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Abstract

Bayesian inference for DSGE models is typically carried out by single block
random walk Metropolis, involving very high computing costs. This paper com-
bines two features, adaptive independent Metropolis-Hastings and parallelisation,
to achieve large computational gains in DSGE model estimation. The history of
the draws is used to continuously improve a t-copula proposal distribution, and an
adaptive random walk step is inserted at predetermined intervals to escape di¢ cult
points. In linear estimation applications to a medium scale (23 parameters) and
a large scale (51 parameters) DSGE model, the computing time per independent
draw is reduced by 85% and 65�75% respectively. In a stylised nonlinear estimation
example (13 parameters) the reduction is 80%. The sampler is also better suited
to parallelisation than random walk Metropolis or blocking strategies, so that the
e¤ective computational gains, i.e. the reduction in wall-clock time per independent
equivalent draw, can potentially be much larger.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are commonly estimated using
Bayesian methods. A prior distribution for the model parameters is updated to a posterior
distribution using likelihood information, with sampling from the posterior carried out
using Markov Chain Monte Carlo (MCMC) inference. The main features of the approach
are well described in the review article by An and Schorfheide (2007a) and some notable
contributions to the �eld are Smets and Wouters (2003), Adolfson, Laséen, Lindé and
Villani (2007) and Fernández-Villaverde and Rubio-Ramírez (2007). A key feature in this
growing literature is the almost exclusive use of the single-block random walk Metropolis
(RWM) algorithm to sample from the posterior distribution of the model parameters. As
noted by An and Schorfheide (2007b) �...there is little research that tries to compare
the performance of alternative sampling schemes and develop potentially better MCMC
schemes� for DSGE models and Adolfson, Lindé and Villani (2007a) states that �there
is clearly room for big improvements in simulation e¢ ciency�. Simulation e¢ ciency is
important because MCMC inference is very time consuming for DSGE models, which
considerably slows down the process of model development.
The purpose of our paper is to evaluate adaptive MCMC algorithms applied to the

estimation of DSGE models. The main element of adaptive sampling schemes is the use
of previous MCMC draws for the design of e¢ cient proposal densities. The samplers
evaluated here are based on four main ideas. The �rst is to use the history of posterior
draws to repeatedly estimate t-copula densities with mixture of normal marginals, and
use these as proposal distributions in an independence Metropolis-Hastings sampler. The
e¢ cient performance of proposals constructed in this way has been established for a va-
riety of models in Kohn and Giordani (2008) and Silva, Kohn, Giordani and Mun (2008).
Second, in order to alleviate some potential shortcomings of a pure independence chain
approach in high-dimensional problems, we propose simple hybrid, deterministic cycling,
algorithms which occasionally use random walk proposals to escape points in the poste-
rior parameter space where the posterior-to-proposal ratio is large. Third, the time per
posterior draw does not increase signi�cantly in comparison with the RWM sampler due
to the fast estimation of mixture of normal and t-copula densities. Fourth, our preferred
algorithms are very suitable for parallel implementation. Parallel computation is becom-
ing increasingly accessible and has the potential to drastically reduce computing time in
a variety of problems, and di¤erent MCMC schemes di¤er greatly in their suitability for
parallel implementation.
The sampling performance of the competing algorithms is �rst evaluated using two

linearised DSGE models: A modi�ed version of the medium-scale DSGE model developed
by Smets and Wouters (2003), one of the core models at the European Central Bank,
and the large-scale open economy model, nicknamed RAMSES, in use at the central
bank of Sweden (Adolfson, Laséen, Lindé and Villani (2007)). Based on a comparison
of ine¢ ciency factors the e¢ ciency of the main sampler presented here is respectively
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6� 7 and 3� 4 times larger than for the standard single-block RWM algorithm in these
estimation examples. Next the samplers are evaluated using a nonlinearly approximated
small-scale New Keynesian model, where a particle �lter is employed for the likelihood
evaluation. In this case the e¢ ciency of the main sampler is roughly 5 times larger than
for the RWM algorithm. Taking parallelisability into account the total e¢ ciency gain, as
measured by independent equivalent draws per time unit, is potentially much larger in all
these examples.
Recently Chib and Ramamurthy (2009) have suggested a tailored randomised-block

(TaRB-MH) algorithm for the estimation of DSGE models. They show that the TaRB-
MH algorithm is able to obtain the correct posterior distribution in two well-known DSGE
model estimation problems where the single-block RWM algorithm fails to explore all local
modes. The reported computational times, however, are a factor 150� 1100 times larger
per posterior draw in comparison with the RWM algorithm, and the TaRB-MH algorithm
is not suitable for parallelisation.
The sampling algorithms presented here are entirely di¤erent in character: they have

roughly the same computing time per posterior draw as the single-block RWM and are
easily parallelised. The emphasis is on reduced computing time per independent equivalent
draw rather than on an increased ability to explore multiple modes. We choose to consider
only single-block samplers in this paper because multiple block MCMC algorithms cannot
be parallelised e¢ ciently. Obviously, as the dimension of the parameter vector increases
one-block independence samplers will accept less and less often, and at some point it will
be necessary to apply blocking methods. However, the successful application to RAMSES,
with its 51 parameters and 60 state variables, suggests that our single block algorithms
should prove useful in a large number of problems.
The paper proceeds as follows. In section 2 the econometrics of DSGE models is

brie�y described. In section 3 the sampling algorithms are presented and in section 4
parallelisation of the algorithms is described on a conceptual level. In section 5 the
statistical performance of the samplers is evaluated in three DSGE model estimation
examples.

2 DSGE models

The equilibrium of a DSGE model is described by a set of nonlinear expectational equa-
tions. These consist of constraints and �rst-order conditions derived from the optimising
behaviour of various agents, such as consumers and �rms, in a model economy. The
solution to the equations is given by a policy function

Xt = g (Xt�1; �t; �) , (1)

which relates a vector of state variables Xt to its lagged value, a vectors of innovations
�t, and the parameter vector �: The policy function cannot typically be derived in closed
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form. This implies that numerical approximation methods must be used to obtain an
approximation ĝ to g.
The likelihood evaluation for a DSGE model consists of two parts. First, given a

parameter vector �; an approximation to the policy function around the deterministic
steady state is obtained (the solution) and represented as a state-space model. DSGE
models with non-stationary variables, e.g. induced by a non-stationary technology shock,
are transformed to stationarity prior to solution of the model, such that Xt is a vector
of stationary variables. Second, �ltering methods are used to evaluate the likelihood
function.
We �rst consider (log-)linear approximations, the associated linear and Gaussian state-

space (LGSS) model and Kalman �ltering. Several methods are available to solve DSGE
models linearly, e.g. Anderson and Moore (1985), Sims (2000) and Klein (2000). In
general the fastest, and also most accurate, method available is the Anderson-Moore
algorithm (AIM), see the comparison in Anderson (2008).
In the (log-)linear approximation case the resulting state-space model is

Xt = ĝ (Xt�1; �t; �) = T (�)Xt�1 +R (�) �t (2)

and
Yt = d (�) + ZXt + vt, t = 1; :::; T , (3)

where [2] is the state equation and [3] is the observation equation. Here Xt (dimension nx)
is a vector containing the state variables, in the econometric sense, and Yt (dimension ny)
is a vector containing the observed variables. The parameters of the model are collected in
the vector � (dimension n�) and the coe¢ cient matrices, T (which is typically dense) and
R, and the vector d are nonlinear functions of �. For the DSGE models considered in this
paper Z is a selector matrix which does not depend on �. The innovations, �t (n�), and the
measurement errors, vt (nv), are assumed to be independent and normally distributed,
�t v N (0;��) and vt v N (0;�v). The resulting model is therefore a particular type
of LGSS model. Importantly, in DSGE models the functions T (�) ; R (�) ; d (�) are not
available analytically (except in very special cases), but are obtained for a given � by
numerically solving for the rational expectation equilibrium, so Gibbs sampling is not
feasible in general. The distribution of the initial state vector, X0, is typically assumed
to be equal to the stationary distribution of the state vector, X0 v N (0;�x), where �x
is the solution to the Lyapunov equation

�x = T�xT
T +R��R

T . (4)

In the nonlinear estimation example of this article a second order approximation to the
policy function, [1], is used, following Schmitt-Grohe and Uribe (2004) and Klein (2000).
The approximate solution can be cast in the following state-space form. The state equation
vector is separated into an equation vector for the exogenous state variables (the shocks)

X1t = AX1t�1 + "t, (5)
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and an equation vector for the endogenous predetermined variables and a subset of the
nonpredetermined variables of the model

X2t = B ~Xt�1 + Cvech( ~Xt�1 ~X
T
t�1) + e, (6)

where ~Xt�1 = (X
T
1t X

T
2t�1)

