difference is therefore not necessarily the difference between medians.
Also, we have to estimate SE[b�(�)], and this estimate is itself subject to some amount of sampling error. The method of cendif
compares to Conover’s method as the unequal-variance t-test compares to the equal-variance t-test. Conover’s method, like the
equal-variance t-test, assumes that you can use data from the larger of two samples to estimate the population variability of the
smaller sample.

I have been carrying out some simulations of sampling from two normal populations, with a view to finding the coverage
probabilities and geometric mean lengths of the confidence intervals for the median difference generated by cid and by cendif

with the tdist option. So far, I find that, even with small sample sizes, the cendif method consistently gives coverage
probabilities closer to the nominal value than the Conover method when variances are unequal, in which case cid produces
confidence intervals either too wide or too narrow, depending on whether the larger or smaller sample has the greater population
variance. Usually, the difference in coverage probability is small (1% or 2%), so the Conover method performs fairly well, in
spite of false assumptions. However, if a sample of 20 is compared to a sample of 10, and the population standard deviation
of the smaller sample is three times that of the larger sample, then the nominal 95% confidence interval has a true coverage
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probability of only 90% under the Conover method, compared to 94% under the cendif method. The two methods show little
or no difference, either in geometric mean confidence interval width or in coverage probability, when the variances are equal
and the Conover assumption is therefore true. From the results so far, I would recommend the cendif method as an improved
version of the Conover method, offering insurance against the possibility that the Conover assumption is wildly wrong, at little
or no price in performance if the Conover assumption is right. However, I am planning to carry out further simulations on the
two methods and to report the results in due course.

Example 1

In the auto data, we compare weights of American and foreign cars. We use cid and cendif to estimate the median
difference:

. cid weight,by(foreign) median unpaired

Rank-based confidence interval for difference in medians by foreign

Variable | Obs Estimate K [95% Conf. Interval]

---------+-------------------------------------------------------------

weight | 74 1095 406 720 1350

. cendif weight,by(foreign)

Y-variable: weight (Weight (lbs.))

Grouped by: foreign (Car type)

Group numbers:

Car type | Freq. Percent Cum.

------------+-----------------------------------

Domestic | 52 70.27 70.27

Foreign | 22 29.73 100.00

------------+-----------------------------------

Total | 74 100.00

Transformation: Fisher's z

95% confidence interval(s) for percentile difference(s)

between values of weight in first and second groups:

Percent Pctl_Dif Minimum Maximum

r1 50 1095 750 1330

We note that the median difference in weight is 1,095 pounds according to both cid and cendif. However, the confidence
limits given by cendif are 750 and 1,330 pounds, whereas the confidence limits given by cid are 720 and 1,350 pounds. This
is because foreign cars are fewer in number and less variable in weight than American cars, and cid assumes equal variances,
whereas cendif allows for unequal variances. If we carry out equal-variance and unequal-variance t tests (not shown), we find
a similar difference in the width of the confidence limits for the mean difference.

cendif can also calculate confidence intervals for percentiles other than medians. These contain information about the
degree of overlap between the two populations. Here, we estimate the 25th, 50th, and 75th percentile differences, using the
centile option.

. cendif weight,by(foreign) ce(25 50 75)

Y-variable: weight (Weight (lbs.))

Grouped by: foreign (Car type)

Group numbers:

Car type | Freq. Percent Cum.

------------+-----------------------------------

Domestic | 52 70.27 70.27

Foreign | 22 29.73 100.00

------------+-----------------------------------

Total | 74 100.00

Transformation: Fisher's z

95% confidence interval(s) for percentile difference(s)

between values of weight in first and second groups:

Percent Pctl_Dif Minimum Maximum

r1 25 485 100 810

r2 50 1095 750 1330

r3 75 1555 1320 1790

If we want to estimate percentile ratios of weight, rather than percentile differences, then we simply take logs and use the
eform option.

. gene logwt=log(weight)

. cendif logwt,by(foreign) ce(25 50 75) eform
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Y-variable: logwt

Grouped by: foreign (Car type)

Group numbers:

Car type | Freq. Percent Cum.

------------+-----------------------------------

Domestic | 52 70.27 70.27

Foreign | 22 29.73 100.00

------------+-----------------------------------

Total | 74 100.00

Transformation: Fisher's z

95% confidence interval(s) for percentile ratio(s)

between values of exp(logwt) in first and second groups:

Percent Pctl_Rat Minimum Maximum

r1 25 1.1935375 1.0341465 1.3533567

r2 50 1.4806389 1.3101849 1.6280196

r3 75 1.744916 1.6079542 1.8772724

We note that, typically, American cars are 148% heavier than foreign cars, with confidence limits ranging from 131% to
163% as heavy. The 25th percentile ratio (103% to 135%) shows that the two car types do not overlap a great deal.

