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ABSTRACT 
 

The objective of this paper is to address the problems of inefficiency and inequity in 
water allocation in the El Angel watershed, located in Ecuador’s Sierra region.  Water is 
captured in a high-altitude region of the watershed and distributed downstream to producers in 
four elevation-defined zones via a system of canals.  Upstream and downstream producers face 
radically different conditions with respect to climate and terrain.  A mathematical programming 
model was created to study the consequences of addressing chronic water scarcity problems in 
the watershed by shifting water resources between the four zones.  The model captures the 
nature of water use by humans, crops and dual purpose cattle.  Its objective function maximizes 
producer welfare as measured by aggregate gross margin, subject to limited supplies of land, 
labor and water.  Five water allocation scenarios are evaluated with respect to efficiency in land 
and water use and equity in income distribution.  Results reveal that although water is the 
primary constrained resource downstream, in the upstream zones, land is far more scarce.  The 
current distribution of water rights does not consider these differences and therefore is neither 
efficient nor equitable.  Improvements in efficiency (resource use) and equity (income 
distribution) are associated with (1) a shift of water to the lower zone, and (2) the use of lower 
levels of irrigation intensity upstream.  Furthermore, the scenarios that result in the most 
efficient use of resources also bring the greatest degree of equity in income distribution, 
indicating that these may be complementary, not conflicting, goals. 
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INTRODUCTION 

Agriculture demands more water than any other single activity, requiring 69 percent of the 

world’s water supply (Holden and Thobani, 1996).  In many countries, efforts to raise levels of 

agricultural production through increases in cultivated land, cropping intensity and yields have led to a 

greater dependence on irrigation.  This pressure has been most severe in developing nations, where water 

resources are often scarce and many irrigation systems are primitive. 

Although Ecuador has estimated water resources of 38,372 cubic meters per capita, nearly four 

times the worldwide average of 10,800 cubic meters per capita, the distribution of water is uneven and is 

heavily concentrated in the country’s Amazon and Coastal regions (Sotomayor, 1996).  It is estimated that 

95 percent of the country’s irrigation structures utilize conventional canal technologies (Sotomayor, 

1996).  The upstream-downstream asymmetry in water availability and low levels of irrigation technology 

lead to an inequitable and inefficient allocation of water among users.  Absent a strong institutional 

system of water management, there are few incentives for upstream producers to use water efficiently, 

which leads to uncertainty for downstream producers, and in many cases, conflict.  This study examines 

the effects of alternative management scenarios aimed at improving efficiency and equity in water 

allocation.  Although focused specifically on Ecuador’s Sierra region, the study is illustrative of water 

management problems faced widely in the developing world. 

The canals of the El Angel watershed in the highlands of Carchi, Ecuador were constructed over 

one hundred years ago to provide water to the several large haciendas which then dominated the 100,000-

hectare region.  Today, these canals transport water a distance of over 60 kilometers, from altitudes of 

more than 4,000 meters above sea level (masl), to hotter, drier regions as low as 1,500 masl.  The primary 

source of water is the páramo, an area of humid alpine grasslands in the upper reaches of the watershed 

whose sponge-like terrain is well-suited to the capture, storage and transfer of water.  The five canals that 
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are the focus of this study are largely non-reinforced, open structures, highly susceptible to losses from 

evaporation, spillage, seepage and theft.1 

The five canals are located in the eastern portion, or left margin of the watershed.  As 

demonstrated by Prato and Wu (1996), the “target-level” of a resource management policy plays a 

significant role in determining its environmental and economic costs and benefits.  Brooks et al. (1994) 

argue for policymaking at the watershed level, noting that most natural processes occur within watershed 

boundaries.  Beaulieu et al. (1998), however, caution that most farmers make decisions at the field level, 

and do not consider the watershed-level effects of their decisions.  Furthermore, policymaking often 

comes down to a tradeoff between economic and environmental objectives due to the fact that watershed 

boundaries rarely coincide with political boundaries (Brooks et al., 1994; Okumu et al., 1999). 

The study region is divided according to elevation into three primary zones: upper, middle and 

lower; the middle zone is further divided to account for the diversity in production systems found in the 

region.2  As one travels downstream, temperatures, levels of solar radiation and rates of 

evapotranspiration rise, and soils are increasingly sandy and susceptible to erosion.  While the upper zone 

is oriented primarily toward pasture (cattle) and potato production, a more diverse group of crops can be 

produced in the middle and lower zones.  However, the degree of dependence on irrigation in these 

downstream zones is much greater.  Table 1 summarizes key characteristics of each zone. 

In the midst of Ecuador’s agrarian reform, water rights or “concessions” were divided among new 

landowners along the canals.  Although a number of regional water agencies were established to enforce 

the nation’s 1972 Water Law, in reality, minimal control is exercised by the state, and in most cases, 

management occurs at the local level (Proaño, 2000).  Community members form groups called juntas to 

enforce concessions and carry out maintenance tasks for a particular canal.  The effectiveness of the 

juntas varies widely.  Most failures can be attributed to a lack of resources, poor communication and 

farmers’ unwillingness to participate. 

                                                
1 The five canals studied are: 1) San Vicente de Pusir de los Baños, 2) San Vicente de Pusir del Voladero, 3) 
Cúnquer, 4) Chulunguaza, and 5) El Tambo. 
2 The four zones are referred to as “upper,” “middle 1,” “middle 2,” and “lower” in this paper. 
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Without effective enforcement of water rights, many producers base water use decisions on 

availability rather than actual crop water requirements, and as a result, regularly use canal water beyond 

their legal allocations.  Downstream farmers are at a natural disadvantage, their access being limited to 

that portion of canal water that has not been used upstream.  These circumstances have led to a number of 

water-related conflicts between rural and urban communities, between producers at different altitudes and 

between small- and large-scale producers (Poats et al., 1998). 

