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Abstract

The topic of this paper is inference in models in which parameters are defined
by moment inequalities and/or equalities. The parameters may or may not be
identified. This paper introduces a new class of confidence sets and tests based
on generalized moment selection (GMS). GMS procedures are shown to have
correct asymptotic size in a uniform sense and are shown not to be asymptotically
conservative.
The power of GMS tests is compared to that of subsampling, m out of n

bootstrap, and “plug-in asymptotic” (PA) tests. The latter three procedures
are the only general procedures in the literature that have been shown to have
correct asymptotic size in a uniform sense for the moment inequality/equality
model. GMS tests are shown to have asymptotic power that dominates that of
subsampling, m out of n bootstrap, and PA tests. Subsampling and m out of n
bootstrap tests are shown to have asymptotic power that dominates that of PA
tests.

Keywords: Asymptotic size, asymptotic power, confidence set, exact size, gener-
alized moment selection,m out of n bootstrap, subsampling, moment inequalities,
moment selection, test.

JEL Classification Numbers: C12, C15.



1 Introduction

This paper considers inference in models in which parameters are defined
by moment inequalities and/or equalities. The parameters need not be identi-
fied. Numerous examples of such models are now available in the literature, e.g.,
see Manski and Tamer (2002), Imbens and Manski (2004), Ciliberto and Tamer
(2003), Andrews, Berry, and Jia (2004), Pakes, Porter, Ishii, and Ho (2004), Moon
and Schorfheide (2006), and Chernozhukov, Hong, and Tamer (2007) (CHT).
The paper introduces confidence sets (CS’s) based on a method called general-

ized moment selection (GMS). The CS’s considered in the paper are obtained by
inverting tests that are of an Anderson-Rubin-type. This method was first con-
sidered in the moment inequality context by CHT. CHT focuses on subsampling
and “plug-in asymptotic” (PA) critical values. Here we introduce and analyze
GMS critical values.
We note that the choice of critical value is much more important in moment

inequality/equality models than in most models. In most models, the choice of
critical value does not affect the first-order asymptotic properties of a test or CS.
In the moment inequality/equality model, however, it does, and the effect can be
large.
The results of the paper hold for a broad class of test statistics including

modified method of moments (MMM) statistics, Gaussian quasi-likelihood ratio
(QLR) statistics, generalized empirical likelihood ratio (GEL) statistics, and a
variety of others. The results apply to CS’s for the true parameter, as in Imbens
and Manski (2004), rather than for the identified set (i.e., the set of points that
are consistent with the population moment inequalities/equalities), as in CHT.
We focus on CS’s for the true parameter because answers to policy questions
typically depend on the true parameter rather than on the identified set.
Subsampling CS’s for the moment inequality/equality model are considered

in CHT, Andrews and Guggenberger (2005d) (hereafter AG4), and Romano and
Shaikh (2005a,b). “Plug-in asymptotic” CS’s are widely used in the literature
on multivariate one-sided tests and CS’s. They are considered in the moment
inequality/equality model in CHT and AG4 and a variant of them is considered
in Rosen (2005).
Here we introduce GMS critical values. Briefly, the idea behind GMS critical

values is as follows. The 1 − α quantile of the finite-sample null distribution
of a typical test statistic depends heavily on the extent to which the moment
inequalities are binding (i.e., are close to being equalities). In consequence, the
asymptotic null distribution of the test statistic under a suitable drifting sequence
of parameters depends heavily on a nuisance parameter h = (h1, ..., hp)�, whose
jth element hj ∈ [0,∞] indexes the extent to which the jth moment inequality
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is binding. For a suitable class of test statistics, the larger is h, the smaller is
the asymptotic null distribution in a stochastic sense. This is key for obtaining
procedures that are uniformly asymptotically valid.
The parameter h cannot be estimated consistently in a uniform sense. But,

one can use the sample moment inequalities to estimate or test how close h
is to 0p. A computationally simple procedure is to use inequality-by-inequality
t tests to test whether hj = 0 for j = 1, ..., p. If a test rejects hj = 0, then
that inequality is removed from the asymptotic null distribution that is used to
calculate the critical value. The t tests have to be designed so that the probability
of incorrectly omitting a moment inequality from the asymptotic distribution is
asymptotically negligible. Continuous/smooth versions of such procedures can
be employed in which moment inequalities are not “in or out,” but are “more in
or more out” depending on the magnitude of the t statistics.
Another type of GMS procedure is based on a modified moment selection

criterion (MMSC), which is an information-type criterion analogous to the AIC,
BIC, and HQIC model selection criteria, see Hannan and Quinn (1979) regarding
HQIC. Andrews (1999) uses an information-type moment selection criterion to
determine which moment equalities are invalid in a standard moment equality
model. Here we employ one-sided versions of such procedures to determine which
moment inequalities are not binding. In contrast to inequality-by-inequality t
tests, the MMSC jointly determines which moment inequalities to select and
takes account of correlations between sample moment inequalities.
The results of the paper cover a broad class of GMS procedures that includes

all of those discussed above. In this paper, we show that GMS critical values
yield uniformly asymptotically valid CS’s and tests. These results hold for both
i.i.d. and dependent observations. We also show that GMS procedures are not
asymptotically conservative. They are asymptotically non-similar, but are less so
than subsampling and PA procedures.
The volume of a CS that is based on inverting a test depends on the power

of the test. Thus, power is important for both tests and CS’s. We determine
and compare the power of GMS, subsampling, and PA tests. To date, no general
asymptotic power analysis is available for any tests in the moment inequality
literature. Otsu (2006), Bugni (2007a,b), and Canay (2007) consider asymptotic
power against fixed alternatives, but tests typically have asymptotic power equal
to one against such alternatives.
We investigate the asymptotic power of GMS, subsampling, and PA tests

for local and non-local alternatives. Such alternatives are more complicated in
the moment inequality/equality model than in most models. The reason is that
some inequalities may be violated while others may be satisfied as equalities, as
inequalities that are relatively close to being equalities, and/or as inequalities
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that are far from being equalities. Furthermore, depending upon the particu-
lar alternative hypothesis scenario considered, the data-dependent critical values
behave differently asymptotically. We derive the asymptotic power of the tests
under the complete range of alternatives from 1/n1/2-local, to more distant local,
through to fixed alternatives for each of the different moment inequalities and
equalities that appear in the model.
We show that (under reasonable assumptions) GMS tests are as powerful

asymptotically as subsampling and PA tests with strictly greater power in certain
scenarios. The asymptotic power differences can be substantial. Furthermore,
we show that subsampling tests are as powerful asymptotically as PA tests with
greater power in certain scenarios. m out of n bootstrap tests have the same
asymptotic properties as subsampling tests (at least in i.i.d. scenarios when
m = o(n1/2), see Politis, Romano, and Wolf (1999, p. 48)).
GMS tests are shown to be strictly more powerful asymptotically than sub-

sampling tests whenever (i) at least one population moment inequality is satisfied
under the alternative and differs from an equality by an amount that is O(b−1/2)
and is larger than O(κnn−1/2), where b is the subsample size and κn is a GMS
constant such as κn = (2 ln lnn)1/2, and (ii) the GMS and subsampling critical
values do not have the degenerate probability limit of 0. Typically b ≈ nζ for
some ζ ∈ (0, 1) such as ζ = 1/2 and κn = o(n

ε) ∀ ε > 0.
GMS and subsampling tests are shown to be strictly more powerful asymp-

totically than PA tests whenever at least one population moment inequality is
satisfied under the alternative and differs from an equality by an amount that is
larger than O(κnn−1/2) for GMS tests and is larger than o(b−1/2) for subsampling
tests.
The paper reports finite-sample size and power results obtained via simulation

for a missing-data model considered in Imbens andManski (2004) and an interval-
outcome regression model considered in Manski and Tamer (2002). The results
show good size properties of the GMS procedures considered. The results also
indicate that the asymptotic power comparisons described above are reflected in
the finite-sample power performance of GMS and subsampling tests in the cases
considered.
The paper shows that generalized empirical likelihood (GEL) tests, which are

based on fixed critical values, are dominated in terms of asymptotic power by
GMS and subsampling tests based on a QLR or GEL test statistic.
The determination of a best test statistic/GMS procedure is difficult because

uniformly best choices do not exist. Nevertheless, it is possible to make com-
parisons based on all-around performance. Doing so is beyond the scope of the
present paper and is the subject of ongoing research to be reported in Andrews,
Berry, and Jia (2007). To date, we find that the MMM and QLR test statistics
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combined with the GMS procedures based on t tests or the MMSC work well
in practice. The QLR/MMSC combination has some advantageous performance
properties, but is computationally relatively demanding. The MMM/t tests com-
bination has computational advantages.
Bootstrap versions of GMS critical values are obtained by replacing the mul-

tivariate normal random vector that appears in the asymptotic distribution by a
bootstrap distribution based on the recentered sample moments. The block boot-
strap can be employed in time series contexts. GMS bootstrap critical values,
however, do not yield higher-order improvements, because the asymptotic null
distribution is not asymptotically pivotal. Bugni (2007a,b) and Canay (2007)
consider particular types of bootstrap GMS critical values.
The paper introduces GMS model specification tests based on the GMS tests

discussed above. These tests are shown to be uniformly asymptotically valid.
They can be asymptotically conservative.
We now discuss related literature. Bugni (2007a,b) shows that a particular

type of a GMS test (based on ϕ(1) defined below) has more accurate pointwise
asymptotic size than a subsampling test. Such results should extend to all GMS
tests and to asymptotic size defined in a uniform sense. Given that they do,
GMS tests have both asymptotic power and size advantages over subsampling
tests. The relatively low accuracy of the size of subsampling tests and CS’s in
many models is well-known in the literature. We are not aware of any other
papers or scenarios where the asymptotic power of subsampling tests has been
shown to be dominated by other procedures.
Other papers in the literature that consider inference with moment inequal-

ities include: CHT, Andrews, Berry, and Jia (2004), Pakes, Porter, Ho, and
Ishii (2004), AG4, Romano and Shaikh (2005a,b), Rosen (2005), Beresteanu and
Molinari (2006), Galichon and Henry (2006), Moon and Schorfheide (2006), Otsu
(2006), Woutersen (2006), Bugni (2007a,b), Canay (2007), Guggenberger, Hahn,
and Kim (2007), and Stoye (2007).1

The remainder of the paper is organized as follows. Section 2 describes the
moment inequality/equality model. Section 3 introduces the class of test statistics

1GMS critical values based on ϕ(1) and ϕ(5), defined below, were introduced in Soares
(2005). The present paper supplants Soares (2005). GMS critical values of types ϕ(2) − ϕ(4)

were considered by the authors in January 2007. CHT mentions critical values of GMS type
based on ϕ(1), see their Remark 4.5. The 2003 working paper version of CHT also discusses
a bootstrap version of the GMS method based on ϕ(1) in the context of the interval outcome
model. Galichon and Henry (2006), independently of Soares (2005), consider a set selection
method that is analogous to GMS based on ϕ(1). Bugni (2007a,b) considers GMS critical values
based on ϕ(1). His work was done independently of, but subsequently to, Soares (2005). Canay
(2007) independently considers GMS critical values based on ϕ(3). Bugni (2007a,b) and Canay
(2007) focus on bootstrap versions of the GMS critical values.
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that is considered and states assumptions. Section 4 introduces the class of GMS
CS’s. Section 5 introduces GMS model specification tests. Sections 6 and 7
define subsampling CS’s and PA CS’s, respectively. Section 8 determines and
compares the 1/n1/2-local alternative power of GMS, subsampling, and PA tests.
Section 9 considers the power of these tests against more distant alternatives.
Section 10 discusses extensions to GEL test statistics and preliminary estimation
of identified parameters. Section 11 provides the simulation results. Appendix
A contains proofs of all of the results except for Theorem 4, which is proved in
Appendix B.
For notational simplicity, throughout the paper we write partitioned column

vectors as h = (h1, h2), rather than h = (h�1, h
�
2)
�. Let R+ = {x ∈ R : x ≥ 0},

R+,∞ = R+∪ {+∞}, R[+∞] = R∪ {+∞}, R[±∞] = R∪{±∞}, Kp = K× ...×K
(with p copies) for any set K,∞p = (+∞, ...,+∞)� (with p copies). All limits are
as n → ∞ unless specified otherwise. Let “pd” abbreviate “positive definite.”
Let cl(Ψ) denote the closure of a set Ψ. We let AG1 abbreviate Andrews and
Guggenberger (2005a).

2 Moment Inequality Model

We now introduce the moment inequality/equality model. The true value θ0
(∈ Θ ⊂ Rd) is assumed to satisfy the moment conditions:

EF0mj(Wi, θ0) ≥ 0 for j = 1, ..., p and
EF0mj(Wi, θ0) = 0 for j = p+ 1, ..., p+ v, (2.1)

where {mj(·, θ) : j = 1, ..., k} are known real-valued moment functions, k = p+v,
and {Wi : i ≥ 1} are i.i.d. or stationary random vectors with joint distribution
F0. The observed sample is {Wi : i ≤ n}. A key feature of the model is that the
true value θ0 is not necessarily identified. That is, knowledge of EF0mj(Wi, θ) for
j = 1, ..., k for all θ ∈ Θ does not necessarily imply knowledge of θ0. In fact, even
knowledge of F0 does not necessarily imply knowledge of the true value θ0. More
information than is available in {Wi : i ≤ n} may be needed to identify the true
parameter θ0.
Note that both moment inequalities and moment equalities arise in the entry

game models considered in Ciliberto and Tamer (2003) and Andrews, Berry, and
Jia (2004) and in the macroeconomic model in Moon and Schorfheide (2006).
There are numerous models where only moment inequalities arise, e.g., see Manski
and Tamer (2002) and Imbens and Manski (2004). There are also unidentified
models in which only moment equalities arise, see CHT for references.
We are interested in CS’s for the true value θ0.
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Generic values of the parameters are denoted (θ, F ). For the case of i.i.d.
observations, the parameter space F for (θ, F ) is the set of all (θ, F ) that satisfy:

(i) θ ∈ Θ,

(ii) EFmj(Wi, θ) ≥ 0 for j = 1, ..., p,
(iii) EFmj(Wi, θ) = 0 for j = p+ 1, ..., k,

(iv) {Wi : i ≥ 1} are i.i.d. under F,
(v) σ2F,j(θ) = V arF (mj(Wi, θ)) ∈ (0,∞) for j = 1, ..., k,
(vi) CorrF (m(Wi, θ)) ∈ Ψ, and

(vii) EF |mj(Wi, θ)/σF,j(θ)|2+δ ≤M for j = 1, ..., k, (2.2)

where Ψ is a set of k × k correlation matrices specified below and M < ∞ and
δ > 0 are constants. For expositional convenience, we specify F for dependent
observations in the Appendix A, see Section 12.2.
We consider a confidence set obtained by inverting a test. The test is based

on a test statistic Tn(θ0) for testing H0 : θ = θ0. The nominal level 1− α CS for
θ is

CSn = {θ ∈ Θ : Tn(θ) ≤ c1−α(θ)}, (2.3)

where c1−α(θ) is a critical value.2 We consider GMS, subsampling, and “plug-in
asymptotic” critical values. These are data-dependent critical values and their
probability limits, when they exist, typically depend on the true distribution
generating the data.
The exact and asymptotic confidence sizes of CSn are

ExCSn = inf
(θ,F )∈F

PF (Tn(θ) ≤ c1−α(θ)) and AsyCS = lim inf
n→∞

ExCSn, (2.4)

respectively. The definition of AsyCS takes the “ sup ” before the “ lim .” This
builds uniformity over (θ, F ) into the definition of AsyCS. Uniformity is required
for the asymptotic size to give a good approximation to the finite-sample size of
CS’s. Andrews and Guggenberger (2005a,b,c) and Mikusheva (2007) show that
when a test statistic has a discontinuity in its limit distribution, as occurs in the
moment inequality/equality model, pointwise asymptotics (in which one takes
the “ lim ” before the “ sup ”) can be very misleading in some models. See AG4
for further discussion.
The exact and asymptotic maximum coverage probabilities are

ExMaxCPn = sup
(θ,F )∈F

PF (Tn(θ) ≤ c1−α(θ)) and

AsyMaxCP = lim sup
n→∞

ExMaxCPn, (2.5)

2It is important that the inequality in the definition of CSn is ≤, not < . When θ is in the
interior of the identified set, it is often the case that Tn(θ) = 0 and c1−α(θ) = 0.
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respectively. The magnitude of asymptotic non-similarity of the CS is measured
by the difference AsyMaxCP −AsyCS.

3 Test Statistics

In this section, we define the main class of test statistics Tn(θ) that we con-
sider. GEL statistics are discussed in Section 10 below.

3.1 Form of the Test Statistics

The sample moment functions are

mn(θ) = (mn,1(θ), ...,mn,k(θ))
�, where

mn,j(θ) = n
−1

n[
i=1

mj(Wi, θ) for j = 1, ..., k. (3.1)

Let eΣn(θ) be an estimator of the asymptotic variance, Σ(θ), of n1/2mn(θ).When
the observations are i.i.d., we take

eΣn(θ) = n−1 n[
i=1

(m(Wi, θ)−mn(θ))(m(Wi, θ)−mn(θ))
�, where

m(Wi, θ) = (m1(Wi, θ), ...,mk(Wi, θ))
�. (3.2)

With temporally dependent observations, a different definition of eΣn(θ) often is
required. For example, a heteroskedasticity and autocorrelation consistent (HAC)
estimator may be required.
The statistic Tn(θ) is defined to be of the form

Tn(θ) = S(n
1/2mn(θ), eΣn(θ)), (3.3)

where S is a real function on Rp[+∞]×Rv×Vk×k, where Vk×k is the space of k×k
variance matrices. (The set Rp[+∞]×Rv contains k-vectors whose first p elements
are either real or +∞ and whose last v elements are real.) The function S is
required to satisfy Assumptions 1-6 stated below. We now give several examples
of functions that do so.
First, consider the MMM test function S = S1 defined by

S1(m,Σ) =

p[
j=1

[mj/σj]
2
− +

p+v[
j=p+1

(mj/σj)
2, where

[x]− =
�
x if x < 0
0 if x ≥ 0, m = (m1, ...,mk)

�, (3.4)
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and σ2j is the jth diagonal element of Σ. With the function S1, the parameter
space Ψ for the correlation matrices in condition (vi) of (2.2) is Ψ = Ψ1, where
Ψ1 contain all k× k correlation matrices.3 The function S1 yields a test statistic
that gives positive weight to moment inequalities only when they are violated.
This type of statistic has been considered in CHT, AG4, Romano and Shaikh
(2005a,b), and Soares (2005). Note that S1 normalizes the moment functions
by dividing by σj in each summand. One could consider a function without this
normalization, as in Pakes, Porter, Ho, and Ishii (2004), but the resulting statistic
is not invariant to rescaling of the moment conditions and, hence, is not likely to
have good properties in terms of the volume of its CS. We use the function S1 in
the simulations reported in Section 11 below.
Second, we consider a QLR test function defined by

S2(m,Σ) = inf
t=(t1,0v):t1∈Rp+,∞

(m− t)�Σ−1(m− t). (3.5)

With this function, the parameter space Ψ in (2.2) is Ψ = Ψ2, where Ψ2 contains
all k× k correlation matrices whose determinant is greater than or equal to ε for
some ε > 0.4 This type of statistic has been considered in many papers on tests
of inequality constraints, e.g., see Kudo (1963) and Silvapulle and Sen (2005, Sec.
3.8), as well as papers in the moment inequality literature, see Rosen (2005). We
note that GEL test statistics behave asymptotically (to the first order) under the
null and alternative hypotheses like the statistic Tn(θ) based on S2, see Section
10 below and AG4.
For a test with power directed against alternatives with p1 (< p) moment

inequalities violated, the following function is suitable:

S3(m,Σ) =

p1[
j=1

[m(j)/σ(j)]
2
− +

p+v[
j=p+1

(mj/σj)
2, (3.6)

where [m(j)/σ(j)]
2
− denotes the jth largest value among {[m�/σ�]

2
− : � = 1, ..., p}

and p1 < p is some specified integer. The function S3 satisfies (2.2) with Ψ = Ψ1.
The function S3 is considered in Andrews, Berry, and Jia (2007).