Saved results

cendif saves in r():

Scalars
r(N) number of observations r(N clust) number of clusters
r(N 1) sample size N1 r(N 2) sample size N2

r(df r) residual degrees of freedom (if tdist present)
Macros

r(depvar) name of dependent variable r(by) name of by variable defining groups
r(clustvar) name of cluster variable r(tdist) tdist if specified
r(wtype) weight type r(wexp) weight expression
r(centiles) list of percents for percentiles r(Dslist) list of D�-values for percentiles
r(transf) transformation specified by transf r(tranlab) transformation label in output
r(level) confidence level r(eform) eform if specified

Matrices
r(cimat) confidence intervals for differences or ratios r(Dsmat) upper and lower limits for D�(�)
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sts15.1 Tests for stationarity of a time series: update

Christopher F. Baum, Boston College, baum@bc.edu
Richard Sperling, The Ohio State University, rsperling@boo.net

Abstract: Enhances the Elliott–Rothenberg-Stock DF-GLS test and the Kwiatkowski–Phillips–Schmidt–Shin KPSS tests for sta-
tionarity of a time series introduced in Baum (2000) and corrects an error in both routines.

Keywords: stationarity, unit root, time series.
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Changes to dfgls

dfgls did not handle missing initial values properly. That is, if the time series variable specified had initial values not
excluded by if or in conditions, those values were improperly considered in the construction of the sample size. This would
apply as well to the consideration of variables with time series operators, such as D.gdp, since those variables will have at least
one missing observation at the outset. This has been corrected.

The dfgls routine has been enhanced to add a very powerful lag selection criterion, the “modified AIC” (MAIC) criterion
proposed by Ng and Perron (2000). They have established that use of this MAIC criterion may provide “huge size improvements”
in the dfgls test. The criterion, indicating the appropriate lag order, is printed on dfgls output and may be used to select the
test statistic from which inference is to be drawn.

It should be noted that all of the lag length criteria employed by dfgls (the sequential t test of Ng and Perron 1995, the
SC, and the MAIC) are calculated, for various lags, by holding the sample size fixed at that defined for the longest lag. These
criteria cannot be meaningfully compared over lag lengths if the underlying sample is altered to use all available observations.
That said, if the optimal lag length (by whatever criterion) is found to be much less than that picked by the Schwert criterion, it
would be advisable to rerun the test with the maxlag option specifying that optimal lag length, especially when using samples
of modest size.

New syntax for kpss

kpss varname
�
if exp

� �
in range

� �
, maxlag(#) notrend qs auto

�
kpss did not make use of all available observations in the computation of the autocovariance function. This has been

corrected. The online help file now provides instructions for reproducing the statistics reported in Kwiatkowski et al. (1992)
from a dataset available online.

The kpss routine has been enhanced to add two options recommended by the work of Hobijn et al. (1998). An automatic
bandwidth selection routine has been added, rendering it unnecessary to evaluate a range of test statistics for various lags. An
option to weight the empirical autocovariance function by the quadratic spectral kernel, rather than the Bartlett kernel employed
by KPSS, has also been introduced. These options may be used separately or in combination. It is in combination that Hobijn et
al. found the greatest improvement in the test: “Our Monte Carlo simulations show that the best small sample results of the test
in case the process exhibits a high degree of persistence are obtained using both the automatic bandwidth selection procedure
and the Quadratic Spectral kernel” (1998, 14).

New options

qs specifies that the autocovariance function is to be weighted by the quadratic spectral kernel, rather than the Bartlett kernel.
Andrews (1991) and Newey and West (1994) “indicate that it yields more accurate estimates of �2� than other kernels in
finite samples” (Hobijn et al. 1998, 6).

auto specifies that the automatic bandwidth selection procedure proposed by Newey and West (1994), as described by Hobijn
et al. (1998, 7), is used to determine maxlag in two stages. First, the “a priori nonstochastic bandwidth parameter” nT is
chosen as a function of the sample size and the specified kernel. The autocovariance function of the estimated residuals
is calculated and used to generate  as a function of sums of autocorrelations. The maxlag to be used in computing the
long-run variance, bmT , is then calculated as min

�
T; int

�bT ��� where � = 1=3 for the Bartlett kernel and � = 1=5 for the
quadratic spectral kernel.

Additional saved results

dfgls saves the modified AIC at lag n in r(maicn).
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sxd2 Computing optimal sampling designs for two-stage studies

Marie Reilly, Epidemiology & Public Health, University College Cork, Ireland, marie.reilly@ucc.ie
Agus Salim, Department of Statistics, University College Cork, Ireland, a.salim@ucc.ie

Abstract: Commands are given for determining optimal sampling designs subject to fixed sample size, fixed budget, and fixed
precision, and each command illustrated by an example.

