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Abstract: 

This paper compares methods to remedy missing value problems in survey data.  The commonly used 
methods to deal with this issue are to delete observations that have missing values (case-deletion), replace 
missing values with sample mean (mean imputation), and substitute a fitted value from auxiliary 
regression (regression imputation).  These methods are easy to implement but have potentially serious 
drawbacks such as bias and inefficiency.  In addition, these methods treat imputed values as known so 
that they ignore the uncertainty due to ‘missingness’, which can result in underestimating the standard 
errors.  An alternative method is Multiple Imputation (MI).  In this paper, Expectation Maximization 
(EM) and Data Augmentation (DA) are used to create multiple complete datasets, each with different 
imputed values due to random draws.  EM is essentially maximum-likelihood estimation, utilizing the 
interdependency between missing values and model parameters.  DA estimates the distribution of missing 
values given the observed data and the model parameters through Markov Chain Monte Carlo (MCMC).  
These multiple datasets are subsequently combined into a single imputation, incorporating the uncertainty 
due to the missingness.  Results from the Monte Carlo experiment using pseudo data show that MI is 
superior to other methods for the problem posed here. 
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I. Introduction 

This paper compares methods to remedy missing value problems in survey data.  The analysis 

shows that commonly applied methods such as deleting the observations with missing values can result in 

bias and inefficiency.  The method of Multiple Imputation appears to provide more reliable estimates for 

imputing missing values. 

 The increasing interest in valuing environmental goods has created an explosion of data 

collection and estimation techniques for nonmarket valuation.  The most widely used methods of 

nonmarket valuation, such as the Contingent Valuation Method (CVM) and the Travel Cost Method 

(TCM), commonly involve some form of survey data collection.  Frequently, some people leave questions 

partially unanswered.  Although more rigorous methods to deal with non-responded items are available 

(e.g., Mitchell and Carson, Hanemann and Kanninen), typically researchers apply “ad-hoc” methods, such 

as deleting observations with missing values, replacing missing values with sample mean, or imputing 

with regression estimation.  These methods are easy to implement but could be inefficient or cause bias.  

An alternative method is Multiple Imputation (MI), a method developed by Rubin (Rubin, 1987).  MI 

uses some imputation methods, such as Data Augmentation (DA) to create multiple complete datasets, 

each with different imputed values due to random draws.  These datasets are subsequently combined into 

a single imputation.  The relative advantages of this different approach have not yet been explored in the 

nonmarket valuation setting.    

The purpose of this paper is to compare MI to the ad hoc applications.  The analysis shows that 

MI is superior to other methods, with performance closest to the full model.  Case deletion results in 

significant efficiency loss and small power.  Mean imputation had lower R2 compared to the full model 

and MI, and causes bias in some of the coefficients.  Regression imputation exhibits the worst fit in terms 

of R2, and downward bias in standard errors with slight bias in coefficients.      
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II.  Background 

Common Methods and Their Drawbacks: 

The common practices when facing missing values are (1) deleting observations that have 

missing values (case deletion), (2) substituting a sample mean for missing items (mean imputation), and 

(3) substituting a fitted value from auxiliary regression (regression imputation).  These are easy to 

implement but have serious drawbacks.  I will give a quick overview on the drawbacks in following.  For 

more complete discussion, see Little and Rubin (1987).    

Case deletion is particularly common in practice.  However, by throwing away the information in 

incomplete observations, it is inefficient and also can bias the estimation when data are missing in a 

systematic manner.  Mean imputation, also a common method, can distort the marginal densities of the 

data and the covariance among variables.  The regression method will underestimate the variability of the 

data by substituting fitted values from the regression.  An extension of regression imputation is a method 

called stochastic regression imputation in which an error term is added to the imputed value.  It will 

reduce the bias somewhat but will still not be able to mimic the variability of the full data.  Regression 

methods in general are sensitive to model specification.   

The common drawback in all these methods is that they ignore the uncertainty due to the 

‘missingness’ by treating imputed values as known.  As a result, standard errors for the estimated 

coefficients are underestimated.  This will increase the probability of Type I error (Schafer and Olsen, 

1998).  

Development of Multiple Imputation: 

Rubin first proposed the paradigm of MI in late 70’s (e.g., Rubin, 1977, 1978), but it was used 

only by experts since it typically required extensive statistical knowledge and computational tools.  

