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Abstract

This note gives dynamic effects of discrete and continuous explanatory
variables for count data or integer-valued moving average models. An
illustration based on a model for the number of transactions in a stock is
included.
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1. Introduction

This note gives dynamic effects of explanatory variables for count data or
integer-valued moving average (INMA) models with time dependent parame-
ters.
The INMA model of order q was introduced by Al-Osh and Alzaid (1988)

and McKenzie (1988). Brännäs and Hall (2001) summarize previous model char-
acterizations and add two new ones. In essence, the model can be interpreted in
alternative ways, but importantly the first both conditional and unconditional
moments remain the same. Higher order moments such as autocorrelations
differ for the different interpretations.
When it comes to introducing explanatory variables our focus is on the

first order moment functions, and obviously we wish to adhere to an integer-
valued data generating process. This can be accomplished by letting parameters
become functions of explanatory variables and by adopting functional forms
that are consistent with an INMA process. Brännäs et al. (2002) and Brännäs
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and Quoreshi (2006) give empirical results for INMA model with explanatory
variables in tourism and financial research settings. Given such specifications,
obtaining marginal and other dynamic effects on the conditional mean over time
is feasible and of great practical interest.

2. Model

An INMA(q) can be written as

yt = θ0,t ◦ εt + θ1,t−1 ◦ εt−1 + θ2,t−2 ◦ εt−2 + ...+ θq,t−q ◦ εt−q,

where ◦ indicates binomial thinning and the INMA parameters, θ0,t = 1, θi,t ∈
[0, 1], i = 1, . . . , q − 1, and θq,t ∈ (0, 1], are time dependent thinning probabil-
ities.1 In addition, E (εt) = λt. This representation is a generalized model in
that both the θi,ts and the λt are time dependent. It is through these para-
meters that we most simply can include exogenously determined explanatory
variables contained in a vector xt.
For INAR models it appears reasonable to include the effect of explanatory

variables through the AR-parameters, and possibly in terms of λt (Brännäs,
1995). When it comes to including explanatory in INMA models, Brännäs et
al. (2002) in an INMA(1) model lets both θ1,t and λt vary, while Brännäs and
Quoreshi (2006) lets only λt vary with explanatory variables.
For the INMA(q) and conditional on xt it holds that

E (yt) = θ0,tλt + θ1,t−1λt−1 + θ2,t−2λt−2 + ...+ θq,t−qλt−q.

For θi,t a logistic specification is chosen, i.e. θi,t = 1/[1 + exp (xtβi)], while
for λt we consider a static as well as a dynamic specification. Obviously, other
specifications are also possible.

3. Dynamic Effects

3.1 Time Dependent λt

Consider first the conventional count data specification λt = exp (xtβ) together
with time invariant θi, i = 1, . . . , q. Then ∂λt/∂xk,t = βkλt, with k indicating
the continuous x-variable of interest. Since, ∂E (yt) /∂λt−s = θs, for s ≤ q, and
equal to zero otherwise, a marginal change in variable k at time t− s gives the
marginal effect

mk
t,s =

∂E (yt)

∂xk,t−s
=

∂E (yt)

∂λt−s
∂λt−s
∂xk,t−s

=

½
θsβkλt−s, s ≤ q
0, s > q

.

1The binomial thinning operator α◦x = x
i=1 zi, where {zi} is a 0-1 iid random sequence,

with Pr(zi = 1) = α as the thinning probability. Conditionally on x, α ◦ x is binomially
distributed with mean αx and variance α(1 − α)x. Given independence between the zi and
x, E(α ◦ x) = αE(x) and V (α ◦ x) = α2V (x) + α(1− α)E(x). Also, α ◦ x ∈ [0, x].
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Wemay determine the variance for the effect by the delta method, i.e. V (mk,s) =

V
³
θ̂sβ̂kλ̂t−s

´
≈ h0V (ψ)h, where ψ0 = (θ1, ..., θq;β1, ..., βm), and both the co-

variance matrix of the parameter estimator, i.e. V (ψ), and h = ∂mk,s/∂ψ are
evaluated at the estimates.
If xk is a discrete-valued variable, say a dummy variable, it appears more

reasonable to give results of a unit change in xk in terms of absolute or relative
changes in the mean. Let xt denote the base level and the new level by xkt for
a unit change in variable k. Then

∇k
t,s = E

¡
yt | xkt−s

¢−E (yt | xt−s) = θs exp (xt−sβ) [exp(βk)− 1]
≈ θsβkλt−s

and the percentage change

Dk
t,s = 100

E
¡
yt | xkt−s

¢−E (yt | xt−s)
E (yt | xt−s)

= 100 (eβk − 1)
Ã
θsλt−s/

qX
i=0

θiλt−i

!
≈ 100βk

Ã
θsλt−s/

qX
i=0

θiλt−i

!
.

The approximations are for small βk.
Consider next a case of a dynamic specification λt = λαt−1 exp (xtβ). Since

lnλt = α lnλt−1 + xtβ and since ∂ lnλt/∂xk,t−s = (∂ lnλt/∂λt) (∂λt/∂xk,t−s)
it follows that ∂λt/∂xk,t−s = λt (∂ lnλt/∂xk,t−s). By recursive substitution

lnλt = αt lnλ0 +
tX

i=1

αt−ixiβ.