3Note that with temporally dependent observations, Ψ is the parameter space for the limiting
correlation matrix, limn→∞CorrF (n1/2mn(θ)).

4The definition of S2(m,Σ) takes the infimum over t1 ∈ Rp+,∞, rather than over t1 ∈ Rp+.
For calculation of the test statistic based on S2, using the latter gives an equivalent value. To
obtain the correct asymptotic distribution, however, the former definition is required because it
leads to continuity at infinity of S2 when some elements of m may equal infinity. For example,
suppose k = p = 1. In this case, when m ∈ R+, inft1∈R+,∞(m− t1)2 = inft1∈R+(m− t1)2 = 0.
However, when m =∞, inft1∈R+,∞(m− t1)2 = 0, but inft1∈R+(m− t1)2 =∞.
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Other examples of test functions S that satisfy Assumptions 1-6 are variations
of S1 and S3 with the step function [x]− replaced by a smooth function, with the
square replaced the absolute value to a different positive power (such as one), or
with weights added.
It is difficult to compare the performance of one test function S with another

function without specifying the critical values to be used. Most critical values,
such as the GMS, subsampling, and PA critical values considered here, are data-
dependent and have limits as n → ∞ that depend on the distribution of the
observations. For a given test function S, a different test is obtained for each
type of critical value employed and the differences do not vanish asymptotically.
The relative performances of different functions S are considered elsewhere, see
Andrews, Berry, and Jia (2007).

3.2 Test Statistic Assumptions

Next, we state the most important assumptions concerning the function S,
viz. Assumptions 1, 3, and 6. For ease of reading, technical assumptions (mostly
continuity and strictly-increasing assumptions on asymptotic distribution func-
tions (df’s)), viz., Assumptions 2, 4, 5, and 7, are stated in Appendix A. We show
below that the functions S1—S3 automatically satisfy Assumption 1-6. Assump-
tion 7 is not restrictive.
Let B ⊂ Rw. We say that a real function G on Rp[+∞] × B is continuous at

x ∈ Rp[+∞] × B if y → x for y ∈ Rp[+∞] × B implies that G(y) → G(x). In the
assumptions below, the set Ψ is as in condition (vi) of (2.2).5 For p-vectors m1

andm∗1, m1 < m
∗
1 means thatm1 ≤ m∗1 and at least one inequality in the p-vector

of inequalities holds strictly.

Assumption 1. (a) S((m1,m2),Σ) is non-increasing in m1, for all m1 ∈ Rp,
m2 ∈ Rv, and variance matrices Σ ∈ Rk×k.
(b) S(m,Σ) = S(∆m,∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and pd diagonal

∆ ∈ Rk×k.
(c) S(m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ.
(d) S(m,Ω) is continuous at all m ∈ Rp[+∞] ×Rv and Ω ∈ Ψ.6

Assumption 3. S(m,Ω) > 0 if and only if mj < 0 for some j = 1, ..., p or
mj 9= 0 for some j = p+ 1, ..., k, where m = (m1, ...,mk)

� and Ω ∈ Ψ.

5For dependent observations, Ψ is as in condition (v) of (12.2) in Appendix A.
6In Assumption 1(d) (and in Assumption 4(b) in Appendix A), S(m,Ω) and c(Ω, 1−α) are

viewed as functions defined on the space of all correlation matrices. By definition, c(Ω, 1− α)
is continuous in Ω uniformly for Ω ∈ Ψ if for all η > 0 there exists δ > 0 such that whenever
||Ω∗ − Ω|| < δ for Ω∗ ∈ Ψ1 and Ω ∈ Ψ we have |cΩ∗(1− α)− cΩ(1− α)| < η.

9



Assumption 6. For some τ > 0, S(am,Ω) = aτS(m,Ω) for all scalars a > 0,
m ∈ Rk, and Ω ∈ Ψ.

Assumptions 1-6 are shown in Lemma 1 below not to be restrictive. As-
sumption 1(a) is the key assumption that is needed to ensure that subsampling
CS’s have correct asymptotic size. Assumption 1(b) is a natural assumption that
specifies that the test statistic is invariant to the scale of each sample moment.
Assumptions 1(b) and 1(d) are conditions that enable one to determine the as-
ymptotic properties of Tn(θ). Assumption 1(c) normalizes the test statistic to be
non-negative.
Assumption 3 implies that a positive value of S(m,Ω) only occurs if some

inequality or equality is violated. Assumption 3 implies that S(∞p,Σ) = 0 when
v = 0. Assumption 6 requires S to be homogeneous of degree τ > 0 in m. This is
used to show that the test based on S has asymptotic power equal to one against
fixed alternatives.

Lemma 1 The functions S1(m,Σ)—S3(m,Σ) satisfy Assumptions 1-6 with Ψ =
Ψ1 for S1(m,Σ) and S3(m,Σ) and with Ψ = Ψ2 for S2(m,Σ).

4 Generalized Moment Selection

4.1 Description of the GMS Method

We start by motivating the GMS method. Consider the null hypothesis H0 :
θ = θ0. The finite-sample null distribution of Tn(θ0) depends continuously on the
degree of slackness of the moment inequalities. That is, it depends on how much
greater than zero is EFmj(Wi, θ0) for j = 1, ..., p. Under Assumption 1(a), the
least favorable case (at least asymptotically) can be shown to be the case where
there is no slackness–each of the moments is zero. That is, the distribution
of Tn(θ0) is stochastically largest over distributions in the null hypothesis when
the inequality moments equal zero. One way to construct a critical value for
Tn(θ0), then, is to take the 1 − α quantile of the distribution (or asymptotic
distribution) of Tn(θ0) when the inequality moments all equal zero. This yields
a test with correct (asymptotic) size, but its power properties are poor against
many alternatives of interest.
The reason for its poor power is that the least favorable critical value is

relatively large. This is especially true if the number of moment inequalities, p,
is large. For example, consider power against an alternative for which only the
first moment inequality is violated, i.e., EFm1(Wi, θ0) < 0, and the last p − 1
moment inequalities are satisfied by a wide margin, i.e., EFmj(Wi, θ0) >> 0 for
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j = 2, ..., p. Then, the last p − 1 moment inequalities have little or no effect on
the value of the test statistic Tn(θ0). (This holds for typical test statistics and is
implied by Assumption 3.) Yet, the critical value does depend on the existence
of the last p− 1 moment inequalities and is much larger than it would be if these
moment inequalities were absent. In consequence, the test has significantly lower
power than if the last p− 1 moment inequalities were absent.
The idea behind generalized moment selection is to use the data to determine

whether a given moment inequality is satisfied and is far from being an equality
and if so to take the critical value to be smaller than otherwise–both under the
null and under the alternative. Of course, in doing so, one has to make sure that
the (asymptotic) size of the resulting test is correct. We use the sample moment
functions to estimate or test whether the population moment inequalities are
close to, or far from, being equalities.
Using Assumption 1(b), we can write

Tn(θ) = S(n
1/2mn(θ), eΣn(θ))

= S( eD−1/2n (θ)n1/2mn(θ), eΩn(θ)), whereeDn(θ) = Diag(eΣn(θ)) and eΩn(θ) = eD−1/2n (θ)eΣn(θ) eD−1/2n (θ). (4.1)

Thus, the test statistic Tn(θ) depends only on the normalized sample moments
and the sample correlation matrix. Under an appropriate sequence of null distri-
butions {Fn : n ≥ 1}, the asymptotic null distribution of Tn(θ0) is that of

S(Ω
1/2
0 Z∗ + (h1, 0v),Ω0), where Z∗ ∼ N(0k, Ik), (4.2)

h1 ∈ Rp+,∞, and Ω0 is a k × k correlation matrix. This result holds by (4.2),
the central limit theorem, and convergence in probability of the sample corre-
lation matrix, see the proof of Thm. 1 of AG4. The p-vector h1 is the limit
of (n1/2EFnm1(Wi, θ0)/σFn,1(θ0), ..., n

1/2EFnmp(Wi, θ0)/σFn,p(θ0))
� under the null

distributions {Fn : n ≥ 1}. By considering suitable sequences of distributions Fn
that depend on n, rather than a fixed distribution F, we obtain an asymptotic dis-
tribution that depends continuously on the degree of slackness of the population
moment inequalities via the parameter h1 (≥ 0p). This reflects the finite-sample
situation.
Note that the correlation matrix Ω0 can be consistently estimated, but the

“1/n1/2-local asymptotic mean parameter h1 cannot be (uniformly) consistently
estimated. It is the latter property that makes it challenging to determine a
critical value that yields a test with correct asymptotic size and good power
properties.
The GMS critical value is defined to be the 1−α quantile of a data-dependent

version of the asymptotic null distribution, S(Ω1/20 Z∗+(h1, 0v),Ω0), that replaces
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Ω0 by a consistent estimator and replaces h1 with a p-vector in R
p
+,∞ whose value

depends on a measure of the slackness of the moment inequalities. We measure
the degree of slackness of the moment inequalities via

ξn(θ) = κ−1n n
1/2 eD−1/2n (θ)mn(θ) (4.3)

evaluated at θ = θ0, where {κn : n ≥ 1} is a sequence of constants that diverges
to infinity as n → ∞. As discussed below, by the law of the iterated logarithm,
a suitable choice of κn often is

κn = (2 ln lnn)
1/2. (4.4)

Let ξn,j(θ), h1,j, and [Ω
1/2
0 Z∗]j denote the jth elements of ξn(θ), h1, and

Ω
1/2
0 Z∗, respectively, for j = 1, ..., p. When ξn,j(θ0) is zero or close to zero, this
indicates that h1,j is zero or fairly close to zero and the desired replacement of
h1,j in S(Ω

1/2
0 Z∗+(h1, 0v),Ω0) is 0. On the other hand, when ξn,j(θ0) is large, this

indicates h1,j is quite large (where the adjective “quite” is due to the κn factor)
and the desired replacement of h1,j in S(Ω

1/2
0 Z∗ + (h1, 0v),Ω0) is ∞.

We replace h1,j in S(Ω
1/2
0 Z∗+(h1, 0v),Ω0) by ϕj(ξn(θ0), eΩn(θ0)) for j = 1, ..., p,

where ϕj : (R
p
[+∞] × Rv[±∞]) × Ψ → R[±∞] is a function that is chosen to deliver

the properties described above. Suppose ϕj satisfies (i) ϕj(ξ,Ω) = 0 for all
ξ = (ξ1, ..., ξk)

� ∈ Rp[+∞]×Rv[±∞] with ξj = 0 and all Ω ∈ Ψ, and (ii) ϕj(ξ,Ω)→∞
as (ξ,Ω) → (ξ∗,Ω∗) for all ξ∗ = (ξ∗,1, ..., ξ∗,k)

� ∈ Rp[+∞] × Rv[±∞] with ξ∗,j = ∞
and all Ω∗ ∈ Ψ, where ξ ∈ Rk and Ω ∈ Ψ. In this case, if ξn,j(θ0) = 0, then
ϕj(ξn(θ0), eΩn(θ0)) = 0 and h1,j is replaced by 0, as desired. On the other hand, if
ξn,j(θ0) if large, condition (ii) implies that ϕj(ξn(θ0), eΩn(θ0)) is large and h1,j is
replaced by a large value, as desired, for j = 1, ..., p. For j = p+1, ..., k, we define
ϕj(ξn(θ0), eΩn(θ0)) = 0 because no h1,j term appears in S(Ω1/20 Z∗ + (h1, 0v),Ω0).
Examples of functions ϕj include

ϕ
(1)
j (ξ,Ω) =

�
0 if ξj ≤ 1
∞ if ξj > 1,

ϕ
(2)
j (ξ,Ω) = ψ(ξj),

ϕ
(3)
j (ξ,Ω) = [ξj]+, and ϕ

(4)
j (ξ,Ω) = ξj (4.5)

for j = 1, ..., p,where ψ is defined below. Let ϕ(r)(ξ,Ω) = (ϕ(r)1 (ξ,Ω), ...,ϕ
(r)
p (ξ,Ω),

0, ..., 0)� ∈ Rp[±∞] × {0}v for r = 1, ..., 4.
The function ϕ(1) generates a “moment selection t test” procedure. Using

ϕ(1), h1,j is replaced in S(Ω
1/2
0 Z∗ + (h1, 0v),Ω0) by ∞ if ξn,j(θ0) > 1 and by 0

otherwise. Note that ξn,j(θ0) > 1 is equivalent to

n1/2mn,j(θ0)eσn,j(θ0) > κn, (4.6)
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where eσn,j(θ0) is the (j, j) element of eΣn(θ0) for j = 1, ..., p. If one takes the critical
value to satisfy κn = (2 ln lnn)

1/2, then by the law of the iterated logarithm the
probability is zero that (4.6) occurs for infinitely many n when the true mean
EFmj(Wi, θ0) equals 0. That is, the probability of falsely failing to select the jth
moment condition for infinitely many n is zero. The GMS procedure based on
ϕ(1) is the same as the Wald test procedure in Andrews (1999, Sec. 6.4; 2000,
Sec. 4) for the related problem of inference when a parameter is on or near a
boundary.
The function ϕ(2) in (4.5) depends on a non-decreasing function ψ(x) that

satisfies ψ(x) = 0 if x ≤ aL, ψ(x) ∈ [0,∞] if aL < x < aU , and ψ(x) = ∞
if x > aU , for some 0 < aL ≤ aU ≤ ∞. A key condition is that aL > 0, see
Assumption GMS1(a) below. The function ϕ(2) is a continuous version of ϕ(1)

when ψ is taken to be continuous on R (where continuity at aU means that
limx→aU ψ(x) =∞).
The functions ϕ(3) and ϕ(4) exhibit a less steep rate of increase than ϕ(1) and

ϕ(2) as functions of ξj for j = 1, ..., p.
The functions ϕ(r) for r = 1, ..., 4 all exhibit “element by element” determi-

nation of ϕ(r)j (ξ,Ω) because the latter depends only on ξj. This has significant

computational advantages because ϕ(r)j (ξn(θ0), eΩn(θ0)) is very easy to compute.
On the other hand, when eΩn(θ0) is non-diagonal, the whole vector ξn(θ0) contains
information about the magnitude of h1,j. We now introduce a function ϕ(5) that
exploits this information. It is related to the information criterion-based moment
selection criteria (MSC) considered in Andrews (1999) for a different moment
selection problem. We refer to ϕ(5) as the modified MSC (MMSC) ϕ function. It
is computationally more expensive than the ϕ(r) functions considered above. We
use the function ϕ(5) in the simulations reported in Section 11 below.
Define c = (c1, ..., ck)� to be a selection k-vector of 0�s and 1�s. If cj = 1, the jth

moment condition is selected; if cj = 0, it is not selected. The moment equality
functions are always selected, so cj = 1 for j = p+1, ..., k. Let |c| =

Sk
j=1 cj. For

ξ ∈ Rp[+∞] ×Rv[±∞], define c · ξ = (c1ξ1, ..., ckξk)� ∈ Rp[+∞] ×Rv[±∞], where cjξj = 0
if cj = 0 and ξj =∞. Let C denote the parameter space for the selection vectors.
In many cases, C = {0, 1}p × {1}v. However, if there is a priori information
that one moment inequality cannot hold as an equality if some other does, see
Rosen (2005) for a discussion of examples of this sort, then this can be built into
the definition of C. Let η(·) be a strictly increasing real function on R+. Given
(ξ,Ω) ∈ (Rp[+∞]×Rv[±∞])×Ψ, the selected moment vector c(ξ,Ω) ∈ C is the vector
in C that minimizes the MMSC defined by

S(−c · ξ,Ω)− η(|c|). (4.7)
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Note the minus sign that appears in the first argument of the S function. This
ensures that a large positive value of ξj yields a large value of S(−c · ξ,Ω) when
cj = 1, as desired. Since η(·) is increasing, −η(|c|) is a bonus term that rewards
inclusion of more moments. Hence, the minimizing selection vector c(ξ,Ω) trades
off the minimization of S(−c · ξ,Ω), which is achieved by selecting few moment
functions, with the maximization of the bonus term, which is increasing in the
number of selected moments. For j = 1, ..., p, define

ϕ
(5)
j (ξ,Ω) =

�
0 if cj(ξ,Ω) = 1
∞ if cj(ξ,Ω) = 0.