T and Xt = (X
T
1t X

T
2t)

T . If we let C = 0 and e = 0; [5] and [6]
reduce to [2], and partitioning B = [B1 B2] the state transition matrix in [2] is

T =

�
A 0
B1A B2

�
. (7)

Having expressed the nonlinear state equation in this way, the measurement equation is
linear and given by [3]. In the nonlinear case the normality assumption for �t and vt is no
longer crucial but we retain it here for convenience.
The likelihood function is

p(Y1:T j�) =
TY
t=1

p(YtjY1:t�1; �) =
TY
t=1

Z
p(YtjXt)p(XtjY1:t�1)dXt,

where Y1:T = (Y1; :::; YT ) is the data. In the (log-)linear case the likelihood is evaluated
using the prediction error decomposition and the Kalman �lter, e.g. Harvey (1989). In
estimating large DSGE models, and assuming that the fastest solution method (AIM) is
used, the dominant share of computational time is spent on Kalman �ltering. DSGE-
speci�c Kalman �lter implementations, mainly based on exploitation of the special struc-
ture of the state transition matrix T in [7], can reduce computing time signi�cantly in the
case of large models (Strid and Walentin (2008)).
In the nonlinear case a standard particle �lter (SPF) is applied for the likelihood

evaluation, see Arulampalan, Maskell, Gordon and Clapp (2002) for an introduction to
particle �ltering and Fernández-Villaverde and Rubio-Ramírez (2007) and An (2005) for
applications to DSGE models. The SPF requires two conditions to be ful�lled: the ability
to simulate from the state equation, [5] and [6] , and the ability to evaluate the observation
density, p(YtjXt). The �lter yields an unbiased estimate, p̂(Y1:T j�), to the likelihood,
p(Y1:T j�). The computational burden associated with the particle �lter implies that the
demand for e¢ cient sampling schemes is even larger in this case. For the small-scale
New Keynesian model used for the illustration in section 5.3 the particle �lter likelihood
evaluation, with N = 40; 000 particles, is more than 1000 times slower than the Kalman
�lter evaluation for the corresponding linearised model.
The kernel of the posterior density of the parameter vector � is

p(�jY1:T ) / p(Y1:T j�)~�(�)I(� 2 �D),

where attention is usually restricted to the determinacy region, �D (see Lubik and
Schorfheide (2004) for an exception). In the nonlinear case the exact likelihood is re-
placed by the particle �lter approximation. The determinacy region is the subset of the
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parameter space where the model has a unique and stable solution. (DSGE models typi-
cally admit an in�nite number of explosive solutions.) Here we interpret the restriction as
being part of the formulation of the prior distribution, i.e. the prior density � is truncated
at the boundary of the indeterminacy region. The e¤ective prior distribution is typically
formulated as a set of marginal prior distributions1:

�(�) = I(� 2 �D)~�(�) = I(� 2 �D)�n�j=1�j(�j),

where �j is the jth element of the vector �.
There are essentially three categories of structural parameters: unbounded parameters,

parameters which are bounded from below or above, and parameters which are bounded
both from below and above. In the DSGE literature, parameters belonging to these
classes are typically given normal, gamma (or inverse gamma) and beta prior distributions,
respectively.2 Parameters with a (inverse) gamma prior density on [0;1) are commonly
reparameterised using the log transformation, and for parameters with beta prior densities
on [0; 1) the logit transformation is used, see e.g. Adolfson, Laséen, Lindé and Villani
(2007).
Reparameterisation serves two purposes. First, the transformation to an unbounded

parameter space simpli�es optimisation of the posterior, which is often used as a prelimi-
nary step for MCMC analysis. Second, the posterior of the transformed set of parameters
is typically closer to a normal distribution in shape, and therefore simpler to sample from.
Reparameterisation is important in order to avoid exaggerating the gains of more elabo-
rate MCMC approaches, such as those presented below (in section 3), and furthermore it
is easy to implement (Adolfson, Lindé and Villani (2007a)).
Having obtained the posterior density of the parameters p(�jY1:T ); the posterior density

of the state variables p(X1:T jY1:T ) can be obtained via smoothing techniques using the
relation

p(X1:T jY1:T ) =
Z
p(X1:T j�; Y1:T )p(�jY1:T )d�,

where X1:T = (X1; :::; XT ), see e.g. Durbin and Koopman (2001) in the linear case. It
is useful to contrast the �marginalisation�approach used in the case of DSGE models,
where X1:T is integrated out using the Kalman �lter, with the classic two-block scheme
for sampling in more �typical�LGSS models, where one alternately samples from densities
p(�jX1:T ; Y1:T ) and p(X1:T j�; Y1:T ) using Gibbs and/or Metropolis-Hastings updates. The
inability to sample from p(�jX1:T ; Y1:T ) distinguishes the DSGE-LGSS model from other
LGSS models.

1The marginal priors are not, strictly speaking, independent due to the indeterminacy constraint.
2In all models considered in this paper the parameter describing the steady state technology growth

rate has a truncated normal prior distribution. However, the mass attached to the truncation region is
small enough to be disregarded, e.g. in the case of the RAMSES model the distance between the prior
mean and the truncation point is 12 standard deviations.
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3 Sampling algorithms

The objective of sampling algorithms is to generate a sequence of draws, �i, i = 1; :::R
from the posterior kernel p(�) = p(�jY1:T ), where R is the length of the chain. In the
context of Bayesian estimation of DSGE models the single-block random walk Metropolis
(RWM) algorithm has been the preferred sampling method. In the RWM algorithm a
proposal �p is generated using a symmetric proposal density q(:j�i), where �i is the current
state, and accepted with probability

�i+1 = min

�
1;
p(�p)

p(�i)

�
.

The proposal distribution is typically a normal distribution q(�pj�i) = N(�i;�), with �
proportional to the inverse of the Hessian at the posterior mode, �m; � = �{H�1

m where
{ > 0. A crucial step in this approach is then the optimisation of the posterior density
since the quality of the RWM sampler will rely on the quality of the estimated inverse
Hessian at the posterior mode. As demonstrated starkly by both Andreasen (2008) and
Chib and Ramamurthy (2009) �nding the global posterior (or likelihood) mode is a non-
trivial problem in large-dimensional DSGE models. An adaptive RWM approach (see
below) is potentially more robust; because the matrix � is updated throughout the chain,
a poor starting value for � does not a¤ect sampling e¢ ciency as heavily.
There are several reasons for the popularity of the single-block RWM algorithm in

the DSGE model context. First, a standard B�block Metropolis-Hastings sampler is
automatically penalised by a B-factor increase in computational time. Furthermore it
is non-trivial, at least a priori, to group parameters into �xed blocks such that there is
weak dependence between parameters in separate blocks. Second, for large dimensional
parameter vectors the independence Metropolis-Hastings (IMH) is fragile in the sense
that it can occasionally get trapped for long spells at points in the parameter space where
the posterior-to-proposal ratio, p(�i)=q(�i), is high. For simplicity we will refer to such
occurrences as �di¢ cult points�. The acceptance rate of the IMH sampler is

�i+1 = min

�
1;
p(�p)=q(�p)

p(�i)=q(�i)

�
,

where q(�) denotes the independent proposal density.
The samplers used in this paper arise from a general deterministic hybrid formulation.

Proposals are generated from the densities qj;i+1(�pj�i), j = 1; 2; 3, according to a deter-
ministic cycling scheme where �i = f�0; :::; �ig denotes the draws up to iteration i and �0
is the starting value of the chain. The fraction of draws from the proposal distributions
are denoted �j, j = 1; 2; 3, and these fractions may change at prespeci�ed points of the
chain.
The �rst component, q1, is a random walk Metropolis (RWM) proposal and the second

component, q2, is a unimodal and symmetric independence proposal (UIMH), in our
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experiments a multivariate t or normal distribution. These proposal distributions may
be adaptive or non-adaptive. The main component, q3, is a t-copula with mixture of
normal marginal distributions estimated using clustering methods (TC) as in Silva, Kohn,
Giordani and Mun (2008). The t copula provides a fast and �exible way of estimating
a multivariate density and in general it yields a more accurate estimate of the posterior
density than the �standard�symmetric independence proposal, q2. The components are
described in detail below. Various samplers thus arise by di¤erent choices of �j, e.g. the
RWM sampler is described by �1 = 1 and �2 = �3 = 0.
The main sampler of interest, denoted RWM-UIMH-TC, is a sampler containing all

three components where the fraction of draws from the main component q3 increases
gradually through the chain. In an initial stage �3 = 0 and then �3 is increased to
some value �3 = ��3 � 0:75, such that eventually the majority of draws are generated
by the main component. For simplicity the ratio of random walk proposals to unimodal
independence chain proposals (�1=�2), is kept �xed throughout the chain.
In the main sampler one function of the �rst two components is to start up the chain

and produce a number of accepted draws in an initial stage of sampling. A pure inde-
pendence sampler, i.e. a sampler using some combination of q2 and q3 only, runs the risk
of getting trapped for long spells at di¢ cult points in the parameter space, especially as
the dimension of the problem increases. The primary motive to include the random walk
component also after an initial phase is therefore to be able to escape such di¢ cult points.
However, the improved approximating ability of q3 in comparison with q2 should allow us
to insert these RWM steps less frequently.
The intensity of adaptation depends on (i) how early adaptation begins, (ii) the fre-

quency of adaptation, i.e. how often q3 is re-estimated, and (iii) how quickly the share of
draws from the main component (�3) increases. The adaptation schedule, the set of points
where q3 is re-estimated, is denoted A =