However, recent improvement in the power and convenience of personal computers along with the 
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development of the method of Markov Chain Monte Carlo (MCMC) simulation in the late 90’s have 

made MI more accessible.1         

Assumptions: 

Before going into the details of the MI algorithm, the assumptions necessary for its application 

are discussed.  First are the assumptions on the population distribution and parameter distribution.  The 

common assumptions are normal or logistic distribution.2  Schafer points out that the normal distribution 

works well in many discrete cases even when the normal assumption is only approximately true (Schafer, 

1997).   

The other key assumption is on the mechanism of “missingness” (Rubin, 1976, Little and Rubin, 

1987).  MI assumes that data is missing at random (MAR).  This is different from saying that the dataset 

has no systematic way of missing values, which is called missing completely at random (MCAR).  

MCAR is equivalent of random sampling, where the missingness is independent of both observed and 

missing data.  MAR assumes that the missingness depends on observed data, but is independent of the 

missing data.  Another way to put this is that the datum is a random sample of the subset of the dataset.  

MAR is less restrictive than MCAR, since the missingness can depend on the variable itself through its 

relationship with other variables (but not directly).   

Schafer and Olsen (1998) have an illustrative example.  Consider two variables Y and X where 

Y=(Y1, Y2, …, Yn) and X=(X1, X2, …, Xn) and assume that some correlation exists between the two 

variables.  For simplicity, assume further that Y has complete data while X has some missing values.  

Under MCAR, Y does not provide any information on missing X’s since they are missing completely at 

random.  However, under MAR, Y contains some information on the missing X’s, for example, X’s 

                                                 
1 For example, Schafer developed PC-based software for computing MI.  The software can be downloaded from his webpage 
(http://wtat.psu.edu/~jls/mysoftwa.html).  King modified Schafer’s algorithm (King, et. al, 2000) and developed a Gauss-based 
software available on his web (http://Gking.Harvard.Edu). There is also a built-in S-Plus library called “missing”.  It was built 
upon Schafer’s code, and it also provides useful commands to analyze the pattern of missingness.    
2 In S-Plus, a researcher can choose Gaussian, log-linear, or mixture of two as an estimation model, where log-linear 
can be used to impute factor/discrete variables. 
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corresponding to larger values of Y are more likely to be missing.  They also discuss that when both 

variables have missing values, the principle here still applies.     

More formally, let R be the matrix of missing pattern, with the same dimension as the dataset.  

Each element of R takes the value 1 if the datum is observed and 0 otherwise.  Let ξ be the unknown 

parameter(s) of the missing mechanism.  Then, MAR is defined as follows: 

| , , | ,obs mis obsP R X X P R Xξ ξ( ) = ( )  

This indicates that the probability of observing or missing the datum depends on the observed data and 

the missing mechanism, but not on the missing portion of the data.   

  Another assumption for MI is called “distinctness” (Rubin, 1976, Little and Rubin, 1987).  This 

is not an intuitive assumption, especially from frequentist perspective.  It means that the “joint parameter 

space of (θ, ξ) must be the Cartesian cross-product of the individual parameter spaces for θ and ξ 

(Schafer, 1997)”.  In Bayesian sense, this basically says that the joint prior distribution of the model 

parameter and the parameter of the missingness mechanism can be factored into the independent marginal 

densities, i.e., π(θ,ξ) = πθ(θ)πξ(ξ), where π’s are prior distributions.  When MAR and distinctness hold, 

the missingness mechanism is said to be “ignorable”.  If ignorability holds, then the likelihood function 

can be factored into two terms; one only involving model parameters and observed data, and one with the 

missingness mechanism and missingness parameters.  Thus, we can ignore the nuisance term of the 

missing mechanism.3  As one can imagine, ignorability makes the estimation a lot easier. 

In general, the ignorability assumption holds when missingness is under the control of the 

researcher.  For example, double sampling (concentrating efforts to obtain responses of the random 

sample of non-respondents from the first phase, for more discussion on double sampling, see for example, 

Rao 1983) is known to create a MAR situation.  In this case, responses from non-respondents who are not 

chosen for the second phase are missing, but are missing randomly within the subset of non-respondents.  

Thus, the MAR assumption is satisfied.  For item-nonresponse cases in CVM studies, whether MAR 

                                                 
3 For more detailed discussion on the assumptions, see Rubin (1976), Little and Rubin (1987) and Schafer (1997).  
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holds or not is more ambiguous.  Cases in which ignobility does not hold are still subject to an active 

discussion among statisticians.4,5 nonetheless, researchers may use MI as an alternative for other ad-hoc 

methods since these methods require even stricter assumptions. 