The objective of this paper is to address the problems of inefficiency and inequity in water 

allocation in the El Angel watershed.  A comprehensive, crop-livestock mathematical programming 

model is described which allows the simulation of various water allocation scenarios.  The current system 

of water management is then evaluated with respect to the achievement of efficiency and equity 

objectives.  Various alternative water allocation strategies are examined.  These alternative strategies are 

compared, revealing the consequences of shifting water resources between watershed zones.  Finally, the 

relationships between efficiency and equity objectives are discussed. 

 
AN OPTIMIZATION MODEL OF CROP AND LIVESTOCK PRODUCTION 

The mathematical programming model is designed to maximize aggregate gross margin from 

agricultural production in the El Angel watershed.  The model’s activities and constraints characterize the 

nature of water use for humans, crops and livestock over a 12-month period.  The technical coefficients 

that quantify resource requirements were estimated for a representative farm in each zone.3 

Mathematical programming models seek to determine the optimum allocation of constrained 

resources among competing activities (Hazell and Norton, 1986), and are widely utilized in studies of 

resource allocation in agriculture, including water allocation.  Combining mathematical programming and 

simulation modeling techniques, Bernardo et al. (1988) find opportunities for improved water 

                                                
3 Characterization of the representative farms is based on data collected in a joint survey, data obtained 
from the International Potato Center (CIP) and a number of secondary sources.  The survey, conducted 
from January – September, 2000, is a collaboration between the MANRECUR Project, Cornell University 
and Universidad Central de Ecuador.  The CIP data is from the project “Agricultural Chemical Use and 
the Sustainability of Potato Production in the Andean Zone,” collected between April 1990 and December 
1992 in a watershed directly adjacent to the El Angel watershed. 
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management in the Columbia River Basin, given that decreasing the water supply by 40 percent at the 

farm level results in only a 10 percent decrease in economic returns.  Garg and Ali (1998) use a two-level 

mathematical programming model for the Lower Indus Basin in Pakistan to determine the optimal 

cropping pattern and sowing dates to efficiently use scarce water resources.  Unlike these two studies, the 

focus of this model is not limited to water use for crops, nor to the analysis of resource use for livestock, 

as in Nicholson (1990) and Berger (1999).  Rather, this study simultaneously incorporates both crop and 

livestock activities in evaluating water allocation. 

Model objective function.  The model’s objective function maximizes aggregate gross 

margin (total revenue less variable costs) from crop and livestock production:  
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where activities are defined for the ith zone, the jth crop, the nth (of 16) herd category, and the kth season 

(wet or dry) and where GMCROP = per-hectare gross margin; CROP = number of hectares of each crop 

activity; GMA = per-animal gross margin, calculated using the revenue from animal sales only; A = 

number of cattle in each herd category; RMILK = per-liter price of milk; MILK = number of liters of milk 

sold; SUPCOST = per-kilogram cost of animal feed supplements; SUP = number of kilograms fed; 

WCOST = per-cubic meter tax on water use; and WUSE = total use of canal water.  

Model activities.  Four categories of activities are included in the model: human, crop, animal and water 

(Table 2).  Human activities are included to quantify non-agricultural water requirements in each zone, 

based on population estimates and water consumption data in Montenegro (1998). 

Composite crop activities are defined over a 12-month period, and include all of the processes 

that are involved with the production of a crop, including soil preparation, fertilization, irrigation and 

harvest.  Activities are defined for each season to account for variations in irrigation requirements due to 

lower levels of precipitation in the dry season.  Certain crop activities are defined at multiple levels of 

irrigation intensity to account for the fact that farmers often exhibit profit-maximizing rather than yield-
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maximizing behavior when allocating irrigation water among crops (Doyle, 1990; Santos, 1998).  The 

exceptions are potatoes and improved pasture, for which reductions in irrigation showed little or no 

impact on yields. 

The yield response to water is estimated for each crop using the relationship between relative 

yield (Ya/Ym) and relative evapotranspiration (ETa/ETp), established by Doorenbos and Kassam (1979):4 
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where “i” denotes each period (of four) in the plant’s growth cycle; Ya = actual yield; Ym = maximum 

yield; kyi is the yield response factor for each stage i of the crop’s growth cycle; ETai = total amount of 

actual evapotranspiration during period i; and ETpi = total amount of potential evapotranspiration during 

period i. 

The objective of using this method was not to precisely calculate the relationship between water 

use and yields.  This was not possible due to the high data requirements of econometric and simulation 

methods.  Rather, as intended by Doorenbos and Kassam, the equation is used “to quantify the effect of 

water stress” on the studied crops in the watershed.  The right-hand side of Equation 2 is a number 

between zero and one, often referred to as the crop’s water stress index (WSI).  A WSI closer to one 

indicates a lower level of water stress. 

ETp data are taken from the comprehensive study by Montenegro (1998) of the use, management 

and distribution of irrigation and potable water in the El Angel watershed.  These data were calculated 

using the FAO software CROPWAT.5  Based on average levels of precipitation in each zone as well as 

soil moisture observations, ETa is calculated using the method described in Thornthwaite and Mather 

(1957) and later in Dunne and Leopold (1978).  This method was chosen primarily due to the 

instrumentation and data limitations associated with working in the remote study area. 