�
iA0 ; i

A
1 ; i

A
2 ; :::; i

A
M

	
where iA0 = 0. In order not

to complicate the sampler further these are also the points where we allow the shares �j
to change, such that there is a hybrid schedule H =

�
�03; �

1
3; �

2
3; :::; �

M
3

	
corresponding to

the adaptation schedule. Here �j3 denote the fraction of draws from the main component
between iterations iAj�1 and i

A
j for j � 1: The �rst adaptation point, i.e. the �rst time

q3 is estimated, is i1A. At this point �3 is switched from �03 = 0 to �13 = 0:5. This is
illustrated in �gure 1 where two adaptation schemes are pictured. The adaptation points
are marked as dots. In the relatively intensive adaptation scheme adaptation is started
early, adaptation is frequent and �3 increases quickly. In the less intensive scheme more
trust is placed in the exploring capabilities of q1 and q2 and i1A is therefore larger. Note
the relative sense in which we use the term �intensive�; since both schedules displayed
here are much less intensive than those used for the lower dimensional models in Kohn
and Giordani (2008). In the evaluation in section 5 the intensive scheme is used with
a medium-scale (number of parameters, n� = 23) DSGE model and the less intensive
scheme with a large-scale (n� = 51) model.
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Figure 1 Adaptation and hybrid schedules.
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In our experience, with a high-dimensional DSGE model the danger of an intensive
adaptation scheme is that q3 �tted on too few draws may provide a poor approximation
to the posterior. If, in addition, the share of draws �3 is increasing steeply early in the
chain the overall acceptance rate can be low and in the worst case the sampler collapses.

3.1 ARWM and AUIMH components

The adaptive Metropolis algorithm was introduced by Haario, Saksman and Tamminen
(2001). The proposal distribution for the ARWM used in this paper is

q1;i+1(�j�i) = ��N (�i; �1�i+1) + (1� �)�N (�i; �2�i+1) + (1� �)N (�i; �3I) ,

where �i is updated using the recursive formulas

�i+1 =
i

i+ i0

�
i� 1
i
�i +

(i��i�1��
T
i�1 � (i+ 1)��i��Ti + �i�

T
i )

i

�
+

i0
i+ i0

�0 (8)

and
��i =

i+ 1

i0 + i+ 1

�
i

i+ 1
��i�1 +

1

i+ 1
�i

�
+

i0
i0 + i+ 1

��0 (9)
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such that i0 is the �prior sample size�placed on an initial mean ��0 and covariance matrix�0.
Here we will use ��0 = �m, where �m is the posterior mode and �0 = �H�1

m as the initial
approximative covariance matrix. The scaling parameters are chosen as �1 = 2:382=d;
�2 = 9�1 and �3 = 0:12=d where d is the dimension of �. The purpose of the second
component is to be able to escape local modes (see Silva, Kohn, Giordani andMun (2008)).
The scaling parameter �1 is optimal when the target density is Gaussian (Roberts and
Rosenthal (2001)). When � = � = 1 and i0 = 1 the (non-adaptive) RWM sampler is
obtained as a special case. In the adaptive case we let i0 = 100 and � = 0:95 in our
experiments below.
The unimodal independence proposal is given by the multivariate t distribution

q2;i+1(�) = t
�
��i;�i+1; v

�
and this component is referred to as adaptive unimodal independence Metropolis-Hastings
(AUIMH). The mean and covariance are updated using [8] and [9] and the degrees of
freedom, v, is �xed. In our experiments below we let v = 10 and i0 = 1000 for the
AUIMH sampler. When q2 is a component in a hybrid sampler we let � =1 such that

q2;i+1(�) = N
�
��i;�i+1

�
,

since the presence of fat tails in the proposal distribution (see Kohn and Giordani (2008)
for a discussion) appears to be less important for a hybrid sampler. The values chosen
for � are based on a limited amount of experimentation, comparing v = 5; 10 and 1.

3.2 T-copula with marginal mixture of normal component (TC)

The main component of the proposal distribution, q3, is the t copula with mixture of
normal marginal distributions introduced by Silva, Kohn, Giordani and Mun (2008).
Let td;v(xj�;�) denote the d-dimensional t density function with mean �, degrees of

freedom v and covariance matrix ~� = v
v�2� and let Td;v(xj�;�) denote the corresponding

cumulative distribution function. Further, let fj(�jj�j) and Fj(�jj�j) denote the density
and distribution function respectively of a univariate mixture of normal where �j = (mT

j

vTj pTj )
T collects the parameters describing the mixture, namely the component means,

variances and probabilities. The main component of the proposal density is then described
by the mixture

q3;i+1(�j�i) = ~�q31;i+1(�j�i) + (1� ~�)q32;i+1(�j�i)
where

q31 =
td;v(xj�;�)

�di=1t1;v(x
jj0; 1)�

d
i=1fj(�

jj�j) (10)

and where xj and �j are related by

T1;v(x
jj0; 1) = Fj(�

jj�j) for j = 1; :::; d (11)
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The second component q32 is a fat-tailed version of q31 obtained by in�ating the univariate
mixture of normal variances by a factor 9. The fraction of draws from q32 is set to
1� ~� = 0:05. We next describe how to (i) estimate q31 based on a set of draws (�0; :::; �i�1),
(ii) how to evaluate q3 and (iii) how to generate a sample from q3.

3.2.1 Estimation and evaluation of q3;1

The mixture of normal marginal densities, fj, are estimated using clustering based on a
sample �j0; :::�

j
~R
where ~R is the number of draws obtained from the posterior distribution

at the point of (re-)estimation, as described in Kohn and Giordani (2008) and Silva, Kohn,
Giordani and Mun (2008). The number of mixture components, n�j ; is selected based on
the Bayesian information criterion (BIC), where the maximum number of components is
set to 4. An additional step is added here in comparison with Silva, Kohn, Giordani and
Mun (2008). In an attempt to improve the �t of the normal mixture its likelihood function
is maximised subject to some restrictions: we condition on the number of components
n�j selected by the BIC criterion and restrict the means, mT

j , and variances, v
T
j , to

some interval around the clustering estimates, ~mT
j and ~v

T
j . The probabilities pTj are

restricted from below.3 The clustering estimate is used as the starting value for the
optimisation routine and a maximum number of mixture of normal density evaluations,
e.g. 1; 000, is speci�ed. The modi�ed estimate obtained is denoted �̂j and it is ensured
that L(�̂j) � L(~�j) where L is the likelihood function. The procedure is computationally
cheap and works well for simulated iid data. In section 5.4 the procedure is assessed
directly in an MCMC sampling context.
The estimated MN densities fj(�jj�̂j) and the degrees of freedom v of the t copula are

then used to obtain latent variables

xji = T�1v (Fj(�
jij�̂j))

for j = 1; :::; d and i = 1; :::; ~R . By the integral transform xji has a univariate t distribu-
tion t(0,1; v):
Next the latent variables xji are used to obtain an estimate of the covariance matrix �̂.

Finally, the degrees of freedom, v, is updated by selecting the v which maximises [10] on
a grid v 2 f3; 5; 10; 1000g, where v = 1000 represents a Gaussian copula. The evaluation
of the density q31 can be inferred from the steps above. The details are given in Silva,
Kohn, Giordani and Mun (2008).

3.2.2 Generating a sample

To generate a sample from [10] we proceed as follows. First a vector x = (x1; :::; xd)T

is drawn from the multivariate t distribution with mean 0, covariance ~� and degrees of
3The restrictions are meant to prevent degenerate components with near-zero variances that are likely

to otherwise arise in a MCMC setting (Kohn and Giordani (2008)).
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freedom v. Each latent variable xj is transformed into a mixture of normal draw �j via

�j = F�1j (T1;v(x
jj0; 1))

which can be achieved by numerically solving

T1;v(x
jj0; 1) = Fj(�

jj�j)

either using a nonlinear equation solver, e.g. Newton-Rhapson, or by tabulating the
implicit relationship between xj and �j on a grid for each parameter j = 1; :::; n�. In our
implementation of the algorithm we use the former approach.

