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GENERALIZED STOCHASTIC DOMINANCE: AN
EMPIRICAL EXAMINATION
Bruce A. McCarl

Abstract analyses in the literature generally involve an a
Use of generalized stochastic dominance (GSD) priori numerical specification of the RAC bounds.

requires one to place lower and upper bounds on the Alternatively, one could use a numerical search tech-
risk aversion coefficient. This study showed that nique to discover RAC intervals wherein GSD dif-
breakeven risk aversion coefficients found assuming ferentiates among the risky prospects. Hammond, in
the exponential utility function delineate the places a non-GSD context, developed theory and methods
where GSD preferences switch between prospects. for the discovery of numerical RACs that differen-
However, between these break points, multiple, tiate between two prospects (hereafter called
overlapping GSD intervals can be found. Conse- breakeven risk aversion coefficients BRACs)
quently, when one does not have risk aversion coef- under a constant absolute risk aversion assumption.
ficient information, discovery of breakeven McCarl (1988) reviewed agricultural applications of
coefficients instead of GSD use is recommended. Hammond's procedure and developed a computer
The investigation also showed GSD results are in- implementation.
sensitive to wealth and data scaling but are sensitive The ultimate purpose of this study was to see
to rounding. whether numerical techniques can be used to find

GSD risk aversion bounds. The interrelationships
Key words: risk, generalized stochastic between the BRAC and GSD techniques were ex-

dominance, risk aversion amined. In addition this study examined: (a) inter-
coefficients vals where dominance holds, (b) cases under which

~Stoh dmnc GSD preference switches between prospects, and (c)
Stochastic dominance has become a popular the numerical properties of GSD.
method for the analysis of agricultural data. It
provides a way of ranking risky alternatives without GSD Definition Used in this Paper
detailed knowledge of decision-maker preferences. Meyer(1977) originally developed GSD as a tech-
However, in many cases, first and second degree nique that could guarantee dominance under the
stochastic dominance cannot fully rank the alterna- assumption that the decision-maker's RAC fell be-
tives. Consequently, some analysts have had to turn tween a lower [ r(x) and an upper [r2(x) bound,
to stronger assumptions. In particular, Meyer's where x represents wealth. In Meyer's (1975) com-
(1977) generalized stochastic dominance (GSD) puter program and in the empirical literature, a spe-
with its accompanying computer program (Meyer cial case of GSD is used where the RAC bounds are
1975) has become a common technique. Raskin and independent of wealth, thus being constants (r, r2
Cochran cite 17 studies using risk aversion coeffi- Herein, GSD preference is defined to occur when:
cients (RAC), the majority of which use some formcients (RA), the majority of which use some form Distribution F dominates distribution G as long as
or another of GSD. Furthermore, articles employing te dision F dom inate s d istribin G as long as
GSD have appeared in each of the last four volumes R (r i i i
of this journal including Goh et al.'s recent GSD 
software article. The theoretical background regard- FINDING RAC BOUNDS
ing GSD is presented in Appendix A.

GSD supports preference rankings when the The investigation began with the objective of find-
decision-maker's RAC is assumed to fall within a ig alues for andr such that the interval between
predetermined, numerically specified interval. Such ri and r2 is as large as possible with GSD preference
numerical specification can be difficult since RAC's maintained. However, empirical experience quickly
are, in general, individualistic. However, the GSD revealed two things:
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1. The maximum upper bound (r2) for the RAC Table 1. Dependency of Maximum r2 on ri for
interval, such that GSD preference Klemme Data at Selected Values of riinterval, such that GSD preference

exists, depends, in general, on the numerical Intervals where GSD can be founda
value of the lower bound (r) , or the ri Maximum r2
minimum lower bound depends on the

-0.020 -0.00485upper bound.
-0.019 -0.00452

2. The RAC bound interval could not span a
-0.018 -0.00415

breakeven risk-aversion coefficient in the
Hammond and McCarl (1988) sense. -0.017 -0.00373

., .-0.016 -0.00325
The evidence and concepts supporting these state- -0
ments is given below. 0015 -0.00270

