
SOUTHERN JOURNAL OF AGRICULTURAL ECONOMICS DECEMBER, 1988

PREFERENCE AMONG RISKY PROSPECTS UNDER
CONSTANT RISK AVERSION
Bruce A. McCarl

Abstract among prospects change (hereafter called

Risk analyses often require a measure of in- breakeven risk aversion coefficients-BRACs)
dividual risk aversion. Here a procedure is given known distributions and a constant risk
presented to calculate risk aversion param- aversion utility function. The secondary pur-
eter ranges wherein individuals would exhibit pose of this paper is to present some informa-
preference among a set of risky prospects. tion on how RISKROOT might be used.

Discussion is also presented about the

Key words: expected utility, risk aversion similarities of this procedure to the Meyer
coefficient. procedure.

JUSTIFICATION OF ASSUMPTIONS
The comparison of risky prospects usually Four principle assumptions were identified

requires an assumption about individual risk in the previous section:
preference. Sometimes risk preference
assumptions can be relatively simple, such as 1 constant absolute risk aversion utility
indifference to risk (profit maximization) or functions,
risk aversion (second degree stochastic 2. finite number of mutually exclusive
dominance). However, more complex assump- prospects,
tions are often required for conclusive 3. discrete distributions, and
dominance results. For example, one might 4. data free of sampling error.
define a range for the risk aversion coefficient The justification for these assumptions and
(RAC) as commonly done with stochastic the effects of relaxing them, where known,
dominance with respect to a function (Meyer) are presented in this section.
or with mean variance programming models The first and most basic assumption is that
(Apland et al.). Specifying such a range can be of constant absolute risk aversion. This
difficult and often requires complex deduction assumption has been used or dealt with by
or wholesale adoption of the results of other many previous researchers. For example,
researchers (Raskin and Cochran). Freund showed that this assumption, coupled

In this manuscript, an alternative approach with normality, justifies use of the E-V model.
is presented wherein risk aversion coefficients Pratt presented functional forms exhibiting
are found which differentiate among the pros- such characteristics (which will be used
pects. However, to do this, assumptions are herein). Hammond assumed such utility func-
needed regarding utility function form and tions and derived results indicating when deci-
data availability. In particular, a constant ab- sion makers with nonconstant risk aversion
solute risk aversion utility function is assumed could make decisions using constant RAC
as well as the availability of a discrete set of functions as proxies. Yassour et al. used the
data on a finite number of mutually exclusive assumption in conjunction with continuous
risky prospects. Furthermore, these data are distributions to derive their EUMGF
assumed to be free of sampling error. Thus, approach which was later used by Collander
the primary purpose of this paper is to pre- and Zilberman. Kramer and Pope (1986) argue
sent a method (hereafter called RISKROOT) that constant absolute risk aversion is assumed
which finds those RACs at which preferences "in most applications... largely because wealth
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data is [sic] frequently unavailable or of ques- related issues showing the sensitivity of
tionable accuracy" (p. 189). Finally, Tauer, stochastic dominance analysis to sampling er-
following Hammond, utilized the assumption rors. The RISKROOT method is undoubtably
to study alternative RACs to find intervals in sensitive to sampling error.
which the BRACs lie. In the studies assuming
such a utility form, there are three rationales THE PROBLEM-BEHAVIOR OF BRACS
used for the constant RAC assumption: Hammond proved that given two risky pros-
1) analytical convenience, 2) empirical inabil- pects whose cumulative distributions crossed
ity to specify the wealth dependency of the once, there would be a BRAC such that below
RAC, and 3) the implication of Hammond's (p. the BRAC one prospect dominated, while
1061) derivation which shows that when deci- above it the other dominated. Hammond then
sion makers have decreasing absolute risk suggested that the BRAC could be simply
aversion but their RAC, at their current computed. In particular, he states that if one
wealth level, is at or above a BRAC, the makes distributional assumptions, this would
preference orderings will be consistent with require "little more than a table of moment-
the decision makers' preferences, given that generating functions and a few pencil calcula-
the distributions cross only once. One would tions" (p. 1059).1 Hammond's requirement of
also speculate that the same result would hold one crossing is potentially restrictive. The
for the largest BRAC above a decision maker's underlying basis for this requirement is
current RAC when the decision maker has in- Karlin's result which implies that there are no
creasing absolute risk aversion. These more BRACs than there are distribution
justifications will be used herein, although crossings. Thus, one crossing means a max-
their implications will be discussed when imum of one BRAC, but 10 crossings means
multiple distribution crossings and BRACs there could be as many as 10 BRACs. Moving
are present. away from Hammond's continuous distribu-