3.3 Sampler acronyms

In this subsection the sampler acronyms used in section 4 are brie�y explained. The
random walk Metropolis algorithm is denoted RWM and the t(v) independence sampler
is denoted UIMH. The ARWM and AUIMH are the adaptive versions where [8] and [9]
are used to update the covariance and mean of the proposal distribution. The ARWM3C
algorithm is characterised by i0 = 0 in [8] and [9] such that no a priori information on the
covariance matrix of the RWM proposal is used. The t and Gaussian copula samplers are
TC and GC, respectively. The RWM-UIMH and the adaptive ARWM-AUIMH are the
hybrid samplers where the fraction of RWM steps is �1 and the fraction of t(v) proposals
is �2 = 1� �1 and these shares are �xed for the entire chain.
The main sampler is denoted ARWM-AUIMH-TC. Here a fraction �3 of the proposals

are generated by the TC component and this share is increasing through the chain as
described above. In the tables of results below the overall fraction of draws from the main
component for the chain is reported. The �rst two components each generate a fraction
�1 = �2 = (1� �3)=2 of the draws. In the RWM-TC sampler �1 = 1� �3 and �2 = 0.

4 Parallel adaptive hybrid MCMC

An important advantage of independence MH samplers over RWM samplers is their suit-
ability for parallel implementation. The purpose of this section is, �rst, to reiterate this
fundamental point and, second, to explain how parallelisability is a¤ected by adaptation
and hybridisation, i.e. the introduction of RWM steps into an otherwise independence
chain sampler. A good introduction to parallel MCMC, albeit from a di¤erent perspective,
is provided by Wilkinson (2006).
Parallel independence chain samplers are attractive in most hardware contexts and we

provide two examples of environments which are believed to be relevant to economists and
econometricians. First, for personal high performance computing (PHPC) environments,
characterised by relatively few, say between 4 and 8, processor cores and perhaps limited
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network performance. An example is use of Matlab and its parallel functionality (the
Parallel Computing Toolbox) on a multicore desktop computer. Second, for massively
parallel computing (e.g. P > 50 processors) in high performance computing (HPC)
environments, characterised by reasonably fast interconnection networks allowing for fast
interprocessor communication. For convenience the discussion is restricted to single block
Metropolis-Hastings samplers, which are most suitable for parallelisation.
Let K be the number of synchronisation points in a parallel algorithm, i.e. points of

communication between processes/processors (the terms are used interchangeably here).
We loosely de�ne a limited communication (LC) parallel MCMC algorithm as an algo-
rithm for which the number of posterior draws per synchronisation point, R=K, is �large�,
where R is the total number of draws from the posterior. Therefore LC algorithms are
algorithms which should display good scalability properties on a large variety of parallel
computers, such that hardware issues can largely be abstracted from. The typical measure
of scalability, or parallel e¢ ciency, is the relative speedup

S(P ) =
T (1)

T (P )
� P

where T (P ) is the wall-clock time of running the parallel program on P processors. An
alternative measure, conveying the same information, is the relative e¢ ciency, S(P )=P .
The parallel approach based on regeneration discussed by Brockwell and Kadane

(2005) is an example of LC parallel MCMC whereas the �parallel blocks�approaches of
Wilkinson (2006) and Whiley and Wilson (2004) and the prefetching approach of Brock-
well (2006) and Strid (2009) are better described as communication intensive.
Two factors determine whether an adaptive MCMC algorithm can be implemented

as a limited communication parallel algorithm: the proposal density and the intensity of
adaptation. Consider �rst the form of the proposal density in the non-adaptive Metropolis-
Hastings case. We can distinguish two main classes of algorithms: independence samplers
and samplers where the proposal density depends on the current state of the chain, e.g.
the RWM sampler. For a single-block independence sampler a trivial two-stage parallel
algorithm can be constructed. In the �rst stage, proposals for the complete chain are eval-
uated in parallel. Using a homogeneous parallel computer, i.e. one where all processors
have the same performance, each process generates and evaluates R=P proposed parame-
ters and a master process collects the results. In the second stage the MH algorithm is run
serially by the master process with the posterior values at the proposed parameters avail-
able from the �rst stage. This parallel independence MH algorithm displays extremely
good scalability. Furthermore parallel e¢ ciency is largely independent of the properties
of the parallel computer since there is only one synchronisation point in the algorithm. It
is also easy to adapt the algorithm to the less relevant case of inhomogeneous processors.
Employing P = 64 processors on a standard HPC cluster to estimate a medium-scale

DSGE model with this simple algorithm and a t(v = 10) proposal distribution, Strid
(2009) reports the speedup S(64) = 63. The unreliable statistical performance of the
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independence sampler in that example, however, implies that it is an extremely wasteful
approach. We return to this model below.
The single-block RWM or ARWM algorithm has K = R such that limited com-

munication parallel implementation is precluded. Parallel prefetching RWM or ARWM
algorithms can be implemented with K < R but these implementations will remain com-
munication intensive. Using P = 8 processors for a close to optimal prefetching RWM
algorithm Strid (2009) reports R=K � 5. Prefetching algorithms can be expected to
perform well on clusters with a fast interconnection network and when few, maximally
P = 10� 15; processors, are employed.
In the adaptive sampling framework the frequency of adaptation, i.e. how frequently

the proposal density is updated, is also of importance. Naturally, an adaptation point
implies a synchronisation point, such that M � K where M is the number of adaptation
points. If adaptation is performed at each iteration (�online�) we have K =M = R. The
�pure�, i.e. not hybrid, AIMH sampler with batch estimation of the proposal density is
characterised by K =M << R where M is the total number of adaptation points. Kohn
and Giordani (2008) suggest R=M = 1000 in their implementations, abstracting from a
short initial phase where updating of the proposal is more frequent. It is immediately
clear that a parallel version of their batch updating AIMH algorithm will display very
good parallel e¢ ciency. Note, however, that the adaptation schedule was motivated solely
on statistical grounds rather than being based on parallel e¢ ciency concerns.
Three basic requirements for limited communication single-chain parallel adaptive

MCMC algorithms follow. First, the majority of the draws must be based on indepen-
dently generated proposals. Random walk steps may be used but parallel e¢ ciency will
su¤er. Second, adaptation can not be too frequent. In the context of adaptive inde-
pendent samplers with batch updating this does not appear to be restrictive. Third,
deterministic hybrid schemes must be used rather than random mixture hybrids in order
to avoid randomly distributed synchronisation points in the algorithm.
The key trade-o¤ in our framework is related to hybridisation, i.e. the insertion of

random walk steps. In practise we expect the random walk steps to be much more
frequent than the adaptation points and hence the number of synchronisation points,
K, will coincide with the number of random walk steps. From a statistical perspective
these are expected to make the sampler more robust, reliable and e¢ cient in medium and
high dimensional settings. From the parallel computing perspective a random walk step
implies a synchronisation point, i.e. interprocessor communication, which is costly.
Based on these considerations we construct and attractive simple benchmark parallel

hybrid single-block MCMC algorithm. The algorithm combines draws from an indepen-
dence proposal which approximates the posterior well on most of its support, e.g. the t
copula used in this paper, with occasional RWM or �always reject�prefetching RWM steps
in a deterministic cycling scheme. The prefetching RWM step is simply the parallel ana-
logue of the RWM step. With P processors, in the �always reject�variant of prefetching
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the posterior kernel is evaluated in parallel at the points