Keywords: two-stage studies, mean score method.

Background

The commands supplied here apply to two-stage studies where a dichotomous outcome variable y and some categorical
covariate(s) z are available for all study subjects at the first stage. While at the second stage, a subset of the study subjects
have some additional covariate(s) x measured. The second-stage covariates may be continuous. The second stage subjects can
be a stratified random sample, where the strata are defined by the levels of y and z. The mean score algorithm (Reilly and Pepe
1995) allows us to analyze the data from such a two-stage study incorporating all first and second stage observations.

The variance expression of the mean score estimate given by Reilly and Pepe (1995) shows that the variance depends on 1)
the total number of observations and 2) the second-stage sampling fractions in each of the strata defined by the different levels
of response y and first stage covariates z. Thus it is possible to minimize the variance of a particular variable by optimally
choosing the number of observations and/or the second-stage sampling fractions.

Syntax

optfixn depvar
�
indepvars

� �
if exp

� �
in range

� �
, first(varlist) n1(vecname) n2(#) var(#) coding(#)

�
optbud depvar

�
indepvars

� �
if exp

� �
in range

� �
, first(varlist) prev(vecname) b(#) c1(#) c2(#)

var(#) coding(#)
�

optprec depvar
�

indepvars
� �

if exp
� �

in range
� �

, first(varlist) prev(vecname) prec(#) c1(#) c2(#)

var(#) coding(#)
�

coding depvar
�
first stage vars

�
Description

We provide optimal sampling designs for three different scenarios. Each of these commands requires as input some pilot
data, with each stratum represented by more than two observations. Such a stratified random sample is correctly handled by the
mean score algorithm, called in the background, which uses the first-stage sample sizes or prevalences (also supplied by the
user) to correctly weight the analysis.

The optfixn command calculates the optimal sampling fractions at the second stage for the situation where first-stage
observations are already available and the total second-stage sample size has been decided. Such studies might arise in medical
research where a database of demographic particulars on study subjects is available and expensive data (such as laboratory or
radiology measurements) are to be collected for a subsample. Before running the optfixn command, we strongly advise running
the coding command to see the order in which the vector of first-stage sample sizes for the various strata must be supplied.
coding creates a variable called grp yz that identifies the groups formed by the various levels of response variable y and
first-stage covariates z. In the call to optfixn, the first-stage sample sizes must be supplied in the same order as grp yz, that
is, the first element of the vector is the first-stage sample size for grp yz = 1, the second element is for grp yz = 2, and so on.

The optbud command calculates the total number of study observations and the second-stage sampling fractions that will
maximize precision subject to an available budget. The user must also supply the unit cost of observations at the first and second
stage. This command is applicable to the situation where a study is being planned, but the total study size has not yet been
decided. Instead of first-stage sample sizes, this command expects a vector of prevalences (or estimated prevalences) for the
various strata. Again, we advise running coding first so that these prevalences are provided in the correct order.

The optprec command applies to the same scenario as optbud, where the total sample size is not yet decided. The
objective in this case is to calculate the total number of study observations and the second-stage sampling fractions that will
achieve a specified precision at minimum cost. As with the optbud command, optprec expects a vector of prevalences (or
estimated prevalences) for the various strata, and it is advisable to run the coding command first to see the order in which these
values should be supplied.
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Notice that each of the optfixn, optbud, and optprec commands have an option coding, which can be used if one is
sure of the order in which the vector of first-stage sample sizes or prevalences should be entered. This option results in coding

being automatically called from inside the optimal sampling command. Since this results in the creation of variables named
grp yz and grp z, an error message will be generated if one already has variables with these names.

Options

first(varlist) specifies the first-stage covariates.

n1(vecname) specifies the vector of first-stage sample sizes for each stratum.

prev(vecname) specifies the vector of prevalences for each stratum.

n2(#) specifies the second-stage sample sizes (used only with optfixn).

b(#) specifies the available budget (used only with optbud).

c1(#) specifies the cost per observation at the first stage (used with optbud and optprec).

c2(#) specifies the cost per observation at the second stage (used with optbud and optprec).

var(#) specifies the position in the logistic regression model of the covariate whose variance is to be minimized (that is,
optimized). For example, in the simple model Y = b0 + b1X1 + b2X2, if we want to minimize the variance of X1, then
var = 2.

prec(#) specifies the desired precision, that is, the variance (used only with optprec).

coding(#) is a logical flag; the default of 0 (that is, false) means that prior to calling optfixn, optbud, or optprec one must
have run the coding command.

