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Abstract

The effects of temporal aggregation on asymmetry properties and the kurtosis
of returns based on the NYSE composite index are studied. There is less asym-
metry in responses to shocks for weekly and monthly frequencies than for the
daily frequency. Kurtosis is not smaller for the lower frequencies.
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1. Introduction

This study focuses on temporal aggregation of the daily returns of the composite
index of the New York stock exchange (NYSE) to weekly and monthly frequencies.
More than 37 years of daily returns are used for the empirical study. The study is
based on the nonlinear asymmetric moving average (asMA) model (Wecker, 1981;
Brännäs and De Gooijer, 1994) with an asymmetric quadratic GARCH speciÞcation
(Brännäs and De Gooijer, 2003) for the conditional variance. The density is speciÞed
as Pearson type IV (Pearson, 1894, 1895; Premaratne and Bera, 2000; Brännäs and
Nordman, 2003b).
For the conditional mean speciÞcation, the temporal aggregation results of Brewer

(1973) have previously been employed by Brännäs and Ohlsson (1999) for the asMA
model when extended by an autoregressive component. Drost and Nijman (1993) gave
temporal aggregation results for weak GARCH models in combination with ARMA
models. They also indicated that the density will approach the Gaussian as the aggre-
gation horizon becomes longer. Empirical results appear to support this tendency in
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distributional convergence (Brännäs and Ohlsson, 1999). It will be an empirical issue
to see whether this remains true in the current setup. Meddahi and Renault (2003)
recently generalized the results of Drost and Nijman (2003) by, e.g., dropping the
symmetry assumption inherent in the weak GARCH model and using a wider class
of volatility models. This class contains our conditional variance model as a special
case. The current model speciÞcation is then richer than, e.g., the GARCH(1,1) of
Jacobsen and Dannenburg (2003).
The temporal aggregation in this study is performed by averaging from the daily

index series and then forming the returns for different frequencies.

2. Model Class and Temporal Aggregation

The present modelling exercise builds on Brännäs and De Gooijer (2003) and Brännäs
and Nordman (2003ab), who used the normal and the log-generalized gamma as well
as the Pearson type IV densities, respectively. Their models have as conditional mean
the asMA speciÞcation

et = E(yt|Yt−1) = θ0 +
q1X
i=1

θ+i u
+
t−i +

q2X
i=1

θ−i u
−
t−i,

where u+t = max(0, ut), u
−
t = min(ut, 0), and Yt = (y1, . . . , yt) is the information set

(Wecker, 1981; Brännäs and De Gooijer, 1994). The zero mean prediction error is
ut = yt−E(yt|Yt−1) and ut = εtht, where ht > 0 is a conditional standard deviation.
The random variable εt is treated as having zero mean and unit variance, and being
conditionally independent of ht. The conditional variance of Brännäs and De Gooijer
(2003) is an asQGARCH speciÞcation

h2t = V(yt|Yt−1) = α0 +
p1X
i=1

(α+i u
+
t−i + α

−
i u

−
t−i) +

p2X
i=1

βiu
2
t−i +

p3X
i=1

γih
2
t−i.

The et and h
2
t conditional moments both catch shocks ut asymmetrically around zero.

One may view the conditional mean as containing not a full risk measure h2t , as in
the CAPM-M model, but an unrestricted reduced form of such a measure.
The density speciÞcations target εt, but knowing more about the implied marginal

or conditional density of the yt variable is obviously also of interest. Brännäs and De
Gooijer (1994) demonstrated that the marginal density for the ARasMA(1, 1) model
(no conditional heteroskedasticity) under a Gaussian assumption on the {ut} sequence
can be skewed. Brännäs and De Gooijer (2003) obtained and used some partial
moment results for an asMA-asQGARCH model under a Gaussian assumption on εt.
We use standardization of the Pearson IV density to zero mean and unit variance,

i.e. we use ε = (η − µ)/σ where µ is the mean and σ the standard deviation of the
Pearson IV distributed variable η. The density for u = εh = (η− µ)σ−1h is obtained
from the density of η as f(u) = fη(u)∂η/∂u. Additional details are given in the
Appendix. The Pearson IV density contains, e.g., widely used densities such as t and
noncentral t as special cases and the Gaussian density as a limiting case.
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Brewer (1973), Brännäs and Ohlsson (1999) and others used q∗i = [(k− 1+ qi)/k]
to relate the order qi of the daily level to the order q∗i of the aggregate level for MA
or asMA models. The [x] denotes the integer value of x and k is the time span, e.g.,
k = 5 for weekly data. For small qi we expect the order of a MA or asMA model to
remain unaltered by temporal aggregation. The presence of conditional variance has
no bearing on this result.
Drost and Nijman (1993) in a slightly different context found that temporal aggre-

gation of a ßow variable yields a weak GARCHmodel also at the aggregate level. They
also gave expressions relating the parameters of two aggregation levels. Empirically
they found the persistence parameter to become smaller. Jacobsen and Dannenburg
(2003) reported similar results in a multi-country study.
Meddahi and Renault (2003) extended the weak GARCH framework of Drost and

Nijman (1993) by their square-root stochastic autoregressive (SR-SARV) model. This
is closed under temporal aggregation. It can be demonstrated that the asQGARCH
belongs to the SR-SARV class so that asQGARCH will remain the speciÞcation also
at lower frequencies. Meddahi and Renault (2003) among other things also showed
that skewness at a low frequency may be due to genuine skewness or to leverage effects
at a higher frequency. The presence of a leverage effect at a lower frequency is due to
leverage at a higher frequency.