                                                
4 Previous applications of this method include Bernardo et al. (1988) and Paudyal and Das Gupta (1990). 
5 CROPWAT version 5.7, issued in 1992 is a decision support system developed by the Land and Water 
Development Division of FAO.  It is commonly used to calculate reference evapotranspiration, as well as 
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Doorenbos and Kassam define Ym as “the harvested yield of a high-producing variety, well-

adapted to the given growing environment, including the time available to reach maturity, under 

conditions where water, nutrients and pests and diseases do not limit yields.”  Ym values are most 

accurately estimated with the use of experimental data that account for the effects of a number of 

variables, including crop variety, temperature and length of the growing season.  These experimental 

values must then be adjusted to according to actual farming conditions (Doorenbos and Kassam, 1979).  

Due to a lack of experimental field data, Ym values used in this study were obtained from interviews with 

local farmers and from secondary sources such as Proaño and Paladines (1998) and Espinosa et al. (1996) 

that are specific to the region or to a comparable region.  These maximum yield values compare 

conservatively with those presented by Doorenbos and Kassam for tropical climatic regions. To solve for 

yield levels for the various irrigation-defined crop activities, the difference between ETai and ETpi during 

each period of a crop’s growth cycle is decreased by a percentage that represents the extent to which 

irrigation is used to fill any evapotranspiration deficit.  Ya is then calculated according to Equation 2. 

In the case of dual purpose cattle production, activities are included for the upper zone and 

middle zone 1 only.  Herd category and nutrient requirement activities are subdivided to account for 

differences in animal age, sex, weight, weight gain and activity.  The model solves for the number of 

animals in each of the seven cattle age groups, which are further subdivided by sex and activity.  

Activities are also included to quantify herd size in animal units (AUs), used later in stocking rate 

restrictions.  Based on the total herd size, the model calculates aggregate nutrient requirements,6 the 

amount of canal water required to supplement animal feeds to meet water requirements, the kilograms of 

feed supplements purchased to meet nutritional requirements, and levels of milk production. 

Finally, the model solves for the levels of water use in each zone.  Like all other activities, water 

use activities are included for the dry and wet seasons separately. 

                                                                                                                                                       
crop water and irrigation requirements� 
6 Required quantities of dry matter, crude protein, metabolizable energy and water. 
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Model constraints.  The model’s constraints can be divided into five categories: human, crop, animal, 

land and labor, and water (Table 2).  Human constraints are included to define the human population in 

each zone, in each season, which is fixed throughout the year. 

Although a shift of resources to the production of high-valued crops such as potatoes and anise 

could result in significant income growth, such a dramatic change is unlikely in the short run, given the 

potential problems associated with resource bottlenecks, nutritional deficits and price variability.  To be 

consistent with the short-run nature of the model and historical production patterns in the region, 

constraints are included for each zone to ensure minimum levels of crop diversity. 

Similar to animal activities, animal constraints are driven by the nutritional requirements of the 

various herd categories.  The first of six types of animal-related constraints divide the herd into age-, sex- 

and activity-based categories.  These constraints establish relationships between the sizes of age groups, 

the numbers of males and females, the numbers of sale and replacement heifers and the numbers of 

lactating and dry cows.  Herd size is converted to AUs in the second group of animal constraints.  The 

third and fourth types of animal constraints respectively define aggregate herd nutrient requirements and 

ensure that these nutrient requirements are met.  These constraints determine the levels of canal water and 

nutritional supplements consumed by the herd.  The fifth set of constraints limits the herd size according 

to maximum stocking rates typical to the region.  Finally, a set of milk constraints defines the liters of 

milk that are produced, consumed and sold. 

Land and labor constraints limit the total supply of these resources in each zone in each season.  

The land supply consists of actual or potentially canal irrigable sectors, as identified by Montenegro 

(1998).  Labor supply is limited based on estimates of the total population active in agriculture and the 

number of days worked per month, and is assumed to be non-transferable across zones. 

The last category of constraints defines water constraints.  Although efforts are currently 

underway to systematically measure water volume at multiple points along several of the canals, for the 

purposes of this analysis, it was impossible to identify how much water is taken from the individual 

canals in each zone.  Thus, in the model, canal water is considered to be a global resource among the five 
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canals.  Of the five canals, four begin in the páramo, above the upper zone, and one initiates at an altitude 

of 3,200 masl and is used only by residents of middle zone 2 and the lower zone.  To allow for multiple 

intakes of water along the canals, the first set of constraints defines water use in each zone, with water use 

from each source defined separately.  The second set limits total water use from each source to be less 

than or equal to the estimated supply.7  In addition, for certain allocation scenarios, constraints are 

included that limit water use from both sources at the zone-level.  Water constraints are explained in 

greater detail in Evans (2001). 

DEVELOPMENT OF MODEL TECHNICAL COEFFICIENTS 

The study of resource allocation on a farm requires empirical specification of relationships 

between underlying biological and economic processes (Nicholson, 1990).  This section describes the 

calculation of technical coefficients to quantify the resource requirements for humans,8 crops and animals.  

To account for differential resource availability by season, total requirements of a resource or input are 

disaggregated by wet and dry season when necessary. 

Although farmers in the watershed often utilize a single hectare for the production of multiple 

crops, for ease of measurement, technical coefficients for crops are calculated on a per-hectare basis.  

Crop irrigation requirements, which account for the majority of demand for canal water, are calculated 

using the FAO Penman-Monteith method (Allen et al., 1998).  The crop’s total water requirement during 

month t (REQt) is calculated using the formula: 

 tctot kETREQ ×=  (3) 

 

where ETot is the total amount of reference evapotranspiration during month t and kct is the crop 

coefficient corresponding to the appropriate month of crop growth.  The formula for a crop’s total 

irrigation requirement (IREQ) during its growth cycle is: 

                                                
7 The estimated supply from each source is calculated by varying average canal volume (Proyecto DRI, 
1991) according to assumed monthly fluctuations, and summing the monthly values over the dry and wet 
seasons.  These fluctuations are calculated from weekly volume data collected by the local MANRECUR 
Project from November, 1999 to October, 2000 in the canal San Vicente de Pusir de los Baños. 
8 Based on data reported in Montenegro (1998), a fixed quantity of 3.75 cubic meters of water per month is 
allocated per human for such uses as drinking, washing, cooking and watering small gardens.  The net 
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where t is the total T months in the plant’s growth cycle; REQt is the crop’s water requirement during 

month t; EPt is the amount of effective precipitation during month t; and IE is indicative of the level of 

inefficiency in the system of water distribution. 