The finite number of mutually exclusive tion and single crossing assumptions con-
prospects assumption is adopted to allow pair- stitutes the essence of this paper.
wise comparison of a finite set of alternatives. First let us investigate the number of cross-
A continuous set of alternatives cannot be ings. Two questions arise:
handled herein and is more conveniently done
using methods such as E-V analysis (McCarl 1) Do cases exst where there are multiple
et al.). crossings? and

The discrete distribution assumption is used 2 )If so, what are the implications on the
herein to differentiate from the EUMGF ap- behavior of the BRACs within those
proach of Yaussour et al., which is the con- cases?
tinuous distribution analogue of the method To investigate these questions, data were
developed here. The assumption of a distribu- drawn from a number of previously published
tional form and a constant absolute risk aver- agricultural economic studies. Table 1
sion utility function would allow one to set the presents the results, by study, summarizing:
moment-generating functions for the pros- a) the number of observations in the study
pects equal and solve for the BRAC. If the (there could be as many crossings as one less
distribution form is of a known continuous than the number of observations); b) the
nature and a moment-generating function is number of distributions considered; c) the
known or derivable, then the moment- number of possible pairwise comparisons of
generating function approach should be used distributions; d) the number of distribution
and, following Hammond, the BRAC comparisons with zero crossings, one crossing,
calculated. The procedure here should only be and more than one crossing; and e) the max-
used with discrete distributions or when imum number of crossings observed. Note
moment-generating functions applicable to that multiple crossings were observed
the distributions at hand are not available. somewhere in all data sets except that of

The fourth assumption, that the data are Kramer and Pope (1981).2 Thus, it is not
free of sampling error, is subject to further unreasonable to expect multiple crossings.
research. Pope and Ziemer have explored Consequently, we now turn to the implica-

'The Yassour et al. EUMGF approach is an implementation of this procedure.
2Kramer and Pope argue that "in all of the empirical studies we are familiar with, distributions have been found to cross no more than

once" (1986, p.189), but this does not appear to be generally true.
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tions of multiple crossings for BRACs. Standard
One way of gaining insight into the effects of Deviation 22.9 23.7

multiple crossings involves consideration of a
graph of the RAC versus the utility difference Note that distribution 1 has a much higher
for a case set of data. Klemme presents mean and a slightly smaller variance than
returns to land and management data for four distribution 2. Thus, one would expect
corn tillage options. Considering the alter- distribution 1 to dominate in most cases.
natives Conventional Tillage (CT) and Till However, note that distribution 2 has a higher
Plant (TP), the data cross five times. A graph minimum and a higher maximum. Thus,
of the utility difference between CT and TP following the arguments in Grube, for ap-
from two constant risk aversion curves as the propriate values of the RAC, distribution 2
RAC changes are given in Figure 1. In this will be preferred to distribution 1 for both
case, TP dominates CT for risk aversion coef- highly risk preferring and highly risk averse
ficients smaller than -0.00778 and larger than individuals.
-0.00426, while CT is dominant for RACs be- The above graph and data show several
tween -0.00778 and -0.00426.3 Here, there notable things about the problem of finding
are two BRACs, occurring at -0.00778 and BRACs:
-0.00426. This shows that multiple crossings 1) the difference between utilities forms a
can mean multiple BRACs. function which can oscillate (i.e., no par-

A few words of interpretation are in order ticular nice properties such as concavity
to indicate why one might expect two distribu- or convexity can be counted on);
tions to exhibit multiple BRACs. Consider the
following hypothetical data for two prospects. 2 )multiple BRACs can occur; and
^ ^Observation Distribution i - st-^.Z ̂ 3 )the utility difference always approaches

Observation Distribution 1 Distribution 2 zero as the RAC approaches zero or
1 10 11 positive infinity. This can be seen by
2 20 12 plugging these values for the RAC into
3 30 13 equation (1) below.
4 40 14
45 0 15 We now turn our attention to the problem of

6 60 16 finding BRACs.