-0.014 -0.00207
First, the interrelationship between ri and the max- -0013 -0.00132

imum r2 is an empirically observed relation. This -001
-0.012 -0.00043

can be demonstrated using Klemme's data on corn
tillage practices (p. 552). RAC intervals were found -0011 +0.0006
over which GSD preference held using Klemme's -0.010 +0.00203
distributions for chisel tillage and till plant. These -0.009 +0.00379
were derived using a procedure that finds the -0.008 +0.00524
"largest permissible" r2 given an rl such that GSD -0.007 +0.00708
preference is maintained. This is done by first find- -0.006 +0.00946
ing an rl, r2 pair where GSD preference holds (such +0.01259
a pair can be found by setting r2 to a value very close
to ri) and then successively making r2 larger I until -0.004 +0.01684
r2 is found where GSD preference exists and where003 +0.02283
r2 GSD preference fails. Subsequently, a numerical -0.002 +0.03183

A
search is done between r2 and r2 until the "largest -0.001 +0.04668
permissible" value of r2 is found for which GSD +0.001 +0.17962
preference occurs (see McCarl (1990) for a com- +0.002 >0.50000 b

puter program implementing this procedure). aln all cases, the 'till plant" distribution is preferred.

The consequent results for selected rl values are bThis range exceeds .5, but above .5, numerical difficul-The consequent results for selected rn values are te o cur.
given in Table 1. Note, when starting from rl equals
-.02 that GSD preference can be found for RACs where preferences shift are also important
rl=-0.02<r<-0.00485 = r2. However, when pieces of information. Hammond introduced the
starting from an rl value within this interval of concept of breakeven risk-aversion coefficients
-0.005, the GSD results hold all the way up to (BRACs) to define places where preferences shift
r2 = 0.01259.2 The Table 1 data support the first under constant absolute risk aversion.3

statement, showing in general the maximum r2 The constant absolute risk aversion BRACs are
depends on rl and vice versa. Evidence presented important determinants of GSD preference shifts as
later shows such dependency does not always occur.. can be shown using the data given in King and

1 Small steps are used in this process to avoid the researcher's being fooled by cases where there are multiple shifts in an
interval.

2 These results were verified for accuracy using the Meyer (1975) program with identical results achieved for the indicator
function (Appendix A, equation 2) but numerical tolerances are used in deriving the results herein. Therefore, dominance
conclusions can differ (i.e. Meyer required the function to be < 0, whereas this study required that the function be 10-24).

3 BRACs are those risk aversion coefficients where the expected utility difference between two prospects f and g equals zero. For

example, given the utility function u(w) = -e-' and the wealth distributions of two prospects f(w) and g(w), then J - e

(f(w)-g(w)) dw=0 is solved for all r. The resultant set of r's are the BRACs mentioned in the text. For decision makers with a
risk-aversion coefficient slightly larger than a BRAC, one distribution will dominate, while slightly below the BRAC, the other will
dominate. Hammond and McCarl elaborate on this concept
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Robison (KR). There is a single BRAC that differen- Table 2. Intervals Found Yielding GSD Preferen-
tiates among KR's distributions 1 and 2 (p. 514) ces for Klemme Conventional Tillage Ver-
which equals 0.0003634. Employing the "largest sus Till Plant Data
permissible" r2 finding algorithm and searching up- Dominant
ward from just above the BRAC, GSD preference is ri r2 Distribution
found in the interval (0.00036341, oo). Similarly, if -0.0200000 -0.0113730 Till Plant
r2 is fixed just below the BRAC and a downward -0.0114000 -0.0095605 Till Plant
search is conducted for the smallest permissible ri, -0.0096000 -0.0088256 Till Plant
the GSD preference interval (- oo, 0.00036339) is -0.0088300 -0.0084267 Till Plant
found.4 Inconclusive GSD preference results arise -0.0084300 -0.0081952 Till Plant
from intervals with rl and r2 spanning over the -0.0082000 0.0080537 Till Plant
BRAC (i.e., ri < 0.0003634 < r2). Thus, in this case, -0.0080600 0.0079645 Till Plant
the BRAC delineates the types of GSD preferences 0.0079650 0.0079025 Tilt Plant
^that can befound. -0.0079650 -0.0079025 Till Plantthat can be found.