The Multiple Imputation Algorithm:  

The basic idea of MI is to estimate the missing value with an unbiased estimator using the 

parameter estimates and observed data, repeated M times.  This will create M full datasets with imputed 

values different from each other due to the random draws.  Since these are full datasets, a researcher can 

conduct analysis in the usual manner.  At the end, the M results are combined, incorporating the 

uncertainty due to the missingness.  The imputations can be obtained through a number of methods.  One 

of the most popular approaches is the combination of EM and DA.  This approach can be divided into 

three steps.  (1) EM estimation; (2) DA estimation using EM as starting values; and (3) combining results 

from DAs to obtain the overall estimation. 

Step1: Expectation Maximization 

EM is essentially maximum-likelihood estimation, utilizing the interdependency between missing 

values and model parameter θ.   Let X be the dataset; then X can be partitioned into ,obs misX X X= ( )  

where obsX contains the observed items of the data and misX contains the missing items of the data.  Then, 

the log-likelihood function can be written as 

( | ) ( | ) log ( | , )obs mis obsl X l X P X X cθ θ θ= + +  

 since  
 ( | ) ( | ) ( | , )obs mis obsP X P X P X Xθ θ θ=   

where ( | )obsl Xθ is a log-likelihood function of model parameters given observed data, and 

( | , )mis obsP X X θ is called the predictive distribution of the missing data given θ.  c is an arbitrary 

constant.  However, ( | , )mis obsP X X θ  is unknown since Xmis is not observed.  Instead, we take the average 

                                                 
4 See Schafer 1997, section 2.5.3, for example, for more discussion on the literatures of nonignorable cases.  
5 One of the familiar examples of nonignorable case for economists is Heckman’s censored model (1976).   
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of the likelihood function over the predictive distribution ( )( | , )t
mis obsP X X θ  where ( )tθ is an estimate of 

θ for the tth iteration.  Then, use ( )( | , )t
mis obsP X X θ  to calculate the log-likelihood iteratively until it 

converges.  For more complete discussion of EM, see Dempster, et. al. (1977).    

 
Step2: Data Augmentation: 

While EM converges to a single parameter estimate deterministically, DA will estimate the 

distribution ( | , )mis obsP X X θ  itself using Markov Chain Monte Carlo (Tanner and Wong, 1987).  The 

idea is to draw a missing value estimate 1t
misX ( + )  from the distribution ( )( | , )t

mis obsP X X θ  where ( )tθ is an 

estimate of θ for the tth iteration.  Then, draw a new estimate 1tθ ( + ) from the complete-data posterior 

( 1)
,( | ).t

obs misP X Xθ +   This yields a stationary distribution ( | )mis obsP X X , the true distribution of missing 

values conditional on observed data from which we can draw an estimate of missing values. 

 Assessing convergence is an important issue in MCMC.  We need to check if the 

stationary distributions are attained so that draws from these distributions are in fact, from the 

desired distributions.  Schafer suggests to look at the auto-correlation functions and time-series 

plots (Schafer, 1997).  If distributions converge, auto-correlations should die out and time-series 

plots exhibit white noise.  Researchers also should use enough burn-in period so that draws are 

from the stationary distribution.  Burn-in period is pre-convergence iterations not used to the 

actual analysis.  Auto-correlation and time-series plots help researchers to determine the length 

of burn-in periods that ensures the convergence.  For more detailed discussion on MCMC, see 

Robert and Casella (1999).          

Step3: Combining Results 

In MI, each missing value is imputed for M times, which yields M complete datasets.  M is 

typically 3 to 5, since more than 5 iterations does not gain much more efficiency (Rubin, 1987).  The 
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point-estimate is simply the mean of the M imputations.  The variance estimate is calculated by 

incorporating the uncertainty of substituting missing values (Rubin, 1987, also see Rubin, 1996). 

The point estimate is the mean of M imputations, thus calculated as: 

1

1 M

m
m

Q Q
M =

= ∑  

Let the estimated variance for each imputation be Vm, then the within-imputation variance V and 

between-imputation variance B can be calculated as follows: 

1

2

1

1

1

1

M

m
m

M

m
m

V V
M

B Q Q
M

=

=

=

= ( − )
−

∑

∑
 

The total variance T can be obtained by calculating: 

1
1T V B

M
= + ( + )  

The estimator is distributed approximately as: 

1/ 2 1
~ , 1

1v

Q Q V
t where v is v m

T M B−

 − = ( − ) 1+ ( + ) 
 

Thus, use this distribution for inferences such as hypothesis testing and confidence intervals. 

III.  An Application 

Data Generating Process and Estimation Models 
 

There are three variables, X1, X2, and X3, generated as multivariate normal random variable with 

different values for correlations ρ, where ρ takes the values 0.1, 0.5, and 0.9. 