7 70 17
8 80 81 FINDING BRACS

Mean 45.0 25.6 The problem of finding BRACs between two

TABLE 1: SUMMARY OF CROSSINGS OF CUMULATIVE DISTRIBUTION FUNCTIONS IN PREVIOUS STUDIES

Number of Number Possible Number of Pairwise Comparisons
Data Points of Dis- Number of

Study Per Dis- tributions Pairwise Zero One Multiple Signs for
tribution in Study Comparisons Crossings Crossing Crossings any Pair

Danok et al.a 15 15 105 14 71 20 5
Lee et al.b

-377 acres 31 2 1 0 0 1 2
-720 acres 31 2 1 0 0 1 10
-930 acres 31 2 1 0 0 1 3

KlemmeC 8 4 6 0 0 6 5
Kramer and Poped 10 8 28 21 7 0 1

(1981)

a Drawn from the table on p. 706.

b Drawn from Lee (pp. 184-94).

c Drawn from the corn data, p. 552.

d Drawn from p. 125.

3In addition there is a root at about 0.5727, but at this point utility is on the order of 10 -44 and finding the root is numerically difficult.
In addition, this result implies that a very high risk premium (more than $1000/acre) will be paid to insure a slightly greater minimum
return per acre ($1.25).
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distributions with nI observations in the first above the upper search limit (set follow-
and n2 in the second is to find a RAC such that ing McCarl and Bessler) was conducted.
the utility difference (UD) is effectively zero. As the RAC gets large there is a cross-
Algebraically, the problem is to find those ing at 0.57265, but at this point the risk
RACs such that: premium is $1030/acre, which far over-

r n1 -rxi 1 whelms the means of CT and TP
(1) UD = E Pil[-Ae ]- (around $230/acre). Simultaneously util-

Li=1 ity is of the order 10-44 and the utility
difference is of the order - 10-50.

n 2 -rxi2 Thus, this point could well be disregarded.
I Pi2 [-Ae = 0,4 3) For the pair CT/NT, the distributions
i = 1 _ cross twice, but CT is always dominant.

4) For the pair CP/TP, TP is always dom-
where r is a RAC; A is positive one if r > 0, inant.
negative one if r < 0; i denotes observation; 5) For the pair TP/NT, TP is always domi-
Pij denotes the probability of observation i for nant.
distribution j; and xi denotes the ith observa- 6) For the pair CP/NT, three crossings
tion on the jth distribution compared. were found, but CP was dominant

Given that the UD function is not convex or everywhere. However, dominance
concave, a general grid search is used to everywhere by CP is inconsistent with
discover the BRACs. The algorithm used, the maximin rule since the maximum
hereafter called RISKROOT, has been com- returns under NT exceed those for CP.
puterized in FORTRAN for PC and other Exploring large RACs yields a root at
computers (McCarl, 1987) and can be obtained 0.11838. Again, this root is suspect as it
by contacting the author. The basic procedure corresponds to a risk premium of
used in this algorithm is: a) initially develop a $185/acre.
grid of possible RACs; b) evaluate whether
the utility difference changes signs (has a root) Summarizing BRACs for Multiple
between any two of the grid points; and c) if Comparisons
sign changes are found, then find the final When the algorithm is applied to a set of
BRAC using a binary search. Steps b and c of data containing more than two distributions,
this procedure are repeated until all RACs in- results are generated for each pairwise com-
tervals have been examined. parison. These can be summarized into an

overall set of results. The summarization pro-
Example #1 cedure basically places all the BRACs on one

The results arising using the RISKROOT scale and examines all pairwise results be-
The results arising using the RISKROOT tween the BRACs to identify the dominant

procedure are possibly best demonstrated tween the BRACs to identify the dominant
set in each interval. Redundant information is

using an example. Klemme's four corn tillage deleted (see McCarl, 1987).
data depicts distributions for Conventional deleted (see Mcarl,
Tillage (CT), Chisel Tillage (CP), Till Plant Example #2
(TP), and No Till (NT). In this data, six unique
pairwise comparisons are possible. The The RISKROOT procedure when applied to
results are as follows: the Klemme data set yielded multi-

