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Abstract

This paper discuss the design of multidimensional yardstick based pro-
curement auction. The suggested design combines Data Envelopment Anal-
ysis (DEA) based yardstick schemes with the multidimensional score auc-
tion. The principal select a single winner to perform a project, characterized
by a multidimensional vector. The design is especially useful when there
are uncertainty about the underlying common cost structure as well as the
principal’s valuation function. Potential applications in natural resource
management is provided.
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1 Introduction

Auctions has been successfully used to distribute and acquire a variety of
goods. Traditionally, most auctions have been one-dimensional price auc-
tions that allocate a single unit to the bidder with the highest price bid. In
the past decades, however, more advanced auction mechanisms have been
applied in practice and described in the literature.

In particular, the treasury bill auctions and the spectrum auctions have
generated new auction forms and a considerable literature on multi-unit and
combinatorial auctions. Combinatorial auctions price units individually or
in packages.

Another mechanism that has received recent interest is the multi-dimensional
auction form. Opposed to a traditional auction a multidimensional auction
allows the bidders to bid over multiple attributes instead of just the price.
Multidimensional auctions have been particularly important in public pro-
curement. In this paper we present a new multidimensional auction.

Consider a public procurement of an item with qualities described by
a vector z in a market with n potential sellers. By fixing the qualities at
given levels (setting minimum constraints on z), the government can (in
most cases) design an auction that will minimize the procurement cost for
these quality levels. The outcome, however, may not be Pareto efficient -
nor even individually rational for the buyer. Pareto efficiency requires that
there is an optimal trade-off between the seller’s costs of alternative quality
levels and buyer’s benefits here from. To make these trade-offs, we need
more advanced multidimensional forms. We cannot fix the qualities a priori.
The shortcoming of the traditional auction has been widely discussed in the
case of spectrum auctions. Instead of revenue maximizing auctions some
countries have applied negotiations - the so-called comparative hearings or
beauty contests. A negotiation is clearly a multidimensional approach as
opposed to a traditional auction with minimum quality levels. A negotiation,
on the other hand, is less transparent than a traditional auction. It depends
in part on negotiation power and lobbyism. For more on this, see e.g. Genty
(1999).

Dealing with externalities in natural resource management is another
case where a multidimensional mechanism may be relevant. Farmers and
forest owners produce - and use - environmental goods like recreation, clean
ground water and habitats for indigenous plants and animals. However, as
no conventional market exists for these goods, the unregulated production
levels are presumably below their social optima. A private farmer or forest
owner is likely to prioritize the production of marketable goods, e.g. corn or
timber. Environmental regulation plays an important role in trying to cor-
rect this market failure. One of the means is subsidies. Subsidies are usually
granted on a flat-rate basis, say per hectare (ha), or they are determined
from assessments of opportunity costs. Due to asymmetric information, the
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better-informed farmers and forest owners will usually extract information
rents. The distribution of subsidies via a multidimensional auction might
be relevant in limiting these rents with respect to all relevant parameters.

There are several practical instances of multidimensional auctions, e.g.
the conservation reserve program in the USA (Babcock et al., 1997; Vukina
et al., 2000), the Department of Defence procurement auctions for weapon
systems in the USA (Che, 1993) and the television franchising in the UK
(Galapo, 1999).

The theoretical literature on multi-dimensional auctions is sparse, how-
ever. The most well known multidimensional auction is the score auction.
The score auction uses a score function to map multidimensional bids (qual-
ity vectors and prices (or compensations)), into one-dimensional scores. The
score represents the principal’s utility or the welfare function and is used to
allocate the good and determine the price. The score auction takes the prin-
cipal’s utility or the welfare function as given. Cripps and Ireland (1994)
tries to relax the assumption of a known utility function by setting quality
thresholds that are unknown to the bidders. Other papers deal with the
issue of learning the welfare function and the agents’ cost functions (Beil,
2001).

This paper suggest a multidimensional auction that combine the score
auction and the so-called DEA based yardstick schemes.

Data Envelopment Analysis (DEA) is a non-parametric approach to mea-
sure relative performance. It was first proposed by Charnes et al. (1978,
1979) and has subsequently become tremendously popular.

DEA can be used to model costs and can hereby assist in the design
of an ex-ante regulation, i.e. a system where subsidies are based on past
data. DEA can also be used in an ex-post regulation, where the additional
information acquired during the regulation period, is used to set reasonable
costs. The trick here is that the ex-ante commitment to ex-post regulation
effectively creates a pseudo-market among the agents. Each agent therefore
try to do at least as well as the others.

This paper shows how DEA can support procurement design. While
both ex-ante and ex-post regulation seek to reduce the costs of producing
given outputs, the focus in procurement is on the choice of agents (to operate
in a market), as well as their multiple dimensional output vectors.

The outline of the paper is as follows. Section 2 provides a brief liter-
ature review. Section 3 gives a brief introduction to DEA and DEA based
yardstick schemes. Section 4 presents and discuss the DEA based yardstick
auction in different settings. In Section 5 concrete applications are provided.
Final remarks are provided in Section 6.
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2 Literature

This paper joins two bodies of literature, the literature on multi-dimensional
score auctions on the one hand and the one on yardstick competition on the
other.

The literature on auctions in general is impressive. In a standard auction
or procurement context, where a single quality product is supplied, the
revenue equivalence between first price and second price auctions is the
most central result. It was suggested by Vickrey (1961), but remained a
puzzle until 1981 where Riley and Samuelson (1981) and Myerson (1981)
simultaneously solved the problem. They show that a class of independent
private value auctions give the same expected revenue (or costs) to the
principal.