2
1

2
2

2
3

50 50 15 50 3065

~ 20 , 50 15 15 15 30

40 50 30 15 30 30

X

X N

X

ρ ρ
µ ρ ρ

ρ ρ

  ( )( ) ( )( )        = Σ = ( )( ) ( )( )            ( )( ) ( )( )     

 

The chosen sample size is n = 100.  These variables are to mimic explanatory variables to calculate 

willingness to pay (WTP) for some good.  In particular, X1 can be thought of as an income variable, and 
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X2 and X3 are some other socioeconomic variables or taste variables that affect WTP.  The mean and 

variance of X1 were taken from the income variable in a CVM study by Larson and Lew (2000).  Mean 

and variance for the other two variables are arbitrarily chosen such that sensible values of WTP are 

generated.  WTP is calculated as a linear function of these variables plus an error term.  Parameters are set 

to be  100, 0.4, 2, 0.8Tβ = ( − ) .  For example, WTP for the ith individual is calculated as 

1 1 2 2 3 3 ~ 0, 40i i i i i iWTP X X X where Nα β β β ε ε= + + + + ( )  

Here, WTP is directly observable and is a linear function of the explanatory variables.  It is also assumed 

that this is a true data generating process.  Surely, this is not what we face in reality.  However, we would 

like to compare how well different methods works.  For such comparisons, a simple model is more 

desirable because it allows for comparisons of differences purely due to the imputation methods.   

After the complete data is generated, some data points are deleted according to a mechanism such 

that some observations on X1 are missing for higher values (above average) of X3, some X2 are missing 

for lower values (below average) of X3, and some X3 are missing for higher values of X1 (above average) 

with probability 0.6, 0.5, and 0.5 for X1, X2, and X3 respectively.  This process deletes between 20 to 40 

percent of each variable.  The model applied for the estimation is a simple linear model.  The methods of 

case deletion, mean imputation, stochastic regression imputation, and MI are applied to impute missing 

values.  The imputed values for a sample iteration is shown in Appendix A.  For comparison, estimation 

using the full data before the data deletion is also calculated.  After models are fit, sum of squared errors, 

mean squared errors, and numerical power of tests are calculated.  This process is repeated 300 times as a 

Monte Carlo experiment.  

IV.  Estimation Results 

R2: 
R2 measures the goodness of fit of the model.  In particular, it shows the proportion of the total 

variation of data explained by the explanatory variables.  Thus, R2 is an indicator of the overall 

performance of the model.  One of the advantages of using R2 is that it makes the comparison among 

datasets with different correlation coefficient ρ easier since it has a range from 0 to 1.  Figure.1 shows the 
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density plot of R2 for each method, with different correlation parameter ρ.  Note that case-deletion is not 

shown here because it is not directly comparable due to the discarded observations.   

Larger values for R2 indicate a better fit.  Thus, more distribution mass towards the right is an 

indication of better performance.  Also, Table.1 shows the mean of R2.   

Table.1  Mean of R2 for each imputation method 

rho Full Model Mean Imputation 
Regression 
Imputation 

Multiple 
Imputation 

0.1 0.39 0.25 0.18 0.41 
0.5 0.37 0.23 0.22 0.38 
0.9 0.20 0.11 0.13 0.23 

 

The performances of imputation methods depend on the correlation parameter ρ.  For ρ=0.1, R2 is 

larger, and it decreases as the correlation becomes higher, in general.  This is because of the 

multicollinearity among variables.  The full model has R2 of 0.39 on average even when ρ=0.1.  This is 

relatively low due to the large variability of error terms in the data generating process.  MI performs 

closest to the full model, while both mean imputation and regression imputation diverges from the full 

model.  Regression imputation performs poorly overall, although it did slightly better with ρ=0.5.  It is 

counterintuitive that regression imputation did not do well when correlation is high.  It is probably 

because of the multicollinearity.  Mean imputation did better than regression imputation for ρ=0.1, but it 

becomes the worst method for larger correlations.  Overall, MI did as well as the full model, while mean 

imputation and regression imputation performed poorly.   

Coefficient Estimates: 
 

The density plots of coefficient estimates are the convenient way to compare the quality of 

estimated coefficients, in terms of bias and standard errors.  Figure.2 shows density plots of each 

coefficient for 300 Monte Carlo iterations for each method with different correlation among variables.  

From the peak of each density, we can assess the bias since these distributions are roughly symmetric.  