Example 1

The following example is from CASS (Coronary Artery Surgery Study) and appears in Reilly (1996). This study collected
data on the operative mortality and various risk factors for 8,096 subjects. Let us suppose that at the first stage we have only
mortality status Y and sex Z as specified in the table below, and that it has been agreed to record the age for a subsample of
1,000 subjects in order to estimate the sex-adjusted odds ratio for age. The example is fictitious as we do have all the covariates
on all subjects, but for illustrative purposes we ignore this information (that is, set values to missing). In order to compute
optimal sample sizes, we require pilot data in all of the strata of the table, and so we “sampled” (reset the missing values to
the actual age values) for a randomly selected 25 observations from each stratum. The resulting dataset of 100 observations is
available as pilotcas accompanying this insert.

male female
Y Z = 0 Z = 1

alive Y = 0 6,666 1,228
deceased Y = 1 144 58

We start by computing the optimal allocation for a second-stage sample of 1,000.

. use pilotcas

. coding mort sex

grp_yz mort sex grp_z nobs

1 0 0 1 25

2 0 1 2 25

3 1 0 1 25

4 1 1 2 25

for functions requiring first stage sample sizes/prevalences

enter these in the order of grp_yz

The coding function tells us that we have to enter the vector of first-stage sample sizes in the order specified in the following
table.

First element grp yz = 1 first-stage sample sizes for living (mort = 0) males (sex = 0)
Second element grp yz = 2 first-stage sample sizes for living females
Third element grp yz = 3 first-stage sample sizes for deceased (mort = 1) males
Fourth element grp yz = 4 first-stage sample sizes for deceased females
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We enter the vector of first-stage sample sizes as follows (note the transform operator is essential).

. matrix fstsamp=(6666, 1228, 144, 58)'

Assuming the objective is to fit the logistic regression model

logiti = �0 + �1sexi + �2agei

and to minimize the variance of age, then we can obtain the optimal second-stage sample sizes.

. optfixn mort sex age, first(sex) n1(fstsamp) n2(1000) var(3)

the second stage sample sizes

----------+-----------

group(mor |

t sex) | Freq.

----------+-----------

1 | 25

2 | 25

3 | 25

4 | 25

----------+-----------

please check the sample sizes!

grp_yz mort sex grp_z n1 n2_pilot

1 0 0 1 6666 25

2 0 1 2 1228 25

3 1 0 1 144 25

4 1 1 2 58 25

the optimal sampling fraction(sample size) for grp_yz 1 = .089 (596)

the optimal sampling fraction(sample size) for grp_yz 2 = .164 (202)

the optimal sampling fraction(sample size) for grp_yz 3 = 1 (144)

the optimal sampling fraction(sample size) for grp_yz 4 = 1 (58)

the minimum variance for age : .00008027

Total second stage sample size =1000

Note that these results tell us that to minimize the variance of age, we need to sample all the available cases, 8.9% of controls
in stratum 1 and 16.4% of controls in stratum 2.

Example 2

This second example also uses the CASS data. Let us suppose that we wish to set up a two-stage study where at the first stage
we will collect only the patient’s operative mortality, sex, and weight, while at the second stage we will collect the following
variables only for a subset of the study subjects.

1. Age of patients when they underwent bypass surgery.

2. The angina status of the patients when they underwent bypass surgery.

3. CHF score, that is, congestive heart failure score.

4. LVEDBP, that is, left ventricular end diastolic blood pressure.

5. Urgency of the surgery (1 for urgent, 0 for nonurgent).

Let us suppose that we have a budget of £10,000 available, that the cost of collecting data on one subject is £2 at the first
stage and £15 at the second stage, and that we would like to minimize the variance of LVEDBP in the logistic regression model

logiti = �0 + �1sexi + �2weighti + �3agei + �4anginai + �5chfi + �6lvedbpi + �7surgeryi

As before, we need to sample a few pilot second-stage observations from each stratum defined by the different levels of mortality
Y and first stage covariates (sex and weight). Since first-stage covariates must be categorical, we first created a three-category
weight variable wtcat as 1 for weight < 60, 2 for 60 � weight < 70, and 3 for weight � 70. The first-stage sample sizes
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in the resulting 12 (2x2x3) different strata are given in the following table.

sex weight alive deceased

male <60 160 8
60–70 1,083 33
>70 5,418 103

female <60 440 18
60–70 407 26
>70 378 14

We decided to sample 10 pilot observations from each stratum. One stratum had only 8 observations available, so all of
these were included in the pilot sample. The resulting pilot data are available in the dataset wtpilot.dta, which can be loaded
as follows and the coding command run to see in which order we should enter the vector of prevalences for the strata.