Thiel (1988) uses tools from consumer theory to show that the opti-
mal multi-dimensional auctions will be equivalent to the design of one-
dimensional auctions. He consider the situation where the procurer de-
cides on a budget, which becomes known to the agents. Also, the procurer
does not not value any savings. The paper sketches the idea of the multi-
dimensional score auction, but it offers no proof of optimality for such an
auction. Also, it is unclear whether the assumptions of the preset bud-
get and, especially, valueless savings are appropriate in most procurement
situations (Branco, 1997).

Che (1993) is a central paper on multi-dimensional score auctions. He
shows how the existing theory on auctions can be generalized to multi-
dimensional auctions. He considers the allocation of a procurement contract
that compensate the winner with a transfer t. The principal’s score func-
tion value a one-dimensional quality parameter z and the transfer t. Che
shows that the equivalence theorem can be applied to the multi-dimensional
score auction. The score function provides a one-dimensional valuation that
transforms the problem to the traditional private value single dimensional
case. Using the result from Riley and Samuelson (1981), he proves that the
first score and the second score auction leave the principal with the same
utility. In a first score auction, the bidder with the highest score wins and
has to meet the highest score. In a second score auction, the bidder with the
highest score wins and has to meet the second highest score. Che arrives at
his very strong result by restricting the bidders’s cost type to be monotonic;
the cost functions are assumed to be imbedded into each other in the sense
that a lower cost type has lower costs for all possible qualities than a higher
cost type has, i.e. the cost advantages and disadvantages are universal such
that types can effectively be given a one-dimensional ordering.

Branco (1997) shows that Che’s model fails with correlated costs among
the agents. In such cases, the optimal quality will depend on all bidders’
cost of producing the quality. To solve this problem he introduces a 2 stage
model. The first stage selects a winner and the second stage determines an
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optimal quality based on all bids submitted. He argues that this is typically
what happens. The US defense auctions, for example, typically have a 2
stage system where the quality is negotiated after the winner have been
found. The truth revealing model presented in this paper takes a somewhat
similar 2 stage approach.

Even though multi-dimensional auctions have mainly been suggested and
used in public procurement, there is an increasing focus on the use of multi-
dimensional auctions in the private sector. In Bushnell and Oren (1995), a
multi-dimensional auction is used to select supplier within a firm. Here the
objective is to maximize the joint profit of the firm. An increasing number
of papers on electronic markets also focus on redesigning ordinary markets
along the line of multi-dimensional auctions e.g. Koppius and Heck (2002);
Milgrom (2000). One of these, Milgrom (2000), show in general that the
second score multi-dimensional auction achieves an efficient outcome if the
auctioneer announces the utility function as the scoring rule. That is, there
are no other deal that both the buyer and the seller would prefer.

Until very recently, the theoretical papers on multi-dimensional auctions
have worked with one-dimensional types of players only. This makes it rather
simple to ensure that a lower type has a higher chance of winning. However,
there have been some attempts to model multiple dimensional types, e.g.
Zheng (2000) and McAdams (2002). Zheng (2000) builds on result from
the non-linear pricing, especially Armstrong (1996) who proved that mono-
tonicity can be obtained essentially by excluding some low value costumers.
McAdam (2002) is an example of an auction with multiple types modelled as
a supermodular game. A supermodular game only requires that the players’
strategies can be partially ordered and that the best-response functions of
the players are upwards sloping, see Milgrom and Roberts (1990).

This paper takes a somewhat more simple and practical approach. Start-
ing out with a real life regulatory problem, the existing multi-dimensional
measurement technics from DEA is combined with the idea of the multi-
dimensional score auction.

Like the general literature on auctions, there is also a large economic
literature on relative performance evaluations. The seminal contribution is
Holmstrom (1982). Relative performance evaluation as yardstick competi-
tion was introduced by Shleifer (1985). The extension to multiple dimen-
sional performances and the combination with frontier models like Data
Envelopment Analysis (DEA) was initiated in Bogetoft (1997, 2000) and
expanded upon in Agrell et al. (2002). The uses of relative performance
evaluations and yardstick schemes are numerous. Performance based pay-
ment schemes, where a manager’s bonus depends on his performance relative
to the sector or the market in general, is a prime example. Yardstick compe-
tition has, for example, been used to regulate transportation and electricity
distribution, c.f. Dalen and Gomez-Lobo (1997) and Resende (2001). Simi-
larly, elements of relative performance evaluation and yardstick competition
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are found in several production contracts in agriculture, see e.g. Olesen
(2002).

3 DEA based yardstick competition

This section provides beief introductions to Data Envelopment Analysis
(DEA) and DEA based yardstick competition. For more comperenhensive
introductions, seeCharnes et al (1994) and Bogetoft(1997,2000).