A number of sources of data were relied upon for the calculation of irrigation requirements.  

Precipitation data were obtained from Ecuador’s National Center for Hydrologic Resources (CNRH)9 and 

from the International Potato Center.10  Reference evapotranspiration data were from Montenegro (1998).  

Effective precipitation was calculated using the method described in Brouwer and Heibloem (1986).  

Monthly kc values specific to the region were obtained for most crops from Apollin and Eberhart (1998).  

Finally, factors reported in Montenegro (1998), reflecting the degree of efficiency in the capture, 

conduction and application of irrigation water in the watershed’s system of canals, were used to determine 

gross irrigation requirements. 

Data used in the derivation of crop enterprise budgets were for the most part collected by B. Arce 

during the course of fieldwork in the year 2000.  Costs were broken down into six major categories: labor, 

equipment, seed, fertilizer, pest control and transportation.  Levels of investment vary widely between the 

crops that are produced for commercial sale (potatoes, corn, anise), and those which are largely produced 

for home consumption (wheat, sweet potato, white carrot).  Costs and yields are adjusted for crop 

activities where lower irrigation intensities are assumed (Table 3).11 

Enterprise budgets for dual purpose cattle production include the costs of labor, vaccines, 

vitamins and minerals that are directly attributed to each animal.  Costs of producing improved pasture 

                                                                                                                                                       
amounts of human water use in each zone are then adjusted for the effects of conveyance inefficiencies. 
9 As reported by Montenegro (1998) and collected from the meteorological station at El Angel. 
10 Data are monthly measures of rainfall (mm) at four representative meteorological stations: Chalpatán 
(3,360 masl); El Angel (3,055 masl); Bolívar (2,640 masl); and San Vicente de Pusir (1,870 masl). 
11 Although not identical, this formulation is similar to a separable programming formulation to 
approximate diminishing marginal productivity of an input (Hazell and Norton, 1986). 
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are counted as a cost of crop production in the objective function.  Costs are identified separately for 

lactating and non-lactating animals, primarily due to the differences in labor requirements. 

The herd’s energy, protein and water requirements determine the amount of pasture, concentrate 

and canal water needed for dual purpose cattle production.  Utilizing assumptions regarding the quantity 

and quality of daily milk production per cow, as well as average weights and weight gains, the daily feed 

requirements of each type of cattle were determined.12 

Both native and improved pasture are common in the upper zone; in middle zone 1, however, 

native pasture dominates.  Although the use of improved pasture has been shown to allow gains in herd 

size and production per cow (Brockington et al., 1992), due to the costs of labor, seed and fertilizer, 

cultivation of improved pasture involves a greater investment for the producer.  Because the nutritional 

content of both native and improved pasture varies between seasons and between years, average levels of 

nutritional content are calculated and used as technical coefficients in the model.13 

Grain concentrates fed in the watershed generally consist of wheat bran and corn grain.  In the 

model both are assumed to be available for purchase in unlimited quantities, and because they are 

manufactured, content is assumed to not vary significantly between seasons or years. 

 
MODEL VALIDATION AND WATER ALLOCATION SCENARIOS 

The process of model validation includes a comparison of the results of an Initial solution to 

historical production patterns.  Generally, the similarity between the model’s solution and historical land 

use is greatest in the upper zone, and decreases as one moves downstream.  Based on historical data, the 

average percentage of cultivated land utilized for the representative crops in the left margin is greatest in 

the upper zone (83 percent), decreases in middle zone 1 (64 percent) and middle zone 2 (49 percent), and 

                                                
12 Equations for calculating the requirements of heifers and cows are taken primarily from Berger (1999); 
they are based largely on the published requirements of the National Research Council (1989).  
Requirements for steers are based on the National Research Council’s (1996) requirements for beef cattle. 
13 Average nutritional contents of native and improved pasture for each season over a period of three 
years are determined from data provided by Instituto Nacional Autónomo de Investigaciones 
Agropecuarias (INIAP). 
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is at its minimum in the lower zone (30 percent).14  This result is expected, given the greater diversity in 

production made possible by the higher temperatures and levels of solar radiation characteristic of 

downstream areas.  Historical land use patterns for the entire watershed show that the percentage of 

cultivable land left fallow is also greatest in the lower zone (33 percent), which might partially account 

for the relatively low percentage of land sown in the representative crops (Proaño and Paladines, 1998). 

The Initial solution, in which herd size is endogenous, includes no cattle activities.  This result 

supports the contention by Nicholson et al. (1994), that in most Latin American countries, “highland areas 

typically provide greater net returns when dedicated to agricultural enterprises other than livestock” (p. 

312).  For the small and medium-sized producers who dominate the watershed, it is likely that cattle are 

raised for reasons other than the monetary income they generate.  The dual purpose production system is 

considered to be especially suited to tropical regions, given its sustainability with respect to resource use 

and consistency with the demand for milk and meat (Restrepo et al., 1991).  Furthermore, in comparison 

to crop production, dual purpose cattle production provides a steady income, which mitigates the risk 

inherent in variable crop prices and the effects of between-harvest periods when savings are low. 

For these reasons, constraints are added to ensure minimum acceptable herd sizes for the upper 

zone and middle zone 1, where minimum herd size is based on cattle population estimates by Arce et al. 