. use wtpilot

. coding mort sex wtcat

grp_yz mort sex wtcat grp_z nobs

1 0 0 1 1 10

2 0 0 2 2 10

3 0 0 3 3 10

4 0 1 1 4 10

5 0 1 2 5 10

6 0 1 3 6 10

7 1 0 1 1 8

8 1 0 2 2 10

9 1 0 3 3 10

10 1 1 1 4 10

11 1 1 2 5 10

12 1 1 3 6 10

for functions requiring first stage sample sizes/prevalences

enter these in the order of grp_yz

This tells us that our prevalence vector should be

. matrix prev=(0.02,.134,.670,.054,.05,.047,.001,.004,.013,.002,.003,.002)'

and we can find the design which will optimize (i.e., minimize) the variance of lvedb subject to a total budget of £10,000.

. optbud mort sex-surg,first(sex wtcat) prev(prev) var(7) b(10000) c1(2) c2(15)

the second stage sample sizes

----------+-----------

group(mor |

t sex |

wtcat) | Freq.

----------+-----------

1 | 10

2 | 10

3 | 10

4 | 10

5 | 10

6 | 10

7 | 8

8 | 10

9 | 10

10 | 10

11 | 10

12 | 10

----------+-----------

please check the sample sizes!

grp_yz mort sex wtcat grp_z prev n2_pilot

1 0 0 1 1 .02 10

2 0 0 2 2 .134 10

3 0 0 3 3 .67 10

4 0 1 1 4 .054 10

5 0 1 2 5 .05 10

6 0 1 3 6 .047 10
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7 1 0 1 1 .001 8

8 1 0 2 2 .004 10

9 1 0 3 3 .013 10

10 1 1 1 4 .002 10

11 1 1 2 5 .003 10

12 1 1 3 6 .002 10

the optimal sampling fraction (sample size) for grp_yz 1 = .118 (7)

the optimal sampling fraction (sample size) for grp_yz 2 = .231 (87)

the optimal sampling fraction (sample size) for grp_yz 3 = .044 (82)

the optimal sampling fraction (sample size) for grp_yz 4 = .145 (22)

the optimal sampling fraction (sample size) for grp_yz 5 = .079 (11)

the optimal sampling fraction (sample size) for grp_yz 6 = .119 (16)

the optimal sampling fraction (sample size) for grp_yz 7 = 1 (3)

the optimal sampling fraction (sample size) for grp_yz 8 = 1 (11)

the optimal sampling fraction (sample size) for grp_yz 9 = 1 (36)

the optimal sampling fraction (sample size) for grp_yz 10 = 1 (6)

the optimal sampling fraction (sample size) for grp_yz 11 = 1 (8)

the optimal sampling fraction (sample size) for grp_yz 12 = 1 (6)

the optimal number of obs = 2799

the minimum variance for lve : .00038298

total budget spent: 10023

Note that the optimal design samples all available cases and a varying proportion of controls in the different sex–weight categories.

Example 3

In Example 2, we used the optbud command to find an optimal design subject to a budget of £10,000, where the cost
per first-stage observation was £2 and the cost per second-stage observation was £15. The minimum achievable variance for the
variable lvedbp was .00038298.

Now we reverse our question. If we wish to achieve a variance of .00038298 for lvedbp, what is the design that will
minimize the study cost? The function optprec calculates the design to minimize the cost subject to a desired precision, and
so can be used to answer this question.

. use wtpilot

. coding mort sex wtcat

(output omitted )

. matrix prev=(0.02,.134,.670,.054,.05,.047,.001,.004,.013,.002,.003,.002)'

. optprec mort sex-surg,first(sex wtcat) prev(prev) var(7) prec(.00038298) c1(2) c2(15)

(output omitted )

The optimal design for this case is exactly the same as its counterpart in Example 2, as these are simply two ways of asking
the same question.
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sxd3 Sample size for the kappa-statistic of interrater agreement

Michael E. Reichenheim, Instituto de Medicina Social/UERJ, Brazil, michael@ims.uerj.br

Abstract: The dialog-box-driven program sskdlg for calculating the sample size for the kappa-statistic when there are two
unique raters evaluating a binary event is introduced and illustrated.

Keywords: sample size, kappa statistics, dialog box.

Introduction

In recent years there has been an increasing call for researchers in the fields of psychiatry and epidemiology to account for
the stochasticity of reliability estimators, among them the kappa-statistic measure of interrater agreement (Shrout and Newman
1989). Yet, if this issue is to be addressed properly, calculating sample sizes in the planning stage of an investigation becomes
mandatory. Although some proposals for calculating sample size are available in the literature (Linnet 1987, Donner and Eliasziw
1992, Cantor 1996, Walter et al. 1998; Shrout and Newman 1989), to our knowledge there has only been a limited implementation
in one sample size oriented package (Statistical Solutions 1999) and none in any of the major commercial statistical software
packages, Stata included.
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This article presents a dialog-box-driven program sskdlg to calculate the sample size for the kappa statistic when there
are two unique raters evaluating a binary event. sskdlg is geared towards calculating a sample size from a precision oriented
perspective, that is, choosing a sample size so that the standard error of the estimate and the resulting limits for a confidence
interval do not exceed specified values. The program is based on the asymptotic variance presented by Fleiss, et al. (1969) (see
also Fleiss 1981, equations 13.15–13.18) and follows the procedure outlined by Cantor (1996). This procedure is based on a
quantity