�p = �i + "p; p = 1; :::; P , (12)

where �i is the current state of the chain. Intuitively the �always reject�prefetching RWM
step either allow us to escape a �di¢ cult point�, which is desirable from a Markov chain
e¢ ciency perspective, or it does not. In the latter event the prefetching step will �at least�
be computationally e¢ cient, since all P posterior evaluations generate draws.
Ultimately overall e¢ ciency (i.e. combined Markov chain statistical e¢ ciency and

parallel computational e¢ ciency) as measured by iid equivalent draws per time unit,
hinges mostly on the quality of the independence proposal. A good independence proposal
increases Markov chain e¢ ciency and therefore allows for infrequent RWM steps, which in
turn boosts parallel e¢ ciency by reducing the number of synchronisation points K in the
algorithm. To summarise: a key feature of this parallel adaptive and hybrid algorithm is
the complementarity of statistical and parallel e¢ ciency. This may be contrasted with the
�always reject�RWM prefetching algorithm where increased parallel e¢ ciency is traded
against lower Markov chain e¢ ciency, i.e. the optimal scaling factor, �1, is smaller with
P > 1 processors than with P = 1 processor (Strid (2009)). Pseudo-code for the algorithm
is given in the appendix.
The practical approach we suggest with the parallel hybrid algorithm is to select

the fraction of RWM steps (�1 in the notation of section 3) to achieve good statistical
performance and then let the parallel performance be determined residually. Once a
suitable fraction of draws from the main component, �3, has been established on statistical
grounds it would presumably be possible to increase overall e¢ ciency by increasing �3
(and hence decreasing �1) further, thus increasing parallel e¢ ciency but reducing Markov
chain e¢ ciency. However, we do not expect this type of tuning to be worthwhile in
practice.
In �gure 2 theoretical relative e¢ ciency contours, S(P )=P , of the algorithm is plotted

as a function of the fraction of RWM proposals, �1, and the number of processors, P .
The assumptions and calculations underlying the �gure are described in the appendix.
An example: if �1 = 10% and P = 64 the theoretical relative e¢ ciency is roughly 70%,
implying that the theoretical speedup is S(64) = 45. In practise the speedup would be
lower but the numbers are still indicative of the enormous computational gains associated
with �largely independence�samplers.
Finally we note that the adaptation step, i.e. the mixture of normals estimation, is

easy to parallelise since it is performed independently for each parameter �j. In general
mod(n�; P ) 6= 0 implying that, on a homogeneous parallel computer, each process per-
forms adaptation for floor(n�=P ) or ceil(n�=P ) parameters. Possible implications are
that we may want to perform adaptation more frequently and/or spend more resources
on obtaining a good proposal distribution.
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Figure 2 Relative e¢ ciency contours, S(P )=P , for the parallel adaptive and hybrid
Metropolis-Hastings algorithm (in percent).
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5 Algorithm comparison

5.1 A Smets and Wouters type model

The statistical performance of the sampling algorithms is �rst compared using one of the
core macroeconomic models at the European Central Bank, a slightly simpli�ed version of
the Smets andWouters (SW) model (Smets andWouters (2003)). The nominal frictions in
the model are sticky prices, sticky wages and money demand by both households and �rms.
The real frictions are monopolistic competition in the markets for intermediate goods and
labor, internal habit formation in preferences for consumption, investment adjustment
costs and capital utilisation costs. In our version of the model there are n� = 8 structural
shocks: consumption preference, labor supply, stationary technology, unit root technology,
government spending, monetary policy, in�ation target and investment adjustment cost
shocks. Similar models have been analysed and/or estimated in many studies (Smets and
Wouters (2003); del Negro, Schorfheide, Smets and Wouters (2005)).
The number of state variables in the model is nx = 15 and n� = 23 parameters

are estimated (as customary a subset of the structural parameters are calibrated, e.g.
parameters which are not well identi�ed by the data). The model is estimated on Euro
Area data for the period 1982Q1-2003Q4 (88 observations). The ny = 5 data series used
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for estimation are the short-term interest rate, in�ation, output growth, the consumption-
to-output ratio and the investment-to-output ratio.
The model is solved using the method of Klein (2000) and the Kalman �lter is ini-

tialised using the stationary distribution of the state variables, which is obtained by
solving the Lyapunov equation, [4], numerically. The prior distribution is �standard�in
two senses: �rst, parameters which are unbounded, bounded from below and bounded
both from below and above have normal, (inverse) gamma and beta prior distributions,
respectively. Second, we have attempted to select hyperparameters for these distributions
which are similar to those used in previous studies based on similar models, e.g. the
articles mentioned above.
Chains are obtained for (at least) two initial values per algorithm, the (presumed)

posterior mode, �m, and the prior mode, �prior. The log posterior is optimised using
simulated annealing (SA), with the set of optimisation parameters �conservatively�chosen
such that the mode is slowly approached, and using Christopher Sims�optimiser csminwel
for a variety of starting values drawn from the prior distribution (Sims (1999)). Both
approaches appear to work well. The log posterior kernel (and likelihood) values at �m
and �prior are 1754:32 (1768:15) and 1630:69 (1632:06) respectively. The initial value for
the chain does not in�uence the algorithmic comparison and therefore results are provided
for the chains initialised at the prior mode. For each algorithm R = 500; 000 draws are
obtained and the �rst 100; 000 are discarded as burn-in.
The empirical optimal acceptance rate for the standard RWM algorithm is in the range

0:20�0:24, based on the average ine¢ ciency factors from 10 chains with acceptance rates
in the interval 0:02 � 0:40. In table 1 the ine¢ ciency factors for the algorithms are
presented. The ine¢ ciency factors are given by

�j = 1 + 2
KX
k=1

Corr
�
�ji ; �

j
i+k

�
; j = 1; :::; n�; (13)

where K = 500. This measure indicates how many draws are needed using a given
algorithm to achieve the same numerical e¢ ciency as when (hypothetically) sampling an
independent draw from the posterior distribution.
The main observations are as follows. First, all samplers obtain the same posterior

distribution. In the case of the UIMH sampler the ine¢ ciency factors di¤er in repeated
runs and only the best result, i.e. the run which produced the lowest mean ine¢ ciency,
is reported here. This is due to the randomness in the occurrence of di¢ cult points, see
also the discussion in Adolfson, Lindé and Villani (2007a). Second the mean (or median)
ine¢ ciency for the main sampler, the ARWM-AIMH-TC hybrid algorithm, is roughly a
factor 6 � 7 lower than for the RWM algorithm. Note again that the model parameters
have been transformed in the �standard�way, described in section 2. This improves the
performance of the RWM algorithm. In the original parameterisation the di¤erence in
ine¢ ciency factors would presumably be larger. Third, the choice of initial sampler for

17



Table 1 Ine¢ ciency factors and acceptance rates for the SW type model
Accept. Ine¢ ciency Overall fraction Max no. of

Algorithm rate (%) Min Median Mean Max main comp. (%) clusters
RWM 24.2 66.0 85.4 99.2 163.9 - -
UIMH (t, df=10) 17.0 62.6 104.8 141.3 410.1 - -
ARWM3C 24.0 83.3 104.0 105.7 140.6 - -
RWM-UIMH 24.6 31.2 48.6 64.1 126.1 50 (UIMH) -
ARWM-AUIMH 21.8 20.2 22.8 23.9 32.3 50 (AIMH) -
RWM-TC 37.7 9.2 14.6 15.0 36.8 74.0 (TC) 4
RWM-UIMH-TC 44.5 8.2 15.2 17.0 57.7 95.6 (TC) 4
ARWM-AUIMH-TC 44.0 8.7 12.9 14.1 40.6 95.6 (TC) 4

the hybrid algorithm does not appear crucial. The ARWM-AIMH initial sampler delivers
a better approximation q3 quicker but the simpler RWM initial sampler yields similar
ine¢ ciency factors. The adaptation and hybrid schedules used with the RWM-UIMH-TC
and ARWM-AUIMH-TC samplers are displayed in �gure 1. Third, the simple ARWM-
AIMH sampler reduces ine¢ ciency factors by roughly a factor 4 in comparison with the
RWM algorithm.
In �gure 3 the performance of the hybrid RWM-TC sampler is illustrated graphically

using the �rst 100; 000 draws from the sampler, corresponding to the burn-in phase. The
acceptance rate of the main component is displayed along with the fraction of draws from
the main component. The adaptation points are marked as dots on the hybrid schedule.
The acceptance rate is also calculated for a moving window of 2; 000 draws to provide
an idea of how the quality of the main component improves, a �local�acceptance rate.
Adaptation starts after i1A = 5; 000 draws and is thereafter frequent. The main component
generates 50% of the draws up to i6A = 10; 000 and after that point it accounts for 75% of
the proposals. At the end of the run 74% of the proposals have been generated by the TC
component. The acceptance rate improves quickly during the intensive adaptation phase
and after roughly 30; 000 draws it appears that a good proposal has been found. The
acceptance rate of the TC component is initially below 10% and after 30; 000 iterations it
has reached roughly 30%. The quality of the posterior approximation improves at a slower
rate subsequently and adaptation becomes less frequent. Eventually the acceptance rate
of the main component settles down at 44% which can be compared to the 17% acceptance
rate obtained with a standard independence sampler which uses a t proposal (UIMH).
The �nal proposal distribution for the samplers with a TC component, which is con-

structed at iteration 150; 000, has more than one component in the mixture of normal
marginal density for 5 of the 23 estimated parameters. The degrees of freedom esti-
mate for the copula in [10] is v = 1000 for the samplers with a TC component, i.e. a
Gaussian copula is selected by the adaptive procedure. Four of these �ve parameters
are AR(1) coe¢ cients of shock processes, with beta prior distributions on the interval
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Figure 3 Performance of the RWM-TC sampler for the SW type model.