(1993) and Proaño and Paladines (1998).  The validated model is used in all subsequent scenarios for the 

study of water allocation. 

To address the concerns of policymakers, five scenarios are modeled to reveal the effects of water 

allocation on the use of resources and the distribution of income among producers.  First, in the Enforced 

Rights Allocation scenario, water is allocated from the canals strictly according to the pattern of 

ownership of water concessions between the four zones.  This provides a starting point for policymakers, 

as it represents the possible consequences of enforcing the set of laws that currently govern water use. 

Although this analysis reveals flaws in the current system, in reality, concessions are not 

enforced.  Because much of the responsibility of water management is left to local residents, actual water 

                                                
14 Average percentages of cultivated area in the representative crops in each zone from 1996-1999, based 
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use is driven by the laws of nature, rather than by the system of concessions.  Thus, relative allocation is 

largely a function of location; upper zone farmers require less than their legal allocation, and the surplus 

water flows downstream.  Middle zone producers are therefore in a position to use water beyond their 

legal allocation.  The Actual Allocation scenario, designed to represent reality and used as a baseline of 

comparison for further analysis, portrays the distribution of water that results when illegal water use is 

allowed by middle zone producers. 

Assuming the goal of policymakers goes beyond the identification of current system failures, it is 

useful to study alternatives to the Enforced Rights and Actual Allocation scenarios.  Three additional 

scenarios are analyzed that specifically address the concepts of efficiency and equity.  In the Efficient 

Allocation scenario, water is allocated by the basic economic criterion that the value of its marginal 

product is equal among all uses.  This scenario is an efficiency “ceiling” for policymakers, representing 

the highest achievable level of aggregate income, given current resource availability and relative prices. 

If policymakers instead seek to give some priority to equity considerations through resource 

(re)allocation, they must first clearly define their equity goal.  In the Land-based Allocation scenario, 

equity is defined in terms of water allocation – an equal amount of water is allocated per hectare of land 

throughout the watershed.  In contrast, when the goal is defined in terms of an equitable income 

distribution, a preferable standard for water allocation is that given by the Irrigation-based Allocation 

scenario, in which water is allocated in proportions that reflect the differences in average per-hectare 

irrigation requirements.15 

MODEL RESULTS 

Table 4 reports the activity levels for the five modeled scenarios.  Water use in each zone is 

reported separately for the dry and wet seasons.  Crop production activities are differentiated according to 

the levels of irrigation intensity.  Herd size in animal units and the volume of milk produced in the upper 

                                                                                                                                                       
on survey data collected in 2000. 
15 In both the Land-based and Irrigation-based Allocation scenarios, human water use is subtracted from 
the total water supply prior to establishing the proportions of water allocated for agricultural use in each 
zone. 
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zone and middle zone 1 are also presented.  Table 5 displays total income and income distribution, 

represented by various measures, between the four zones in each case. 

Key Results.  The results of the Enforced Rights Allocation scenario demonstrate that if water were 

allocated strictly according to the legal concessions in the watershed, resource use and income 

distribution would be neither efficient nor equitable.  Although irrigation requirements are relatively low 

in the upper zone, producers there own more than 71 percent of the total volume of assigned water.16  

Water is used in a manner that maximizes agricultural income in the upper zone, until land restrictions 

become binding and significant surplus water results.  If downstream farmers are restricted from using 

this excess water, more than 50 percent of the area’s total water supply, and 40 percent of total land 

supply, go unused.  Middle zone 1 producers respond by shifting resources to the production of dual 

purpose cattle fed by native pasture, activities that require much less water.  The restrictions in resource 

use and resulting shifts to less profitable activities have a severe impact on income generated.  As shown 

in Table 5, total income in the Enforced Rights Allocation scenario is limited, and its distribution is 

highly inequitable, heavily favoring upper zone producers. 

From these results it appears that the illegal use of water by middle zone farmers is in fact 

consistent with the goals of efficiency and equity.  The Actual Allocation scenario, which relaxes the 

restrictions on middle zone water use, clarifies the importance of location along the canals to water use 

and income distribution.  Although lower zone farmers receive their full legal allocation (approximately 

25 percent of total supply in both seasons), they earn only 11 percent of aggregate income (Tables 4 and 

5).  Despite the fact that the majority of water is used in middle zone 2 and the lower zone, it is not 

enough to offset the limitations imposed on downstream producers by differences in per hectare irrigation 

requirements.  Both income per capita and income per hectare decrease as one travels downstream. 

One alternative to the current system of water management is to allocate water according to a 

standard of economic efficiency.  Water is allocated to the uses that bring the greatest return; hence, total 

income in the Efficient Allocation scenario is the greatest of the five studied scenarios.  Not surprisingly, 

                                                
16 Water concession information was obtained from Ecuador’s National Center for Hydrologic Resources 



 

 

14 

maximizing the efficiency of water use also brings the most efficient use of land resources; the percentage 

of land supply that is cultivated in the lower zone is at its maximum, 56 percent.  Similar to the results of 

Bernardo et al. (1988), the scenario demonstrates the potential for efficiency gains due to water 

reallocation.  In comparison to the Actual Allocation scenario, although water use in the upstream zones 

decreases by an average of 49 percent in the dry season, the average decrease in income in these three 

zones is less than 11 percent due to more efficient water use. 