1) For the pair CT/CP, the distributions distributional results identical to the results
cross four times, but CT is dominant for above (since the CT and TP alternatives
all risk aversion coefficients. dominated the other alternatives). Thus, we

2) For the pair CT/TP, the distributions present summary results using data from
cross five times, and BRACs are found Danok et al., regarding the returns to
at -0.00778 and -0.00426 with CT machinery complements on a midwest crop
dominant between them and TP outside farm under stochastic weather events. The
of them. Furthermore, the maximin rule results involve 105 pairwise comparisons.
indicates that CT should dominate as These comparisons may be summarized as
risk aversion increases. Thus, a search follows:

4This equation is not defined at r = 0. The RISKROOT algorithm and the computer program written to implement RISKROOT use a

comparison of the means to insure consistency at r=0.
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Dominant below the smallest BRAC for those with in-
Machinery creasing absolute risk aversion below the

Complement RAC Range ___ smallest (including most negative) BRAC, and
2 RAC < -0.0000557 f) for those with constant risk aversion utility

11 -0.0000557 < RAC -0.0000073 functions or utility functions closely approx-
9 0.00001073 RAC < 0.0000121 imated by such (Tsaing).9 0.0000121 < RAC

These results show, for example, that for risk Developing Magnitude Estimates on
averters with a constant RAC exceeding BRACs
.0000121, machinery complement 9 is the best
while complement 3 is dominant for those Many researchers have difficulty estab-
below this value and above -. 0000073. These lishing the appropriate RAC range in an ap-
results are consistent with the Danok et al. plied study. ases have arisen where values
results which identify complements 3 and 9 as too lrge have been used (e.g., Grube) or
those meriting consideration when assuming where values have been simply (and possibly
risk aversion. inappropriately) adopted from other studies

(see Raskin and Cochran). Furthermore, the
HOW BRACS CAN BE USED Meyer program is notorious for numerical

overflow errors when the maximum RAC isNow that the RISKROOT method for find- o o o wh t ma is
ing BRACs and the basic nature of the results too large, while E-V analysis frequentlying BRA .s and .basic. natur of the results reports alternatives which do not use the fullhas been introduced, it is worthwhile to ad- la endowment for a RAC which is too largeland endowment for a RAC which is too large.dress the issue of how the resultant BRACsdcan be uisd Thse aohor fteresue ftnr waB s Thus, information on the appropriate order of
can e used. The author foresees four ways magnitude for the RAC would be helpful.

BRA~Cs can be used.: Such data could be developed in the E-V case
by using RISKROOT on the probability1) presenting choices to decision makers, distributions under alternatives constituted

2) developing order of magnitude esti-2) developing order of magnitude esti- by a minimax, a maximax, and a maximum ex-
hmates ton BRACs for use with methods pected value plan (all of which could easily be

uchas the Meyerand/orE-V approaches, generated using the programming model).
3) studying how BRACs affect choices and Turning to Meyer's program, one can find

drawing implications for other approaches, unanimous intervals anywhere between the
and interior BRACs or anywhere outside the ex-

4) studying how data manipulations affect treme values but not crossing the BRACs
BRACs and distribution choices. (McCarl, 1988). Thus, the program results pro-

vide a guide for selecting intervals when using
The use of RISKROOT in each of these set- the Meyer program.

tings is discussed below.
Studying How BRACs Affect Choices

Presenting Choices Under this application, RISKROOT can be
used to see how sensitive the choice among

As partially illustrated in the above ex- prospects is to variations in the risk aversion
amples, one of the possible usages of parameter. As such, one would be able to in-
RISKROOT involves sorting through a set of vestigate the type of behavior expected from
data to identify which prospects are preferred an E-V or EUMGF approach when comparing a
for which RAC range. The RISKROOT pro- number of selected alternatives. Results from
cedure would give unequivocal results in this the analysis in the development of
setting regardless of utility function: a) if a RISKROOT show that the results can be
single alternative was found to dominate quite sensitive with flipflops in preferences
everywhere, b) for all risk averters if all roots where multiple crossings are present as in the
found were in the negative risk aversion example above.
range, c) for all risk preferers if the roots
were only in the positive range, d) for Studying Consequences of Data
preference results above the largest BRAC Manipulations on BRACs
for those with decreasing absolute risk aver-
sion with a RAC at current wealth smaller RISKROOT provides an interesting way of
than that BRAC, e) for preference results studying the consequences of changes in the
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basic data assumptions. For example, in ex- Second, cases were found in the risk prefer-
periments with rounded, smoothed, and ring range where an item may initially
manipulated data, it was found that: dominate, then be dominated, then dominate

again. This was the case in the Klemme data
a) rounding Klemme's data to the nearest $ above. However, multiple roots among a pair