-0.0079026 -0.0078612 Till Plant
It is not surprising that BRACs delineate places -. 0078613 -0.0078336 Till Plant

where GSD preferences switch. Constant absolute -0.0078337 -0.0078150 Till Plant
risk-aversion is a special case of the utility functions -0.0078151 -0.0078024 Till Plant
falling in the GSD risk-aversion bounds. However,.0077800 0.0077786a Till Plant
in general, BRACs do not fully define GSD

-..0077600 -0.0077529 Conventionalpreference intervals as Meyer's analytical results do -0.00700 -0.007 Conventional
not extend to the entire range between the BRACs. -0.0075300 -0.0074281 Conventional
In the Table 1 case, there are no BRACs in the -0.0074300 -0.0072932 Conventional
interval - 0.0848 < RAC < 0.0848 with till plant -0.0073000 -0.0071230 Conventional
being dominant everywhere. However, many -0.0071300 -0.0069089 Conventional
"largest permissible" GSD intervals arise in this -0.0069100 -0.0066448 Conventional
interval, all exhibiting identical preference to those -0.0066450 -0.0063444 Conventional
found using the BRAC assumptions. A number of -0.0063445 -0.0060248 Conventional
additional investigations were done on the various -0.0060249 -0.0057068 Conventional
data sets, with the universal finding being that the -0.0057068 -0.0054101 Conventional
BRACs denoted preference shifts but not necessari- -0.0054102 -0.0051494 Conventional
ly the limits of "largest permissible" GSD intervals. -0.0042595 -0.0042594 Conventional

Apparently, GSD intervals can be found con- -0.0042590 -0.0042589 b Till Plant
tinuously and overlapping between BRACs. For ex- -0.0030000 -0.0021699 Till Plant
ample, using Klemme's data for conventional and aMcCarl (1988) indentified a breakeven risk aversion
till plant corn tillage, McCarl reported BRACs of coefficient at -0.0077755. Thus, preferences switched
-0.0077755 and -0.0042593, stating that till plant aoud this oint.
dominates for RACs below -0.0077755 or above bMcCar (1988) identified another breakeven risk aver-
-0.0042593 while conventional tillage dominates sion cofficient at -0.0042593.
between these BRACs. A substantial number of runs solute risk-aversion utility function is a special case
were done exploring intervals around these BRACs. of those considered by GSD.
Some are reported in Table 2. There, the interval The results also show GSD preference results can
between BRACs is completely covered with over- oscillate. Several cases arose where prospect 1 was
lapping "largest permissible" GSD preference inter- found to be preferred over a range (RAC < a), then
vals exhibiting the same preference as under prospect 2 over a higher range (a < RAC < b), fol-
constant absolute risk aversion. This leads to the lowed by a return to prospect 1 over a yet higher
case-specific finding that overlapping GSD range (RAC > b). Table 2 provides such an example.
preference intervals can appear between the One other question involves intervals where indif-
BRACs, but that the BRACs delineate GSD ference occurs. Authors such as King and Robison
preference shifts. However, this cannot be proved (p. 515) discussed intervals where GSD indifference
using numerical methods, although it appears exits. Examination with both the original Meyer
eminently reasonable given that the constant ab- (1975) program and the program developed based

4 Obviously, ± 00 could not be tried. However, the distributions crossed only once and dominance persisted for large positive and
large negative RACs.
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on the "largest permissible" bound interval proce- also apply to GSD preference intervals. GSD inter-
dure found such intervals do not exist unless either val results for scaled data with RAC bounds ap-
the RAC bound spread is too large or a BRAC is propriately multiplied are identical to those found
spanned. for unscaled data with the original RAC bounds.

OTHER EXPERIMENTATION Sensitivity to Rounding

In addition to the results presented above, a num- McCarl found BRACs to be sensitive to data
ber of other findings were generated. precision and rounding. Given the interrelationships

between BRACs and GSD preference intervals as
Level of Wealth and Addition of Constants discussed above, it appears obvious that GSD would