(4.8)

Using Assumptions 1(b) and 6,

κτn

�
S(−c · ξn(θ0), eΩn(θ0))− η(|c|)

�
= S(−c · n1/2mn(θ0), eΣn(θ0))− η(|c|)κτn, (4.9)

where τ is as in Assumption 6. In consequence, the MMSC selection vector
c(ξn(θ0), eΩn(θ0)) minimizes both the left-hand and right-hand sides (rhs) of (4.9)
over C. The rhs of (4.9) is analogous to the BIC and HQIC criteria considered
in the model selection literature in which case η(x) = x, κn = (logn)1/2 for BIC,
κn = (Q ln lnn)1/2 for some Q ≥ 2 for HQIC, and τ = 2 (which holds for the
functions S1-S3). Note that some calculations show that when eΩn(θ0) is diagonal,
S = S1 or S2, and η(x) = x, the function ϕ(5) reduces to ϕ(1).
Returning now to the general case, given a choice of function ϕ(ξ,Ω) =

(ϕ1(ξ,Ω), ..., ϕp(ξ,Ω), 0, ..., 0)
� ∈ Rp[+∞]×Rv[±∞], the replacement for the k-vector

(h1, 0v) in S(Ω
1/2
0 Z∗ +(h1, 0v), Ω0) is ϕ(ξn(θ0), eΩn(θ0)). Thus, the GMS critical

value, ecn(θ0, 1− α), is the 1− α quantile of

Sn(θ0, Z
∗) = S

�eΩ1/2n (θ0)Z
∗ + ϕ

�
ξn(θ0), eΩn(θ0)� , eΩn(θ0)� , (4.10)

where Z∗ ∼ N(0k, Ik) and Z∗ is independent of {Wi : i ≥ 1}. That is,

ecn(θ0, 1− α) = inf {x ∈ R : P (Sn(θ0, Z∗) ≤ x) ≥ 1− α} , (4.11)

where P (Sn(θ0, Z∗) ≤ x) denotes the conditional df at x of Sn(θ0, Z∗) given
(ξn(θ0), eΩn(θ0)). One can compute ecn(θ0, 1 − α) by simulating R i.i.d. random
variables {Z∗r : r = 1, ..., R} with Z∗r ∼ N(0k, Ik) and taking ecn(θ0, 1 − α) to be
the 1− α sample quantile of {Sn(θ0, Z∗r ) : r = 1, ..., R}, where R is large.
A bootstrap version of the GMS critical value is obtained by replacingeΩ1/2n (θ)Z∗ in (4.10) by a re-centered bootstrapped version of n1/2 eD−1/2n (θ)mn(θ),
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denoted by BT ∗n(θ). Let {W ∗
i : i ≤ n} be a bootstrap sample, such as a nonpara-

metric i.i.d. bootstrap sample in an i.i.d. scenario or a block bootstrap sample
in a time series scenario. By definition,

BT ∗n(θ) = n
1/2
� eD∗n(θ)�−1/2 (m∗n(θ)−mn(θ)) , where

m∗n(θ) = n
−1

n[
i=1

m(W ∗
i , θ), eD∗n(θ) = Diag(eΣ∗n(θ)), (4.12)

and eΣ∗n(θ) is defined as eΣn(θ) is defined (e.g., as in (3.2) in the i.i.d. case)
with W ∗

i in place of Wi. For the asymptotic results given below to hold with
a bootstrap GMS critical value, one needs that BT ∗n(θn,h) →d Ω

1/2
0 Z∗ under

certain triangular arrays of true distributions and true parameters θn,h, where Ω0
is a k × k correlation matrix and Z∗ is as in (4.10).7 This can be established for
the nonparametric i.i.d. and block bootstraps using fairly standard arguments.
For brevity, we do not do so here.
The 2003 working paper version of CHT discusses a bootstrap version of the

GMS critical value based on ϕ(1) in the context of the interval outcome regression
model. Bugni (2007a,b) and Canay (2007) provide results regarding the pointwise
asymptotic null properties of nonparametric i.i.d. bootstrap procedures applied
with ϕ(1) and ϕ(3), respectively. Note that GMS bootstrap critical values do not
generate higher-order improvements in the present context because the asymp-
totic null distribution of the test statistic Tn(θ) is not asymptotically pivotal.

4.2 Assumptions

Next we state assumptions on the function ϕ and the constants {κn : n ≥ 1}
that define a GMS procedure. The first two assumptions are used to show that
GMS CS’s and tests have correct asymptotic size.

Assumption GMS1. (a) ϕj(ξ,Ω) is continuous at all (ξ,Ω) ∈ (Rp[+∞]×Rv[±∞])×
Ψ with ξj = 0, where ξ = (ξ1, ..., ξk)

�, for j = 1, ..., p.
(b) ϕj(ξ,Ω) = 0 for all (ξ,Ω) ∈ (Rp[+∞] × Rv[±∞]) × Ψ with ξj = 0, where

ξ = (ξ1, ..., ξk)
�, for j = 1, ..., p.

Assumption GMS2. κn →∞.
7More specifically, this convergence must hold under any sequence of distributions {γn :

n ≥ 1} defined just above (12.3) in the Appendix (in which case Ω0 = Ωh2,2), the convergence
needs to be joint with that in (12.3) of the Appendix, and the convergence must hold with {n}
replaced by any subsequence {wn} of sample sizes.
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Assumptions GMS1 and GMS2 are not restrictive. For example, the functions
ϕ(1)−ϕ(4) satisfy Assumption GMS1 and κn = (2 ln lnn)

1/2 satisfies Assumption
GMS2. Assumption GMS1 also holds for ϕ(5) for all functions S that satisfy
Assumption 1(d), which includes S1-S3, see Appendix B for a proof.
The next two assumptions are used in conjunction with Assumptions GMS1

and GMS2 to show that GMS CS’s and tests are not asymptotically conservative.
They also are used to determine the formula for the asymptotic power of GMS
tests against 1/n1/2-local alternatives.

Assumption GMS3. ϕj(ξ,Ω) → ∞ as (ξ,Ω) → (ξ∗,Ω∗) for all (ξ∗,Ω∗) ∈
Rp[+∞] ×Rv[±∞] × cl(Ψ) with ξ∗,j =∞, where ξ∗ = (ξ∗,1, ..., ξ∗,k)�, for j = 1, ..., p.
Assumption GMS4. κ−1n n

1/2 →∞.
Assumptions GMS3 and GMS4 are not restrictive and are satisfied by ϕ(1)−ϕ(4)

and κn = (2 ln lnn)
1/2. Assumption GMS3 also holds for ϕ(5) for all functions S

that satisfy Assumption 1(d) and for which S(−c ·ξ,Ω)→∞ as (ξ,Ω)→ (ξ∗,Ω∗)
whenever cj = 1, see Appendix B for a proof. The latter holds for the test
functions S1-S3.
The next two assumptions are used in conjunction with Assumptions GMS2

and GMS3 to show that GMS tests dominate subsampling tests (based on a
subsample size b) in terms of 1/n1/2-local asymptotic power.

Assumption GMS5. κ−1n (n/b)
1/2 →∞, where b = bn is the subsample size.

Assumption GMS6. ϕj(ξ,Ω) ≥ 0 for all (ξ,Ω) ∈ (Rp[+∞] × Rv[±∞]) × Ψ for
j = 1, ..., p.

Assumption GMS5 holds for all reasonable choices of κn and b. For example, for
κn = (2 ln lnn)1/2, Assumption GMS5 holds for b = nζ for any ζ ∈ (0, 1). Any
reasonable choice of b satisfies the latter condition. Assumption GMS6 is satisfied
by the functions ϕ(1) − ϕ(5) except for ϕ(4). Hence, it is slightly restrictive.
The last assumption is used to show that GMS tests are consistent against

alternatives that are more distant from the null than 1/n1/2-local alternatives.

Assumption GMS7. ϕj(ξ,Ω) ≥ min{ξj, 0} for all (ξ,Ω) ∈ (Rp[+∞]×Rv[±∞])×Ψ
for j = 1, ..., p.

Assumption GMS7 is not restrictive. For example, it is satisfied by ϕ(1) − ϕ(5).
Next we introduce a condition that depends on the model, not on the GMS

method, and is only used when showing that GMS CS’s have AsyMaxCP = 1
when v = 0.

Assumption M. For some (θ, F ) ∈ F , EFmj(Wi, θ) > 0 for all j = 1, ..., p.
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Assumption M typically holds if the identified set (i.e., the set of parameter values
θ that satisfy the population moment inequalities and equalities under F ) has a
non-empty interior for some data-generating process included in the model.

4.3 Asymptotic Size Results

The following Theorem applies to i.i.d. observations, in which case F is
defined in (2.2), and to dependent observations, in which case for brevity F is
defined in (12.2)-(12.3) in Appendix A.

Theorem 1 Suppose Assumptions 1-3, GMS1, and GMS2 hold and 0 < α <
1/2. Then, the nominal level 1− α GMS CS based on Tn(θ) satisfies
(a) AsyCS ≥ 1− α,
(b) AsyCS = 1− α if Assumptions GMS3, GMS4, and 7 also hold, and
(c) AsyMaxCP = 1 if v = 0 (i.e., no moment equalities appear) and As-

sumption M also holds.

Comments. 1. Theorem 1(a) shows that a GMS CS is asymptotically valid
in a uniform sense. Theorem 1(b) shows it is not asymptotically conservative.
Theorem 1(c) shows it is not asymptotically similar.
2. Theorem 1 places no assumptions on the moment functions m(Wi, θ)

beyond the existence of mild moments conditions that appear in the definition of
F .
3. Theorem 1 holds even when there are restrictions on the moment inequal-

ities such that when one moment inequality holds as an equality then another
moment inequality cannot. Restrictions of this sort arise in some models, such
as models with interval outcomes, e.g., see Rosen (2005).

5 GMS Model Specification Tests

Tests of model specification can be constructed using the GMS CS introduced
above. The null hypothesis of interest is that (2.1) holds for some parameter
θ0 ∈ Θ (with additional conditions imposed by the parameter space for (θ, F )).
By definition, the GMS test rejects the model specification if Tn(θ) exceeds the
GMS critical value ecn(θ, 1− α) for all θ ∈ Θ. Equivalently, it rejects if the GMS
CS is empty. The idea behind such a test is the same as for the J test of over-
identifying restrictions in GMM, see Hansen (1982).
When the model of (2.1) is correctly specified, the GMS CS includes the

true value with asymptotic probability 1 − α (or greater) uniformly over the
parameter space. Thus, under the null of correct model specification, the limit
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as n → ∞ of the finite-sample size of the GMS model specification test is ≤ α
under the assumptions of Theorem 1(a). In other words, the asymptotic size of
this specification test is valid uniformly over the parameter space.
Note that the asymptotic size of the GMS model specification test is not

necessarily equal to α under the assumptions of Theorem 1(b).8 That is, the
GMS model specification test may be asymptotically conservative.

6 Subsampling Confidence Sets

The volume of a CS is directly related to the power of the tests used in its
construction. Below we compare the power of GMS tests to that of subsampling
and PA tests. In this section and the following one we define subsampling and
PA CS’s.
We now define subsampling critical values and CS’s. Let b = bn denote the

subsample size when the full-sample size is n. We assume b → ∞ and b/n → 0
as n → ∞ (here and below). The number of subsamples of size b considered is
qn. With i.i.d. observations, there are qn = n!/((n − b)!b!) subsamples of size b.
With time series observations, there are qn = n− b+1 subsamples each based on
b consecutive observations.
Let Tn,b,j(θ) be a subsample statistic defined exactly as Tn(θ) is defined but

based on the jth subsample of size b rather than the full sample for j = 1, ..., qn.
The empirical df and 1− α sample quantile of {Tn,b,j(θ) : j = 1, ..., qn} are

Un,b(θ, x) = q
−1
n

qn[
j=1

1(Tn,b,j(θ) ≤ x) for x ∈ R and

cn,b(θ, 1− α) = inf{x ∈ R : Un,b(θ, x) ≥ 1− α}. (6.1)

The subsampling test rejects H0 : θ = θ0 if Tn(θ0) > cn,b(θ0, 1− α). The nominal
level 1− α subsampling CS is given by (2.3) with c1−α(θ) = cn,b(θ, 1− α).
One also can define “re-centered” subsample statistics and subsample statis-

tics based on full-sample variance matrices, see AG4. The resulting subsampling
CS’s have the same asymptotic size and power properties (to first order) as those
defined above.
It is shown in AG4 that under Assumptions 1-3 and 0 < α < 1/2, the nominal

level 1 − α subsampling CS based on Tn(θ) satisfies (a) AsyCS ≥ 1 − α, (b)
AsyCS = 1 − α if Assumption 7 also holds, and (c) AsyMaxCP = 1 if v = 0
(i.e., no moment equalities appear) and Assumption M also holds.

8The reason is that when the null of correct model specification holds and (θ0, F0) is the
truth the GMS test may fail to reject the null even when Tn(θ0) > ecn(θ0, 1 − α) because
Tn(θ) ≤ ecn(θ, 1− α) for some θ 9= θ0.
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7 Plug-in Asymptotic Confidence Sets

Now we discuss CS’s based on a PA critical value. The least-favorable asymp-
totic null distributions of the statistic Tn(θ) are shown in AG4 to be those for
which the moment inequalities hold as equalities. These distributions depend on
the correlation matrix Ω of the moment functions. We analyze plug-in asymptotic
(PA) critical values that are determined by the least-favorable asymptotic null
distribution for given Ω evaluated at a consistent estimator of Ω. Such critical
values have been considered for many years in the literature on multivariate one-
sided tests, see Silvapulle and Sen (2005) for references. CHT and AG4 consider
them in the context of the moment inequality literature. Rosen (2005) considers
variations of PA critical values that make adjustments in the case where it is
known that if one moment inequality holds as an equality then another cannot.
Let c(Ω, 1 − α) denote the 1 − α quantile of S(Z,Ω), where Z ∼ N(0k,Ω).

This is the 1− α quantile of the asymptotic null distribution of Tn(θ) when the
moment inequalities hold as equalities.
The nominal 1− α PA CS is given by (2.3) with critical value c1−α(θ) equal

to
c(eΩn(θ), 1− α). (7.1)

AG4 shows that if Assumptions 1 and 4 hold and 0 < α < 1/2, then the
nominal level 1− α PA CS based on Tn(θ) satisfies AsyCS ≥ 1− α.

8 Local Alternative Power Comparisons

In this section and the next, we compare the power of GMS, subsampling, and
PA tests. These results have immediate implications for the volume of CS’s based
on these tests because the power of a test for a point that is not the true value
is the probability that the CS does not include that point. Here we analyze the
power of tests against 1/n1/2-local alternatives. In the next section we consider
“distant alternatives,” which differ from the null by more than O(1/n1/2) and
may fixed or local.
We show that a GMS test has asymptotic power that is greater than or equal

to that of a subsampling or PA test (based on the same test statistic) under all
alternatives. We show that a GMS test’s power is strictly greater than that of
a subsampling test in the scenario stated in the Introduction. In addition, we
show GMS and subsampling tests have asymptotic power that is greater than or
equal to that of a PA test with strictly greater power in the scenarios stated in
the Introduction.
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For given θ0, we consider tests of

H0 : EFmj(Wi, θ0) ≥ 0 for j = 1, ..., p and
EFmj(Wi, θ0) = 0 for j = p+ 1, ..., k, (8.1)

where F denotes the true distribution of the data, versus H1 : H0 does not
hold. For brevity, we only give results for the case of i.i.d. observations. (The
results can be extended to dependent observations and the advantage of GMS
tests over subsampling and PA tests also holds with dependent observations.)
The parameter space F for (θ, F ) is assumed to satisfy (2.2).
With i.i.d. observations, F denotes the distribution of Wi. We consider the

Kolmogorov-Smirnov metric on the space of distributions F. Let

D(θ, F ) = Diag{σ2F,1(θ), ...,σ2F,k(θ)} and Ω(θ, F ) = CorrF (m(Wi, θ)). (8.2)

We now introduce the 1/n1/2-local alternatives that are considered.

Assumption LA1. The true parameters {(θn, Fn) ∈ F : n ≥ 1} satisfy:
(a) θn = θ0 − λn−1/2(1 + o(1)) for some λ ∈ Rd and Fn → F0 for some

(θ0, F0) ∈ F,
(b) n1/2EFnmj(Wi, θn)/σFn,j(θn)→ h1,j for some h1,j ∈ R+,∞ for j = 1, ..., p,

and
(c) supn≥1EFn|mj(Wi, θ0)/σFn,j(θ0)|2+δ <∞ for j = 1, ..., k for some δ > 0.

Assumption LA2. The k×dmatrix Π(θ, F ) = (∂/∂θ�)[D−1/2(θ, F )EFm(Wi, θ)]
exists and is continuous in (θ, F ) for all (θ, F ) in a neighborhood of (θ0, F0).

Assumption LA1(a) specifies that the true values {θn : n ≥ 1} are local to
the null value θ0. Assumption LA1(b) specifies the asymptotic behavior of the
(normalized) moment inequality functions when evaluated at the true parameter
values {θn : n ≥ 1}. Under the true values, these (normalized) moment inequal-
ities are non-negative. Assumptions LA1(a) and (c) imply that Ω(θ0, Fn) exists
and Ω(θ0, Fn)→ Ω0 = Ω(θ0, F0).
The asymptotic distribution of the test statistic Tn(θ0) under 1/n1/2-local

alternatives depends on the limit of the (normalized) moment inequality functions
when evaluated at the null value θ0 because Tn(θ0) is evaluated at θ0. Under
Assumptions LA1 and LA2, we show that

lim
n→∞

n1/2D−1/2(θ0, Fn)EFnm(Wi, θ0) = (h1, 0v) +Π0λ ∈ Rk, where
h1 = (h1,1, ..., h1,p)

� and Π0 = Π(θ0, F0). (8.3)

By definition, if h1,j =∞, then h1,j+y =∞ for any y ∈ R. Let Π0,j denote the jth
row of Π0 written as a column d-vector for j = 1, ..., k. Note that (h1, 0v)+Π0λ ∈
Rp[+∞] ×Rv.
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The following assumption states that the true distribution of the data Fn is
in the alternative, not the null (for n large).

Assumption LA3. h1,j + Π�0,jλ < 0 for some j = 1, ..., p or Π
�
0,jλ 9= 0 for some

j = p+ 1, ..., k.

The asymptotic distribution of Tn(θ0) under 1/n1/2-local alternatives is shown
to be Jh1,λ, where Jh1,λ is defined by

S(Ω
1/2
0 Z∗ + (h1, 0v) +Π0λ,Ω0) ∼ Jh1,λ (8.4)

for Z∗ ∼ N(0k, Ik). Let ch1,λ(1− α) denote the 1− α quantile of Jh1,λ.
We now introduce two assumptions that are used for GMS tests only.

Assumption LA4. κ−1n n
1/2EFnmj(Wi, θn)/σFn,j(θn) → π1,j for some π1,j ∈

R+,∞ for j = 1, ..., p.

Note that in Assumption LA4 the functions are evaluated at the true value θn,
not at the null value θ0, and (θn, Fn) ∈ F . In consequence, the moment functions
in Assumption LA4 satisfy the inequalities and π1,j ≥ 0 for all j = 1, ..., p.
Let π1 = (π1,1, ...,π1,p)�. Let cπ1(ϕ, 1− α) denote the 1− α quantile of

S(Ω
1/2
0 Z∗ + ϕ((π1, 0v),Ω0),Ω0), where Z∗ ∼ N(0k, Ik). (8.5)

Below the probability limit of the GMS critical value ecn(θ0, 1−α) is shown to be
cπ1(ϕ, 1− α).
The following assumption is used to obtain the 1/n1/2-local alternative power

function of the GMS test. Let C(ϕ) = {hπ1 = (hπ1, ..., hπp)� ∈ Rp[+∞] : for j = 1, ..., p,
either hπ1,j = ∞ or ϕj(ξ,Ω) → ϕj((hπ1, 0v),Ω0) as (ξ,Ω0) → ((hπ1, 0v),Ω0)}.
Roughly speaking, C(ϕ) is the set of hπ1 vectors for which ϕ is continuous at
((hπ1, 0v),Ω0). For example, C(ϕ(1)) = {hπ1 ∈ Rp[+∞] : hπ1,j 9= 1 for j = 1, ..., p},
C(ϕ(2)) = Rp[+∞] provided ψ is continuous on [aL, aU ] (where continuity at aU
means that limx→aU ψ(x) =∞), C(ϕ(3)) = Rp[+∞], C(ϕ(4)) = Rp[+∞], andC(ϕ(5)) =
{π1 ∈ Rp[+∞] : S(−c · (hπ1, 0v),Ω0)− η(|c|) has a unique minimum over c ∈ C}.
Assumption LA5. (a) π1 ∈ C(ϕ).
(b) The df of S(Ω1/20 Z∗+ϕ((π1, 0v),Ω0),Ω0) is continuous and strictly increas-

ing at x = cπ1(ϕ, 1− α).

