
Economic Quarterly—Volume 93, Number 2—Spring 2007—Pages 143–161

How Accurate Are
Real-Time Estimates of
Output Trends and Gaps?

Mark W. Watson

T rends and gaps play an important role in macroeconomic discussions.
For example, the output gap (the deviation of output from its trend,
or potential value) and the unemployment gap (the deviation of the

unemployment rate from its trend, or “NAIRU”) are standard business cycle
indicators and key ingredients for Phillips curve forecasts of inflation, and
likewise the trend, or long-run level of inflation is a central concern of central
banks.

Trends and gaps (deviations of series from trends) are inherently two-
sided concepts. By this I mean that the value of the trend in real GDP in 1987,
for example, depends on how the observed value of GDP in 1987 compares
to its past values (in 1986, 1985, and so forth) and to future values (in 1988,
1989, etc.). For historical analysis, the need for past and future values of
the series does not pose a problem. Looking at a plot of the postwar values
of real GDP, it is fairly easy to estimate its trend value by drawing a smooth
curve through the plot, and various statistical formulae have been developed to
mimic this freehand trend estimation procedure. However, because trends and
gaps require both past and future data, it is much more difficult to estimate their
values at the beginning of the sample (where there is no past data) and at the end
of the sample (where there is no future data). The end-of-sample uncertainty

I have benefited from discussions with Robert Hall, Robert King, Athanasios Orphanides, and
James Stock, and comments from colleagues at the Federal Reserve Bank of Richmond. Data
and replication files for this research can be found at http://www.princeton.edu/∼mwatson.
Mark W. Watson is a professor in the Department of Economics and the Woodrow Wilson
School at Princeton University, Research Associate at the National Bureau of Economic Re-
search, and Visiting Scholar with the Federal Reserve Bank of Richmond. The views expressed
in this article are those of the author and not necessarily those of the Federal Reserve Bank
of Richmond or the Federal Reserve System.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6993545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


144 Federal Reserve Bank of Richmond Economic Quarterly

in the trend is particularly problematic because these are the observations most
relevant for real-time policy analysis.

The accuracy of real-time estimates of trends and gaps depends on the
series under study. For example, if a series shows essentially random fluc-
tuations around a linear trend, then the value of the trend can be accurately
estimated from past observations. On the other hand, when a series shows
serially correlated fluctuations around a slowly evolving trend, then future
values of the series are critical to accurately separate the trend from the fluc-
tuations. This article studies four economic indicators: industrial production,
unemployment rate, employment, and real GDP to quantify the accuracy of
real-time or one-sided estimates of output trends, gaps, and business cycle
components.1

The analysis must begin with a definition of a trend and several reasonable
definitions suggest themselves. Low-order polynomials in time are natural
candidates, but these methods can yield unrealistic estimates of estimation
errors at the ends of the sample. Martingales (or “random walks”) and inte-
grated martingales (processes for which first differences are random walks)
can approximate smooth sample paths and are used to represent trends in
unobserved component models (see Harvey 1989 for a detailed discussion).
However, these models imply that the trend value cannot be estimated with
certainty, even using an infinite amount of past and future data. This feature
may or may not be reasonable, but it often leads to the conclusion that the
estimated trend is inaccurate.

This article defines trends, gaps, and business cycle components using
band-pass filters. These filters are moving averages of the data designed to
isolate variation at specific frequencies; they are analogous to filters on an
audio system that allow a user to eliminate specific frequency bands (for
example, the sound from a low-frequency bass guitar or a high-frequency
piccolo). In this article, the trend is defined as the cyclical movements in the
time series with periods longer than the business cycle (that is, longer than 8
years); the gap includes components with periods shorter than 8 years; and
the business cycle component includes components with periods between 1 1

2
and 8 years.

The advantage of this definition is twofold. First, it produces reasonable-
looking and flexible estimates of trends, gaps, and business cycle components

1 There are two distinct problems using real-time data to estimate trends and gaps. First, data
published in real time are often subsequently revised, and these revisions can be large. Second,
for the purpose of estimating trends and gaps, future values of the series are needed, so that
estimates of a trend at time t will change as data becomes available for time t + 1, t + 2, etc.,
even if the data at time t is not revised. This article is concerned with the second problem.
In particular, all analysis in this article is carried out using a 2006-vintage dataset, and to avoid
confusion with actual real-time estimates, I will refer to estimates constructed using current and
past values of a series as “one-sided” estimates. Orphanides (2003a) studies many of the same
problems studied here and also includes analysis of data revisions.
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(see the discussion and examples in Baxter and King 1999 and Stock and
Watson 1999), and second, it means that historical values of these components
can be estimated precisely allowing a sharp distinction between historical and
one-sided analysis. Importantly, for interpreting the results shown in this
article, uncertainty about the correct definition of trends, gaps, and business
cycle components will only increase the real-time uncertainty of the estimates.