0 1 2 3 4 5 6 7 8 9 10

x 10 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
A

cc
ep

ta
nc

e 
ra

te

Iterations
0 1 2 3 4 5 6 7 8 9 10

x 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

tio
n,

 m
ai

n 
co

m
po

ne
nt

Fraction of draws using main
component (TC) Local acceptance rate

Cumulative acceptance rate

[0; 1]. The marginal posterior density (Epanechnikov kernel smoothing density estimate)
and the �nal mixture of normal density estimate for these parameters are displayed in
�gure 4, panels a-d (in the transformed parameter space). The marginal proposals ap-
pear to provide a good �t to the marginal posteriors, which are skewed to the right for
these parameters. Intuitively, the improved ability to �t these skewed parameters explain
the di¤erence in sampling performance between the TC sampler and the samplers with
(A)UIMH components. In panels e-h the proposal and posterior densities are shown for
the four parameters which, by visual inspection, display the largest discrepancy between
the marginal proposal and posterior densities. For these parameters the �nal marginal
proposal densities are normal distributions, i.e. the BIC criterion selects one component
MN densities. The marginal posterior distributions of the remaining parameters, those
which are not displayed here, are symmetric in shape and apparently well approximated
by a normal distribution.

5.2 The RAMSES model

The RAMSES model is a large-scale DSGE model developed and estimated by researchers
at the Swedish central bank (Adolfson, Laséen, Lindé and Villani (2007); Adolfson, Lindé
and Villani (2007b); Adolfson, Laséen, Lindé and Villani (2008a); Adolfson, Laséen, Lindé
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Figure 4 Marginal posterior and mixture of normal proposal distributions, SW type
model.
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and Villani (2008b)). It is essentially the extension of the SW model to a small open
economy setting. A number of interesting econometric issues related to the estimation
of the model are discussed in Adolfson, Lindé and Villani (2007a). The analysis here
is restricted to a comparison of sampling performance and the reader is referred to the
mentioned papers for a detailed discussion of the content of the economic model, variations
of the model, the data used for estimation and the choice of prior distribution.
The LGSS model contains nx = 60 state variables and n� = 21 shocks. The model is

estimated using Euro Area data for the period 1970Q1 � 2002Q4 and ny = 15 observed
series are used to estimate n� = 51 of the model�s structural and auxiliary parameters.
Again a number of parameters are calibrated. In Adolfson, Laséen, Lindé and Villani
(2007) the model is estimated with and without variable capital utilisation. Here only
the former case is considered.
The model is solved using the AIM algorithm. The initial, 1970Q1, state distribution

for the Kalman �lter is di¤use. The observations for the 1970s are only used to obtain
a prior for the state variables in 1979Q4 and inference is based on data for the period
1980Q1�2002Q4. The prior distribution is standard in the sense described in the previous
section.
For each algorithm 1; 000; 000 draws are obtained and every 5th is kept for inference.

The burn-in is 200; 000 draws. Ine¢ ciency factors and acceptance rates for the vari-
ous samplers are presented in table 2, calculated based on the thinned chains and with
K = 1; 000 in [13]. The performance ranking of the algorithms resemble the one for the
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Table 2 Ine¢ ciency factors and acceptance rates for the RAMSES model
Accept. Ine¢ ciency Overall fraction Max

Algorithm rate (%) Min Median Mean Max main comp. (%) clusters
RWM 22.7 27.4 41.2 67.2 748.4 -
IMH (t, df=10) 8.0 125.8 455.6 459.1 948.2 -
RWM-UIMH 16.7 26.9 41.4 92.3 830.5 50%(IMH)
ARWM-AUIMH 16.1 13.0 15.6 22.4 135.3 50%(AIMH)
RWM-TC 19.8 7.9 11.2 14.2 49.5 77.5%(TC) 4
ARWM-AIMH-TC 23.5 8.3 12.8 14.8 33.7 77.5%(TC) 4

smaller DSGE model above. All samplers �nd the same, and therefore presumably cor-
rect, posterior distribution (with the IMH algorithm possibly being an exception). The
median or mean ine¢ ciency factor is roughly 3 � 4 times lower for the samplers with a
TC component when compared to the benchmark RWM algorithm.
The �nal proposal distributions of the RWM-TC and ARWM-AIMH-TC samplers,

constructed at iteration 500; 000, have more than one component in the mixture of normal
density for 8 out of the 51 parameters and, notably, 7 of those 8 parameters have beta
prior distributions. In these instances the marginal posterior distributions are apparently
skewed, even after reparameterisation. Furthermore, among the 25 parameters with beta
prior distributions these 7 are among those with the most skewed prior, e.g. shocks
which are a priori thought to be highly persistent. These eight multi-component, or
�problematic�, parameters also correspond to those with the largest chain autocorrelations
when the RWM algorithm is used. The median ine¢ ciency factor for this subgroup of
parameters is 180, which can be compared to the overall median ine¢ ciency factor of 41
presented in the table. For the RWM-TC sampler the median ine¢ ciency for the group
is 24, to be compared with the overall median of 11:2.
In �gure 5 the marginal posterior (again the Epanechnikov kernel smoothing density

estimate) and the �nal RWM-TC marginal proposal distributions for the �ve parameters
with the largest RWM-TC sampler ine¢ ciency factors are displayed (with the ine¢ ciency
factors, �j, in parenthesis). Note that these are also the parameters with the largest RWM
ine¢ ciency factors. Clearly, the marginal posterior densities with prolonged tails in panels
b; c and d are not possible to approximate well with a symmetric proposal density. The
reduction in ine¢ ciency factors when using the TC-component samplers is most dramatic
for these parameters.
These parameters also display irregular posterior dependencies, which may be illus-

trated via bivariate posterior plots. The correlation between the export parameters - the
Calvo export price stickiness (�x, in the notation of Adolfson, Laséen, Lindé and Villani
(2007)) and the export markup shock persistence (��x) parameters - is �0:66 and the
correlation between the consumption parameters - the habit formation (b) and preference
shock (��c) parameters - is �0:77. In both instances these correlations can be intuitively
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Figure 5 Marginal posterior and mixture of normal proposal distributions for the �ve
parameters with largest ine¢ ciency factors, RAMSES model.
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explained, e.g. concerning the export parameters the lack of appropriate export price
data explains the weak identi�cation of these parameters (Adolfson, Laséen, Lindé and
Villani (2008a), p. 8).
In �gure 6 bivariate plots of the draws from the RWM-TC sampler for these two pairs

of parameters are displayed. In the left part of the �gure, panels a and d, the parameters
are displayed in the original (bounded) parameterisation and in the middle panels, panels
b and e, in the standard (unbounded) transformation described previously. For both pairs
of parameters reparameterisation straightens out the banana-shaped bivariate posterior
surface somewhat but the shape is still non-elliptical.4

In the �nal proposal distribution the degrees of freedom estimate for the copula in [10]
is, as for the SW type model above, v = 1000 for the samplers with a TC component, i.e.
a Gaussian copula is selected endogenously by the adaptive procedure. In the right part of
the �gure, panels c and f , the parameter draws have been transformed toN(0; 1)-variables
via the relation [11]. The mixture of normal densities used for these transformations are
estimated using all the 160; 000 post burn-in draws obtained from the RWM-TC sampler.
The racquet shape of the transformed bivariate posterior in panel f is suggestive of the
limits as to what can be achieved with a Gaussian copula approximation in this case.
Although the marginal posteriors in �gure 5 appear reasonably well approximated by
mixture of normals densities their joint dependence does not appear well captured by the
simple Gaussian copula.

4The mean ine¢ ciency factors of the RWM sampler reported by Adolfson, Lindé and Villani (2007a)
based on 500; 000 draws (and no thinning) are 339:25 and 217:13 in the original and transformed parameter
spaces, respectively.
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Figure 6 Bivariate posterior plots for two pairs of parameters, RAMSES model.

It is not surprising that estimation of the RAMSES presents more of a challenge than
estimation of the SW type model in the previous section, given the higher dimensionality
of the parameter vector of estimated parameters. Figures 4 and 5, which display the
subset of the most problematic parameters for each model, also suggest that the posterior
distribution of the RAMSES model is further away from normality than the posterior of
the smaller SW model.
In our experience, with the SW type model even a poorly designed adaptation schedule,

i.e. too intensive given the number of parameters, works well, in the sense that the sampler
is able to recover from a bad start and eventually obtains the posterior distribution. For
the RAMSES model it is more important to choose a slower intensity of the adaptation
scheme: if adaptation is too intensive the sampler will not be able to recover from an
initial poor approximation of the posterior.