3.1 Brief introduction to Data Envelopment Analysis

Consider n Decision Making Units (DMUs), that each transforms k inputs
into r outputs. Let xi = (xi

1, . . . , x
i
k) ∈ R

k be the inputs consumed and
let yi = (yi

1, . . . , y
i
r) ∈ R

r be the outputs produced by DMUi, i ∈ I =
{1, 2, . . . , n}. The production possibility set is given by:

T = {(x, y) ∈ R
k+r|x can produce y} (3.1)

Inefficiency is the ability to reduce inputs without affecting output or
the ability to expand output without requiring more inputs. In the multiple
inputs, multiple outputs case a popular measure has become the so-called
Farrell index. It measures the possibility to make proportional input reduc-
tions E or output expansions F :

Ei = min{E ∈ R0|(Exi, yi) ∈ T} (3.2)

F i = max{F ∈ R0|(xi, Fyi) ∈ T} (3.3)

In DEA, the technology T is estimated from real observations using the
so-called minimal extrapolation principle. The estimated technology is the
smallest set containing the data and satisfying certain production economic
regularities (like convexity and free disposability.)

When DEA is used in motivation games like DEA based yardstick com-
petition, it is useful to exclude the evaluated unit from the estimation of
the technology against which it is evaluated. In this way, Ratchet effects
can be avoided. We denote the technology against which agent i is evalu-
ated by T−i. In the DEA literature, the resulting Farrell efficiency measures
are known as super efficiencies. A problem with super efficiency is that it
does not always exist. Some units may be hyper-efficient in the sense that
(Exi, yi) /∈ T−i for arbitrary large value of E and (xi, Fyi) /∈ T−i for arbi-
trary small values of F . This problem remains in the regulatory mechanisms
presented later. The implications and the possible solutions of this problem
is left for future research.
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3.2 DEA based yardstick competition

The first game theoretical approach to the use of DEA is due to Banker
(1980) and Banker et al. (1989). They provided game theoretical interpre-
tations of the scoring problem in the standard DEA models given realized
inputs and outputs. The study of the ex-ante motivation game of choosing
inputs, outputs, efforts, skills etc. using formal agency models was initiated
by Bogetoft (1990).

Throughout the paper we consider a stylized environmental regulation
problem. Let the bidders be the agents and the government the principal.
Assume - in the simplest possible version - that the only input is the realized
costs, i.e. the input is one-dimensional ci ∈ R, i = 1, . . . , n. The problem is
to determine how much, B, to reimburse an agent using costs c to produce
y ∈ R

r environmental goods. The goods are produced in a given context
as defined by non-controllable variables z ∈ R

q, z is common knowledge. z
is (arbitrarily) modelled as outputs such that the DEA model consist of 1
input and r+ q outputs. Furthermore y and z can be perfectly verified and
hence costlessly contracted upon. For concrete examples, see section 5.

In terms of technology and information, we assume that there is consid-
erable uncertainty and asymmetric information about the underlying cost
structure. The individual agents are supposed to have superior technological
information. In an extreme case, they know with certainty the underlying
true cost C(y, z), i.e. the costs of producing y under environmental condi-
tions z. Of course, we do not have to assume that the agents know these
costs for all possible output profiles y and environmental conditions z. In
fact, it will ease the design of good schemes if they only have local informa-
tion, say the costs for a limited set of possible output vectors and given its
specific local conditions.

The regulator, on the other hand, only knows the general nature of the
cost function a priori, say that C(., .) belongs to a class C of possible cost
functions1. In addition, the regulator knows that the realized production
plans are possible, i.e. that

xi ≥ C(yi, zi), i = 1, . . . , n (3.4)

where xi is the observed cost, which include slack. Slack (or inefficiency)
is excess cost e.g. to much time used on a task.

The agent’s resulting utility is assumed to be the utility from reimburse-
ment and dis-utility from effort:

U i(B, xi, yi, zi) = (B − xi) + ρ(xi − C(yi, zi)) (3.5)

The first term, B − xi, is the profit. The second term is the excess
costs or slack, xi −C(yi, zi), multiplied by ρ, the value of slack compared to

1This class is large, e.g. the set of all increasing convex functions. For more details,
see Bogetoft (1994) and Bogetoft (1997)
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Figure 1: The DEA yardstick model in the production-cost space

profit. It is assumed that the agents prefer profit to slack, ρ ≤ 1, and that
the agents are risk neutral.

In this procurement setting we only consider the case where the actual
costs cannot be contracted upon, i.e. B(x, y, z) = B(y, z),∀x. In this case,
the optimal solution, cf. Bogetoft(1997), is to use the following revenue cap
with non-verifiable cost information:

B(yi, zi) = Qi + CDEA−i(yi, zi) (3.6)

i.e. the optimal reimbursement equals a lump sum payment to cover
the reservation utility, Qi, plus the DEA-estimated cost norm for the given
output y and environmental variables z. The DEA-estimated cost norm is
given by:

CDEA−i(yi, zi) = min
x

{x|(x, zi, yi) ∈ T−i} (3.7)

The possibility set T−i is a convex hull of the others actual performance.
Figure 1 illustrates this reimbursement scheme.

In the DEA based yardstick literature, the principal’s objective has been
to minimize the cost of inducing the agents to produce given outputs in
given contexts. Different combinations of y and z is not valued per se.
The aim of this paper is to introduce preferences and output trade-offs into
the yardstick regulation by applying the idea from the score auctions. Or
vice versa, to introduce yardstick competition into multi-dimensional score
auctions.

4 DEA Based Yardstick Auctions

In the DEA-incentive literature, the focus is on the use of historical or future
production data to monitor the agents and to motivate them to take proper
actions by committing ex-ante to a payment principle ex-post. The DEA
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based yardstick auction introduce the potential use of DEA to evaluate non-
realized multi-dimensional bids (as opposed to realized production plans) in
a procurement setting (as opposed to a control setting).