3. Results

The estimation results are based on the New York Stock Exchange composite index
for the period December 31, 1965 � May 2, 2003 (T = 9741 observations, source:
Datastream). Daily returns are formed as yt = 100[ln(It) − ln(It−1)], where It is the
index. For lower frequencies It corresponds to the average over the appropriate period.
The daily series has mean 0.023, variance 0.801, skewness -1.51, and kurtosis 37.75.
Nonparametrically (kernel) estimated densities for the daily, weekly and monthly
frequencies are displayed in Figure 1. There appears to be less peaked shape for
lower frequencies and average returns and standard deviations are larger for the lower
frequencies. Figure 2 exhibits the autocorrelation functions for the series and the
squared series. At lag one autocorrelations increase as frequency decreases, while for
larger lags there are small and no systematic differences.
We present results according to the following plan. Using daily data we search

for the best (in terms of the AIC and SBIC information criteria) conditional mean
function using conditional ML under normality. Both information criteria vary little
across speciÞcations and we choose the most parsimonious representation among those
with identical criterion values (two decimals). Next, we add the asQGARCH(1,1,1)
to the conditional mean function and employ the Pearson IV density f(u) to estimate
the best Þtting daily model along with the a, r, δ parameters by conditional ML. This
model is employed for the other frequencies as well. Finally, we estimate restricted
speciÞcations, focusing on the asymmetry in the conditional mean and variance func-
tions. Table 1 summarizes the estimation results for models estimated this way.
For the daily model the two asMA(1) estimates are rather close, but the log-

likelihood values suggest that equality must be rejected by a likelihood ratio test. In

3



Returns

-10 -5 0 5 10

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

Figure 1: Kernel estimated densities for daily (solid line), weekly (dashed line) and
monthly (dot-dashed line) return series.
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Figure 2: Autocorrelations for daily (solid line), weekly (dashed line) and monthly
(dot-dashed line) return series.
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Table 1: Parameter estimates (standard errors in parentheses).

Variable Day Week Month
Conditional mean function

u+t−1 0.142 � 0.280 � � 0.285 � �
(0.018) (0.044) (0.072)

u−t−1 0.152 � 0.213 � � 0.293 � �
(0.018) (0.045) (0.091)

ut−1 � 0.147 � 0.248 0.245 � 0.289 0.273
(0.010) (0.023) (0.023) (0.045) (0.047)

Constant 0.024 0.028 0.048 0.081 0.075 0.460 0.444 0.461
(0.010) (0.008) (0.058) (0.042) (0.042) (0.237) (0.190) (0.187)

Conditional variance function
Constant 0.008 0.008 0.164 0.159 0.079 0.833 0.753 0.974

(0.002) (0.002) (0.074) (0.070) (0.029) (0.688) (0.640) (0.489)

u+t−1 -0.045 -0.048 -0.151 -0.140 � 0.055 0.100 �
(0.011) (0.010) (0.108) (0.103) (0.462) (0.446)

u−t−1 -0.062 -0.061 -0.324 -0.336 -0.438 -1.578 -1.609 -1.348
(0.012) (0.011) (0.113) (0.110) (0.070) (0.604) (0.605) (0.430)

u2t−1 0.054 0.055 0.065 0.064 0.032 -0.058 -0.063 �
(0.007) (0.007) (0.030) (0.029) (0.016) (0.058) (0.057)

h2t−1 0.928 0.928 0.842 0.843 0.846 0.822 0.826 0.786
(0.005) (0.005) (0.027) (0.026) (0.024) (0.058) (0.056) (0.058)

Pearson IV parameters
a 0.734 0.418 0.031 0.141 0.175 0.059 0.021 1.009

(0.929) (0.528) (0.078) (0.603) (0.653) (0.174) (0.076) (8.856)
r 6.034 5.915 10.766 10.931 10.602 6.369 6.375 5.682

(0.441) (0.186) (2.019) (1.928) (2.061) (3.121) (3.126) (2.560)
δ 0.359 0.424 3.016 3.157 3.037 2.244 2.251 1.919

(0.159) (0.157) (1.000) (0.941) (1.035) (1.613) (1.563) (1.248)

T 9740 9740 1942 1942 1942 449 449 449
lnL -10949.5 -10953.7 -3629.7 -3630.2 -3631.6 -1146.6 -1146.6 -1147.7
LB10(sr) 15.34 14.99 11.14 11.14 11.84 5.05 4.70 7.43
LB10(sq-sr) 11.27 10.61 9.36 9.51 8.41 6.68 9.69 6.75
Variance (ut) 0.790 0.789 3.059 3.057 3.057 12.245 12.203 11.900
Skewness -0.47 -0.47 -0.57 -0.56 -0.57 -0.54 -0.56 -0.54
Kurtosis 4.42 4.37 3.05 2.97 3.15 1.11 1.18 1.30