Assumption LA5(a) implies that the 1/n1/2-local power formulae given below do
not apply to certain “discontinuity vectors” π1 = (π1,1, ...,π1,p)

�. However, this
does not affect the power comparisons between GMS, subsampling, and PA tests,
because Assumption LA5 is not needed for those results. They hold for all π1
vectors.
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We now introduce an assumption that is used for subsampling tests only.

Assumption LA6. b1/2EFnmj(Wi, θn)/σFn,j(θn) → g1,j for some g1,j ∈ R+,∞
for j = 1, ..., p.

Assumption LA6 is not restrictive. It specifies the limit of the (normalized)
moment inequality functions when evaluated at the true parameter values {θn :
n ≥ 1} and when scaled by the square root of the subsample size b1/2.
Define g1 = (g1,1, ..., g1,p)

�. Note that 0p ≤ g1 ≤ π1 ≤ h1.
9 The probability

limit of the subsampling critical value is shown to depend on

lim
n→∞

b1/2D−1/2(θ0, Fn)EFnm(Wi, θ0) = (g1, 0v) ∈ Rk. (8.6)

Note that (g1, 0v) ∈ Rp+,∞ × {0v}. Thus, elements of (g1, 0v) are necessarily non-
negative. The probability limit of the subsampling critical value is shown to be
cg1,0d(1− α), which denotes the 1− α quantile of Jg1,0d . The probability limit of
the PA critical value is shown to be c0p,0d(1− α), which is the 1− α quantile of
J0p,0d .

Theorem 2 Under Assumptions 1-5 and LA1-LA2,
(a) limn→∞ PFn(Tn(θ0) > ecn(θ0, 1 − α)) = Jh1,λ(cπ1(ϕ, 1 − α)) provided As-

sumptions GMS2, GMS3, LA4, and LA5 hold,
(b) limn→∞ PFn(Tn(θ0) > cn,b(θ0, 1 − α)) = Jh1,λ(cg1,0d(1 − α)) provided As-

sumption LA6 holds, and
(c) limn→∞ PFn(Tn(θ0) > c(eΩn(θ0), 1− α)) = Jh1,λ(c0p,0d(1− α)).

Comments. 1. Theorem 2(a) provides the 1/n1/2-local alternative power func-
tion of the GMS test. The probability limit of the GMS critical value ecn(θ0, 1−α)
under 1/n1/2-local alternatives is cπ1(ϕ, 1− α), see Lemma 4(b) in Appendix A.
Theorem 2(b) and (c) provide the 1/n1/2-local alternative power function of the
subsampling and PA tests.
2. The results of Theorem 2 hold under the null hypothesis as well as under

the alternative. The results under the null quantify the degree of asymptotic non-
similarity of the GMS, subsampling, and PA tests. See Section 11 for numerical
results concerning finite-sample non-similarity.

The next result provides power comparisons of GMS, subsampling, and PA
tests.

9This holds by condition (ii) of (2.2) (since (θn, Fn) ∈ F), Assumptions LA1(b), LA6, and
GMS5, and b/n→ 0.
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Theorem 3 Under Assumptions 1-5, LA1-LA4, LA6, GMS2-GMS3, and GMS5-
GMS6,
(a) lim infn→∞ PFn(Tn(θ0) > ecn(θ0, 1−α)) ≥ limn→∞ PFn(Tn(θ0) > cn,b(θ0, 1−

α)) with strict inequality whenever g1,j < ∞ and π1,j = ∞ for some j = 1, ..., p
and cg1,0d(1− α) > 0,

(b) lim infn→∞ PFn(Tn(θ0) > ecn(θ0, 1− α)) ≥ limn→∞ PFn(Tn(θ0) > c(eΩn(θ0),
1− α)) with strict inequality whenever π1,j =∞ for some j = 1, ..., p, and
(c) limn→∞ PFn(Tn(θ0) > cn,b(θ0, 1−α)) ≥ limn→∞ PFn(Tn(θ0) > c(eΩn(θ0), 1−

α)) with strict inequality whenever g1 > 0p, where Assumptions GMS2-GMS3,
GMS5-GMS6, and LA4 are not needed for this result.

Comments. 1. Theorem 3(a) and (b) show that a GMS test based on a given
test statistic has asymptotic power greater than or equal to that of subsampling
and PA tests based on the same test statistic. For GMS versus subsampling tests,
the inequality is strict whenever one or more moment inequality is satisfied and
has a magnitude that is o(b−1/2) and is larger than O(κnn−1/2) and cg1,0d(1−α) >
0.10 For GMS versus PA tests, the inequality is strict whenever one or more
moment inequality is satisfied and has a magnitude that is larger thanO(κnn−1/2).
The reason the GMS test has higher power in these cases is that its (data-

dependent) critical value is smaller asymptotically than the subsampling and PA
critical values. It is smaller because when some moment inequality is satisfied
under the alternative and is sufficiently far from being an equality (specifically, is
larger than O(κnn−1/2)), then the GMS critical value takes this into account and
delivers a critical value that is suitable for the case where this moment inequality
is omitted. On the other hand, in the scenarios specified, the subsampling critical
value does not take this into account, and in all scenarios the PA critical value
is based on the least-favorable distribution (for given Ω0) which occurs when all
moment inequalities hold as equalities.
2. Theorem 3(c) shows that the subsampling test has asymptotic power

greater than or equal to that of the PA test for all local alternatives and is
more powerful asymptotically than the PA test for many local alternatives. The
reason is that when some moment inequality is satisfied under the alternative
and is sufficiently far from being an equality (specifically, is larger than o(b−1/2)),
then the subsampling critical value automatically takes this (at least partially)
into account and delivers a smaller critical value than the PA critical value.
3. The comparison of the power of GMS tests and subsampling tests given in

Theorem 3(a) does not impose Assumption LA5. Hence, the comparison holds
for all 1/n1/2-local alternatives.

10For most test functions S, cg1,0d(1−α) > 0 whenever one or more of the moment inequalities
is violated asymptotically, so the latter condition holds under local alternatives.
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4. We now show that the difference in power between the GMS test and
the subsampling and PA tests can be quite large. Suppose there are no equality
constraints (i.e., v = 0) and the alternative considered is such that the first
inequality constraint is violated and h1,1 + Π�0,1λ ∈ (−∞, 0), but the other j =
2, ..., p inequality constraints are not violated and differ from being equalities by
magnitudes that are o(b−1/2) and are larger thanO(κnn−1/2). In this case, g1,j = 0,
h1,j = π1,j =∞, and h1,j+Π�0,jλ =∞ for j = 2, ..., p. Let μ1 = h1,1+Π�0,1λ. Since
|μ1| <∞, we have |h1,1| <∞, and g1,1 = 0. Thus, g1 = 0p. For simplicity, suppose
Ω0 = Ip. In this case, the asymptotic powers of the tests based on the functions
S1 and S2 are the same, so we consider the S1 test statistic. The asymptotic
distribution Jh1,λ in this case is the distribution of

p[
j=1

[Z∗j + h1,j +Π�0,jλ]
2
− = [Z

∗
1 + μ1]

2
−, (8.7)

where Z∗ = (Z∗1 , ..., Z
∗
p)
� ∼ N(0p, Ip), because Z∗j +∞ =∞ for j = 2, ..., p.

The probability limit of the GMS critical value, cπ1(ϕ, 1 − α), is the 1 − α
quantile of [Z∗1 ]

2
− which equals z

2
1−α, where z1−α is the 1 − α quantile of a stan-

dard normal distribution. This holds using (8.5) because π1,1 = 0 and Assump-
tion GMS1(b) imply that ϕ1((π1, 0v),Ω0) = 0 and for j = 2, ..., p, π1,j = ∞
and Assumption GMS3 imply that ϕj((π1, 0v),Ω0) = ∞. On the other hand,
Jg1,0d = J0p,0d is the distribution of

Sp
j=1[Z

∗
j ]
2
−. Hence, the probability limit of

the subsampling and PA critical values, c0p,0d(1 − α), is the 1 − α quantile ofSp
j=1[Z

∗
j ]
2
−, call it zα(p). Clearly, zα(1) = z

2
1−α, zα(p) > z

2
1−α for p ≥ 2, and the

difference is strictly increasing in p.
Table I provides the value of zα(p) for α = .05 and several values of p. One

sees that the critical value of the subsampling and PA tests increases substantially
as the number of non-violated moment inequalities, p − 1, increases. Just one
non-violated moment inequality, p = 2, increases the critical value from 2.71 to
4.25.
By Theorem 2, the asymptotic powers of the GMS, subsampling, and PA tests

in the present scenario are

AsyPowGMS(μ1) =P
�
[Z∗1 + μ1]

2
− > z

2
1−α
�
= Φ(−μ1 − z1−α),

AsyPowSub(μ1) = AsyPowPA(μ1) =P
�
[Z∗1 + μ1]

2
− > zα(p)

�
= Φ(−μ1 − z1/2α (p)),

(8.8)

respectively. Table I reports the asymptotic power of the GMS test and the
subsampling and PA tests, where the power of the latter depends on p, for four
values of μ1. The first value of μ1 is zero, so the null hypothesis holds. In this
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case, the asymptotic rejection rate of the GMS test is precisely .05, while that
of the subsampling and PA tests is much less than .05 due to the asymptotic
non-similarity of these tests. The last three values of μ1 are negative, which
correspond to distributions in the alternative. Table I shows that the power of
the GMS test is substantially higher than that of the subsampling and PA tests
even when p = 2 and the difference increases with p.

TABLE I. Asymptotic Critical Values and Power of the Nominal .05 GMS
Test Compared to Subsampling and PA Tests for Several Values of μ1 for Certain
Alternatives

Critical Asy. Null
Values Rej. Prob. Asy. Power

μ1
p zα(p) 0.00 -1.645 -2.170 -2.930

GMS Test All p 2.71 .050 .50 .70 .90

Sub & PA 2 4.25 .020 .34 .54 .81
Tests 3 5.43 .010 .25 .44 .73

4 6.34 .005 .18 .35 .65
5 7.49 .003 .14 .29 .58
10 11.83 .000 .04 .10 .31
20 19.28 .000 .00 .01 .07

5. The difference in powers of the subsampling and PA tests can be as
large as the differences illustrated in Table I between GMS and PA tests. Con-
sider the same scenario as in Comment 3 except that the j = 2, ..., p inequal-
ity constraints differ from being equalities by a magnitude that is greater than
O(b−1/2). In this case, g1,j = ∞ for j = 2, ..., p and Jg1,0d is the distribution
of [Z∗1 ]

2
− because g1 = (0,∞, ...,∞)�. Hence, the probability limit of the sub-

sampling critical value, cg1,0d(1 − α), equals that of the GMS critical value and
AsyPowSub(μ1) = AsyPowGMS(μ1). Everything else is the same as in Comment
4. Hence, in the present scenario, Table I applies but with the results for the
subsampling test given by those of the GMS test.
6. The GMS, subsampling, and PA tests are not asymptotically unbiased.

That is, there exist local alternatives for which the asymptotic rejection probabili-
ties of the tests, viz., Jh1,λ(cπ1(ϕ1−α)), Jh1,λ(cg1,0d(1−α)), and Jh1,λ(c0p,0d(1−α)),
respectively, are less than α. This occurs because these tests are not asymp-
totically similar on the boundary of the null hypothesis.11 Lack of asymptotic
11For example, with a subsampling test, when a moment inequality is satisfied under the
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unbiasedness is a common feature of tests of multivariate one-sided hypotheses,
so this property of GMS, subsampling, and PA tests in the moment inequality
example is not surprising.
7. Rosen (2005) introduces a critical value method that is a variant of the PA

critical value. His method has the advantage of being simple computationally.
However, it sacrifices power relative to GMS critical values in two respects. First,
an upper bound on the 1 − α quantile of the asymptotic null distribution is
employed. Second, in models in which some moment inequality can be slack
without another being binding, his procedure yields larger critical values than
GMS critical values because it does not use the data to detect slack inequalities.
His procedure only adjusts for slack moment inequalities when it is known that
if some inequality is binding, then some other necessarily cannot be.

9 Power Against Distant Alternatives

Next we consider power against alternatives that are more distant from the
null than 1/n1/2-local alternatives. For all such alternatives, the powers of GMS,
subsampling, and PA tests are shown to converge to one as n → ∞. Thus, all
three tests are consistent tests.
The following assumption specifies the properties of “distant alternatives”

(DA), which includes fixed alternatives and local alternatives that deviate from
the null hypothesis by more than O(1/n1/2). Define

m∗n,j = EFnmj(Wi, θ0)/σFn,j(θ0) and

βn = max{−m∗n,1, ...,−m∗n,p, |m∗n,p+1|, ..., |m∗n,k|}. (9.1)

Assumption DA. (a) n1/2βn →∞.
(b) Ω(θ0, Fn)→ Ω1 for some k × k correlation matrix Ω1 ∈ Ψ.

Assumption DA(a) requires that some moment inequality term m∗n,j violates
the non-negativity condition and is not o(n−1/2) for j = 1, ..., p or some mo-
ment equality term m∗n,j violates the zero condition and is not o(n

−1/2) for
j = p + 1, ..., k. In contrast to Assumption DA, under Assumptions LA1-LA3
above, n1/2βn → max{−h1,1−Π�0,1λ, ..., −h1,p−Π�0,pλ, |Π�0,p+1λ|, ..., |Π�0,kλ|} <∞.
As in Section 8, we consider i.i.d. observations and F satisfies (2.2).

alternative but is not sufficiently far from being an equality (i.e., is O(b−1/2)), then the sub-
sampling critical value at best only partially takes this into account and, in consequence, does
not deliver an asymptotically similar test.

26



Theorem 4 Under Assumptions 1, 3, 6, and DA,
(a) limn→∞ PFn(Tn(θ0) > ecn(θ0, 1−α)) = 1 provided Assumption GMS7 holds,
(b) limn→∞ PFn(Tn(θ0) > cn,b(θ0, 1− α)) = 1, and
(c) limn→∞ PFn(Tn(θ0) > c(eΩn(θ0), 1− α)) = 1.

Comments. 1. Theorem 4 shows that GMS, subsampling, and PA tests are
consistent against all fixed alternatives and all non-1/n1/2-local alternatives.
2. The proof of Theorem 4 is in Appendix B.

10 Extensions

10.1 Generalized Empirical Likelihood Statistics

We now discuss CS’s based on generalized empirical likelihood (GEL) test
statistics. For definitions and regularity conditions concerning GEL test statistics,
see AG4. The asymptotic distribution of a GEL test statistic (under any drifting
sequence of parameters) is the same as that of the QLR test statistic, see AG4
for a proof. Given the structure of the proofs below, this implies that all of the
asymptotic results stated above for QLR tests also hold for GEL tests.
Specifically, under the assumptions of Theorems 1-4, we have: (i) GEL CS’s

based on GMS critical values have correct size asymptotically. (ii) GEL tests
based on GMS critical values have asymptotic power greater than or equal to
that of GEL tests based on subsampling or PA critical values with strictly greater
power in certain scenarios. (iii) The “pure” GEL test that uses a constant critical
value (equal to cGEL(1−α) = supΩ∈Ψ2 c(Ω, 1−α), where c(Ω, 1−α) is as defined
above using the function S2) is dominated asymptotically by various alternative
tests. Such tests include tests constructed from a GEL or QLR test statistic com-
bined with GMS, subsampling, or PA critical values. The results of (iii) indicate
that there are notable drawbacks to the asymptotic optimality criteria based on
large deviation probabilities considered by Otsu (2006) and Canay (2007).

10.2 Preliminary Estimation of Identified Parameters

Here we consider the case where the moment functions in (2.2) depend on
a parameter τ , i.e., are of the form {mj(Wi, θ, τ) : j ≤ k}, and a preliminary
consistent and asymptotically normal estimator eτn(θ0) of τ exists when θ0 is the
true value of θ. This requires that τ is identified. The sample moment functions
in this case are of the form mn,j(θ) = mn,j(θ,eτn(θ)). The asymptotic variance of
n1/2mn,j(θ) is different when τ is replaced by the estimator eτn(θ), but otherwise
the theoretical treatment of this model is the same as that given above. In fact,
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Theorem 1 holds in this case using the conditions given in (12.3) of Appendix A.
These are high-level conditions that essentially just require that mn,j(θ,eτn(θ)) is
asymptotically normal (after suitable normalization).
Furthermore, the power comparisons in Section 8, which are stated for i.i.d.

observations and no preliminary estimated parameters, can be extended to the
case of preliminary estimated parameters. Thus, in this case too, GMS tests
have power advantages over subsampling and PA tests and subsampling tests
have power advantages over PA tests.

11 Monte Carlo Experiments

11.1 Introduction

In this section, we use simulation to investigate the finite-sample properties
of GMS CS’s and to compare them to some other methods in the literature. We
consider the coverage probabilities (CP’s) of the CS’s for points in and not in
the identified set. For points on the boundary of the identified set and for which
all inequalities are binding (i.e., hold as equalities), the CP’s should be close to
the nominal level 1− α. For points on the boundary of the identified set and for
which some inequality is not binding, the CP’s should be greater than or equal to
1− α. Probabilities for these points indicate the non-similarity on the boundary
of the CS’s. For points in the interior of the identified set, the CP’s should be
greater than 1− α. For points that are not in the identified set, the CP’s should
be less than 1− α–the smaller, the better.
We consider two very simple models. The first is a particular case of the

missing-data model considered in Imbens and Manski (2004) (IM). In this model,
there is one parameter, two moment inequalities, and no moment equalities. We
consider the GMS CS based on the MMM test statistic (i.e., the test function S1)
with the MMSC function ϕ(5) with η(x) = x and κn = (2.01 ln lnn)

1/2 (i.e., the
HQICMMSC procedure).12 We compare the GMSCS to the CS introduced by IM
for this model, see IM for its definition, and to the subsampling CS based on the
MMM test statistic and with subsample size b = floor(n1/2). (We mention, but
do not report, results for other values of b.) Rosen (2005) provides a comparison
of the finite-sample properties of his proposed CS with that of IM.
The second model considered is the interval-outcome regression model of Man-

ski and Tamer (2002). In this model, there are two parameters, two moment

12We take eσ2n,j(θ) = n−1
Sn
i=1m

2
j(Wi, θ) for j = 1, ..., k, rather than eσ2n,j(θ) =

n−1
Sn
i=1(mj(Wi, θ)−mn,j(θ))

2. Results for the latter are similar.
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inequalities, and no moment equalities. We compare the same GMS and subsam-
pling procedures as defined above. (The IM CS does not apply to this model.)
All results reported are for CS’s with nominal level .95. For both models, we

report results for n = 100, 500, and 1, 000. We take the number of simulation
repetitions, R, to be 20, 000 for the GMS and IM CS’s and 5, 000 for the subsam-
pling CS’s.13 The reported CP’s are the relative frequencies of coverage over the
R repetitions.