We consider a principal who wants to select a single agent to provide a
good characterized by (y, z). To determine which agent to call upon and the
compensation to award him, the regulator organize a multiple dimensional
procurement auction. Initially, the agents submit bids, and based hereon
the regulator determines which offers to use and how to compensate the
corresponding agent. Next, the agent picks the actual production plan and
payment is realized when the promised outputs are delivered.

A bid from agent i is therefore a r-dimensional environmental output
vector yi ∈ R

r and a corresponding cost xi ∈ R. In addition, a vector
of non-controllable environmental state variables, zi ∈ R

q, characterize the
individual bidder. zi is common knowledge to both the agent and the regu-
lator.

As in section 3.2, we assume that the agents are risk neutral and that
they maximize profit and slack with a relative lower value of slack than
profit. That is, when agent i gets compensated Bi for producing yi and
when he actually uses xi in the context zi, he is left with a utility of Bi −
xi + ρ(xi − ci(yi, zi)). The compensation Bi is determined by the DEA
estimated yardstick cost, CDEA−i(yi, zi).

Furthermore, we assume that the regulator knows and maximizes the
true environmental gains V (yi, zi) minus the costs of inducing the agents to
undertake the production Bi. The procurement cost payed to the agents
are inflated with (1 + k) > 1, to reflect the economy wide mis-allocations
resulting from the generation of the necessary funding via tax payments.
The principals welfare function is therefore given by:

V (yi, zi) − (1 + k)CDEA−i(yi, zi) (4.1)

if agent i is selected. V (.) is assumed to be strictly concave.
Below, different situations are considered. In model 1, we assume that

all bidders can produce on the same underlying cost structure as in the DEA
based yardstick scheme. In model 2, the individual bidders’ cost functions
are allowed to be more independent. We close the section by looking at
the welfare function. First, we consider the two models in case of a linear
welfare function. Second, the assumption that the welfare function is known
with certainty is relaxed.

4.1 Model 1

Here we apply the same set of assumptions as in the literature on DEA
based yardstick schemes. In terms of information, we have that the agents’
actual costs, C(yi, zi), are private information. The regulator simply knows
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that the costs originate from a common cost function C(., .) from a class C

(also, see section 3.2).
Before formalizing the regulator’s problem, we note that the multi-

dimensional cost (types) of the different agents are correlated. We know
that the actual costs of the agents all originate from the same underlying
cost function. The set of possible cost functions, however, is very large. This
means that types are not perfectly correlated from the point of view of the
principal. On the other hand, they are also not independent. We argue that
the assumed correlation is very natural by its relationship to production
theory.

Combined with the DEA based yardstick schemes the regulator’s prob-
lem can be set up as a general principal agent problem. To do so in a general
format, let us assume that the agents make possibly false reports of their
cost functions, say xi(.) : R

r → R with the interpretation that the cost of
producing yi is claimed to be xi(yi), i = 1, .., n. Now, the principal must de-
cide which agent to select, what he shall produce, and what to compensate
him. A chosen agent is assigned an indicator value of one, say di(x) = 1, and
a non-selected agent is assigned an indicator variable of 0, i.e. di(x) = 0.
Note that the choice of agents - as all other choices by the principal - can
depend on the full cost report of the agents. In a similar way, the production
levels decided by the principal are indicated by yi(x), i = 1, .., n, and the
compensation levels are given by Bi(x). Using the revelation principle, we
can without loss of generality impose truth-telling constraints, i.e. assume
that the costs reported by agent i is consistent with the underlying true
cost function, xi(C, Y i) = ci(yi, zi), where ci(yi, zi) = C(yi, zi) · 1Y i(yi) is
the true cost function for agent i. Note that we allow for the possibility that
a given agent can only produce some of the possible outputs Y i ⊆ R

r. Let
Y = Πn

i=1Y
i.

The regulator’s problem (with a variable budget) can therefore be for-
mulated as:

maxd(.),B(.),x(.),y(.)

Ec

[
U(d1(c)(y1(c), z1), . . . , dn(c)(yn(c), zn) − (1 + k)

∑
i d

i(c)Bi(c)
]

s.t.
Ec−i|ci

[
di(c)(Bi(c) + ρ(ci(yi(c), zi) − C(yi, zi))−Qi)

] ≥ 0,∀C ∈ C(s), Y, i = 1, . . . , n (IR)
Ec−i|ci

[
di(c)(Bi(c) + ρ(ci(yi(c), zi) − C(yi, zi))−Qi)

] ≥
Ec−i|ci

[
di(xi, c−i, y, z)((Bi(xi, c−i)− xi) + ρ(xi − C(yi(xi, c−i), zi))−Qi)

]
∀C ∈ C(s), Y, xi, i = 1, . . . , n (IC)
di(x) ∈ {0, 1}∀x, i = 1, . . . , n
ci(yi, zi) = C(yi, zi) · 1Y i(yi), i = 1, . . . , n

(4.2)
The objective function is the expected environmental value minus social

costs. Expectation is taken with respect to the underlying, unknown costs, c,
of the agents. The regulator’s choice variables concern which agent to accept
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in the program, d, what they shall produce, y, and what to pay them, B.
The first set of constraints is the individual rationality constraints. They
ensure that all agents, given their private information about their costs,
expect to get at least their reservation utility of Qi if they are selected. Qi is
determined outside the model, e.g. by the state of nature z. For simplicity,
Qi is set equal to zero in the remaining of the paper. The second set of
constraints is the usual incentive compatibility constraints. They say that
no agent would ever like to deviate from truth-telling about costs, xi = ci.