Results from the model reveal that policies designed to achieve equity as defined by water use 

versus income distribution criteria will have quite different effects on both resource use and income 

distribution, and are not likely to be supported by the same groups in the watershed.  The Land-based 

Allocation scenario, which incorporates the standard of equity in water use, makes available an equal 

amount of water, at the water’s source, to each hectare of land in the watershed, ignoring the differences 

in conveyance inefficiencies and irrigation requirements between zones.  Due to these technological and 

climatological factors, the value of this water is much greater to upstream producers than downstream 

producers, and income distribution favors the upper zone and middle zone 1.  An examination of Table 4 

reveals a similarity between the results of the Land-based Allocation scenario and the Actual Allocation 

scenario.  This suggests that, in reality, per-hectare agricultural water allocation is relatively equitable 

among zones.  This does not imply that per hectare water use is equal between zones, as more water is 

required per hectare downstream, resulting in more land being left fallow. 

In the Irrigation-based Allocation scenario, which attempts to achieve equity in income 

distribution, the average seasonal irrigation requirements in each zone are summed and the proportion of 

the total average requirement attributed to each zone in each season is used as a basis for limiting 

agricultural water use.  These proportions naturally increase as one travels downstream, and the scenario 

allocates more water and more income to the lower zone, in comparison to the Land-based Allocation 

scenario.  Lower zone farmers respond by increasing production of all crops, with greatest increases in 

high-value crops such as corn and anise.  As is the case with the Efficient Allocation scenario, the shift of 

                                                                                                                                                       
(CNRH), and is based on information recorded by this agency between 1973 and 1996. 
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water to the lower zone is partly achieved by reducing the levels of irrigation intensity in the upper zone 

and middle zone 1.  Of the five scenarios, the Irrigation-based Allocation scenario does in fact result in 

the most equitable distribution of income.17 

The combined results of the five water allocation scenarios clarify important relationships 

between water allocation and the achievement of efficiency and equity objectives.  The Actual and Land-

based Allocation scenarios demonstrate that an equitable distribution of water will not maximize 

efficiency in resource use nor equity in income distribution.  In contrast, the Efficient and Irrigation-based 

Allocation scenarios result in the most efficient use of water and land resources, as well as the most 

equitable distribution of income, indicating that these two goals can be consistent with one another.  

Summarizing the results, improvements in efficiency (in resource use) and equity (in income distribution) 

are generally associated with (1) a shift of water to the lower zone, and (2) the use of lower levels of 

irrigation intensity upstream. 

It is important to note, however, that even if policymakers were to take action to change water use 

according to these standards, it is unlikely that all residents of the watershed would support such an 

initiative.  Although a water management policy may potentially improve the efficiency of resource use 

and increase total income in the watershed, it may not be implemented because a majority of farmers are 

better off without the policy (Ray, 1997).  This is true of upper zone farmers in the El Angel watershed, 

who are currently favored with respect to the ownership of water rights as well as position along the 

canals, and who have no incentive to support such a change. 

Resource valuation. A comparison of shadow prices (reported in Evans, 2001) reveals a 

relationship between the allocation of water and the value of land. 18  In the water 

allocation scenarios which favor the upper zone (the Enforced Rights Allocation 

                                                
17 As a percentage of per capita income in the highest-income zone, the difference in per capita income 
between the highest-income zone and the lowest-income zone is 23 percent in this scenario, compared to 
95 percent, 75 percent, 50 percent and 76 percent in the Enforced Rights, Actual, Efficient and Land-based 
Allocation scenarios, respectively. 
18 Labor is never a limiting resource in any scenario, and therefore its shadow price is always zero.  The 
same can be said for the shadow price of land in the lower zone.  In all modeled scenarios, water 
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scenario and the Land-based Allocation scenario), the shadow price of land is greatest 

in the upper zone, and decreases as one goes downstream.  Conversely, with respect to 

water allocation, the Irrigation-based Allocation scenario favors downstream producers.  

In this scenario, the value of land is greater in middle zone 1 and middle zone 2 than in 

the upper zone.  Thus, changes in water allocation would not only influence farmers’ 

annual incomes earned from crop and cattle production, but could also simultaneously 

influence producers’ wealth by either increasing or decreasing the value of their land 

assets. 

Taxation strategies. The shadow price of water in the Efficient Allocation scenario, 

$0.053/m3 in the dry season and $0.036/m3 in the wet season, is an estimate of the value 

generated per cubic meter of water when the marginal value of water is equal among 

uses.  These dry and wet season values are used as a basis for the study of water use 

taxation strategies.  Water use is taxed at these levels; the tax is then gradually increased 

in the upper zone and middle zone 1 and gradually decreased in middle zone 2 and the 

lower zone. 

The series of tax strategies studied using the model demonstrate that taxation can be used as a 

tool for shifting water resources and altering levels of efficiency and equity.  As the tax on upstream 

water use is increased and the tax on downstream water use is decreased, the marginal value of water to 

downstream producers increases relative to upstream producers, and water and income therefore flow to 

the lower zone.  At the same time, aggregate income increases and aggregate tax revenue decreases, due 

to the simultaneous increase in water use and decrease in tax rates downstream.  Levels of production, 

and therefore income, in the upper zone, middle zone 1 and middle zone 2 prove to be quite insensitive to 

                                                                                                                                                       
limitations restrict land use in this zone to less than 60 percent of the total available land supply. 
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the imposition of taxes on water use, with primary changes occurring in production of the same crops at 

lower irrigation levels and the shift of land from improved to native pasture. 

 
CONCLUSIONS AND POLICY IMPLICATIONS 

Results from this study indicate that the actual allocation of water from the five studied canals, 

characterized by middle zone water use beyond the legal allotment, is more consistent with the goals of 

economic efficiency and income equity than the allocation of water that would result if current water 

rights were strictly enforced.  Water rights are not strictly enforced, as local water user groups are 

hindered by a lack of government involvement, limited access to monetary and technological resources 

and poor communication.  Under these circumstances, a producer’s ability to obtain and utilize water 

resources to earn income is largely dependent upon his or her proximity to the water’s source.  Upstream 

farmers have no incentive to use water efficiently, and in the face of uncertainty, downstream farmers 

have an incentive to use water illegally. 