11.2 Missing-Data Model

In this model, Wi = (Yi,Di) are i.i.d. for i = 1, ..., n with Yi ∼ U [0, 1],
Di ∼ Bern[.85], and Yi and Di independent. The observations are {(YiDi, Di) :
i ≤ n}. Thus, Yi is not observed when Di = 0. The parameter of interest is
θ = EYi. Given that data are missing, the parameter θ is not identified. Two
moment inequality functions used to bound θ are�

m1(Wi, θ)
m2(Wi, θ)

�
=

�
θ − YiDi

(1− θ)− (1− Yi)Di
�
. (11.1)

When θ is the true parameter, we have Em1(Wi, θ) = θ−EYiDi ≥ θ−EYi = 0,
where the inequality holds because Yi ≥ 0 andDi ≤ 1 and Em2(Wi, θ) = (1−θ)−
E(1−Yi)Di ≥ (1−θ)−E(1−Yi) = 0, where the inequality holds because 1−Yi ≥ 0
and Di ≤ 1. Hence, the functions in (11.1) satisfy two moment inequalities.
For the data-generating process above, the identified set [θL, θU ] is [.425, .575].14

We consider the CP’s of the CS’s for the values θL = .425, θ = .5, and θH = .575,
which are in the identified set, and for the values .9× θL and 1.1× θU , which are
not in the identified set.
Table II reports the CP’s of the GMS, IM, and subsampling CS’s with nominal

level 95%. The Table shows that for θ values in the identified set the performance
of the GMS and IM CS’s is excellent for all sample sizes. Probabilities for the
GMS CS for boundary θ points range from .948 to .951. In contrast, the subsam-
pling CS over-covers by a noticeable amount for all sample sizes. Probabilities for
the subsampling CS for boundary θ points range from .971 to .990. (This over-
coverage is a finite-sample phenomenon because the subsampling asymptotic CP
is .95 at both boundaries.) All three CS’s cover θ = .5, which lies in the interior

13The subsampling CS’s are more computationally intensive than the moment selection CS’s.
Only 5, 000 repetitions are used for the moment selection results of Table III for θ not in the
identified set.
14The identified set is determined by θL − EYiDi = 0, i.e., θL = .5 × .85 = .425, and

(1− θU )−E(1− Yi)Di = 0, i.e., θU = 1−E(1− Yi)EDi = 1− .5× .85 = .575.
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of the identified set and is far from either boundary, with probability one. This
is in accord with the asymptotic results.

TABLE II. Missing-Data Model: Finite-Sample Coverage Probabilities of
Nominal 95% Confidence Intervals

Coverage Probabilities for θ Values:
θ Values in θ Values Not in

Type of Identified Set Identified Set
n Confidence Int. θL = .425 θ = .5 θH = .575 0.9× θL 1.1× θH

GMS .951 1.0 .948 .619 .445
100 Imbens/Manski .946 1.0 .951 .637 .439

Subsampling .981 1.0 .990 .791 .667

GMS .951 1.0 .951 .095 .010
500 Imbens/Manski .949 1.0 .950 .094 .007

Subsampling .975 1.0 .971 .145 .032

GMS .951 1.0 .949 .006 .000
1,000 Imbens/Manski .953 1.0 .950 .005 .000

Subsampling .972 1.0 .971 .008 .000

For θ points not in the identified set, we want the CP of a CS to be as close
to zero as possible. (A lower CP for such points translates into a shorter and
more informative CS.) Table II shows that the GMS CS covers points not in
the identified set with substantially lower probability than the subsampling CS
when n = 100 (viz., .619 versus .791 and .445 versus .667) and with slightly
lower probability for n = 500 (viz., .095 versus .145 and .010 versus .030). This
is consistent with the asymptotic power comparisons given in Section 8. For
points not in the identified set, the GMS and IM CS’s have comparable CP’s.
For n = 500 and 1, 000, the CP’s of all three CS’s is sufficiently low that the
differences between them are small.
As has been reported in other scenarios, subsampling CP’s are sensitive to the

choice of the subsample size b. Additional simulation results not reported here
show that for smaller b the subsampling CP’s for θ in the identified set become
slightly closer to the nominal level, while for larger subsample sizes they become
closer to one. For θ not in the identified set, smaller b reduces the subsampling
CP’s slightly and larger b increases them slightly.
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11.3 Interval-Outcome Regression Model

This model is a regression model with unobserved dependent variable Yi:

Yi = θ1 + Ziθ2 + Ui, (11.2)

where (Zi, Ui) are i.i.d. for i = 1, ..., n, Zi ∼ N(1, 1), Ui ∼ N(0, 1), and θ =
(θ1, θ2). The observations are {(Y Li , Y Hi , Zi) : i ≤ n}, where Y Li = floor(Yi),
Y Hi = ceil(Yi), and so, Y Li ≤ Yi ≤ Y Hi a.s. The parameter θ is not identified
because Yi is not observed. The two moment inequality functions are�

m1(Wi, θ)
m2(Wi, θ)

�
=

�
θ1 + Ziθ2 − Y Li

(Y Hi − θ1 − Ziθ2)Z2i

�
. (11.3)

When θ is the true parameter value, we have Em1(Wi, θ) = θ1 + Ziθ2 − EY Li ≥
θ1 + Ziθ2 − EYi = 0 and Em2(Wi, θ) = E(Y Hi − θ1 − Ziθ2)Z2i ≥ E(Yi − θ1 −
Ziθ2)Z

2
i = 0.

15 Thus, the functions in (11.3) satisfy two moment inequalities.
We consider the case where the true parameter is θ = (1, 1). In this case, the

identified set consists of the (θ1, θ2) values that satisfy:16

θ1 + θ2 ≥ 1.5 and 2θ1 + 4θ2 ≤ 7. (11.4)

We consider the CP’s of the CS’s for the θ values (−.5, 2), (1.5, 0), (1, 1.25), and
(1, 1), which are all in the identified set. The point (−.5, 2) is on the boundary
of the identified set with both moment inequalities binding; (1.5, 0) and (1, 1.25)
are on the boundary of the identified set with only one inequality binding in each
case; and (1, 1) is in the interior of the identified set. We also consider the CP’s
of the CS’s for the θ values (1.35, 0) and (1, 1.375), which are not in the identified
set. The point (1.35, 0) violates the first inequality in (11.4) and satisfies the
second. The reverse is true for the point (1, 1.375).
Table III reports CP’s for the interval-outcome regression model. Table III

shows that the GMS CS performs very well at θ = (−.5, 2) (at which both
inequalities are binding) and at θ = (1.5, 0) (at which only the first inequality
is binding) with CP’s ranging between .948 and .953. Its CP’s at θ = (1, 1.25)
(at which only the second inequality is binding) are somewhat higher with CP’s

15In the second moment function, Y Hi − θ1 − Ziθ2 is multiplied by Z2i to avoid perfect
colinearity with θ1 +Ziθ2 − Y Li since Y Hi = Y Li + 1 by definition. We do not consider optimal
choices of moment functions for this model because such choices are not known and the results
are only illustrative anyway.
16The identified set is determined by θ1+EZiθ2−EY Li ≥ 0, i.e., θ1+θ2 ≥ 1.5, where EY Li ≈

1.5 (by numerical calculation), andE(Y Hi −θ1−Ziθ2)Z2i ≥ 0, i.e., EY Hi Z2i −EZ2i θ1−EZ3i θ2 ≥ 0,
where EY Hi Z

2
i ≈ 7 (by numerical calculation), EZ2i = 2, and EZ3i = 4.
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ranging between .957 and .963. Over-coverage in this case is not necessarily a
finite-sample phenomenon because the CS is not asymptotically similar on the
boundary of the identified set. For points on the boundary of the identified set,
the CP’s of the subsampling CS are not quite as good as for the GMS CS. At
θ = (−.5, 2) they vary between .940 and .963; at θ = (1.5, 0), they vary between
.972 and .986; at θ = (1, 1.25) they are comparable to those of the GMS CS. Both
CS’s cover the point θ = (1, 1) (which is in the interior of the identified set and
not close to a boundary) with probability one. This is expected given that the
asymptotic CP is one.

TABLE III. Interval-Outcome Regression Model: Finite-Sample Coverage
Probabilities of Nominal 95% Confidence Sets for (θ1, θ2)

Coverage Probabilities for (θ1, θ2) Values:
(θ1, θ2) in (θ1, θ2) Not in

Type of Identified Set Identified Set
n Confidence Int. (−.5, 2) (1.5, 0) (1, 1.25) (1, 1) (1.35, 0) (1, 1.375)

100 GMS .953 .948 .963 1.0 .719 .626
Subsampling .963 .986 .962 1.0 .851 .638

500 GMS .953 .950 .959 1.0 .236 .061
Subsampling .944 .980 .962 1.0 .375 .067

1,000 GMS .951 .951 .957 1.0 .056 .002
Subsampling .940 .972 .957 1.0 .106 .002

Next, we consider θ points not in the identified set. Table III shows that the
GMS CS has noticeably lower CP at θ = (1.35, 0) than the subsampling CS (viz.,
.719 versus .851 and .236 versus .375). For θ = (1, 1.375), the two CS’s have
comparable CP’s. These results are consistent with the power results of Section
8, which show that the GMS test has higher power at some points and equal
power at other points compared to the subsampling test.
Similar comments regarding the sensitivity of the subsampling results to b

apply in this model as in the missing-data model.
In sum, the simulation results of this section are in accord with the asymptotic

results. They show that the GMS CS has advantages relative to the subsampling
CS. The GMS CS has CP’s that are (i) closer to the nominal level and less non-
similar on the boundary of the identified set and (ii) lower for points outside the
identified set.
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12 APPENDIX A

In Appendix A, we start by stating some assumptions on the test statistic
function S. Next, we give an alternative parametrization of the moment inequal-
ity/equality model to that of Section 2. The new parametrization is conducive to
the calculation of the asymptotic properties of CS’s and tests. It was first used in
AG4. We also specify the parameter space for the case of dependent observations.
Lastly, we prove the results stated in the paper except for that of Theorem 4,
which is given in Appendix B.

12.1 Test Statistic Assumptions

The following assumptions concern the test statistic function S.

Assumption 2. For all h1 ∈ Rp+,∞, all Ω ∈ Ψ, and Z ∼ N(0k,Ω), the df of
S(Z + (h1, 0v),Ω) at x ∈ R is
(a) continuous for x > 0,
(b) strictly increasing for x > 0 unless v = 0 and h1 =∞p, and
(c) less than or equal to 1/2 at x = 0 whenever v ≥ 1 or h1 = 0p.

Assumption 4. (a) The df of S(Z,Ω) is continuous at its 1 − α quantile,
c(Ω, 1− α), for all Ω ∈ Ψ, where Z ∼ N(0k,Ω) and α ∈ (0, 1/2).
(b) c(Ω, 1− α) is continuous in Ω uniformly for Ω ∈ Ψ.

Assumption 5. (a) For all � ∈ Rp[+∞]×Rv, all Ω ∈ Ψ, and Z ∼ N(0k,Ω), the df
of S(Z + �,Ω) at x is (i) continuous for x > 0 and (ii) unless v = 0 and � =∞p,
strictly increasing for x > 0.
(b) P (S(Z + (m1, 0v),Ω) ≤ x) < P (S(Z + (m∗1, 0v),Ω) ≤ x) for all x > 0 for

all m1,m
∗
1 ∈ Rp+,∞ with m1 < m

∗
1.

For (θ, F ) ∈ F , define h1,j(θ, F ) = ∞ if EFmj(Wi, θ) > 0 and h1,j(θ, F ) = 0
if EFmj(Wi, θ) = 0 for j = 1, ..., p. Let h1(θ, F ) = (h1,1(θ, F ), ..., h1,p(θ, F ))� and
Ω(θ, F ) = limn→∞CorrF (n1/2mn(θ)).

Assumption 7. For some (θ, F ) ∈ F , the df of S(Z + (h1(θ, F ), 0v),Ω(θ, F )) is
continuous at its 1− α quantile, where Z ∼ N(0k,Ω(θ, F )).
In Assumption 2, if an element of h1 equals +∞, then by definition the corre-
sponding element of Z + (h1, 0v) equals +∞.
Assumption 2 is used to show that certain asymptotic df’s satisfy suitable

continuity /strictly-increasing properties. These properties ensure that the GMS
critical value converges in probability to a constant and the CS has asymptotic
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size that is not effected by a jump in a df. Assumption 4 is a mild continu-
ity assumption. Assumption 5 is used for the 1/n1/2-local power results. As-
sumption 5(a) is a continuity/strictly increasing df condition that is the same
as Assumption 2(a) except that � can take negative values. Assumption 5(b) is
a stochastically strictly-increasing condition. With a non-strict inequality, it is
implied by Assumption 1(a). Assumption 7 is used to show that GMS CS’s are
not asymptotically conservative (i.e., AsyCS ≯ 1− α). It is a very weak conti-
nuity condition. If the 1− α quantile of S(Z + (h1(θ, F ), 0v),Ω(θ, F )) is positive
for some (θ, F ) ∈ F , which holds quite generally, Assumption 7 is implied by
Assumption 2(a).

12.2 Alternative Parametrization and Dependent
Observations

In this section we specify a one-to-one mapping between the parameters (θ, F )
with parameter space F and a new parameter γ = (γ1, γ2, γ3) with corresponding
parameter space Γ. We define γ1 = (γ1,1, ..., γ1,p)

� ∈ Rp+ by writing the moment
inequalities in (2.1) as moment equalities:

σ−1F,j(θ)EFmj(Wi, θ)− γ1,j = 0 for j = 1, ..., p, (12.1)

where σF,j(θ) = limn→∞ V ar
1/2
F (n1/2mn,j(θ)) and F is the distribution of the data.

Let Ω = Ω(θ, F ) = limn→∞CorrF (n1/2mn(θ)), where CorrF (n1/2mn(θ)) denotes
the k × k correlation matrix of n1/2mn(θ). (We only consider distributions F for
which the previous limits exist, see conditions (iv) and (v) of (12.2) below.) Let
γ2 = (γ2,1, γ2,2) = (θ, vech∗(Ω(θ, F ))) ∈ Rq, where vech∗(Ω) denotes the vector of
elements of Ω that lie below the main diagonal, q = d+k(k−1)/2, and γ3 = F. For
the case described in Section 10.2 (where the sample moment functions depend
on a preliminary estimator eτn(θ) of an identified parameter vector τ0), we define
mj(Wi, θ) = mj(Wi, θ, τ 0) and mn(θ) = mn(θ,eτn(θ)).
For i.i.d. observations (and no preliminary estimator eτn(θ)), the parameter

space for γ is defined by Γ = {γ = (γ1, γ2, γ3) : for some (θ, F ) ∈ F , where F is
defined in (2.2), γ1 satisfies (12.1), γ2 = (θ, vech∗(Ω(θ, F ))), and γ3 = F}.
For dependent observations and for sample moment functions that depend on

preliminary estimators of identified parameters, we specify the parameter space
Γ for the moment inequality model using a set of high-level conditions. To verify
the high-level conditions using primitive conditions one has to specify an esti-
mator eΣn(θ) of the asymptotic variance matrix Σ(θ) of n1/2mn(θ). For brevity,
we do not do so here. Since there is a one-to-one mapping from γ to (θ, F ), Γ
also defines the parameter space F of (θ, F ). Let Ψ be a specified set of k × k
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correlation matrices. The parameter space Γ is defined to include parameters
γ = (γ1, γ2, γ3) = (γ1, (θ, γ2,2), F ) that satisfy:

(i) θ ∈ Θ,

(ii) σ−1F,j(θ)EFmj(Wi, θ)− γ1,j = 0 for j = 1, ..., p,

(iii) EFmj(Wi, θ) = 0 for j = p+ 1, ..., k,

(iv) σ2F,j(θ) = lim
n→∞

V arF (n
1/2mn,j(θ)) exists and lies in (0,∞) for j = 1, ..., k,

(v) lim
n→∞

CorrF (n
1/2mn(θ)) exists and equals Ωγ2,2 ∈ Ψ,

(vi) {Wi : i ≥ 1} are stationary under F, (12.2)

where γ1 = (γ1,1, ..., γ1,p)
� and Ωγ2,2 is the k×k correlation matrix determined by

γ2,2.
17 Furthermore, Γ must be restricted by enough additional conditions such

that under any sequence {γn,h = (γn,h,1, (θn,h, vech∗ (Ωn,h)), Fn,h) : n ≥ 1} of
parameters in Γ that satisfies n1/2γn,h,1 → h1 and (θn,h, vech∗(Ωn,h)) → h2 =
(h2,1, h2,2) for some h = (h1, h2) ∈ Rp+,∞ ×Rq[±∞], we have

(vii) An = (An,1, ..., An,k)� →d Zh2,2 ∼ N(0k,Ωh2,2) as n→∞, where
An,j = n

1/2(mn,j(θn,h)− EFn,hmn,j(θn,h))/σFn,h,j(θn,h),

(viii) eσn,j(θn,h)/σFn,h,j(θn,h)→p 1 as n→∞ for j = 1, ..., k,

(ix) eD−1/2n (θn,h)eΣn(θn,h) eD−1/2n (θn,h)→p Ωh2,2 as n→∞, and (12.3)

(x) conditions (vii)-(ix) hold for all subsequences {wn} in place of {n},
where Ωh2,2 is the k×k correlation matrix for which vech∗(Ωh2,2) = h2,2, eσ2n,j(θ) =
[eΣn(θ)]jj for 1 ≤ j ≤ k and eDn(θ) = Diag{eσ2n,1(θ), ..., eσ2n,k(θ)} (= Diag(eΣn(θ))).18
For example, for i.i.d. observations, conditions (i)-(vi) of (2.2) imply condi-

tions (i)-(vi) of (12.2). Furthermore, conditions (i)-(vi) of (2.2) plus the definition
of eΣn(θ) in (3.2) and the additional condition (vii) of (2.2) imply conditions (vii)-
(x) of (12.3). For details of the proof, see AG4.
For dependent observations, one needs to specify a particular variance estima-

tor eΣn(θ) before one can specify primitive “additional conditions” beyond condi-
tions (i)-(vi) in (12.2) that ensure that Γ is such that any sequences {γn,h : n ≥ 1}
in Γ satisfy (12.3). For brevity, we do not do so here.

17In AG4, a strong mixing condition is imposed in condition (v) of (12.2). This condition is
used to verify Assumption E0 in that paper and is not needed with GMS critical values. To
extend the subsampling power results of the paper to dependent observations, this assumption
needs to be imposed.
18Condition (x) of (12.3) requires that conditions (vii)-(ix) must hold under any sequence of

parameters {γwn,h : n ≥ 1} that satisfies the conditions preceding (12.3) with n replaced by
wn.

35



12.3 Proof of the Asymptotic Size Result for GMS

The proof of Lemma 1 is given at the end of this subsection.
The following Lemmas are used in the proof of Theorem 1. The first Lemma

uses the following notation. Suppose π = (π1,π2) ∈ Rp+,∞ × Rq[±∞], where π2 =
(π2,1,π2,2) and π2,2 = vech∗(Ωπ2,2) for some k× k correlation matrix Ωπ2,2. Given
π, define π∗1,j = ∞ if π1,j > 0 and π∗1,j = 0 if π1,j = 0 for j = 1, ..., p and let
π∗1 = (π∗1,1, ...,π

∗
1,p)

�. Define π∗ = (π∗1,π2) and let cπ∗(1 − α) denote the 1 − α

quantile of S(Ω1/2π2,2Z
∗ + (π∗1, 0v),Ωπ2,2), where Z

∗ ∼ N(0k, Ik) and by definition if
π∗1,j =∞ then the jth element of Ω1/2π2,2Z

∗ + (π∗1, 0v) equals ∞ for j = 1, ..., p.