Q = (1� �e)
�1
nX

i

�0 [(1� �e)� (�:i + �i:)(1� �0)]
2

+ (1� �0)
2
X
i6=j

�ij(�:j + �
2
j:)� (�0�e � 2�e + �0)

2
o

where, given a 2� 2 table, �e = �1:�:1 + �2:�:2 and �o = �11 + �22. Since Q equals the variance of kappa times the sample
size, the latter can be solved out and calculated.

The dialog box is presented above. Without any options, clicking the “OK” button displays the calculated sample size in
the Results window. The following five parameters are needed.

� The estimate of kappa the researcher expects to find. sskdlg uses the default value of 0 which presumes calculating a
standard error when both ratings are independent. Although more realistic values are possible and should be encouraged,
this default value, albeit extremely conservative, is suitable for projecting the sample size of a study that, ultimately,
would be analyzed using the traditional equation for the standard error as found in Stata’s kap program. Depending on the
specification of other conditions, the expected kappa can take any value within the permissible bounds, never exceeding
�1 to 1. If the specified kappa is incompatible with the selected marginals (proportion of positives expected by each rater)
or is outside the plausible range, sskdlg outputs a warning and the sample size is not calculated.
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p1 The proportion of study subjects one expects the first observer to rate as positives (or the 1st observation in the case or a
test-retest reproducibility study). sskdlg uses the default value of 0.1 when the dialog box is opened.

p2 The proportion of study subjects one expects the second observer to rate as positives (or observation). sskdlg uses the
same default value as for p1.

d The envisaged absolute precision, i.e., the difference between kappa and its lower (or upper) 1 � � confidence limit.
Acceptable values range from > 0 to a limit where, given a set of marginal values (p1 and p2), values of d entailing
�� d below the minimum possible value of kappa (�min) or �+ d above the maximum possible value of kappa (�max) are
disallowed. If both conditions are satisfied, sskdlg returns a message warning that the sample size will not be calculated.
If only one of those occurs, the user is warned that there is a partial incompatibility between the stated values of d and �.
Yet, the sample size is calculated since d is compatible with at least one of �’s boundary values.

CI Confidence level percent for the confidence interval. The default is 95%.

Several display and graphical options are available. Checking “Show value of Q” and “Show value of maximum Q” adds
those values to the sample size displayed in the Results window. The first check is simply the quantity that underlies the sample
size calculation. The second check requests the calculation of the largest possible value of Q and the corresponding sample size.
This is important when the researcher is not prepared to make any prior assumption concerning kappa. The output also indicates
the maximum possible value of kappa, given the preset marginals p1 and p2.

Checking “Sample size for diff.” and filling in the desired value requests a unique value of the absolute precision (d), given
the other selected inputs. This enables the user to work backwards by finding out the precision corresponding to a preset sample
size.

There are 4 types of graphics that can be selected. Clicking the “Graph Q” button requests a graphical display of the Q
values according to a range of kappa values. The default range is 0 to 1:0 when the dialog box is opened. The editing boxes
(e.g., indicated by “X:kappa”) can be used to specify a desired range of values for the X-axis. This operates as a zooming
device. Changing values enables zooming in or out. Note that negative values are allowed although this should be unusual in
the context of reliability studies. The position of maximum possible value of kappa (�max) can also be visualized in the graph
by checking “k max”. Also note that when the specified parameters preclude the calculation of sample size, Graph Q will not
be (re)displayed. Values need to be reset in order to enable the graph.

Clicking the “Graph S” button requests a graphical display analogous to Graph Q but plots sample size instead. The same
editing boxes as for Graph Q to control the x-axis (zooming) are used. “k max” may also be checked. The same restrictions as
in Graph Q apply here too.

Clicking the “Graph P” button requests a graphical display of sample sizes according to the proportion of positives measured
by raters 1 and 2 when both are expected to find the same value and given the specified values of �, d and CI. The x-axis
default range is 0 to 1:0. Nevertheless, Graph P will only show a range compatible with plausible sample sizes, since some
combinations of specified parameters are impossible. For zooming in or out, edit boxes indicated by “X:prop.” can be used.

Clicking the “Graph D” button requests a graphical display of the absolute precision for a range of prespecified sample
sizes. This display is an extension of “Sample size for diff.”. Sample size range (zooming) can be controlled using the edit boxes
indicated by “X:ssize”.