5.3 Nonlinear estimation of a small-scale DSGE model

We now apply the sampling algorithms to the estimation of a small-scale second order
approximated DSGEmodel. The likelihood function is evaluated using a standard particle
�lter, see e.g. Arulampalan, Maskell, Gordon and Clapp (2002). The computational cost
of particle �ltering implies that the models that are considered for nonlinear estimation
in practise are small. This, in turn, implies that the chances of success for a one-block
MCMC approach increases since the dimension of the parameter vector, n�, is smaller.
The prototypical small New Keynesian (NK) model is borrowed from An (2005). The
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state-space representation of the model is given by the state equation, [5] and [6], and the
observation equation [3], which are obtained by �rst solving the model using the approach
of Schmitt-Grohe and Uribe (2004). The model contains nx1 = 3 shocks, a total of nx = 7
state variables and ny = 3 observed variables.
Since the main focus here is on comparing sampling performance we choose to use

simulated data in order to abstract, as much as possible, from issues related to particle
�ltering performance. A bad model �t or the presence of outliers in the data, for example,
can have a severe impact on the performance of the �lter, which would prevent a mean-
ingful comparison of samplers. The construction of improved particle �lters to be able to
deal with such issues, although a very important topic, is beyond the scope of this article.
The data-generating process (DGP), i.e. the calibration of the model parameters,

and the prior distribution for n� = 13 estimated parameters is chosen largely as in An
(2005). Data for ny = 3 series - output growth, in�ation and the nominal interest rate
- is simulated from the nonlinear state-space model for T = 90 time periods. In the
estimation the �rst 10 periods of the time series are merely used to provide a prior for
the state distribution at time t = 10 and the remaining 80 periods are used for inference.
The model is estimated with the variance of the measurement errors, �v = diag(�v),
calibrated at values which imply that roughly 15 � 20% of the variance of the observed
series is due to these errors. (Note that the variance of the measurement errors a¤ects
the performance of the particle �lter.) The data set generated by the DGP and the prior
distribution imply a unimodal posterior distribution.
The key structural parameters for generating nonlinearity in the model are, �rst, the

inverse elasticity of intertemporal substitution, � , (which determines the curvature of the
household�s utility function) and, second, the in�ation response of the monetary author-
ity,  1. The degree of nonlinearity increases as � increases and as  1 approaches (from
above) the boundary of the indeterminacy region, ~ 1 = 1. In the DGP these parameters
are assigned the values � = 2 and  1 = 1:5, which implies a �mildly nonlinear�parame-
terisation. By experimentation we have found the remaining parameters to be largely
unimportant in producing any substantial di¤erences between the linear and nonlinear
state-space models.5

In the nonlinear case, given that the PF yields only an approximation to the likelihood,
it is not possible to obtain the exact mode of the posterior density. The standard approach
in the linear case, i.e. to use the negative inverse Hessian evaluated at the posterior mode
as the covariance of a RWM proposal, is therefore not available. The RWM sampler is
initialized instead using the estimated covariance matrix from a preliminary run, a form
of preliminary adaptation, and the chosen scaling factor implies an acceptance rate of
24:0% when the number of particles is N = 40; 000. In the preliminary run the scaled

5By a �nonlinear parameterisation��dgp we, loosely speaking, mean a parameterisation for which data
generated from the linear and quadratic state-space models, respectively, display di¤erent properties, e.g.
the second moments of the data display clear di¤erences.
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negative inverse Hessian at the posterior mode of the corresponding log-linear model is
used as the covariance of the RWM proposal.
The ine¢ ciency factors of three samplers, RWM, ARWM-GC and ARWM-AUIMH-

GC, are presented, for chains started at the prior mode. In preliminary runs with short
chains it is found that the TC copula selects the degrees of freedom v = 1000 and in the
reported chains we �x this value, i.e. a Gaussian copula is pre-imposed. In each case
R = 150; 000 draws from the posterior distribution are obtained and the �rst 20; 000 are
discarded as burn-in. Pure independence samplers, UIMH (t with v = 10) and GC, were
trapped at �di¢ cult points� for spells long enough to conclude that these samplers can
not be applied successfully to this problem.
The relatively small number of parameters and, more importantly, the computational

burden associated with particle �ltering suggests a more intensive adaptation scheme,
in comparison with the linear estimation examples above. Here adaptation begins at
iteration iA1 = 2; 000 and is performed every 500th iteration up to iA17 = 10; 000. After
that re-estimation of the MN marginal proposals is performed every 1; 000th iteration up
to iA37 = 30; 000, from there on every 2; 000th iteration up to iA67 = 90; 000 and for the
remaining part of sampling every 10; 000th iteration. Note that even with such frequent
adaptation the re-estimation of the proposal density accounts for a negligible share of
overall computational time.
In table 3 the ine¢ ciency factors are presented. First the performance of the RWM

sampler using N = 40; 000 and 100; 000 particles in the SPF is compared. The brute force
approach of using more particles, in order to obtain a sharper estimate of the likelihood,
apparently increases the acceptance rate and decrease the ine¢ ciency factors somewhat.
�Di¢ cult points�now occur also as a result of the sampling variability in the likelihood
estimator. The standard deviation of the likelihood decreases at rate

p
N , such that

increasing the number of particles reduces this problem, but at a high computational
cost.
Second, the ARWM-GC and ARWM-AUIMH-GC samplers reduces the ine¢ ciency

factors by roughly a factor 4 and 5�6, respectively, in comparison with the RWM sampler.
Two of the 13 parameters have more than one component in the �nal MN marginal
proposal density. The fraction of copula-generated draws, �3, of these samplers reaches
its �nal level after 20; 000 iterations and for the ARWM-GC sampler a comparison is
made for the cases where this fraction is 75% and 90%, respectively. The di¤erence in
ine¢ ciency factors is quite small, suggesting that the exact fraction is largely unimportant,
at least in a serial computing context (see the discussion below).
Finally, in our serial Matlab implementations of the samplers the time of a particle

�lter likelihood evaluation for T = 90 time periods and N = 40; 000 particles is 2 � 2:5
seconds depending on the hardware used such that R = 150; 000 draws are obtained in
roughly 80� 100 hours. Fortran mex routines are used for the parts of the particle �lter
that cannot be written as vectorised code, e.g. the systematic resampling procedure.
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Table 3 Ine¢ ciency factors and acceptance rates for the NK model.
Accept. Ine¢ ciency Overall frac. Max No. of

Algorithm rate(%) Min Med. Mean Max main comp.(%) clus. particles
RWM 24.0 79 104 117 217 40,000
RWM 24.9 75 84 89 113 100,000
ARWM-GC 31.9 12 23 32 86 86.8 (GC) 4 40,000
ARWM-GC 29.7 15 21 28 70 74.0 (GC) 4 40,000
ARWM-AUIMH-GC 30.1 14 17 20 36 74.0 (GC) 4 40,000

These numbers are representative of what can be achieved with reasonably optimised
code on a modern desktop computer. The particle �lter accounts for more than 98% of
estimation time and the time increases linearly in the number of particles, N .
In a serial computing context a comparison of overall, statistical and computational,

e¢ ciency then reduces to a comparison of ine¢ ciency factors, i.e.

�� rwm

��arwm�gc
Trwm(1)

Tarwm�gc(1)
� �� rwm

��arwm�gc
.

where �� is the average ine¢ ciency factor and T (1) is the time of execution of the sampling
algorithm on one processor. In a parallel computing context

�� rwm

��arwm�gc
Tpf�rwm(P )

Tarwm�gc(P )
� �� rwm

��arwm�gc
Sarwm�gc(P )

Spf�rwm(P )
>

�� rwm

��arwm�gc
,

since Sarwm�gc(P )=Spf�rwm(P ) > 1, where Spf�rwm(P ) is the speedup of the prefetch-
ing RWM algorithm and Sarwm�gc(P ) is the speedup of the parallel adaptive and hybrid
algorithm outlined in section 4. The speedup ratio increases in P and decreases in the
fraction of random walk steps, �1. Here the speedup is compared with the prefetching
(A)RWM algorithm, based on the assumption that it is the best possible way of parallelis-
ing the (A)RWM algorithm. In hardware contexts where prefetching is infeasible, due to
immense costs of interprocessor communication, the relative attractiveness of the �largely
independence�approach increases, since then Spf�rwm(P ) = 1.