Lemma 2 Suppose Assumptions 1-3, GMS1, and GMS2 hold and 0 < α < 1/2.
Let {γn,h = (γn,h,1, γn,h,2, γn,h,3) : n ≥ 1} be a sequence of points in Γ that
satisfies (i) n1/2γn,h,1 → h1 for some h1 ∈ Rp+,∞, (ii) κ−1n n

1/2γn,h,1 → π1 for
some π1 ∈ Rp+,∞, and (iii) γn,h,2 → h2 for some h2 ∈ Rq[±∞]. Let h = (h1, h2),

π = (π1,π2), and π2 = h2. Then,
(a) ecn(θn,h, 1 − α) ≥ c∗n a.s. for all n for a sequence of random variables

{c∗n : n ≥ 1} that satisfies c∗n →p cπ∗(1− α) under {γn,h : n ≥ 1}, where γn,h,2 =
(θn,h, γn,h,2,2),
(b) lim infn→∞ Pγn,h(Tn(θn,h) ≤ ecn(θn,h, 1− α)) ≥ 1− α, and
(c) for any subsequence {wn : n ≥ 1} of {n}, the results of parts (a) and (b)

hold with wn in place of n provided conditions (i)-(iii) above hold with wn in place
of n.

Lemma 3 Suppose Assumptions 1-3, 7, and GMS1-GMS4 hold and 0 < α <
1/2. Let (θ∗, F ∗) be an element of F for which Assumption 7 applies, let γ∗ be
the value in Γ that corresponds to (θ∗, F ∗) ∈ F , and let h∗ = (h∗1, h∗2) be defined
by h∗1 = (h∗1,1, ..., h

∗
1,p)

�, where h∗1,j = ∞ if γ∗1,j > 0 and h∗1,j = 0 if γ∗1,j = 0 for
j = 1, ..., p, and h∗2 = γ∗2. Let ch∗(1−α) denote the 1−α quantile of the distribution
of S(Ω1/2h∗2,2Z

∗+(h∗1, 0v),Ωh∗2,2). When the true distribution is determined by γ
∗ for

all n, we have
(a) ecn(θ∗, 1− α)→p ch∗(1− α) and
(b) limn→∞ Pγ∗(Tn(θ∗) ≤ ecn(θ∗, 1− α)) = 1− α.

Proof of Theorem 1. First, we prove part (a). Let CPn(γ) = Pγ(Tn(θ)
≤ ecn(θ, 1− α)), where γ = (γ1, γ2, γ3), γ2 = (γ2,1, γ2,2), and γ2,1 = θ. Let {γ∗n =
(γ∗n,1, γ

∗
n,2, γ

∗
n,3) ∈ Γ : n ≥ 1} be a sequence such that lim infn→∞CPn(γ∗n) =

lim infn→∞ infγ∈ΓCPn(γ) (= AsyCS). Such a sequence always exists. Let {un :
n ≥ 1} be a subsequence of {n} such that limn→∞CPun(γ∗un) exists and equals
lim infn→∞CPn(γ∗n) = AsyCS. Such a subsequence always exists.

36



Let γ∗n,1,j denote the jth component of γ∗n,1 for j = 1, ..., p. Either

(1) lim supn→∞ u
1/2
n γ∗un,1,j < ∞ or (2) lim supn→∞ u

1/2
n γ∗un,1,j = ∞. If (1) holds,

then for some subsequence {wn} of {un},

κ−1wnw
1/2
n γ∗wn,1,j → 0 and

w1/2n γ∗wn,1,j → h1,j for some h1,j ∈ R+. (12.4)

If (2) holds, then either 2(a) lim supn→∞ κ−1unu
1/2
n γ∗un,1,j < ∞ or 2(b) lim supn→∞

κ−1unu
1/2
n γ∗un,1,j =∞. If 2(a) holds, then for some subsequence {wn} of {un},

κ−1wnw
1/2
n γ∗wn,1,j → π1,j for some π1,j ∈ R+ and
w1/2n γ∗wn,1,j → h1,j, where h1,j =∞. (12.5)

If 2(b) holds, then for some subsequence {wn} of {un},

κ−1wnw
1/2
n γ∗wn,1,j → π1,j, where π1,j =∞, and
w1/2n γ∗wn,1,j → h1,j, where h1,j =∞. (12.6)

In addition, for some subsequence {wn} of {un},

γ∗wn,2 → h2 for some h2 ∈ cl(Γ2). (12.7)

By taking successive subsequences over the p components of γ∗un,1 and γ∗un,2, we
find that there exists a subsequence {wn} of {un} such that for each j = 1, ..., p
exactly one of the cases (12.4)-(12.6) applies and (12.7) holds. In consequence,
conditions (i)-(iii) of Lemma 2 hold. Hence,

lim inf
n→∞

CPwn(γ
∗
wn) ≥ 1− α (12.8)

by Lemma 2. Since limn→∞CPun(γ
∗
un) = AsyCS and {wn} is a subsequence of

{un}, we have limn→∞CPwn(γ∗wn) = AsyCS. This and (12.8) yield the result of
part (a).
Part (b) follows from part (a) and Lemma 3(b) because AsyCS ≤ limn→∞

Pγ∗(Tn(θ
∗) ≤ ecn(θ∗, 1− α)).

Now, we prove part (c) of the Theorem. By assumption, v = 0. Under As-
sumption M, the sequence of constant true values {(θ∗, F ∗) ∈ F : n ≥ 1} satisfies
n1/2EF∗mj(Wi, θ

∗)/σF∗,j(θ∗) →∞ for j = 1, ..., p. Let γ∗ = (γ∗1, γ
∗
2, F

∗) ∈ Γ cor-
respond to (θ∗, F ∗) ∈ F , where γ∗2 = (θ

∗, γ∗2,2). Define h
∗ = (∞p, γ∗2). As in the

proof of part (b) of Lemma 2 below, we have Tn(θ
∗) →d Jh∗ under {γ∗}, where
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Jh∗ is the distribution of S(Zh∗2,2+(h
∗
1, 0v),Ωh∗2,2), where Zh∗2,2 ∼ N(0k,Ωh∗2,2). Fur-

thermore, Jh∗(x) = 1 for x ≥ 0 because S(Zh∗2,2 +∞p,Ωh∗2,2) = S(∞p,Ωh∗2,2) = 0
by Assumption 3. Using these results, we obtain

AsyMaxCP ≥ lim sup
n→∞

Pγ∗(Tn(θ
∗) ≤ ecn(θ∗, 1− α))

≥ lim sup
n→∞

Pγ∗(Tn(θ
∗) ≤ 0) = Jh∗(0) = 1, (12.9)

where the first inequality follows from the definition of AsyMaxCP and the
second inequality holds by Assumption 1(c).

Proof of Lemma 2. First, suppose cπ∗(1− α) = 0. In this case, define c∗n = 0
and we have

cn(eθn,h, 1− α) ≥ c∗n →p cπ∗(1− α), (12.10)

where the inequality holds by Assumption 1(c), which establishes part (a) for this
case.
Next, suppose cπ∗(1 − α) > 0. For (ξ,Ω) ∈ Rk × Ψ, let ϕ∗(ξ,Ω) denote the

k-vector whose jth element is

ϕ∗j(ξ,Ω) =

⎧⎨⎩ ϕj(ξ,Ω) if π1,j = 0 and j = 1, ..., p
∞ if π1,j > 0 and j = 1, ..., p
0 if j = p+ 1, ..., k.

(12.11)

By construction,

ϕ∗(ξn(θn,h), eΩn(θn,h)) ≥ ϕ(ξn(θn,h), eΩn(θn,h)) a.s.[Z∗] for all n. (12.12)

Let c∗n denote the 1−α quantile of the df of S(eΩ1/2n (θn,h)Z
∗+ϕ∗(ξn(θn,h), eΩn(θn,h)),eΩn(θn,h)), where Z∗ is random and (ξn(θn,h), eΩn(θn,h)) is fixed. Then, ecn(θn,h, 1−

α) ≥ c∗n a.s. for all n by (12.12) and Assumption 1(a).
We now show that c∗n →p cπ∗(1− α) > 0. Under {γn,h : n ≥ 1}, we have

κ−1n n
1/2 eD−1/2n (θ)mn(θn,h)

= κ−1n eD−1/2n (θn,h)D
1/2(θn,h, Fn,h)

�
An + (n

1/2γn,h,1, 0v)
�

= op(1) + (Ik + op(1))(κ
−1
n n

1/2γn,h,1, 0v)→p (π1, 0v), (12.13)

where the first equality holds by the definitions of γn,h,1 and An in (12.1) and
(12.3), the second equality holds using κn →∞ and conditions (vii) and (viii) of
(12.3), which apply by conditions (i) and (iii) of the Lemma, and the convergence
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holds using condition (ii) of the Lemma. This and condition (ix) of (12.3) yield:
under {γn,h : n ≥ 1},

(ξn(θn,h), eΩn(θn,h))→p ((π1, 0v),Ωπ2,2). (12.14)

Consider j for which π1,j = 0 and j = 1, ..., p. For notational simplicity, let
Ω0 denote Ωπ2,2. Then, as (ξ,Ω)→ ((π1, 0v),Ω0),

ϕ∗j(ξ,Ω) = ϕj(ξ,Ω)→ ϕj((π1, 0v),Ω0) = 0 a.s.[Z
∗], (12.15)

where the first equality holds by (12.11), the convergence holds by Assumption
GMS1(a), and the last equality holds by Assumption GMS1(b).
Next, consider j for which π1,j > 0 for some j = 1, ..., p. Then, ϕ∗j(ξ,Ω) =∞

by the definition in (12.11). For j = p+1, ..., k, ϕ∗j(ξ,Ω) = 0 by definition. These
results, (12.15), and Assumption 1(d) give: for x > 0, as (ξ,Ω)→ ((π1, 0v),Ω0),

S(Ω1/2Z∗ + ϕ∗(ξ,Ω),Ω) → S(Ω
1/2
0 Z∗ + ϕ∗((π1, 0v),Ω0),Ω0) a.s.[Z∗],

1
�
S(Ω1/2Z∗ + ϕ∗(ξ,Ω),Ω) ≤ x� → 1

�
S(Ω

1/2
0 Z∗ + ϕ∗((π1, 0v),Ω0),Ω0) ≤ x

�
a.s.[Z∗], and (12.16)

P
�
S(Ω1/2Z∗ + ϕ∗(ξ,Ω),Ω) ≤ x� → P

�
S(Ω

1/2
0 Z∗ + ϕ∗((π1, 0v),Ω0),Ω0) ≤ x

�
.

The third convergence result of (12.16) holds by the second result and the bounded
convergence theorem. The second convergence result of (12.16) follows from the
first result provided

P (S(Z + ϕ∗((π1, 0v),Ω0),Ω0) = x) = P (S(Z + (π∗1, 0v),Ω0) = x) = 0, (12.17)

where Z = Ω
1/2
0 Z∗ ∼ N(0k,Ω0). The first equality in (12.17) holds because

[(π∗1, 0v)]j = ∞ if π∗1,j = ∞ by definition and [(π∗1, 0v)]j = 0 = ϕj((π1, 0v),Ω0) =
ϕ∗j((π1, 0v),Ω0) if π

∗
1,j = π1,j = 0 using Assumption GMS1(b) and (12.11). The

second equality in (12.17) holds because the df of S(Z+(π∗1, 0v),Ω0) is continuous
and strictly increasing for x > 0 by Assumptions 2(a) and 2(b) unless v = 0
and π∗1 = ∞p. The latter does not hold because, if v = 0 and π∗1 = ∞p, then
S(Z + (π∗1, 0v),Ω0) = 0 and cπ∗(1 − α) = 0), which contradicts the assumption
that cπ∗(1− α) > 0.
In sum, (12.16) shows that P (S(Ω1/2Z∗ + ϕ∗(ξ,Ω),Ω) ≤ x) is a continuous

function of (ξ,Ω) at ((π1, 0v),Ω0). This, (12.14), and Slutsky’s Theorem combine
to give: under {γn,h : n ≥ 1},

Ln(x) = P
�
S(eΩ1/2n (θn,h)Z

∗ + ϕ∗(ξn(θn,h), eΩn(θn,h)), eΩn(θn,h)) ≤ x�
→p P

�
S(Ω

1/2
0 Z∗ + ϕ∗((π1, 0v),Ω0),Ω0) ≤ x

�
= L(x) (12.18)
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for all x > 0, where P (·) denotes conditional probability given (ξn(θn,h), eΩn(θn,h))
in (12.18) and hence is a random probability. By definition, c∗n is the 1−α quantile
of Ln(x) and cπ∗(1−α) is the 1−α quantile of L(x). By Lemma 5 of AG1, given
that (12.18) holds for all x in a neighborhood of cπ∗(1 − α) > 0 and L(x) is
continuous and strictly increasing at x = cπ∗(1−α) (see the previous paragraph),
we have c∗n →p cπ∗(1− α). This completes the proof of part (a).
Part (b) is proved as follows. First, conditions (i) and (ii) of the Lemma imply

that if π1,j > 0 then h1,j = ∞ and π∗1,j = ∞, and if π1,j = 0 then h1,j ≥ 0 and
π∗1,j = 0. Thus, we have

π∗1 ≤ h1,
S(Ω

1/2
h2,2
Z∗ + (π∗1, 0v),Ωh2,2) ≥ S(Ω1/2h2,2Z∗ + (h1, 0v),Ωh2,2), and

cπ∗(1− α) ≥ ch(1− α), (12.19)

where ch(1 − α) denotes the 1 − α quantile of S(Ω1/2h2,2Z
∗ + (h1, 0v),Ωh2,2), the

second inequality holds by the first inequality and Assumption 1(a), and the
third inequality holds by the second.
Second, by the verification of Assumption B0 in AG4, we have

Tn(θn,h)→d Jh under {γn,h}, (12.20)

where Jh is the distribution of S(Ω
1/2
h2,2
Z∗+(h1, 0v),Ωh2,2). This result is obtained

by using Assumption 1(b) to write

Tn(θn,h) = S
� eD−1/2n (θn,h)n

1/2mn(θn,h), eD−1/2n (θn,h)eΣn(θn,h) eD−1/2n (θn,h)
�
.

(12.21)
If any element of h1 equals ∞, then it can be shown using (12.3) that the corre-
sponding element of eD−1/2n (θn,h)n

1/2mn(θn,h) diverges in probability to∞. Hence,eD−1/2n (θn,h)n
1/2mn(θn,h) does not converge in distribution to a proper finite ran-

dom vector and the continuous mapping theorem cannot be applied to obtain
the asymptotic distribution of the right-hand side of (12.21). The verification of
Assumption B0 in AG4 avoids this problem by (i) considering a transformation
of eD−1/2n (θn,h)n

1/2mn(θn,h) that converges in distribution even if some elements
of h1 equal∞, (ii) writing the right-hand side of (12.21) as a continuous function
of this transformation, and (iii) applying the continuous mapping theorem to the
transformation.
We now have

lim inf
n→∞

Pγn,h(Tn(θn,h) ≤ ecn(θn,h, 1− α))
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≥ lim inf
n→∞

Pγn,h(Tn(θn,h) ≤ c∗n)
≥ Jh(cπ∗(1− α)−), (12.22)

where Jh(x−) denotes the limit from the left of Jh(·) at x, the first inequality
holds because ecn(θn,h, 1 − α) ≥ c∗n a.s. and the second inequality holds by part
(a) of the Lemma and (12.20).
Suppose cπ∗(1− α) > 0, then

Jh(cπ∗(1− α)−) = Jh(cπ∗(1− α)) ≥ 1− α (12.23)

and part (b) of the Lemma holds, where the equality holds because Jh(x) is
continuous for all x > 0 by Assumption 2(a) and the inequality holds by (12.19).
Next, suppose cπ∗(1−α) = 0. This implies that ch(1−α) = 0 by (12.19) and

Assumption 1(c). The conditions ch(1− α) = 0 and 0 < α < 1/2 are consistent
with Assumption 2(c) only if v = 0. Given v = 0, under {γn,h : n ≥ 1}, we have

Pγn,h(Tn(θn,h) ≤ 0)
= Pγn,h(n

1/2mn,j(θn,h)/σFn,h,j(θn,h) ≥ 0 for all j = 1, ..., p)
= Pγn,h(An,j + n

1/2γn,h,1,j) ≥ 0 for all j = 1, ..., p)
→ P ([Ω

1/2
h2,2
Z∗]j + h1,j ≥ 0 for all j = 1, ..., p)

= P (S(Ω
1/2
h2,2
Z∗ + h1,Ωh2,2) ≤ 0)

= Jh(0) ≥ Jh(ch(1− α)) ≥ 1− α, (12.24)

where the first equality holds by Assumptions 1(b) and 3, the second equality
and the convergence hold by (12.3), the third equality holds by Assumption 3,
the fourth equality holds by the definition of Jh, the first inequality holds because
ch(1−α) ≥ 0 (note that ch(1−α) = 0 here, but the argument in (12.24) is applied
below to a case in which one only knows that ch(1 − α) ≥ 0), and the second
inequality holds by the definition of ch(1− α). This completes the proof of part
(b).
The proof of part (c) is the same as that for parts (a) and (b) with wn in

place of n.

Proof of Lemma 3. Conditions (i)-(iii) of Lemma 2 hold with γn,h = γ∗ for
all n, h = h∗, and π = h∗ because κ−1n n

1/2 → ∞ by Assumption GMS4. Each
element of π1 is either zero or infinity. Thus, the vector π∗ that depends on π
and is defined preceding Lemma 2 equals π. Now, (12.14) in the proof of Lemma
2 applies with θn,h = θ∗, π1 = h∗1, and Ωπ2,2 = Ωh∗2,2.
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Equation (12.15) applies (with the first quantity on the left-hand side deleted)
for all j = 1, ..., p for which π1,j = 0. In addition, we have: as (ξ,Ω) →
((π1, 0v),Ωh∗2,2), ϕj(ξ,Ω) → ∞ a.s.[Z∗] for all j = 1, ..., p for which π1,j =

∞ by Assumption GMS3. Given these results, (12.16) and (12.17) hold with
ϕ∗(ξ,Ω) and S(Ω1/20 Z∗+ϕ∗((π1, 0v), Ω0),Ω0) replaced by ϕ(ξ,Ω) and S(Ω

1/2
0 Z∗+

ϕ((h∗1, 0v),Ωh∗2,2),Ωh∗2,2), respectively, and the second equality in (12.17) holds be-
cause ch∗(1−α) = cπ∗(1−α) > 0. (The case ch∗(1−α) = 0 does not occur because
the df of S(Ω1/2h∗2,2Z

∗+(h∗1, 0v),Ωh∗2,2) at x < 0 is zero by Assumption 1(c), the df at
x = ch∗(1− α) = 0 is zero by continuity (Assumption 7), the latter implies that
the df is less than 1 − α for x > 0, and the latter implies that ch∗(1 − α) > 0.)
The remainder of the proof of part (a) is the same as that given in (12.18) but
with ecn(θ∗, 1− α)) in place of c∗n.
To prove part (b), we note that the asymptotic distribution of Tn(θ∗) is

S(Ω
1/2
h∗2,2
Z∗ + (h∗1, 0v),Ωh∗2,2) under {γ∗ : n ≥ 1} by the verification of Assumption

B0 in AG1, see (12.20) and the discussion following it. The df of S(Ω1/2h∗2,2Z
∗ +

(h∗1, 0v),Ωh∗2,2) is continuous and strictly increasing at ch∗(1−α) > 0 by Assump-
tions 2(a) and 2(b) unless v = 0 and h∗1 = ∞p. The latter does not hold by the
argument given in the proof of Lemma 2 just below (12.17) because ch∗(1−α) > 0.
These results and ecn(θ∗, 1− α)→p ch∗(1− α) establish part (b).