Finally, on leaving the dialog box, checking “Keep variables on exit” retains in memory essential variables used for
displaying Graphs Q, S, P and D. This enables the user to redraw new graphs at his/her own discretion. Note that values kept in
memory are those specified (on display) at the time of exit. This option requires at least running the program once or running a
viable configuration of parameters after an improper one precluded a calculation. This is because the underlying data is cleared
in this situation in order to avoid a mismatch between the parameters on screen (dialog box) and the data in memory generated
by a former viable run.

(Continued on next page)
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Examples

Typing sskdlg in the Command window calls the dialog box. Without checking the options or changing the default values,
the following output is displayed on pressing the OK button:

--- Begin -----------------------------------------------

Results for kappa=0, p1=0.1, p2=0.1,

d=0.1 [95% Conf. Interval]:

* Sample size = 384

--- End -------------------------------------------------

Changing the input parameters and checking all options will produce the following display

--- Begin -----------------------------------------------

Results for kappa=0.1, p1=0.2, p2=0.2,

d=0.2 [95% Conf. Interval]:

* Sample size = 114

* Value of Q = 1.182

Given the values specified above, the

maximum sample size is 126 for a

kappa of .289

If the sample size is fixed at 50,

given the kappa, p1, p2 and CI stated

above, d = .215.

--- End -------------------------------------------------

The above set of statements are worth commenting on from a practical view point. The first indicates that if the researcher states
that a) both raters are expected to find a prevalence of 20% of the event of interest, b) the null-hypothesis for � is 0.1, and c)
he or she is ready to tolerate a rather lenient absolute precision of 0.2, given a 95% confidence interval, this reliability study
will need at least a sample size of 114 subjects.

The second statement conveys that if the researcher is not prepared to make any assumption about the value of � , i.e., to
assert a null hypothesis for the parameter, the most stringent situation (given all the other parameters he or she has specified)
would occur when � = 0.289 for which a sample size of 126 would be needed.

The last output says that, given the other specified values, if resources or logistics allow for just 50 subjects in a reliability
study, the absolute precision would be 0.215. This, in turn, is only slightly worse than the value specified in the first place (0.2),
which means that the researcher may decide to go ahead with his or her “half sized” study since not much precision would have
been lost.

As has been hinted so far, there are many situations that arise from irregular or incompatible specifications. In those
circumstances, sskdlg precludes any unwarranted output. For instance, the output below follows a possible mishap (value of d
relative to �), displaying in red the message

The specified value of d (0.8) is incompatible

with the kappa you selected (0.5), since

both confidence limits (-.3 and 1.3)

exceed the possible boundary values for kappa

(-.11 and 1, respectively), given the

specified marginals (p1 = 0.1 and p2 = 0.1).

Sample size will not be calculated.

Turning to some graphical outputs, Figure 2 shows a “Graph S” for the parameters specified above. Note that this graph has
been constrained to kappa values between 0 and 0.7. Sample size starts at 96, peaks at 126 where �max = 0.289, and decreases
to 78 at � = 0.7. Also note that “k max” has been checked and a vertical line positioned at �max.
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Sample size according to kappa values (p1=0.2, p2=0.2)
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Values of d according to sample size (kappa=0, p1=0.1 and p2=0.1)
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Figure 2. An example of using “Graph S”. Figure 3. An example using “Graph D”.

Figure 3 illustrates a “Graph D” output for the default values.

Note that the graph’s default values of 0 to 500 were left unchanged in the “X:ssize” edit boxes. Yet, for the parameters at
hand, this graph is not very informative since the sample size spectrum where the decline of most precision values takes place is
quite small. The researcher would need a much narrower sample size range over which the d values decrease less steeply. This
enhanced picture would allow him/her to make a better decision, reaching a compromise between a viable sample size and an
acceptable precision for the kappa estimates. This zooming is illustrated in Figure 4 where the “X:ssize” edit boxes have been
changed to 50 to 250. Note the tighter range of the d values on the vertical axis, now comprising a more realistic set of figures
to assess precision.

Values of d according to sample size (kappa=0, p1=0.1 and p2=0.1)
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Figure 4. Using the zoom feature.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (979–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Systems Countries served: Israel
Consultants Phone: +972 (0)6 6100101

Address: P.O. Box 1169 Fax: +972 (0)6 6554254
17100 NAZERATH-ELLIT, Israel Email: assc@netvision.net.il

Company: Axon Technology Company Ltd Countries served: Taiwan
Address: 9F, No. 259, Sec. 2 Phone: +886-(0)2-27045535

Ho-Ping East Road Fax: +886-(0)2-27541785
TAIPEI 106, Taiwan Email: hank@axon.axon.com.tw

Company: Chips Electronics Countries served: Indonesia, Brunei, Malaysia, Singapore
Address: Kelapa Puyuh IV KB 23 Phone / Fax: 62 - 21 - 452 17 61