5.4 Modi�ed estimation of the mixture of normal marginal pro-
posal densities

In this section the modi�ed mixture of normals estimation procedure described in section
3.2.1 is assessed via a simple experiment. The RWM-GC sampler is applied for estimation
of the log-linearised version of the small-scale NK model in section 5.3. We generate 100
vectors of starting values from the fattened prior distribution and for each starting vector
a pair of chains, each of length R = 40; 000, are obtained. It is su¢ cient for the purposes
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here to study the behaviour of the GC component only during the critical start-up phase
of the chain. For the �rst chain in a pair the clustering approach is used for estimation of
the mixture of normal proposal densities and in the second chain the modi�ed clustering
approach is applied. The data set generated by the DGP, the prior distribution and the
adaptation schedule are the same as in the previous section, except that adaptation starts
already at iteration 1; 000. There are 43 points of adaptation for a chain. The relatively
intensive adaptation is desirable since the purpose of the experiment is to isolate the e¤ect
of the modi�ed MN estimation procedure on sampling e¢ ciency. The targeted acceptance
rate of the RWM component is roughly 24� 25%.
In �gure 7 the minimum, mean and maximum (cumulative) acceptance rate of the

GC component at each iteration is displayed for the clustering and modi�ed clustering
chains, respectively. The statistics are calculated at each iteration based on 100 observed
acceptance rates, one per chain. In this stylised experiment the acceptance rates of the
chains which use modi�ed clustering estimation is higher. Indirectly this shows that the
approximation to the posterior in the early stage of the chain is improved. At iteration
40; 000 the mean of the GC component acceptance rate is roughly 38% for the modi�ed
clustering chains and 33% for the clustering chains. For 99 of the 100 pairs of chains
the acceptance rate of the modi�ed clustering chain is larger at the �nal iteration. The
number of parameters with more than one component in the MN density is typically 3 or
4 (out of n� = 13) at the �nal iteration.
The experiment also illustrates the robustifying e¤ect of the RWM step. The worst

performing chain initially has a GC component acceptance rate very close to zero but yet,
as the RWM component continue to generate accepted proposals, it eventually manages
to �take o¤�.

6 Conclusions

Bayesian inference for DSGE models is typically carried out by single block random walk
Metropolis sampling. The high computing costs involved are an obstacle to model devel-
opment and use, and the poor mixing of RWM in high dimensions further increases com-
puting times and reduces the probability of escaping local modes. This paper combines
two features, parallelisation and adaptive independent Metropolis-Hastings, to achieve
large computational gains in DSGE estimation. The history of the draws is used to con-
tinuously improve a t-copula proposal distribution. A novel twist is an adaptive random
walk step inserted at predetermined intervals. Compared to a pure independent sampler,
this step improves the ability of the chain to escape di¢ cult points of the type often
encountered in medium and high dimensional DSGE models, while maintaining a high
statistical e¢ ciency. In linear estimation of a medium scale (23 parameters) and a large
scale (51 parameters) DSGE model, the e¢ ciency gains are 6 � 7 and 3 � 4 times re-
spectively. In a nonlinear estimation example, where computing time is even more of a
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Figure 7 Acceptance rate (%) of GC component: min, mean and max for 100 chains,
log-linear NK model.
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concern, the e¢ ciency gains are 4� 6. The sampler is also better suited to parallelisation
than RWM or blocking strategies, so that the e¤ective computational gains can poten-
tially be much larger. Our preferred algorithm employs a copula approach which, based
on results by Silva, Kohn, Giordani and Mun (2008), should provide even greater gains
over RWM when using non-standard priors such as truncated or mixture distributions.
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Appendix: Parallel adaptive and hybrid Metropolis-
Hastings sampler

In this appendix pseudo-code for a parallel adaptive and hybrid Metropolis-Hastings sam-
pler is presented. Let

qj
�
�j�i

�
= qj (�) , j = 1; :::;M

be a sequence of independence proposal densities and let

A =
�
iA0 ; i

A
1 ; i

A
2 ; :::; i

A
M

	
(14)
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denote the adaptation points at which these proposal densities are constructed, where
iA0 = 0 and where M is the number of adaptation points. Let P denote the number of
processes/processors and let R be the desired total number of draws from the sampler.
The number of synchronisation points is K.

Algorithm 1 Parallel adaptive and hybrid Metropolis-Hastings sampler

1. The current state of the chain is �r and the draw counter has the value D = r when
the (r + 1)th iteration begins and iAj > r � iAj�1.

2. (Random walk step) Perform a serial RWM step, producing 1 draw, or a parallel
�always reject�RWM prefetching step, producing Dpf draws, where P � Dpf � 1.

3. (Independence step) Each process p, p = 1; :::; P , generates �p =
�
�1p; �2p; :::; �Rpp

	
where

�ip � qj; i = 1; :::; Rp,

and collects the values of the posterior evaluated at these parameters in the vector
pp =

�
p (�1p) ; p (�2p) ; :::; p

�
�Rpp

�	
(parallel).

4. The master process gathers �p and pp, p = 1; :::; P (gather).

5. (Metropolis-Hastings step) Run the Metropolis-Hastings algorithm with the poste-
rior already evaluated at �Pp=1Rp parameter values (serial).

6. Step 1 to 4 produced Dpf+ �
P
p=1Rp draws. Update the draw counter D = D+Dpf+

�Pp=1Rp.

7. If D � iAj perform adaptation of the independence proposal density f and let j =
j + 1: Otherwise return to 1. (serial or parallel)

8. Return to 1. Stop when D � R: �

In step 2, the choice between using a RWM step and a prefetching step is essentially
determined by the properties of the available hardware. Prefetching is preferable on
theoretical grounds but in practise its performance is more sensitive to the processor-
network balance of the parallel computer.
If adaptation is much less frequent than the (prefetching) RWM step, i.e. K >> M

which is expected with batch adaptation samplers, there is a better way to implement the
algorithm.

Algorithm 2 Parallel adaptive and hybrid Metropolis-Hastings sampler (the case when
K >> M)

29



1. The current state of the chain is �r and the draw counter has the value D = r when
the (r + 1)th iteration begins and r = iAj�1.

2. (Independence step) Each process p, p = 1; :::; P , generates �p =
�
�1p; �2p; :::; �Rpp

	
where

�ip � fj; i = 1; :::; Rp;

and collects the values of the posterior evaluated at these parameters in the vector
pp =

�
p (�1p) ; p (�2p) ; :::; p

�
�Rpp

�	
(parallel). Here Rp is chosen such that

�Pp=1Rp = iAj � iAj�1.

(parallel)

3. The master process gathers �p and pp, p = 1; :::; P (gather).

4. (Metropolis-Hastings step) Run the Metropolis-Hastings algorithm with the poste-
rior already evaluated at �Pp=1Rp parameter values and insert (prefetching) RWM
steps as desired (serial).

5. Step 1 to 4 produced ~Dpf+ �
P
p=1Rp draws where ~Dpf is the number of draws pro-

duced by the (prefetching) RWM steps in 4. Update the draw counterD = D+ ~Dpf+
�Pp=1Rp.

6. Perform adaptation of the independence proposal density f and let j = j+1 (serial
or parallel).

7. Return to 1. Stop when D � R: �

We note that the algorithms, as stated here, imply that the adaptation points in [14]
are stochastic, due to the prefetching RWM step. It is possible, at the expense of more
involved notation, to write the algorithms with deterministic adaptation points. However,
in practise this does not a¤ect the performance of the algorithm.
Now, let 1� �1 denote the fraction of draws generated by the independence proposal

and assume that the parallel computer is homogeneous, such that Rp = ~R is the same
for all processors, and �Pp=1Rp = P ~R. Under the assumption that the posterior eval-
uation accounts for the dominant fraction of computational time and abstracting from
communication and adaptation costs the speedup of the hybrid algorithm is

Sh(P; �1) =
1

1��1
P
+ �1

Spf (P )

(15)

and
1 = Srwm(P ) � Spf (P ) � Sh(P; �1) � Si(P ) = P ,
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where Spf (P ) = Sh(P; 1) is the speedup of the always reject RWM prefetching algorithm
and Si(P ) = Sh(P; 0) = P is the speedup of the pure (adaptive) independence sampler.
The speedup of a hybrid algorithm with a RWM step (instead of a prefetching RWM step)
is obtained by replacing Spf (P ) by Srwm(P ) = 1 in [15]. In �gure 2 in the main text the
relative e¢ ciency contours

REh(P; �1) =
Sh(P; �1)

P
=

1

1� �1 +
P�1
Spf (P )

are displayed. The speedup Spf (P ) used in constructing the �gure is the optimal speedup
of the static prefetching algorithm, under the assumption that the posterior is multivariate
normal. Our focus on the always reject variant of prefetching RWM in this paper follows
from the idea that the primary role of the RWM steps in the hybrid algorithm is to
facilitate the escape from di¢ cult points in the parameter space. For more details on the
prefetching RWM approach, see Strid (2009). Note that the optimal acceptance rate of
the static prefetching algorithm implies the always reject tour, i.e. it is optimal to allocate
processors according to [12].
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