Proof of Lemma 1. Assumptions 1-4 hold by Lemma 1 of AG4. For S1,
Assumption 5(a) holds by the same arguments as for Assumption 2 given in the
proof of Lemma 1 of AG4. Assumption 5(b) holds with a non-strict inequality by
Assumption 1(a) and the fact that Z+(m1, 0v) is stochastically strictly increasing
in m1 ∈ Rp+,∞. Assumption 5(b) holds for S1 with a strict inequality because
S1(Z + (m

∗
1, 0v),Ω) is strictly stochastically less than S1(Z + (m1, 0v),Ω) on R+

for m1 < m
∗
1. Assumption 6 holds immediately for S1 with τ = 2.

For S2, Assumptions 5(a)(i) and 5(a)(ii) hold by the same arguments as for
Assumptions 2(a) and 2(b) given in the proof of Lemma 1 of AG4. Assumption
5(b) holds for S2 by the same argument as for S1.Assumption 6 holds immediately
for S2 with τ = 2. The verification of Assumptions 1-6 for S3 is essentially the
same as that for S1.

12.4 Proofs for Local Alternatives

Theorem 2 follows immediately from Lemmas 4 and 5 below. Theorem 3(a)
and (c) do likewise from Lemmas 5-8. Theorem 3(b) follows from Lemmas 6 and
7, where one takes g1 = 0p in Lemma 7 and one notes that c0p,0d(1− α) > 0 by
Assumption 2(c) and α ∈ (0, 1/2).
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In each of Lemmas 4-8, the parameter space F for (θ, F ) is assumed to satisfy
(2.2) (which implies that the observations are i.i.d.). In the Lemmas that involve
subsampling, it is assumed that b → ∞ and b/n → 0 as n → ∞. Let Z ∼
N(0k,Ω0).

Lemma 4 Under Assumptions 1-3, 5(a), GMS2, GMS3, LA1—LA2, LA4, and
LA5,
(a) Tn(θ0)→d S(Z + (h1, 0v) +Π0λ,Ω0) ∼ Jh1,λ,
(b) ecn(θ0, 1− α)→p cπ1(ϕ, 1− α) and
(c) limn→∞ PFn(Tn(θ0) > ecn(θ0, 1− α)) = Jh1,λ(cπ1(ϕ, 1− α)).

Lemma 5 Under Assumptions 1-3, 5(a), LA1—LA2, and LA6,
(a) Tn(θ0)→d S(Z + (h1, 0v) +Π0λ,Ω0) ∼ Jh1,λ,
(b) Tb(θ0)→d S(Z + (g1, 0v),Ω0) ∼ Jg1,0d ,
(c) cn,b(θ0, 1− α)→ cg1,0d(1− α), and
(d) limn→∞ PFn(Tn(θ0) > cn,b(θ0, 1− α)) = Jh1,λ(cg1,0d(1− α)).

Lemma 6 Under Assumptions 1, 4, 5(a), and LA1—LA2,
(a) Tn(θ0)→d S(Z + (h1, 0v) +Π0λ,Ω0) ∼ Jh1,λ,
(b) c(eΩn(θ0), 1− α)→ c0p,0d(1− α), and
(c) limn→∞ PFn(Tn(θ0) > c(eΩn(θ0), 1− α)) = Jh1,λ(c0p,0d(1− α)).

The next Lemma uses the following notation. Let g1 = (g1,1, ..., g1,p)
� be as

in Assumption LA6. Let π∗∗1,j = ∞ if π1,j = ∞ and let π∗∗1,j = 0 if π1,j < ∞
for j = 1, ..., p. As defined, π∗∗1 = (π∗∗1,1, ...,π

∗∗
1,p)

� ≤ h1. Let π∗∗ = (π∗∗1 ,π
∗∗
2 ) ∈

Rp+,∞ × Rq[±∞], where π∗∗2 = (π∗∗2,1,π
∗∗
2,2), π

∗∗
2,1 = θ0, where θ0 is as in Assumption

LA1(a), and π∗∗2,2 = vech∗(Ω0) for the k × k correlation matrix Ω0 = Ω(θ0, F0)
determined by Assumption LA1(a). Let cπ∗∗1 (1 − α) denote the 1 − α quantile

of S(Ω1/20 Z∗ + (π∗∗1 , 0v),Ω0), where Z
∗ ∼ N(0k, Ik) and by definition if π∗∗1,j =∞

then the jth element of Ω1/20 Z∗ + (π∗∗1 , 0v) equals ∞ for j = 1, ..., p.

Lemma 7 Under Assumptions 1-3, 5(a), LA1—LA4, LA6, GMS2, GMS3, GMS5,
and GMS6,
(a) if cπ∗∗1 (1 − α) > 0, ecn(θ0, 1 − α) ≤ c∗∗n a.s. for all n for a sequence of

random variables {c∗∗n : n ≥ 1} that satisfies c∗∗n →p cπ∗∗1 (1− α),
(b) lim infn→∞ PFn(Tn(θ0) > ecn(θ0, 1− α)) ≥ Jh1,λ(cπ∗∗1 (1− α)),
(c) cg1,0d(1 − α) ≥ cπ∗∗1 (1 − α) with strict inequality whenever g1,j < ∞ and

π1,j =∞ for some j = 1, ..., p and cg1,0d(1− α) > 0, and
(d) Jh1,λ(cπ∗∗1 (1 − α)) ≥ Jh1,λ(cg1,0d(1 − α)) with strict inequality whenever

g1,j <∞ and π1,j =∞ for some j = 1, ..., p and cg1,0d(1− α) > 0.
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Lemma 8 Under Assumptions 1-5, LA1—LA3, and LA6,
(a) c0p,0d(1− α) ≥ cg1,0d(1− α),
(b) Jh1,λ(cg1,0d(1− α)) ≥ Jh1,λ(c0p,0d(1− α)),
(c) c0p,0d(1− α) > cg1,0d(1− α) unless g1 = 0p, and
(d) Jh1,λ(cg1,0d(1− α)) > Jh1,λ(c0p,0d(1− α)) unless g1 = 0p.

Proof of Lemma 4. To prove part (a), by element-by-element mean-value
expansions about θ = θn and Assumptions LA1, LA2, and LA4, we obtain

D−1/2(θ0, Fn)EFnm(Wi, θ0) = D−1/2(θn, Fn)EFnm(Wi, θn)

+Π(θ∗n, Fn)(θ0 − θn),

n1/2D−1/2(θ0, Fn)EFnm(Wi, θ0) → (h1, 0v) +Π0λ, (12.25)

whereD(θ, F ) = Diag{σ2F,1(θ), ...,σ2F,k(θ)}, θ∗n may differ across rows ofΠ(θ∗n, Fn),
θ∗n lies between θ0 and θn, θ

∗
n → θ0, and Π(θ∗n, Fn)→ Π0.

Next, under {(θn, Fn) ∈ F : n ≥ 1} as in Assumption LA1, we have
(i) A0n = (A

0
n,1, ..., A

0
n,k)

� →d Z ∼ N(0k,Ω0) as n→∞, where
A0n,j = n

1/2(mn,j(θ0)−EFnmn,j(θ0))/σFn,j(θ0),

(ii) eσn,j(θ0)/σFn,j(θ0)→p 1 as n→∞ for j = 1, ..., k, and

(iii) eD−1/2n (θ0)eΣn(θ0) eD−1/2n (θ0)→p Ω0 as n→∞, (12.26)

where result (i) holds by the Cramér-Wold device and the Liapounov triangular
array CLT for row-wise i.i.d. random variables with mean zero and variance one
using condition (iv) of (2.2) and Assumptions LA1(a) and LA1(c), and results
(ii) and (iii) hold by standard arguments using a weak law of large numbers for
row-wise i.i.d. random variables with variance one by condition (iv) of (2.2) and
Assumptions LA1(a) and LA1(c). Note that results (i)-(iii) of (12.26) do not hold
by (12.3) because the functions are evaluated at θ0 but the true value is θn.
For the same reason as described above following (12.21), to obtain the asymp-

totic distribution of Tn(θ0) we use the same type of argument as in the verification
of Assumption B0 in AG4. Let G(·) be a strictly increasing continuous df on R,
such as the standard normal df. Using (12.25) and (12.26), for j = 1, ..., k, we
have

G0n,j = G
�eσ−1n,j(θ0)n1/2mn,j(θ0)

�
= G

�eσ−1n,j(θ0)σFn,j(θ0) �A0n,j + n1/2σ−1Fn,j(θ0)EFnmj(Wi, θ0)
��
,

G0n,j →p 1 if j ≤ p and h1,j =∞, (12.27)

G0n,j →d G
�
Zj + h1,j +Π�0,jλ

�
if j ≤ p and h1,j <∞,

G0n,j →d G
�
Zj +Π�0,jλ

�
if j = p+ 1, ..., k,

G0n = (G0n,1, ..., G
0
n,k)→d G

0
∞ = (G(Z1 + h1,1 +Π�0,1λ), ..., G(Zk +Π�0,k))

�,
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where Z = (Z1, ..., Zk)� and Zj+h1,j+Π�0,jλ =∞ by definition if h1,j =∞. Now,
the same argument as in the verification of Assumption B0 in AG4 gives

Tn(θ0)→d S(Z + (h1, 0v) +Π0λ,Ω0) ∼ Jh1,λ. (12.28)

In short, the idea behind the argument is to write the right-hand side of (12.21)
as a continuous function of G0n and eD−1/2n (θn,h)eΣn(θn,h) eD−1/2n (θn,h) and apply the
continuous mapping theorem. This completes the proof of part (a).
To prove part (b), by the mean-value expansions in (12.25), Assumptions

LA1(a), LA2, and LA4, and κn →∞, we obtain
κ−1n n

1/2D−1/2(θ0, Fn)EFnm(Wi, θ0)→ (π1, 0v). (12.29)

This leads to

κ−1n n
1/2 eD−1/2n (θ0)mn(θ0)

= κ−1n eD−1/2n (θ0)D
1/2(θ0, Fn)

�
A0n + n

1/2D−1/2(θ0, Fn)EFnm(Wi, θ0)
�

→p (π1, 0v), (12.30)

where the equality holds by the definition of A0n in (12.26) and the convergence
holds by (12.29), conditions (i) and (ii) of (12.26), and κn →∞. Equation (12.30)
and condition (iii) of (12.26) yield

(ξn(θ0), eΩn(θ0))→p ((π1, 0v),Ω0). (12.31)

For j = 1, ..., k, as (ξ,Ω)→ ((π1, 0v),Ω0),

ϕj(ξ,Ω)→ ϕj((π1, 0v),Ω0) a.s.[Z
∗], (12.32)

because by Assumption LA5(a) π1 ∈ C(ϕ), which yields (12.32) by Assumption
GMS3 if π1,j =∞ and yields (12.32) by the definition of C(ϕ) otherwise.
Assumption 1(d) and (12.32) give: for x in a neighborhood of cπ1(ϕ, 1 − α),

as (ξ,Ω)→ ((π1, 0v),Ω0),

S(Ω1/2Z∗ + ϕ(ξ,Ω),Ω) → S(Ω
1/2
0 Z∗ + ϕ((π1, 0v),Ω0),Ω0) a.s.[Z∗],

1
�
S(Ω1/2Z∗ + ϕ(ξ,Ω),Ω) ≤ x� → 1

�
S(Ω

1/2
0 Z∗ + ϕ((π1, 0v),Ω0),Ω0) ≤ x

�
a.s.[Z∗], and (12.33)

P
�
S(Ω1/2Z∗ + ϕ(ξ,Ω),Ω) ≤ x� → P

�
S(Ω

1/2
0 Z∗ + ϕ((π1, 0v),Ω0),Ω0) ≤ x

�
.

The third convergence result of (12.33) holds by the second result and the bounded
convergence theorem, and the second convergence result of (12.33) follows from
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the first result provided P (S(Ω1/20 Z∗ +ϕ((π1, 0v),Ω0),Ω0) = x) = 0, which holds
by Assumption LA5(b).
Given (12.31) and (12.33), the remainder of the proof of part (b) is the same

as that given in the paragraph containing (12.18) using Lemma 5 of AG1.
Part (c) of the Lemma holds by parts (a) and (b) and Assumption LA5(b).

Proof of Lemma 5. Part (a) holds by Lemma 4(a).
To prove part (b), by the mean-value expansions in (12.25), Assumptions

LA1(a), LA2, and LA6, and b/n→ 0, we obtain

b1/2D−1/2(θ0, Fn)EFnm(Wi, θ0)→ (g1, 0v). (12.34)

Using (12.34) and an analogous argument to that given in the proof of Lemma
4(a) with n1/2 replaced by b1/2 in (12.27), we have

Tb(θ0)→d S(Z + (g1, 0v),Ω0) ∼ Jg1,0d, (12.35)

which proves part (b).
To establish Lemma 5(c) and (d), we apply Lemma 5 of AG1. We verify

conditions (i)-(iii) of Lemma 5 of AG1 as follows. Lemma 5(a) of the present
paper implies condition (ii). To verify condition (i), Lemma 5(b) of the present
paper and identical distributions for {Wi : i ≤ n} imply that

EFnUn,b(θ0, x) = PFn(Tb(θ0) ≤ x)→ Jg1,0d(x) (12.36)

for all continuity points x of Jg1,0d . In addition, V arFn(Un,b(θ0, x)) → 0 by a U-
statistic inequality of Hoeffding, as in Politis, Romano, and Wolf (1999, p. 44),
using the i.i.d. property of {Wi : i ≤ n} and the boundedness of Un,b(θ0, x). This
and (12.36) give

Un,b(θ0, x)→p Jg1,0d(x) (12.37)

for all continuity points x of Jg1,0d , which verifies condition (i) of Lemma 5 of
AG1.
To verify condition (iii) of Lemma 5 of AG1, we need to show

Jg1,0d(cg1,0d(1− α) + ε) > 1− α for all ε > 0. (12.38)

When v = 0 and g1 =∞p, S(Z+(g1, 0v),Ω0) = S(∞p,Ω0) = 0 using Assumption
3. In consequence, Jg1,0d(x) = 1 for all x ≥ 0, cg1,0d(1−α) = 0, and (12.38) holds
for α > 0. Now, suppose v ≥ 1 or g1 9=∞p. Then, by Assumption 2(b), Jg1,0d(x)
is strictly increasing for x > 0. Using this, we have (i) if cg1,0d(1 − α) > 0,
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then Jg1,0d(x) is strictly increasing at x = cg1,0d(1 − α) and (12.38) holds, (ii) if
cg1,0d(1− α) = 0, then Jg1,0d(0) ≥ 1 − α (by the definition of cg1,0d(1− α)), (iii)
if cg1,0d(1− α) = 0 and Jg1,0d(0) ≥ 1−α, then Jg1,0d(x) > 1−α for all x > 0 and
(12.38) holds (otherwise, Jg1,0d(x) = 1−α for some x > 0 and Jg1,0d(x/2) = 1−α
since Jg1,0d is non-decreasing, which contradicts the fact that Jg1,0d(x) is strictly
increasing for x > 0). Hence, (12.38) holds.
Lemma 5 of AG1 establishes Lemma 5(c) of the present paper and shows that

limn→∞ PFn(Tn(θ0) > cn,b(θ0, 1−α)) ∈ [Jh1,λ(cg1,0d(1−α)−), Jh1,λ(cg1,0d(1−α))]. If
cg1,0d(1−α) > 0, then by Assumption 5(a)(i) Jh1,λ is continuous at cg1,0d(1−α) and
the result of Lemma 5(d) holds. Assumption 1(c) implies that c0p,0d(1− α) ≥ 0.
The conditions cg1,0d(1−α) = 0 and 0 < α < 1/2 are consistent with Assumption
2(c) only if v = 0. Given v = 0 and cg1,0d(1− α) = 0, we use the argument given
in (12.24) to establish Lemma 5(d) with θn,h, Pγn,h , S(Ω

1/2
h2,2
Z∗ + h1,Ωh2,2), Jh,

and ch(1− α) replaced by θ0, PFn, S(Z + h1 + Π0λ,Ω0), Jh1,λ, and ch1,λ(1− α),
respectively.

Proof of Lemma 6. Part (a) holds by Lemma 4(a) because Assumptions 2 and
3 are not used in the proof of Lemma 4(a).
By standard arguments using a weak law of large numbers for row-wise i.i.d.

triangular arrays and Assumption LA1(c), we have

D−1/2(θ0, Fn)eΣn(θ0)D−1/2(θ0, Fn)
−D−1/2(θ0, Fn)V arFn(m(Wi, θ0))D

−1/2(θ0, Fn)→p 0k×k andeD−1/2n (θ0)D
1/2(θ0, Fn)− Ik →p 0k×k. (12.39)

In consequence, eΩn(θ0)− Ω(θ0, Fn)→p 0k×k. This and Assumptions LA1(a) and
LA1(c) give eΩn(θ0) →p Ω0. The latter and Assumption 4(b) yield c(eΩn(θ0), 1 −
α)→p c(Ω0, 1−α). This establishes Lemma 6(b) because c(Ω0, 1−α) = c0p,0d(1−
α) by definition.
If c0p,0d(1− α) > 0, Lemma 6(c) holds by parts (a) and (b) and Assumption

5(a)(i). Assumption 1(c) implies that c0p,0d(1−α) ≥ 0. The conditions c0p,0d(1−
α) = 0 and 0 < α < 1/2 are consistent with Assumption 2(c) only if v = 0
(because c0p,0d(1 − α) is the 1 − α quantile of S(Z,Ω0)). Given v = 0 and
c0p,0d(1 − α) = 0, Lemma 6(c) holds by the same argument as used to prove
Lemma 5(d) when cg1,0d(1− α) = 0.

Proof of Lemma 7. First we prove part (a). By assumption, cπ∗∗1 (1− α) > 0.
For (ξ,Ω) ∈ Rk ×Ψ, let ϕ∗∗(ξ,Ω) denote the k-vector whose jth element is

ϕ∗∗j (ξ,Ω) =

⎧⎨⎩ 0 if π1,j <∞ and j = 1, ..., p
ϕj(ξ,Ω) if π1,j =∞ and j = 1, ..., p
0 if j = p+ 1, ..., k.