(dropping pennies with the mean on the were not found for risk averse RACs (i.e.,
order of $250/acre) led to the elimination those greater than 0). But this would probably
of a crossing and a BRAC, plus a 400% occur if Klemme's data were all changed in
change in the largest BRAC; sign.

b) comparing results using Day's raw data Third, multiple BRACs were frequently
for corn nitrogen fertilization versus a found to be the case.
Pearson I distribution fitted to the data Fourth, one distribution is always dominant
altered the BRAC from .1226 to .0883, for each RAC value except at the exact BRAC
while applying Anderson's recommenda- crossing points where one is indifferent be-
tion to Klemme's data in example #1 tween the prospects. This result carries
above altered the BRACs found from two through to the multi-distribution case. Conse-
to none and changed the number of cross- quently, more definitive dominance results
ings from 5 to 3; and can be expressed than, say, under other

c) adding a constant (as in wealth) to the stochastic dominance forms. However,
data did not alter the risk aversion stronger assumptions are being made relative
results.5 However, multiplying the data to the utility function.
by a constant led to a new BRAC equal to
the old one divided by the constant (as COMPARISON WITH MEYER'S
proved in Raskin and Cochran). COMPROE ER

General Results with RISKROOT Readers may be interested in some com-
parison with the Meyer procedure. First, we

There also were general results that were must note there is a fundamental difference.
revealed when developing and using Meyer's results, while derived using a com-
RISKROOT. puter program containing an exponential util-

First, no fixed relationship was found be- ity function (as noted in Kramer and Pope,
tween the number of crossings and the 1986), are developed based on a theorem
number of BRACs, other than conforming to which holds for any shape of the risk aversion
Karlin's result that the number of crossings parameter, r(x), such that the numerical
provide a bound on the maximum number of values of the r(x) are between the two con-
BRACs. Cases were found where there were stants. RISKROOT identifies BRACs, but
ten crossings but no BRACs, while simul- under the constant r(x) assumption. Ex-
taneously cases were found with four cross- perimentation with Meyer's program shows
ings and three roots. that if, for example, RISKROOT identifies a

5This is probably best seen by investigating the effects of adding wealth in equation (1). For simplicity here we assume n1 =n2 =n. The
result is

n -rxil -rxi2
UD = E Pi[-Ae -(-Ae )]= 0.

i=l

Now, assuming that each of the xik's are really wealth (w) plus some observed specific income level (Yik), the equation becomes
n -r(w+Yil) -r(w+Yi2)

.E Pi[-Ae -(-Ae )]=0i 1

n -r-rw -rYi -rw rYi2
= E Pi[Ae e -(-Ae e )]=0

i=l

=e n -rYil -rYi2 1
= e -rw Pi [Ae -(-e )] =0

and e-rw can be divided out not affecting the root.
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pair of BRACs, that anywhere between the where preferences change. However, these
BRACs intervals for the Meyer program can RACs, while more discriminating, are based
be found exhibiting the same preference on more restrictive underlying assumptions.
(McCarl, 1988). Results of no dominance from RISKROOT should be useful for sorting out
Meyer are only found when the interval preferences if the assumptions are met,
crosses a BRAG or when too large of an inter- developing RAC estimates for use in other
val is used. For example, when applied to the studies, studying the relationship between
example #1 data, a set of overlapping RACs and dominance, and studying the conse-
preference intervals could be found between quences of distributional smoothing and/or
-0.00778 and -0.00426. data manipulation.

CONCLUDING COMMENTS The FORTRAN program underlying this
This paper outlined the RISKROOT pro- procedure is available and documented in

cedure which finds breakeven risk aversion McCarl (1987). The procedure is available for
coefficients between pairs of distributions the PC or any machine with a FORTRAN
under the assumption of an exponential utility compiler and costs $5.00 plus the price of a
function. RISKROOT finds the RAC values 360K floppy disk.
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