The regulator’s problem emphasize the complexity of the problem and
the importance of a proper auction design. Note that in the chosen formula-
tion, we assume that the agents only know their own costs, not the costs of
the other agents. Since the compensation depends on all bidders’ bids, each
and everyone must form beliefs about the other bidders’ r + q dimensional
cost functions. Mechanisms involving such belief structures are analytically
extremely complex and we shall proceed below by analyzing simpler versions
of the context. Also, we shall develop mechanisms, where the strategy of a
given agent does not depend on the types of others. Hereby, the agents are
effectively relieved of the burden of forming these complex beliefs.

Below we treat the case of a single and multiple production plan(s) sep-
arately. The case of multiple production plans is more complicated because
we have to consider not only the other bidders’ feasible production plans
but also the individual bidder’s own production plans.

Single production plan

For now, assume that agent i can only choose one production plan yi. The
report by the agent therefore effectively reduces to (xi, yi, zi), where xi is the
reported cost, yi is the reported production plan, and zi is the (commonly
known) context of agent i.

As in a score auction the submitted multi-dimensional bids are ranked
with the following score function:

V (yi, zi) − (1 + k)xi (4.3)

The score function reflects the true welfare function. Now consider the
following set of auction rules:

Step 1: The agents submit their bids (xi, yi, zi), i ∈ I, and thereby commit
to carry out the production of yi at the cost xi under the commonly
known state of nature, zi, i ∈ I.

Step 2: Each bid is assigned a score reflecting the welfare it would generate
V (yi, zi) − (1 + k)xi.

Step 3: The highest score wins.
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Step 4: The compensation is determined by the yardstick cost CDEA−i(yi, zi).

The idea of this procedure is simple. The regulator select the bidder that
can provide the potential highest welfare, by selecting the highest score. The
winner is asked to carry out the stated plan at the DEA estimated yardstick
cost. The DEA based yardstick cost norms are estimated using all submitted
bids except the winner’s, like in the yardstick competition model presented
in section 3.2.

Proposition 4.1. The optimal bidding strategy for bidder i is to bid the
true cost, ci = Ci(yi, zi), for the given feasible production plan, (yi, zi).

Proof. The minimal extrapolation principle ensure that C(yi, zi) ≤ CDEA−i(yi, zi).
Therefore we have that, since the compensation determined by the DEA
based yardstick cost, is independent of i’s bid and that i have only one
feasible production plan:

Bidding below true cost, ci = Ci(yi, zi), will increase the chance of win-
ning but the extra trade generated will generate negative profit. Therefore
it never pays to bid below the true cost.

Bidding above true cost will lower the chance of winning without affect-
ing the profit if winning. Furthermore, since slack is worth less than profit,
including slack is unprofitable. Therefore it does not pay to bid above true
cost.

Consequently, we have that the optimal bidding strategy is to bid the
true cost.

In this setting the DEA based yardstick auction is clearly individual
rational and incentive compatible. Also, the auction ensures allocative ef-
ficiency, i.e. that the contract is allocated to the bidder that produces the
highest welfare (Refereed to as efficient auction in the literature). To see
this, note that the optimal strategy is to bid the true cost. Now, since the
score reflects the welfare and the highest score win the contract, allocative
efficiency is ensured.

So far we have have stressed allocative efficiency. This is relevant in
a public procurement setting. In traditional private procurement setting,
however, the principal would rather select the auction that maximizes the
revenue or minimizes the procurement costs. It is therefore relevant also
to consider the benefits generated to the principal (Refereed to as optimal
auction in the literature). In the following we compare the DEA based
yardstick auction and the second score auction with respect to the principal’s
welfare.

Let S(2) be the second highest score. Now, if the actual compensation
CDEA−i(yi, zi) produce a higher score than S(2) (V (yi, zi)−CDEA−i(yi, zi) ≥
S(2)), the DEA based yardstick auction is preferred to the principal. In
general we have that none of the two auctions dominate each other. Figure
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2 show two different situations, represented by score functions SA and SB.
In situation A we have that the DEA based yardstick auction is preferred
to the second score auction and vise versa in situation B.

Cost

Y

CDEA−i

yi

SA

SB

S(1)

S(2)

C

Figure 2: Comparing the DEA based yardstick auction with the second score auction

Figure 2 indicates that the highest scoring bidder might not be the one
that generate the highest welfare, as oppose to the score auction. It might
be that the compensation corresponding to S(2) (This yardstick compen-
sation is not illustrated in Figure 2) would generate a higher welfare than
the yardstick compensation corresponding to S(1), CDEA−i in Figure 2. Al-
ternatively, the auction could select the winner that maximize the welfare
generated to the principal. This can be done simply by replacing the actual
costs bid with the corresponding yardstick cost (potential compensation).
Hereby the selection mechanism directly tradeoff environmental benefits and
the cost of acquiring them. Of course, such a mechanism does not ensure
allocative efficiency, as oppose to the chosen design.

Also in traditional auctions allocative efficiency (efficient auction) and
maximizing output (optimal auction) are conflicting. For more on this see
Ausubel and Cramton (1999).