The dispersion of the density shows the variability of estimates.  Thus, efficiency can be assessed by the 

dispersion of the density. 
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The density plots show that the full model is always unbiased.  There seems to be some 

dispersion from the full model for all the methods, but most of them are minor.  However, mean 

imputation shows strong bias for the estimate of β3, especially when correlation is 0.1 and 0.9.  They are 

quite dispersed from the full model.  For all the cases, case deletion seems to be unbiased, but has 

particularly large dispersion.  This shows the significant loss of efficiency in estimation due to the thrown 

away data.   

In many cases, the density plots of case deletion contain zero, which suggests that it may wrongly 

fail to reject the null that coefficients are zero.  The shape of the density plots of regression imputation is 

“slim” compared to the full model.  This confirms that regression imputation tends to underestimate 

standard errors.  Regression imputation uses auxiliary regression to predict the missing values.  It 

overstates the correlations, which results in smaller standard errors.  In the density plots, regression 

imputation has slight bias in some cases.  This is potentially a serious problem especially when estimates 

are biased, since it could result in completely wrong inferences.  Overall, it seems that MI stays closest to 

the full model, with no major bias or loss of efficiency.    
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Figure.1 Density of R2 for each method with different correlation parameter rho 
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Figure.2  Coefficient estimate of each method with different correlation parameter rho 
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Beta1 (True beta1 = 0.4) 
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Beta2 (True beta2 = -2) 
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Beta3 (True beta3 = 0.8) 
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Power of test: 
 

The third important criterion is whether the model correctly rejects the null that coefficients are 

zero when they are significant in truth.  Table.2 shows how the ratio that each model rejects this 

hypothesis correctly at the 95% confidence level in 300 repetitions. 

Table.2 Ratio of correctly rejected null that coefficient is zero 
rho=0.1  alpha beta1 beta2 beta3 

 Full model 1.00 1.00 1.00 1.00 

 Case deletion 0.99 0.99 0.76 0.79 

 Mean imputation 1.00 0.93 0.97 0.97 

 Regression Imputation 1.00 0.95 0.96 1.00 

 Multiple Imputation 1.00 0.99 1.00 0.99 

 Multiple imputation (including b/w variability) 1.00 0.95 1.00 0.99 

rho=0.5  alpha beta1 beta2 beta3 

 Full model 1.00 0.91 1.00 0.98 

 Case deletion 0.98 0.30 0.87 0.67 

 Mean imputation 1.00 0.80 0.97 0.97 

 Regression Imputation 1.00 0.87 0.97 0.95 

 Multiple Imputation 1.00 0.92 0.99 1.00 

 Multiple imputation (including b/w variability) 1.00 0.71 0.98 0.98 

rho=0.9  alpha beta1 beta2 beta3 

 Full model 1.00 0.53 0.85 0.67 

 Case deletion 1.00 0.15 0.26 0.23 

 Mean imputation 1.00 0.45 0.24 0.57 

 Regression Imputation 1.00 0.71 0.34 0.20 

 Multiple Imputation 1.00 0.72 0.78 0.78 

 Multiple imputation (including b/w variability) 1.00 0.54 0.64 0.60 

 

For all the cases, MI correctly rejects the null more frequently than case deletion, mean 

imputation, and regression imputation.  Case deletion performs quite poorly, rejecting null very few 

times.  This is because of the efficiency loss we observed in Figure.1.  Mean imputation and regression 

imputation performs better than case deletion, but not as well as MI.  Neither model perform well when ρ 

is high.  When correlation is high among variables, multicollinearity will result, which inflates the 
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variance.  The poor performance when correlation is high is due to the multicollinearity.  MI outperforms 

all the other methods in terms of the power of the test. 

V.  Conclusion 

In general, the performance of the imputation methods depends on the quality of the data and how 

well the full model describes the data.  Given that the data and full model are good, MI seems to 

outperform other methods, at least for the problems analyzed here.  The analysis shows strong evidence 

that MI provides the closest estimation results to the full model.  Case deletion seems to be unbiased, but 

has a significant efficiency loss, which results in low power.  Mean imputation had lower R2, bias in some 

estimates, and lower power than MI.  Regression imputation had the lowest R2, downward bias in 

standard errors, and lower power.    

In this analysis, I used a simple linear continuous model to illustrate the comparison.  However in 

the CV literature, it is more common to observe categorical variables.  A natural extension of this 

research is to see how well MI works for categorical data.  The effect of misspecification would be 

another topic to explore.  In this paper, the model was “correct”.  However in any real situations, we 

never know what the true model is.  Also, the validity of the ignorability assumption in the survey data 

should be explored more extensively.         

In conclusion, MI is computationally more intensive than other methods, but it appears well 

worth implementing for better estimation results. 
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