Notes: LB10(sr) and LB10(sq-sr) is the Ljung-Box test against serial correlation in
standardized residuals and their squares, respectively. lnL is the log-likelihood
function value.
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Figure 3: Effects of changes in ut−1 on the conditional variance h2t (h2t−1 set at zero).

the asQGARCH model there is a negative effect of u+t−1, while a larger and positive
effect of u−t−1 (as u

−
t−1 takes only 0 or negative values). Figure 3 demonstrates that

ut−1 cannot give rise to negative h2t . Note also that neither of the daily models (nor
any other model) have excess serial correlation in standardized (i.e. �εt = �ut/�ht) nor
squared standardized residuals.
For models estimated at weekly and monthly frequencies the sizes of parameters

are larger than those of the daily model, with the exception of the effect (the per-
sistence) of h2t−1 which becomes smaller with lower frequency. In neither case can
a MA(1) speciÞcation of the conditional mean be rejected against the more general
asMA(1) speciÞcation. For weekly data the effect of u+t−1 is not signiÞcant in the
asQGARCH, and at the monthly frequency neither of the effects of u+t−1 nor u

2
t−1 are

signiÞcant. The response to shocks in ut−1 is asymmetric at all frequencies, and the
asymmetry appears to be stronger at lower frequencies, cf. Figure 3.
Hence, the nonlinearity in the conditional mean function disappears as the sam-

pling frequency becomes lower. For the asQGARCH, persistence becomes weaker
with lower sampling frequency, while the asymmetric response to shocks through
ut−1 appears to become stronger.
For the localization parameter of Pearson IV, the null hypothesis of a = 0 can not

be rejected for any of the models. The r parameter has estimates around 6 for daily
and monthly frequencies, but around 11 for the weekly frequency. This suggests that
the unstandardized fη(η) density is most leptokurtic for the weekly data.1 For the
f(u) density the shape is, however, inßuenced by the other parameters of the model.
The estimates of δ are throughout positive (negative skewness) and signiÞcantly so
for daily and weekly frequencies.
In summary, the Pearson IV parameters suggests that a non-central t-density may

be a good approximation for daily and weekly data, while a t-density appears sufficient

1cf. the Appendix for the density deÞnitions.
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for monthly data.2

4. Conclusions

The results support the Þnding of Brännäs and Ohlsson (1999) that nonlinearity or
asymmetry in the conditional mean asMA speciÞcation disappears as the sampling
frequency becomes lower.
The persistence of shocks in the conditional variance becomes smaller, while the

short-term response to shocks becomes larger but remains asymmetric. Except for the
asymmetry in response, similar results were also found by Jacobsen and Dannenburg
(2003) in their multi-country study. The persistent and strengthened asymmetry
in the response to shocks as frequencies become lower is explained by the results
of Meddahi and Renault (2003). The estimated Pearson IV densities become more
symmetric with lower sampling frequency.

Appendix

The Pearson type IV density was introduced by Pearson (1894, 1895). Following
Kendall and Stuart (1969, ch. 6) the density arises as the solution to the derivative

dfη(η)

dη
=

(η − β)fη(η)
b0 + b1η + b2η2

, b1 6= 0, b2 6= 0,

where the roots of b0+b1η+ b2η
2 = 0 are complex. The solution is a density function

that we may write

fη(η) = c
−1
rδ

µ
1 +

η2

a2

¶−(1+r/2)
exp

h
−δ arctan(η

a
)
i
,

where crδ = a
R π/2
−π/2 cos

r(ω) exp(−δω)dω is a constant that depends on a, r and δ
but not on the observations. The resulting density has skewness (using Kendall and
Stuart, 1969, p. 153) sη =E(η−µ)3/[E(η−µ)2]3/2 = −4δ(r−2)−1[(r−1)/(r2+δ2)]1/2.
Obviously, the skewness measure is closely linked to the δ parameter. The kurtosis is
kη =E(η−µ)4/[E(η−µ)2]2 = 3(r− 1)[(r+6)(r2+ δ2)− 8r2]/(r− 2)(r− 3)(r2+ δ2).
Premaratne and Bera (2000) used a δ deÞnition of opposite sign and do not employ

division by σ in their standardization. For that reason their h2 is normalized to
have a constant term equal to one. Their parameter µ does not correspond to the
expected value as here, but is treated as a parameter reßecting the mode. We prefer
the conventional standardization as it eases direct comparison of models. From the
standardized density we obtain the density to be used for estimation on the form

f(u) = c−1rδ σh
−1
µ
1 +

(σu/h+ µ)2

a2

¶−(1+r/2)
exp

·
−δ arctan(σu/h+ µ

a
)

¸
.

Numerical integration of crδ is fast in practise.

2One gets the kurtosis of the normal distribution for δ = 0 with r→∞.
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