Multiple production plans

We now turn to the more general case where the agents have more feasible
production plans. To make the general formulations in the regulator’s prob-
lem more specific, we let each agent report his sets of possible productions,
Y i and the associated costs, xi(yi), yi ∈ Y i. As before the compensation is
determine by the yardstick cost function. Unlike the case of a single pro-
duction plan, we allow the bidders to submit any number of bids. We show
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how this simplifies the bidding strategy by facilitating a complete revelation
of the bidders’ cost function.

Now, let the set of auction rules be:

Step 1: The agents submit their bids (xi(yi), yi, zi), yi ∈ Y i, i ∈ I, and
thereby commit to carry out the production of yi at the cost xi(yi)
under the commonly known state of nature, zi, i ∈ I.

Step 2: Each bid is assigned a score reflecting the welfare it would generate
V (yi, zi) − (1 + k)xi.

Step 3: The highest score wins.

Step 4: The compensation is determined by the most profitable bid f(xi(ỹi), ỹi, zi)
that produce a higher score than the highest losing bidder’s bid.

Step 4 has been changed to cope with the multiple production plans.
Step 4 simplifies the bidding strategy by selecting the most profitable bid
among the highest bidder’s non-dominated bids. Let Ỹ i be the set of i’s
bids that produce a higher score than the highest losing bidder’s bid. Now
the most profitable bid is given by:

max
y∈Ỹ i

{CDEA−i(y, zi) − C(y, zi)} (4.4)

Otherwise, if we simply select the highest score it would be optimal
to form beliefs about the other bidders’ cost functions in order to extract
information rent. To see this, note that the bid that produce the highest
score might not be the most profitable bid in Ỹ .

Proposition 4.2. The optimal bidding strategy for bidder i is to submit
multiple bids, revealing the true cost, C(yi, zi), for any feasible production
plan, (yi, zi), yi ∈ Y i.

Proof. Bidding below true cost will increase the chance of winning, but the
extra wins will be unprofitable.

Bidding above the true cost function will lower the chance of winning.
Furthermore, since slack is worth less than profit including slack in the bids
is unprofitable. Therefore it never pays to bid above true cost.

Leaving out bids do not pay as the payment is determined as the maxi-
mum of the non-dominated bids.

From the minimal extrapolation principle we have that a truth revealing
cost bid would always provide positive profit, C(yi, zi) ≤ CDEA−i(yi, zi).
Therefore, leaving out bids corresponding to a feasible production plan is
unprofitable.

15



From the optimal bidding strategy we clearly see that the DEA based
yardstick auction is individual rational and incentive compatible. Also, as in
the single bid case we have allocative efficiency, that the contract is allocated
to the bidder with the highest value. To see this, note that the optimal
strategy is to bid the true cost and that the minimal extrapolation principal
ensure that all bids are profitable. Now, since the score reflects the welfare
and the highest score win the contract, allocative efficiency is ensured.

As in the case of a single production plan, it might be relevant to compare
the DEA based yardstick auction and the second score auction in terms of
welfare generated to the principal. Clearly, as before there are situations
where either of the two auctions would be preferred, see Figure 2.

On the other hand multiple bids will typically provide a closer represen-
tation of the underlying cost structure, which might be used in redesigning
the auction. To ensure the DEA based yardstick auction to outperform the
second score auction, step 4 may be changed to:

Step 4’: The winning bid is the most profitable among those where the
corresponding yardstick cost (CDEA−i(yi, zi)) produce a higher score
than the highest losing bidder’s bid.

Applying step 4’ the DEA based yardstick auction provide the principal
with a higher welfare per definition. Since such a bid may not exist the
auction may fail in selecting a winner.

Also, we suggest that the DEA based yardstick auction will often be near-
optimal for the principal. To see this, note that the DEA approximation of
the cost structure will provide a close fit in many cases. Having observed
n − 1 observations on the C(., .) curve, the piecewise linear approximation
will typically not deviate too much for points close to the observed ones.
The incentives to reveal, in principle, the entire cost function will make the
approximation even better.

A general ”problem” with the DEA based yardstick auction is that it
does not ensure efficient trade per se. By efficient trade we mean that
there may be production plans that are Pareto improving ex-post. This
is in contrast to the second score auction where the winner gets to select
the most optimal production plan in a second round (Milgrom, 2000). In
the DEA based yardstick auction the actual contract is determine by the
most efficient bid relative to the other bidders’ bids, and not efficiently with
respect to the score function. Therefore, with multiple production plans,
there might be points along the iso-score curve (determined by the actual
compensation plan) that would be preferred for both the principal and the
selected agent. We return to efficient trade in section 4.4 where we relax the
assumption that the true welfare is given.
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4.2 Model2

We now relax the assumption that the bidders’ true cost for any feasible pro-
duction plan, ci(yi, zi), equals the overall cost function, C(yi, zi). We only
require the bidders cost functions, ci(y, z), to have a single point in common
with C(y, z). Clearly this allow for more independent cost functions, while
still requiring some interdependence between the individual cost functions.
As before we argue that the assumed correlation is very natural by its rela-
tionship to production theory. In fact the underlying cost function may be
interpreted as the long run cost function while the costs of the individual
DMUs may be thought of as originating from local, short run cost curves.
Figure 3 shows how the individual cost functions may differ from each other.

C
Cost

y

Figure 3: The assumed cost structure

Another interpretation is to say that proper investments would ensure
any feasible production plan to be produced at the underlying minimum
cost, ci(yi, zi) = C(yi, zi). Now if the auction provide proper incentives to
invest we might actually return to cost structure described in model 1. This
interpretation makes model 1 more realistic.