By examining alternative standards for water allocation, this study provides guidelines for 

policymakers who seek to change these incentives.  On one end of the policy spectrum is the strict 

enforcement of current concessions, which results in an inordinate waste of both water and land.  At the 

other end is an economically efficient allocation of water that maximizes the value of agricultural output.  

Although this standard results in the greatest level of total income, it also requires the most dramatic shift 

of water resources to the lower zone. 

Water can be used more efficiently in the lower zone for a number of reasons.  First, the 

sensitivity of income to changes in water use is relatively small in the three upstream zones, due to the 

fact that crops in these zones may be produced at lower levels of irrigation intensity without severely 

reducing yields.  Second, yield losses associated with reduced irrigation intensities in the lower zone 

offset the gains that could be made from using this water elsewhere, given relative price levels.  This is 

largely the result of the third factor driving water downstream, the limited upstream land supply.  Much of 

the water flows to the lower zone because the land constraints become binding in the three upstream 

zones. 
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Given the differences in the relative values of land and water resources, allocating an equal 

amount of water to each hectare of land will not provide the necessary incentives for improvement.  If 

agricultural water could be allocated in proportions that reflect these differences, upstream farmers would 

have an incentive to utilize water more efficiently, and downstream farmers would have a sufficient 

supply to ensure a more equitable distribution of income. 

The existence of a market for water rights might provide the necessary incentives to alter water 

use patterns.  Unfortunately, due to a lack of communication between water user groups and government 

organizations, current water rights are not reliably recorded and local water organizations have neither the 

tools nor the authority to make and enforce decisions with respect to water use.  Furthermore, water 

ownership is tied to land, which seriously inhibits the transferability of water in accordance with 

differences in its marginal value product among uses. 

Results from this analysis also show that, if effectively implemented and enforced, a water use 

tax could be used to redistribute water as well as raise funds for canal improvements.  Given the minimal 

impact of the tax on cropping patterns, tax revenue could also be used to equalize income distribution 

without significantly changing production levels through direct payments to targeted taxpayers. 

In conclusion, achieving efficiency in resource use and equity in income distribution requires a 

significant transfer of water resources to the lower zone, largely accomplished through a shift to lower 

irrigation intensity crop activities upstream.  However, at this time, the design and implementation of a 

policy to stimulate such a shift would be a difficult task, given the vastly different conditions faced by 

upstream and downstream users and the resulting incentives for water use.  An alternative would be to 

make a one-time investment in technology to modernize the canals and improve levels of efficiency, 

thereby reducing the locational discrepancies between zones. 

The implications and conclusions of this study are of relevance not only to the Andean Sierra, but 

could be applied to any region or watershed facing the challenges of increasing agricultural production, 

food security and achieving greater efficiency and/or equity in the allocation of irrigation resources.  

Using the terminology of Omezzine et al. (1998), for those watersheds where the “horizontal” expansion 
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of agricultural areas is not possible due to limitations in land and water supply, methods must be 

determined to “vertically” expand yields by increasing land and water efficiency and productivity.  The 

mathematical programming model could be modified to reflect the meteorological and agricultural 

characteristics of other watersheds to determine the relative value of constrained resources and to provide 

guidelines for policymakers with respect to resource allocation. 
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TABLES  
Table 1. Breakdown of the Left Margin of the El Angel Watershed by Zone

 Elevation  Average Average Average  

range Land Human farm size precipitation evapotrans.

Zone (masl) (hectares) population (hectares) (mm/year) (mm/year)

Upper 4,000-3,100 552 6,356 3.88 1,046 722

Middle 1 3,099-3,000 910 955 903

Middle 2 2,999-2,400 732 807 1,100

Lower 2,399-1,500 747 2,244 3.15 416 1,421

 

Sources: Montenegro (1998), Proaño and Paladines (1998), MANRECUR Project, CIP.
a 
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Table 2. Model Activities and Constraintsa

Human Human

     Population in each zone      Define populations in each zone

Crop Crop

     Hectares of crop/pasture production      Equate seasonal production

      - For each zone       - For each zone

      - For each level of irrigation intensity       - For each level of irrigation intensity

Animal Animal

     Primary age groups      Divide age groups by sex and activity

     Activity- and sex-based subgroups      Relate sizes of age groups 

      - Male/female calves      Convert herd to animal units (AUs)

      - Replacement/sold heifers      Define aggregate nutrient reqts.

      - Steers      Ensure nutrient reqts. are met

      - Lactating/dry cows      Determine cattle canal water reqt.

      - Culled cows      Restrict stocking rate

     Animal units      Define milk use

     Aggregate nutrient intake       - Production

      - Dry matter       - Consumption

      - Crude protein       - Sale

      - Metabolizable energy Land and Labor

      - Water      Restrict land use based on supply

     Canal water requirement      Restrict labor use based on supply

     Purchased supplemental feeds Water

     Milk activities      Define aggregate water suppliesb

      - Production      Define total water use in each zone

      - Consumption      Restrict water use <= water supply

      - Sale      Restrict water use in each zonec

Water

     Levels of water use
      - From each source of water supplyb

      - For each zone

a Most activities and constraints are defined for both the dry and wet seasons.  The complete

algebraic formulation of the model, including over 200 individual activities and constraints,

is reported in Evans (2001).
b Water supplies enter at the top of the watershed and at the end of middle zone 1.
c For certain water allocation scenarios.