(12.40)
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By Assumption GMS6, ϕj(ξ,Ω) ≥ 0 for j ≤ p. Hence, ϕ∗∗(ξ,Ω) ≤ ϕ(ξ,Ω) and

ϕ∗∗(ξn(θn), eΩn(θn)) ≤ ϕ(ξn(θn), eΩn(θn)) a.s.[Z∗] for all n. (12.41)

Let c∗∗n denote the 1 − α quantile of the conditional df of S(eΩ1/2n (θn)Z
∗ +

ϕ∗∗(ξn(θn), eΩn(θn)), eΩn(θn)) given (ξn(θn), eΩn(θn)). Then, ecn(θn, 1−α) ≤ c∗∗n a.s.
for all n by (12.41) and Assumption 1(a). By the same argument as in the proof
of Lemma 4, (12.31) holds.
For j = 1, ..., p with π1,j < ∞, ϕ∗∗j (ξ,Ω) = 0. For j = 1, ..., p with π1,j = ∞,

as (ξ,Ω)→ ((π1, 0v),Ω0), we have ϕj(ξ,Ω)→∞ a.s.[Z∗] by Assumption GMS3.
These results can be written as

ϕ∗∗j (ξ,Ω)→ π∗∗1,j a.s.[Z
∗] (12.42)

for j = 1, ..., p by the definition of π∗∗1,j.
Assumption 1(d) and (12.42) give: for x in a neighborhood of cπ∗∗1 (1− α), as

(ξ,Ω)→ ((π1, 0v),Ω0),

S(Ω1/2Z∗ + ϕ∗∗(ξ,Ω),Ω) → S(Ω1/2Z∗ + (π∗∗1 , 0v),Ω0) a.s.[Z
∗],

1
�
S(Ω1/2Z∗ + ϕ∗∗(ξ,Ω),Ω) ≤ x� → 1

�
S(Ω1/2Z∗ + (π∗∗1 , 0v),Ω0) ≤ x

�
a.s.[Z∗],

P
�
S(Ω1/2Z∗ + ϕ∗∗(ξ,Ω),Ω) ≤ x� → P

�
S(Ω1/2Z∗ + (π∗∗1 , 0v),Ω0) ≤ x

�
. (12.43)

The third convergence result of (12.43) holds by the second result and the bounded
convergence theorem. The second convergence result of (12.43) follows from the
first result provided P (S(Ω1/2Z∗ + (π∗∗1 , 0v),Ω0) = x) = 0, which holds because
cπ∗∗1 (1− α) > 0 for the same reason as the second equality in (12.17) holds.
Given (12.31) and (12.43), the remainder of the proof of part (a) is the same

as that given in the paragraph containing (12.18) using Lemma 5 of AG1.
Now we prove part (b). If cπ∗∗1 (1 − α) > 0, part (b) of the Lemma holds by

part (a), Lemma 4(a) (i.e., Tn(θ0)→d Jh1,λ), and Assumption 5(a)(i).
Next, we prove part (b) for the case where cπ∗∗1 (1− α) = 0. We have

lim inf
n→∞

Pγn(Tn(θn) ≤ c∗∗n ) ≥ lim inf
n→∞

Pγn(Tn(θn) ≤ 0) (12.44)

because c∗∗n ≥ 0 by Assumption 1(c). By the definition of π∗∗1 , we have π∗∗1 ≤ h1.
As in (12.19), this implies that ch(1− α) ≤ cπ∗∗(1− α) and hence ch(1− α) = 0
using Assumption 1(c). The conditions ch(1 − α) = 0 and 0 < α < 1/2 are
consistent with Assumption 2(c) only if v = 0. Given v = 0, we use the same
argument as given in (12.24) with γn,h, An,j, h1,j, Jh, and ch(1− α) replaced by
γn, A

0
n,j, h1,j +Π�0,jλ, Jh1,λ, and ch1,λ(1− α), respectively, where A0n is defined in
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(12.26), to show that the right-hand side in (12.44) is greater than or equal to
1− α. This completes the proof of part (b).
When the inequality is not strict, part (c) holds because (i) π∗∗1 ≥ g1, which

holds because if π1,j =∞ then π∗∗1,j =∞ and if π1,j <∞ then g1,j = 0 by Assump-

tion LA4 and GMS5 and π∗∗1,j = 0 by definition, (ii) S(Ω
1/2
0 Z∗ + (π∗∗1 , 0v),Ω0) ≤

S(Z + (g1, 0v),Ω0) a.s. by (i) and Assumption 1(a), and (iii) the corresponding
quantiles satisfy cπ∗∗1 (1− α) ≤ cg1,0d(1− α) by (ii).
Next, we show part (c) holds with a strict inequality when cg1,0d(1 − α) > 0

and g1,j <∞ and π1,j =∞ for some j = 1, ..., p. The latter implies that π∗∗1 > g1.
Given π∗∗1 > g1 and cg1,0d(1− α) > 0, Assumption 5(b) implies that

P (S(Z + (π∗∗1 , 0v),Ω) ≤ cg1,0d(1− α))

> P (S(Z + (g1, 0v),Ω) ≤ cg1,0d(1− α)) ≥ 1− α, (12.45)

where Z ∼ N(0k,Ω). If “v = 0 and π∗∗1 = ∞p” does not hold, then the df of
S(Z + (π∗∗1 , 0v),Ω) is strictly increasing for x > 0 by Assumption 2(b). This and
(12.45) imply that cπ∗∗1 (1 − α) < cg1,0d(1 − α). If v = 0 and π∗∗1 = ∞p, then
S(Z + (π∗∗1 , 0v),Ω)) = S(Z +∞p,Ω)) = 0 by Assumption 1(c) and cπ∗∗1 (1− α) =
0 < cg1,0d(1− α) and the proof of part (c) is complete.
Part (d) follows immediately from part (c) when the inequality is not strict.

When cg1,0d(1 − α) > 0 and g1,j < ∞ and π1,j = ∞ for some j = 1, ..., p, part
(c) holds with a strict inequality. The latter, cπ∗∗1 (1 − α) ≥ 0 (which holds by
Assumption 1(c)), and Jh1,λ(x) is strictly increasing for x > 0 (which holds by
Assumption 5(a)(ii) because the caveat in Assumption 5(a)(ii) that “v = 0 and
� = ∞p does not occur” holds by Assumption LA3) imply that part (d) holds
with a strict inequality.

Proof of Lemma 8. Part (a) holds because for 0p ≤ g1 ∈ Rp+,∞, we have
S(Z + (0p, 0v),Ω0) ≥ S(Z + (g1, 0v),Ω0) (12.46)

by Assumption 1(a). Part (b) follows from part (a). To prove Lemma 8(c), note
that c0p,0d(1 − α) > 0 by Assumption 2(c) and α ∈ (0, 1/2). This, Assumptions
2(a) and 5(b), and g1 > 0p imply that

1− α = P (S(Z + (0p, 0v),Ω0) ≤ c0p,0d(1− α))

< P (S(Z + (g1, 0v),Ω0) ≤ c0p,0d(1− α)), (12.47)

where Z ∼ N(0k,Ω0). The latter and Assumption 2(a) prove part (c).
Lemma 8(d) holds by part (c), cg1,0d(1− α) ≥ 0 (which holds by Assumption

1(c)), and Assumption 5(a)(ii) (because the caveat in Assumption 5(a)(ii) that
“v = 0 and � =∞p does not occur” holds by Assumption LA3).

49



13 APPENDIX B

Appendix B contains the proof of Theorem 4 and the verification of Assump-
tions GMS1, GMS3, GMS6, and GMS7 for ϕ(5).

Proof of Theorem 4. It suffices to show that for any subsequence {tn} of {n}
there exists a sub-subsequence {sn} such that limn→∞ PFsn (Tsn(θ0) > c1−α) = 1,
where c1−α = ecn(θ0, 1 − α), cn,b(θ0, 1 − α), or c(eΩn(θ0), 1 − α). We can take the
subsequence {sn} to be such that m∗sn,j/βsn → ej for some ej ∈ [−1,∞] for
j = 1, ..., k because {m∗n,j/βn : n ≥ 1} is a sequence of points in the set [−1,∞]
by the definition of βn. For notational simplicity, we establish the former result
with sn replaced by n and by a subsequence argument assume without loss of
generality (wlog) that

m∗n,j/βn → ej for some ej ∈ [−1,∞] for j = 1, ..., k. (13.1)

The following is used in the proofs of parts (a)-(c). We have

(n1/2βn)
−τTn(θ0)

= (n1/2βn)
−τS

� eD−1/2n (θ0)n
1/2mn(θ0), eD−1/2n (θ0)eΣn(θ0) eD−1/2n (θ0)

�
= (n1/2βn)

−τS
� eD−1/2n (θ0)D

1/2(θ0, Fn)(A
0
n + n

1/2m∗n), Ω1 + op(1)
�

= S(op(1) +m
∗
n/βn, Ω1 + op(1))

→p S (e, Ω1) > 0, (13.2)

where A0n is defined in (12.26), m
∗
n = (m∗n,1, ...,m

∗
n,k)

�, e = (e1, ..., ek)
�, the first

equality uses Assumption 1(b), the second equality holds by the definitions of A0n,
m∗n, and D(θ0, Fn) and by (12.26) (with Ω1 in place of Ω0 and with Assumption
DA(b) used in place of Assumption LA1(a) in the proof of (12.26)), the third
equality holds by Assumptions 6 and DA(a) and (12.26) (with the same adjust-
ments as above), the convergence holds by Assumption 1(d) and (13.1), and the
inequality holds by Assumption 3 because for some j∗ ≤ k the j∗th element of e,
ej∗, has absolute value equal to one and is negative if j∗ ≤ p, which implies that
ej∗ < 0 if j∗ ≤ p and ej∗ 9= 0 if j∗ ≥ p+ 1.
We prove part (b) first. By another subsequence argument, we can assume

wlog that limn→∞ b1/2βn exists and (13.1) holds. We consider two cases: (i)
limn→∞ b1/2βn = ∞ and (ii) limn→∞ b1/2βn ∈ [0,∞). When case (i) holds, the
same argument as used to show (13.2) gives

(b1/2βn)
−τTb(θ0)→p S (e, Ω1) , (13.3)
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where βn appears, not βb, because m
∗
n/βn → e under {Fn : n ≥ 1}. Equation

(13.3) and b/n→ 0 imply that T †b (θ0) = (n
1/2βn)

−τTb(θ0)→p 0.

Define U †n,b(θ0, x) as Un,b(θ0, x) is defined but with T
†
n,b,j(θ0) = (n1/2βn)

−τ

×Tn,b,j(θ0) in place of Tn,b,j(θ0). Using the result of the previous paragraph, we
have EFnU

†
n,b(θ0, x) = PFn(T

†
b (θ0) ≤ x)→ 0 for x < 0 and → 1 for x > 0. In ad-

dition, V arFn(U
†
n,b(θ0, x)) → 0 by Hoeffding’s U-statistic inequality for bounded

i.i.d. random variables, see Politis, Romano, and Wolf (1999, p. 44). Hence,
U †n,b(θ0, x) →p 0 for x < 0 and →p 1 for x > 0. This and Lemma 5(a) of AG1
imply that c†n,b(θ0, 1 − α) →p 0, where c

†
n,b(θ0, 1 − α) is the 1 − α quantile of

the rescaled subsample statistics {T †n,b,j(θ0) : j = 1, ..., qn}. The latter result and
(13.2) give

PFn(Tn(θ0) > cn,b(θ0, 1− α))

= PFn((n
1/2βn)

−τTn(θ0) > (n1/2βn)
−τcn,b(θ0, 1− α))

= PFn((n
1/2βn)

−τTn(θ0) > c
†
n,b(θ0, 1− α)),

→ P (S(e,Ω1) > 0) = 1, (13.4)

where the second equality holds because c†n,b(θ0, 1 − α) = (n1/2βn)
−τcn,b(θ0, 1 −

α) by the scale equivariance of quantiles and the last equality holds because
S(e,Ω1) > 0 by (13.2).
Next, suppose case (ii) holds. Then, the same argument as used to show

(13.2) but with (n1/2βn)
−τ deleted gives

Tb(θ0) = S
�
Op(1) + (b

1/2βn)β
−1
n m

∗
n, Ω1 + op(1)

�
= Op(1), (13.5)

where the second equality uses Assumption 1(a). Hence, T †b (θ0) = (n1/2βn)
−τ

×Tb(θ0)→p 0. Given this, the remainder of the proof is the same as in case (i).
Next, we prove part (c). We have eΩn(θ0) →p Ω1 because (12.39) holds by

the argument given for (12.39) but using condition (vii) of (2.2) and Assumption
DA(b). This and Assumption 4(b) imply that c(eΩn(θ0), 1− α) →p c(Ω1, 1− α).
Combining the latter with (13.2) and (13.4) with cn,b(θ0, 1 − α)) replaced by
c(eΩn(θ0), 1− α) in (13.4) gives the desired result.
Finally, we prove part (a). By (13.2) and the first equality of (13.4) with

cn,b(θ0, 1−α)) replaced by ecn(θ0, 1−α), it suffices to show that (n1/2βn)−τecn(θ0, 1−
α) = op(1).
Let A0n be defined as in (12.26). We have

(n1/2βn)
−1κ−1n n

1/2 eD−1/2n (θ0)mn(θ0)

= (n1/2βn)
−1κ−1n

� eD−1/2n (θ0)D
1/2(θ0, Fn)

� �
A0n + n

1/2m∗n
�

= op(1) + κ−1n (m
∗
n/βn)(1 + op(1)), (13.6)
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where the second equality uses (12.26) with Ω0 replaced by Ω1 (using Assump-
tion DA(b)), κn → ∞, and n1/2βn → ∞. By the definition of βn, m∗n,j/βn ∈
[−1,∞) for j = 1, ..., k for all n. By a subsequence argument, wlog we assume
κ−1n m

∗
n,j/βn → ηj ∈ [0,∞] for j = 1, ..., k. This and (13.6) give

(n1/2βn)
−1ξn(θ0)→p η = (η1, ..., ηk)

� ∈ Rp+,∞ ×Rv and (13.7)

Φn,1 ≡ (n1/2βn)−1
�
min{ξn,1(θ0), 0}, ...,min{ξn,p(θ0), 0}, 0, ..., 0

�� →p 0k,

where ξn(θ0) = (ξn,1(θ0), , ..., ξn,k(θ0))
�.

Using Assumption 6, we have

(n1/2βn)
−τS

�eΩ1/2n (θ0)Z
∗ + ϕ(ξn(θ0), eΩn(θ0)), eΩn(θ0)�

= S
�
(n1/2βn)

−1
keΩ1/2n (θ0)Z

∗ + ϕ(ξn(θ0), eΩn(θ0))l , eΩn(θ0)�
≤ S

�
Φn,2Z

∗ + Φn,1, eΩn(θ0)� , (13.8)

where Φn,2 ≡ (n1/2βn)−1eΩ1/2n (θ0) (∈ Rk×k) and the inequality holds by Assump-
tions 1(a) and GMS7. We have Φn,2 = op(1) by (12.26) and Assumption DA(a).
Let hcn denote the 1− α quantile of S(Φn,2Z∗ + Φn,1, eΩn(θ0)) in (13.8).
By (13.8), (n1/2βn)

−τecn(1 − α) ≤ hcn. Hence, it suffices to show that hcn =
op(1). To do so, we use a similar argument to that in (12.16). For x > 0, as
(ξ,Ωa,Ωb)→ (0k, 0k×k,Ω1), we have

S(Ω1/2a Z∗ + ξ,Ωb) → S(0k,Ω1) = 0 a.s.[Z∗],

1(S(Ω1/2a Z∗ + ξ,Ωb) ≤ x) → 1(0 ≤ x) a.s.[Z∗], and
P (S(Ω1/2a Z∗ + ξ,Ωb) ≤ x) → 1, (13.9)

where the equality in the first line uses Assumption 3, the second convergence
result follows from the first result for x > 0, and the third convergence result
holds by the second result and the bounded convergence theorem. The third
result of (13.9), (Φn,1,Φn,2, eΩn(θ0)) →p (0k, 0k×k,Ω1) (which uses (13.7)), and
Slutsky’s Theorem give

P (S(Φn,2Z
∗ + Φn,1, eΩn(θ0)) ≤ x)→p 1 for all x > 0, (13.10)

where P (·) denotes the distribution of Z∗ conditional on (Φn,1,Φn,2, eΩn(θ0)). By
Assumption 1(c), the probability limit in (13.10) is zero for all x < 0. These
results and Lemma 5(a) of AG1 imply that hcn →p 0, where hcn is the 1 − α
quantile of the (random) df in (13.10). This completes the proof of part (a).
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We now verify Assumptions GMS1, GMS3, GMS6, and GMS7 for ϕ(5). As-
sumption GMS1(b) holds for ϕ(5) if cj(ξ,Ω) = 1 whenever the jth element of ξ
equals 0 by the definition of ϕ(5). If the jth element of ξ equals zero, cj(ξ,Ω) does
not enter the criterion function S(−c · ξ,Ω)−η(|c|). In consequence, the criterion
function is minimized by taking cj(ξ,Ω) = 1 because η(·) is strictly increasing.
Hence, Assumption GMS1(b) holds for ϕ(5).
We show Assumption GMS1(a) holds for ϕ(5) (provided S satisfies Assump-

tion 1(d)) by showing that if (ξ[r],Ω[r]) → (ξ,Ω) as r → ∞ and ξj = 0, then
cj(ξ[r],Ω[r]) = 1 for r sufficiently large. By Assumption 1(d), S is continuous
at (ξ,Ω). Hence, limr→∞ S(−c · ξ[r],Ω[r]) → S(−c · ξ,Ω) as r → ∞. The limit
S(−c · ξ,Ω) does not depend on cj because ξj = 0. Given ε > 0, there exists
an r∗ sufficiently large that |S(−c · ξ[r],Ω[r]) − S(−c · ξ,Ω)| ≤ ε for all c ∈ C
and all r ≥ r∗. Hence, the first term of the selection criterion, S(−c · ξ,Ω), is
reduced by at most ε if cj is changed from 1 to 0, where c = (c1, ..., ck)�. On the
other hand, the second term of the selection criterion, −η(|c|), is increased by
η(|c|+1)−η(|c|) > 0. Taking ε < infc∈C(η(|c|+1)−η(|c|)) implies that the selec-
tion criterion is minimized by cj(ξ[r],Ω[r]) = 1 for all r ≥ r∗. Hence, Assumption
GMS1(a) holds for ϕ(5).
Next we verify Assumption GMS3 for ϕ(5) for all functions S for which S(−c ·

ξ,Ω)→∞ as (ξ,Ω)→ (ξ∗,Ω∗) whenever cj = 1. For any c∗ ∈ C with c∗� = 0 for
all � such that ξ∗� =∞ we have S(−c∗ · ξ,Ω) ≤ K as (ξ,Ω)→ (ξ∗,Ω∗) for some
K <∞ by Assumption 1(d). Hence, some c∗ = (c∗1, ..., c∗k)� ∈ C with c∗j = 0 is
selected over any c = (c1, ..., ck)� ∈ C with cj = 1 as (ξ,Ω)→ (ξ∗,Ω∗). This gives
cj(ξ,Ω) = 0 and ϕj(ξ,Ω) =∞ (using the definition of ϕ(5)) as (ξ,Ω)→ (ξ∗,Ω∗).
Assumptions GMS6 and GMS7 hold immediately for ϕ(5) by its definition.
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