To begin with consider the special case, where the bidders are facing
Leontief type of technologies (marked with dash lines in Figure 3). With this
technology the single production plan where ci(yi, zi) = C(yi, zi) dominates
i’s other production plans. Now, since the only non-dominated production
plan equals the common cost structure, this special case is similar to model
1 with a single production plan.

In the general case the cost functions are only required to be convex,
represented by the solid lines in Figure 3. In this general case we might have
bids where the yardstick cost CDEA−i(yi, zi) (the compensation) is smaller
than the actual cost ci(yi, zi). This is a problem if the bidder with the
highest score has no profitable bid with scores exceeding the highest losing
bidder’s bid. To avoid selecting one of these bids we simply exclude bids
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where ci(yi, zi) ≥ CDEA−i(yi, zi). The importance of this problem depends
to a large extend on the actual cost functions. We will return to this problem
below.

Now, consider the following auction rules:

Step 1: The agents submit their bids (xi(yi), yi, zi), yi ∈ Y i, i ∈ I, and
thereby commit to carry out the production of yi at the cost xi under
the commonly known state of nature, z.

Step 2: Each bid with positive profit (CDEA−i(yi, zi) ≥ xi(yi)) is assigned
a score reflecting the welfare stated in the bid V (yi, zi) − (1 + k)xi.

Step 3: The highest score win.

Step 4: The compensation is determined by the most profitable bid (xi(ỹi), ỹi, zi)
that produce a higher score than the highest losing bidder’s bid.

As in model 1 truth revealing is the optimal bidding strategy:

Proposition 4.3. The optimal bidding strategy for bidder i is to submit
multiple bids, that reveal the true cost, ci(yi, zi), for any given feasible pro-
duction plan, (yi, zi).

Proof. Bidding below true cost will increase the chance of winning, but the
extra wins will be unprofitable.

Bidding above the true cost function will lower the chance of winning.
Furthermore, since slack is worth less than profit including slack in the bids
is unprofitable. Therefore it never pays to bid above true cost.

From the minimal extrapolation principle we have that a truth reveal-
ing cost bid would always provide positive profit, x(yi, zi) = xi(yi) ≤
CDEA−i(yi, zi). Therefore, leaving out bids corresponding to a feasible pro-
duction plan is unprofitable.

Figure 4 give an example of these auction rules. The bold broken lines are
the yardstick compensation that would provide the winner with a positive
profit. The set of bids in the brackets produce a higher score than the
highest losing bidder’s bid and the auctioneer select the most profitable bid
among these.

Among the eligible bids we have that allocative efficiency is ensured.
That follows from the arguments given in model 1. If we consider all bids,
however, we might have inefficient allocation. That would be the case if
the highest score (among all bids) belong to a different bidder than the one
with the highest eligible bid. Figure 5 illustrate the problem of allocative
inefficiency in the extreme case where the underlying cost structure have
constant return to scale (CRS).

Again, from the bidding strategy we have that the auction is individually
rational and incentive compatible. Also, we might have situations where the
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Figure 4: DEA based yardstick auction in model 2
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Figure 5: Second score auction preferred to DEA based yardstick auction
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DEA based yardstick auction provides more welfare than the second score
auction and vice versa as in model 1.

4.3 Linear score function

So fare we have assumed the welfare function to be a strictly concave func-
tion. Here we study the extreme case where the valuation function V (.) is
linear in all elements of y and z. As in model 1 and 2 above we will assume
that the score function reflects the true welfare.

We show that in terms of welfare generated to the principal the second
score auction weakly dominate the DEA based yardstick auction.

To see this, recall that the optimal bidding strategy in a second score
auction is to bid the reservation score (the bid that generates the highest
score) and that the actual compensation is determined by the most optimal
point on the iso-score function determined by the second highest score. Also
note that the compensation in a DEA based yardstick auction is determine
by a convex envelopment of all the other bidders bids, which include the
second highest score (or highest loosing bidder’s score). Therefore, we have
that the linear iso-score function that equal the second highest score will be
tangent to the yardstick cost CDEA−i(.). It follows from this that the second
score auction generate at least the same welfare as the DEA based yardstick
auction. This is illustrated in Figure 6.

c̄A

c̄B

c̄C
Score function

Cost

y

Figure 6: Second score auction weakly dominate the DEA based yardstick auction
if V (.) is linear

In Figure 6 c̄A is the winner and c̄B and c̄C are two other bidders reser-
vation values. It is easy to see from Figure 6 that the welfare generated from
a second score auction will be higher than that of a DEA based yardstick
auction, simply because the second highest iso-score function is tangent to
any feasible compensation generated by the DEA based yardstick auction.
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4.4 Uncertain welfare function

In all of the models above, the welfare function is assumed to be common
knowledge and the score function is set equal to the welfare function. In
this section we relax this assumption.

Again, if we look at the second score auction the winner is selected and
the actual production plan and compensation are all determined by the score
function. Therefore if the score function differ from the true welfare there
will be a direct effect on efficient trade and on the actual welfare generated.

In the DEA based yardstick auction the winning bid is selected by the
most profitable bid in the neighborhood of the second highest iso-score
curve. This trade-off between maximizing welfare and efficiency (relative
to the other bidders’ performance) is especially relevant in case of uncertain
welfare. In the DEA based yardstick auction the score function select the
winner and select a set of bids. Therefore, a slightly wrong score function
may not have any direct effects on the actual welfare generated.