Activities Constraints
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Table 3. Summary of Assumed Crop Input Costs, Yields and Prices

Pricea Costa Yield Costa Yield Costa Yield
($/mt) ($/ha) (mt/ha) ($/ha) (mt/ha) ($/ha) (mt/ha)

Potatoesb 120.00 824.84 15.91

Imp. Pastureb,c n/a 175.31 19,247

Barley 195.00 248.45 2.27 242.25 2.19 236.05 2.10

Potatoesb 120.00 824.84 15.91

Barley 195.00 248.45 2.27 227.17 1.83 207.91 1.43

Wheat 211.00 263.73 2.27 246.36 1.94 230.01 1.64

Corn 243.18 345.10 3.86 334.55 3.65 324.10 3.44

Beans 440.00 222.41 1.00 217.04 0.92 211.72 0.84

Peas 580.00 214.89 1.11 200.23 0.78 187.43 0.49

Corn 243.18 345.10 3.86 282.39 2.46 237.05 1.46

Anise 1,585.58 250.34 0.90 231.24 0.54 217.97 0.30

Sweet Potato 102.94 318.01 9.00 272.77 5.10 242.48 2.53

White Carrot 100.00 318.01 9.00 273.46 5.16 243.33 2.60

Data sources: Arce, fieldwork (2000), Proaño and Paladines (1998), CIP (1990-1992).
a Prices and costs effective as of June, 2000.
b Potatoes and improved pasture are assumed fully irrigated.
c Yield data for improved pasture are annual values of kgDM/ha.  Cost data for improved

  pasture are totals for a 3-year period.
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Table 4. Zone-level Water Use, Crop Production and Cattle Production for the Modeled Scenarios

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet

Upper 1,143,833 773,807 1,143,828 773,806 474,824 630,065 1,143,833 773,807 406,295 538,982

Middle 1 240,770 241,118 1,416,278 867,522 1,184,950 788,766 1,416,278 867,522 697,307 622,748

Middle 2 240,768 254,072 2,212,597 2,578,976 625,422 1,278,029 1,514,288 1,699,156 1,162,979 1,479,559

Lower 1,585,635 1,776,103 1,585,635 1,776,103 4,073,128 4,404,215 1,572,107 1,760,767 3,286,868 4,459,792

Irrig. % Hectares Irrig. % Hectares Irrig. % Hectares Irrig. % Hectares Irrig. % Hectares
Upper Potatoes 100% 353.49 100% 353.49 100% 318.24 100% 353.49 100% 203.56

Barley 100% 35.70 100% 35.70 100% 32.14 100% 35.70 33% 109.65

I. Pasture 100% 162.81 100% 162.81 100% 15.36 100% 162.81 100% 0.00

N. Pasture 0% 0.00 0% 0.00 0% 186.25 0% 0.00 0% 238.80

Middle 1 Potatoes 100% 35.22 100% 240.68 100% 240.68 100% 240.68 100% 240.68

Barley 100% 0.00 100% 336.25 100% 336.25 100% 336.25 100% 67.66

Barley 33% 49.20 33% 0.00 33% 0.00 33% 0.00 33% 268.59

Wheat 33% 18.65 100% 127.42 33% 127.42 100% 127.42 33% 127.42

N. Pasture 0% 806.93 0% 205.66 0% 205.66 0% 205.66 0% 205.66

Middle 2 Corn 100% 0.00 100% 181.78 100% 0.00 100% 159.41 100% 80.84

Corn 33% 24.85 33% 0.00 33% 262.74 33% 57.99 33% 154.48
Beans 33% 38.45 100% 281.26 33% 406.54 33% 336.38 33% 364.11

Peas 100% 12.73 100% 268.96 100% 62.72 100% 178.22 100% 132.57

Lower Corn 100% 68.09 100% 68.09 100% 173.55 100% 67.44 100% 205.81

Anise 100% 66.93 100% 66.93 100% 185.88 100% 66.29 100% 143.22

S. Potato 100% 14.74 100% 14.74 100% 40.93 100% 14.60 100% 31.54

W. Carrot 100% 7.64 100% 7.64 100% 21.21 100% 7.56 100% 16.34
AUs Milk (l) AUs Milk (l) AUs Milk (l) AUs Milk (l) AUs Milk (l)

Upper 391 139,080 391 139,080 391 139,080 391 139,080 391 139,080
Middle 1 1320 469,980 391 139,080 391 139,080 391 139,080 391 139,080

Cattle Production

Crop Production

 Irrigation-basedEnforced Rights Actual Efficient Land-based
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Table 5. Breakdown of Income Distribution by Scenario and Zone

Enforced Land- Irrigation-

 Rights Actual Efficient based based

Total Income $631,631 $1,168,852 $1,294,589 $1,137,726 $1,127,115

Zone income $392,159 $392,159 $361,869 $392,159 $251,235

Percent of total 62.09% 33.55% 27.95% 34.47% 22.29%

Income per hectarea
$710 $710 $656 $710 $455

Income per capitab
$493 $493 $455 $493 $316

Zone income $82,533 $359,656 $347,041 $359,656 $314,181

Percent of total 13.07% 30.77% 26.81% 31.61% 27.87%

Income per hectarea
$91 $395 $381 $395 $345

Income per capitab
$69 $303 $292 $303 $264

Zone income $24,358 $284,456 $226,694 $254,599 $242,316

Percent of total 3.86% 24.34% 17.51% 22.38% 21.50%

Income per hectarea
$33 $389 $310 $348 $331

Income per capitab
$24 $285 $227 $255 $243

Zone income $132,581 $132,581 $358,985 $131,312 $319,383

Percent of total 20.99% 11.34% 27.73% 11.54% 28.34%

Income per hectarea
$177 $177 $481 $176 $428

Income per capitab
$121 $121 $329 $120 $292

a Calculated based on total land supply.
b Based on total population dependent upon agriculture.
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