Experiments were done on the effect of exhibit similar sensitivity. A limited amount of ex-
adding/subtracting a constant from all the data. perimentation verified this. Rounding or otherwise
These experiments were motivated by curiosity as altering the data alters the results. Therefore, GSD
to what happens when including or excluding results are sensitive to data format and certainly
wealth. The hypothesis was that changes in wealth sampling error (for investigations of stochastic
would alter the GSD preference intervals. This dominance sensitivity to scaling, see the literature
hypothesis was not verified. All "largest permis- cited in Tolley and Pope). Consequently, it is impor-
sible" GSD preference results were unchanged by tant to do external work on the distribution before
the addition of positive constants, with the interval using GSD or finding BRACs. Perhaps density func-
identical to all reported significant digits (6). Intui- tion estimation, smoothing, bootstrapping, or some
tively this result can be explained as follows. The other procedure should be employed.
key result in preference determination involves the
final sign of the recursive relation given in Appendix Numerical Stability
A equation 2. The final value of this equation poten- The final issue worthy of brief mention regards
tially consists of a number of terms each involving numerical stability. The GSD approach using fixed
rl or r2. However, the switch from rl to r2 or vice rl and r2 requires evaluation of an exponential utility
versa occurs at the point where an intermediate term function of the form -e~ where r is the RAC and x
(Qn+ 1) in the recursive relationship equals zero. is the level of wealth. Authors such as Danok, Mc-
Addition of wealth under constant rl, r2 would not Carl and White, and Kramer and Pope have used risk
alter the F and G terms but would only shift their aversion parameters with values as large as 0.1 with
location. However, the first derivative of the utility corresponding x values in the 100,000s. This leads
function would be multiplied by a positive constant to an exponentiation with about -10,000 as the
(equaling the utility of initial wealth). This would power. The original Meyer (1975) GSD program as
not change the RAC roots, because the place where well as the program used herein are not accurate on
a function equals zero is not affected by multiplica- virtually any computer when dealing with sums of
tion by a positive constant (i.e. if f(r)*) equals zero, such numbers. GSD users need to be careful to size
then Kf (r*) also equals zero where K is a positive properly the potential RAC intervals using proce-
constant). Also, the final function result would alter dures such as given in McCarl and Bessler (where a
in magnitude but not sign, because it is also multi- bound on the maximum RAC of 20 divided by the
plied by a positive coefficient. Thus, insensitivity to standard error is suggested). For example, the
wealth is not unexpected. In addition, insensitivity Danok, McCarl and White data need a maximum
to wealth is fortuitous given the difficulty of dealing RAC of 0.000011 to rank, while Kramer and Pope's
with wealth and the lack of attention to it inherent in data do not require a RAC above 0.000017.
the literature.

CONCLUDING COMMENTS AND
IMPLICATIONS

Scaling The recent release of Goh et al.'s GSD software,
Yet another possible question involves the impact coupled with the above results, seems to call for

of multiplicative data transformations on GSD inter- some guidance to potential GSD users. Three types
val results (i.e. changes in units from dollars to of implications can be drawn: (1) guidance regard-
thousands of dollars). Raskin and Cochran show in ing when to use GSD and how to select RAC inter-
a different context that, when the data are divided by vals, (2) guidance regarding data preparation before
N, identical results arise if the RACs from before the using GSD and GSD result sensitivity, and (3)
multiplication are multiplied by N. These results guidance on specifying GSD intervals.
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GSD Use and Interval Selection uniformly from all distributions such that the mini-
Probably the most difficult decision when con- mum observation over all the data has a value of one.

sidering using GSD is the selection of the upper and Simultaneously, the values of ri and r2 should be
lower bounds for the RAC intervals. The recommen- sized appropriately. Limits such as 20 divided by the
dations arising from this study are conditional on standard error of the risky prospect could be used as
whether or not decision-maker risk-aversion coeffi- discussed in McCarl and Bessler.
cient information is available. The experiments indicate that GSD results are

If risk-aversion coefficient information is not sensitive to data presentation, manipulation, and
available, GSD should notbe used. ABRAC-finding sampling error. Precision is also an issue. During
procedure such as that given in McCarl (1988) is manuscript review, one reviewer found that small
preferred. Use of arbitrarily chosen non-overlapping changes in the risk aversion coefficient bounds dras-
intervals, as is common in the literature, appears to tically altered the nature of the output from Meyer's
be little more than shooting in the dark. BRACs (1975) program which does not control for numeri-
show where preferences switch and do not require cal stability (i.e. changing a result from dominance
any assumption on RAC magnitude. to non-dominance). GSD users should properly size

On the other hand, if clientele RAC information is data as discussed above. Also, it would be a good
available, BRACs should be found to identify the idea for GSD program developers, such as Goh et al.
places where preferences shift. Subsequently, the to control for numerical errors.
clientele RAC information should be examined rela-
tive to closeness to the BRACs. In turn, GSD may
be used to derive preference information given the GSD Result Interpretation
clientele RAC information. If so, a modified GSD
procedure should be used to find the "largest permis- The numerical results arising above indicate four
sible" GSD preference interval. On the other hand, things that should be considered when interpreting
if working with a decision-maker, one may directly GSD preference results. First, regions of non-
present the choices, or elicit and evaluate actual dominance are composed of smaller regions of
utility. dominance. Apparently, only breakeven points and

no true regions of GSD indifference exist. Second,
ata reparation or GSD between Hammond and McCarl's breakeven risk