In terms of allocative efficiency both types of auctions may fail in case
of uncertain welfare. This follow simply from the fact that both auctions
apply the same selection mechanism.

Changing the score function ex-post

Beil (2001) suggest an auction process where the bidders’ true cost func-
tions are revealed and the optimal score function determine afterwards. He
suggest that the second score auction is applied successively with different
score functions. After several rounds the most part of the true cost functions
are revealed and the optimal scoring rule is determined. He assume myopic
best response in each auction. This assumption is clearly unrealistic in re-
peated auctions. We suggest that a slightly modified version of the DEA
based yardstick auction may allow the principal to select any score function
ex-post, and still have complete revelation as the optimal bidding strategy.

Consider a DEA based yardstick auction where the principal selects the
most profitable bid among the winning bidders efficient bids. In this case
the optimal bidding strategy would be to submit the true cost function no
matter which score function the principal may chose ex-post. To see this
note that the set of efficient bids (bids where CDEA−i(yi, zi) ≥ ci(yi, zi)) is
only determined by the other bidders bids. Also, since the principal commits
to select the winner’s most profitable bids deviating from truth telling is not
optimal under any score function.

This type of auction is especially relevant in case of large uncertainty
about the welfare and where the principal expects a large number of bidders
and hereby a good representation of the underlying cost structure. This
might very well be the case in natural resource management. On the other
hand, if the principal expects only a few participants and thereby a relatively
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weak representation of the underlying cost structure, a better choice may
be the DEA based yardstick auction suggested in model 1 and 2.

5 Applications in Natural Resource Management

Above, we have only refereed to a general example of compensating an agent
for providing environmental goods. In natural resource management there
are examples where only a single winner is needed, and others where a
larger number of agents are required to provide environmental benefits. In
this section we list examples where selecting a single winner makes sense
and consider the problems involved in selecting more winners.

Clearly, regulating the farmers to lower the use of nitrogen or pesticides
require the compensation (or taxes) to be distributed among a large number
of agents. Though, there are a number of possible procurement situations
that only require a single winner. Also, many situations that require more
winners might be thought of as selecting a number of single winners in local
areas. Below some applications for the single winner DEA based yardstick
auction are given.

• Selecting location for a national park.

• Selecting location for protecting threatened species.

• Selecting drilling area for freshwater drilling (require extensive farm-
ing).

• etc.

Multiple winners

Now, consider the case of e.g. lowering the use of nitrogen by compensating
the farmers. Here the problem is typically to maximize the environmental
benefits subject to a certain budget. The DEA based yardstick auction
might be altered to cover this situation of selecting any number of winners.
In general this may be done in two ways, either by a discriminatory DEA
based yardstick auction or a uniform DEA based yardstick auction.

In a discriminatory version of the DEA based yardstick auction, the prin-
cipal simply repeat the case of a single winner until the budget is fulfilled.
Clearly, this violates the truth revealing property. E.g. if the bidder with
the potential highest score submit his true cost function he might risk get-
ting a smaller compensation than a lower scoring bidder. This is easy to see,
since the compensation might be determined by bidders who also win the
auction. Therefore, better informed bidders might gain by lowering their
bids. Properties of this auction is left for future research.
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In a uniform version all winners will be compensated with respect to the
same set of references - the same frontier. One solution could be to let the
N winners chose a benchmark on the frontier expanded by the remaining
bidders, CDEA−N (.). The properties of such an auction and whether such
an auction would violate the truth revealing property is also left for future
research.

6 Concluding remarks

The discrepancy between practical ad hoc procedures used in multiple di-
mensional procurements and the simplified, usually single dimensional theo-
retical models, is striking. The DEA yardstick auction treated in this paper
is an attempt to solve real problems using sound theory.

Natural resource management problems often involve complex produc-
tion structures, with joint production of multiple products simultaneously.
Moreover, there are non-trivial inputs to the production process that cannot
be controlled. There are also non-trivial elements of asymmetric information
about the conditions and preferences of the different landowners. Earlier re-
search has proved that DEA is useful in evaluating these rather complex
situations that usually involve a large number of agents.

We showed how the suggested DEA based yardstick auction facilitate
complete revelation of the agents cost functions. If the bidders cost function
belong to the same underlying cost structure, as assumed in the literature
on DEA based yardstick schemes, allocative efficiency is ensure in all cases.
If we allow for more flexible cost functions, some inefficient bids are rationed
away. This may cause allocative inefficiency in extreme cases. In general,
however, the complete revelation provides a close fit to the true underlying
cost structure and thereby reduces the information rent and provides more
welfare.

The suggested mechanism select the most efficient bid in the neighbor-
hood of the most preferred bid. Unlike the traditional multidimensional
score auction the compensation is determine independently of the princi-
pal’s preferences. Hereby we show that the DEA based yardstick auction
may provide a higher welfare to the principal is some cases. This is also
important in case of uncertain welfare, since efficiency is prioritized to un-
certain welfare maximization.

Finally, we suggested a DEA based yardstick auction that allow the
principal to change the score function ex-post and still provide complete
revelation. In this auction the principal commits to select the winner’s
most profitable bid. This auction might be relevant in natural resource
management with a potential large number of bidders and uncertain welfare
measures.

There are several, relevant extensions of the research reported here. Ex-
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tending the auction to select more winners is important for some applications
in natural resource management. Another interesting extension would be to
test the DEA based yardstick auction in a laboratory setting.
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