Kelapa Gading Permai Mobile Phone: 62 - 81 - 884 95 84
JAKARTA 14240, Indonesia Email: puyuh23@indo.net.id

Company: Dittrich & Partner Consulting Countries served: Germany, Austria, Czech Republic,
Address: Kieler Straße 17 Hungary, Poland

5. floor Phone: +49 2 12 / 26 066 - 0
D-42697 Solingen, Germany Fax: +49 2 12 / 26 066 - 66

URL: http://www.dpc.de Email: sales@dpc.de

Company: IEM Countries served: South Africa, Botswana, Lesotho,
Address: P.O. Box 2222 Namibia, Mozambique, Swaziland,

PRIMROSE 1416, South Africa Zimbabwe
Phone: +27-11-8286169

Fax: +27-11-8221377
Email: iem@hot.co.za

Company: JasonTech Inc. Countries served: Korea
Address: 181-3 Hansang B/D, Bangyidong Phone: +82-(0)2-420-6700

Songpaku Fax: +82-(0)2-420-8600
Seoul 138-050, Korea Email: info@jat.co.kr

Company: MercoStat Consultores Countries served: Uruguay, Argentina, Brazil, Paraguay
Address: 9 de junio 1389 Phone: 598-2-613-7905

CP 11400 MONTEVIDEO, Uruguay Fax: 598-2-613-7905
Email: mercost@adinet.com.uy

Company: Metrika Consulting Countries served: Sweden, Baltic States, Denmark,
Address: Mosstorpsvagen 48 Finland, Iceland, Norway

183 30 Taby STOCKHOLM, Sweden Phone: +46-708-163128
URL: http://www.metrika.se Fax: +46-8-7924747

Email: sales@metrika.se

Company: MultiON Consulting, SA de CV Countries served: Mexico
Address: Insurgentes Sur 1236-301 Phone: 52 (5) 559-4050 Ext 190

Mexico, DF, 03200, Mexico Fax: 52 (5) 559-4048
Email: multion@multion.com.mx

(List continued on next page)
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International Stata Distributors

(Continued from previous page)

Company: Ritme Informatique Countries served: France, Belgium, Luxembourg
Address: 34, boulevard Haussmann Phone: +33 (0)1 42 46 00 42

75009 Paris, France Fax: +33 (0)1 42 46 00 33
URL: http://www.ritme.com Email: info@ritme.com

Company: Scientific Solutions S.A. Countries served: Switzerland
Address: Avenue du Général Guisan, 5 Phone: 41 (0)21 711 15 20

CH-1009 Pully/Lausanne, Switzerland Fax: 41 (0)21 711 15 21
Email: info@scientific-solutions.ch

Company: Smit Consult Countries served: Netherlands
Address: Doormanstraat 19 Phone: +31 416-378 125

5151 GM Drunen, Netherlands Fax: +31 416-378 385
URL: http://www.smitconsult.nl Email: info@smitconsult.nl

Company: Survey Design & Analysis Services Pty Ltd Countries served: Australia, New Zealand
Address: PO Box 1206 Phone: +61 (0)3 9878 7373

Blackburn North VIC 3130, Australia Fax: +61 (0)3 9878 2345
URL: http://survey-design.com.au Email: sales@survey-design.com.au

Company: Timberlake Consultants Countries served: United Kingdom, Eire
Address: Unit B3 Broomsleigh Bus. Park Phone: +44 (0)208 697 3377

Worsley Bridge Road Fax: +44 (0)208 697 3388
LONDON SE26 5BN, United Kingdom Email: info@timberlake.co.uk

URL: http://www.timberlake.co.uk

Company: Timberlake Consultants Srl Countries served: Italy
Address: Via Baden Powell, 8 Phone: +39 (0)864 210101

67039 SULMONA (AQ), Italy Fax: +39 (0)864 206014
URL: http://www.timberlake.it Email: timberlake@arc.it

Company: Timberlake Consulting S.L. Countries served: Spain
Address: Calle Mendez Nunez, 1, 3 Phone: +34 (9) 5 422 0648

41011 Sevilla, Spain Fax: +34 (9) 5 422 0648
Email: timberlake@zoom.es

Company: Timberlake Consultores, Lda. Countries served: Portugal
Address: Praceta Raúl Brandao, n�1, 1�E Phone: 351 (0)1 471 73 47

2720 ALFRAGIDE, Portugal Fax: +351 (0)1 471 73 47
Email: timberlake.co@mail.telepac.pt

Company: Vishvas Marketing-Mix Services Countries served: India
Address: CnO S. D. Wamorkar Phone: +91-251-440087

“Prashant” Vishnu Nagar, Naupada Fax: +91-22-5378552
THANE - 400602, India Email: vishvas@vsnl.com