During the experimentation in this study when the aversion coefficients, there is a continuous, but
absolute value of the interaction of rl or r2 times potentially overlapping, set of GSD intervals where
wealth was large (say greater than 100), the GSD the same prospect is always preferred. Third,
programs had substantial numerical difficulties. preferences may switch more than once. Thus, if for
Users of GSD should scale ri and r2 or the data so an interval, prospect f is found to be preferred to
that this limit is not exceeded. Also, a constant may prospect g, similar preferences may also be found in
be freely subtracted from all of the probability dis- non-adjacent intervals. Fourth and finally, incor-
tributions (i.e. changing from wealth to current in- poration of wealth does not affect GSD preference
come) without altering the GSD preference results. interval results.
Thus, the researchers may wish to subtract a constant

APPENDIX A.

Theoretical Development of Meyer's GSD Technique
Given two continuous probability distributions, f where F and G are the cumulative probability den-

and g, the theory of expected utility (von Neumann sity functions of f and g, and u'(x) is the first deriva-
and Morganstem) asserts that in order for distribu- tive of the utility function with respect to x.
tion f to dominate distribution g, from an economic ii i niin in v i
agent's viewpoint, the expected utility of distribu- Meyer(1ze conditionin dev
tion f must be greater than the expected utility of GS preference conditions. However, ther tha
distribution g. Mathematically, this has been shown dealng wth a known utty functon, he dealt with
to be equivalent to all utility functions bounded by constraints upon the

1t beeuiaen oRAC. Thus, the conditions Meyer found were con-
(1) J[ F(x)- G(x)] u'(x)dx < 0, ditions where GSD preference occurs for all

0 decision makers regardless of their RAC as long as
their Pratt RAC measure falls between ri(x) and
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r2(x). rl(x) and r2(x) are upper and lower bounds on 1
RAC that potentially depend on x. To derive GSD - G(z)]zz > 
conditions, Meyer set up an optimal control problemJ (z)G(z)]u(z)dz
with the RAC as the control variable: x

r(x)= U (x)T=1X

Problem A 1

i~~~~~~~~1 |r r2 (x) if J [F(z) - G(z)]u'(z)dz < 0.

maximize J [F(x)- G(x)]u'(x) dx x

Meyer indicated that calculation of the Problem A
maximand must be done through a numerical, back-

(u'(x))' = (ux) u) ward recursive calculation. Namely, given a discrete
Iu'(x) u set of points x, the backward recursion involves

integration from xntoxn+ plus the maximand

r -u_(x) < ) r2(X) value from Xn + 1 forward (Qn + 1) as follows:
u'(x) -

Xn+ 1

If the solution to this problem yields a negative (2) Qn = J F(z) - G(z)] u'(z) dz + Q+1
objective function value, the maximum value of the xn
expected utility is negative for all possible RAC
function choices [r(x)] between the RAC bounds Where r2 (x) is used if Qn+1 is nonpositive, and
rl(x) and r2(x) and, therefore, f must dominate g for r(x) is used if Qn + 1 is negative. Subsequently, one
all such r(x) choices. The Meyer GSD preference proceeds to the next point (x,-1) and continues.
proposition may be summarized as: After treating the last point, the overall maximand

If the maximand of the optimal control (Q* = Q1) is obtained. If Q* is negative, there is
problem stated in problem Ais negative, then dominance. However, if Q* is positive, one cannot
f dominates g by GSD for all r(x) falling guarantee GSD preference. It is important to note
between rl(x)and r2(x). that even if, as in Meyer's (1975) program,

Meyer (1977) analytically derived the solution to ri(x) and r2(x) are constants, constant absolute risk
the control problem relying on the linearity of the aversion utility functions are not assumed. Rather
state variable. Such a problem has a discontinuous r(x) is constrained to fall in between the constants
solution arising from the theory of the bang bang rl and r2, but r(x) can exhibit any pattern whether
control problem (See Kamien and Schwartz, p. 186- it be increasing, decreasing, constant, or oscillating
192). The optimal control involves setting the risk within these bounds. An algorithmic step by step

aversion parameter as follows: overview of Meyer's (1975) computer program for
GSD is given in McCarl (1990).
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