Therefore, ∂ lnλt/∂xk,t−s = αsβk and ∂λt/∂xk,t−s = αsβkλt. In the INMA(q)
model we then get the marginal effect

mk
t,s =

sX
i=0

θi
∂λt−i
∂xk,t−s

= βk

sX
i=0

αs−iθiλt−i

with here and in the sequel θ0 = 1 and θi = 0, i > q. The effects of a discrete
change of a unit size in a variable xk are given by

∇k
t,s =

sX
i=0

θiλt−i
£
exp(βkα

s−i)− 1¤
Dk
t,s = 100 ∇k

t,s/

qX
i=0

θiλt−i.

For the more general case of

λt = λα1t−1...λ
αp
t−p exp(xtβ)
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we employ the companion form⎛⎜⎜⎜⎝
lnλt
lnλt−1
...

lnλt−p+1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
α1 α2 ... αp
1 0 ... 0
...

. . .
. . .

...
0 ... 1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
lnλt−1
lnλt−2
...

lnλt−p

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝
xtβ
0
...
0

⎞⎟⎟⎟⎠
or

Λt = AΛt−1 + zt = AtΛ0+
tX

i=1

At−izi.

We assume that the largest eigenvalue of A is smaller than one, so that At → 0
with increasing t. Here, t is assumed large. Since ∂zi/∂xk,i=(βk, 0, ..., 0)

0 and
Ak =RθkS, withR the right and S the left matrix of eigenvectors, respectively,
and Θ the diagonal matrix of eigenvalues, we have

∂ lnλt
∂xk,t−s

= 10
∂Λt

∂xk,t−s
= βk1

0RθsS1,

where 1 =(1, 0, ..., 0)0. We use this result and ∂λt/∂xk,t−s = λt∂ lnλt/∂xk,t−s
to obtain

mk
t,s = βk

sX
i=0

θiλt−i10Rθs−iS1.

The effects of a discrete, unit change in variable xk are in this case given by

∇k
t,s =

sX
i=0

λt−iθi
£
exp

¡
βk1

0As−i1
¢− 1¤

Dk
t,s = 100

Ps
i=0 λt−iθi

£
exp

¡
βk1

0As−i1
¢− 1¤Pq

i=0 θiλt−i
.

3.2 Time Dependent θi,t

In this case λt = λ and ∂θi,t/∂xk,t = −βi,kθi,t (1− θi,t), for s ≤ q, so that

mk
t,s = −λβs,kθi,t−s (1− θs,t−s) .

The effects of a discrete change in xk are

∇k
t,s = λ

³
θki,s − θi,s

´
Dk
t,s = 100

³
θki,s − θi,s

´
/

qX
i=0

θi,t−i,

where superscript k denotes the new level.
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Figure 1: Estimates of moving average parameters.

3.3 Time Dependent θi,t and λt

Setting θi,t = 1/ [1 + exp (xtβi)] and λt = exp (wtγ) and letting xk,t = wl,t be
the variables of which we wish to obtain effects we get the marginal effect on
the form

mkl
t,s = θs,t−sλt−s

£
γl − βs,k (1− θs,t−s)

¤
and

∇kl
t,s = λt−s

h
eβkθls,t−s − θs,t−s

i
Dkl
t,s = 100 ∇kl

t,s/

qX
i=0

θi,tλt−i.

4. Empirical Illustration

The empirical illustration is based on the INMA(50) model for intra-day data
of Brännäs and Quoreshi (2006). The model explains the number of traded
stocks in Ericsson B, with 50 INMA-lags, see Figure 1 for the estimates, and a
time dependent λt function. The λt is of the form λαt−1 exp(xtβ) = exp(0.283+
0.328 lnλt−1 − 3.892∇pt − 4.154∇p+t + 11.128∇st + 0.242 · 1t), where ∇p+t = 0
for ∇pt ≤ 0 and ∇p+t = ∇pt for positive price changes, ∇st is a spread change,
and 1t = 1(t ≤ 1100). The explanatory variables are discrete and we set λ0 = 8,
∇st = 0 and 1t = 1.
Figure 2 reports effects (∇k

t,s) over time of price changes at time t = 50.
To calculate the effects we use an extension of the ∇k

t,s of Section 3.1, i.e.
∇k
t,s =

Ps
i=0 θiλt−i

£
exp

¡
αs−iδksβk

¢− 1¤, with δks = ±2 and ±5. Two features
5



Time

50 60 70 80 90 100

Ef
fe

ct

-3

0

3

6

9

12

15

-5 ticks

-2 ticks
2 ticks

5 ticks

Figure 2: Effects of discrete price changes at t = 50.

are noteworthy. First, effects converge the further we move from the period
of change. Smaller changes gives faster convergence. Second, the effects of
positive and negative changes in price are not symmetrical. The initial effect
of a negative change increases trading frequency by much more than the trade
frequency decrease due to a positive change. Over all lags the effects of a -5-ticks
change is about 2.5 times larger, while there is hardly any size difference for the
±2-ticks changes.
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