This is not the first article to look at this issue. For example, Staiger,
Stock, and Watson (1997, 2002) quantify the uncertainty in estimates of the
NAIRU; Orphanides and van Norden (2002) and Orphanides (2003a) discuss
uncertainty in estimates of the output gap; Orphanides (2003b) and Orphanides
and Williams (2002) discuss the effects of output gap uncertainty on monetary
policy; and Hall (2005) contains a thoughtful critique of the usefulness of
decomposing series in smooth trend and gap components.

The following section provides a brief review (or primer) on band-pass
filtering and theAppendix contains some additional details. Section 2 presents
benchmark results for one-sided estimates of the gaps based on the index of
industrial production, the unemployment rate, payroll employment, and real
GDP. As it turns out, the one-sided gap estimates are quite imprecise and
capture only 50 percent of the variability in the gap as determined by two-sided
estimates. Section 3 discusses improving the precision by using multivariate
methods, but these produce only marginal improvements in the precision of
the one-sided estimates. This section also shows that the reduction in volatility
associated with the “Great Moderation” has greatly increased the (absolute)
precision of one-sided estimates. The final section contains a brief summary
and some concluding remarks.

1. A REVIEW OF BAND-PASS FILTERING

Let Yt denote a stationary scalar stochastic process. The Spectral Represen-
tation (sometimes called the Cramér Representation) of Y is given by

Yt =
∫ π

0
cos(ωt)dα(ω) +

∫ π

0
sin(ωt)dδ(ω), (1.1)

where dα(ω) and dδ(ω) are zero-mean random variables that are mutually un-
correlated, are uncorrelated across frequency, and have variances that depend
on frequency. The representation decomposes Yt into a set of heteroskedastic,
mutually uncorrelated, strictly periodic components. The business cycle com-
ponent of Y can be defined as YBC

t = ∫ ω2

ω1
cos(ωt)dα(ω)+∫ ω2

ω1
sin(ωt)dδ(ω),

where ω1 and ω2 demarcate business cycle frequencies, for example, frequen-
cies with periods between 1 1

2 and 8 years. Similarly, the trend component of
Y can be defined as the lower-than-business-cycle components of Y, Y T rend

t =∫ ω1

0 cos(ωt)dα(ω) + ∫ ω1

0 sin(ωt)dδ(ω), and the gap is Y
Gap
t = Yt − Y T rend

t .

Band-pass filtering uses moving averages of the data to estimate frequency
components of Y over specific frequency bands. To see how a band-pass filter
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Figure 1 Band-Pass Filter Weights (Periods Less Than Eight
Years—Monthly Data)
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Notes: Let c(L) = ∑∞
j=−∞ c|j |L−j denote the band-pass filter for monthly data

frequencies with periods greater than 96 months. This figure shows the first 600 values
of cj , corresponding to weights that are used in a symmetric 100-year moving average
of monthly data.

works, let Xt denote a moving average of Yt with moving average weights cj

Xt =
s∑

j=−r

cjYt−j = c(L)Yt , (1.2)

where c(L) = ∑s
j=−r cjL

j is a polynomial in the lag-operator L with coef-
ficients cj . As shown in the Appendix, the ωth cyclical component of Xt is
the ωth component of Yt transformed in two distinct ways: (1) it is shifted
backward or forward in time, and (2) it is amplified or attenuated. Specif-
ically, letting X(t, ω) and Y (t, ω) denote the ωth components, X(t, ω) =
g(ω)Y (t − ρ(ω), ω), so that ρ(ω) denotes the time shift and g(ω) denotes
the amplification factor. A calculation presented in the Appendix shows
that g(ω) = | c(e−iω)| and ρ(ω) = ω−1 × tan−1{Im[c(e−iω)/Re[c(e−iω)]},
where i = √−1 is a complex number and c(e−iω) = ∑s

j=−r cj e
−jiω, with
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imaginary and real parts given by Im[c(e−iω)] and Re[c(e−iω)]. Because the
moving average operation modifies the cyclical components, c(L) is called a
filter.

A band-pass filter chooses the coefficients cj to isolate (or “pass”) a spe-
cific range (or “band”) of cyclical components. To be specific, a band-pass
filter that isolates frequencies between ωLower and ωUpper chooses the moving
average weights cj so that that g(ω) and ρ(ω) satisfy two properties:

ρ(ω) = 0 and (1.3)

g(ω) =
{

1 for ωLower ≤ ω ≤ ωUpper

0 otherwise

}
. (1.4)

The restriction (1.3) means that the series is not shifted in time. This constraint
can be satisfied by making the filter symmetric, that is, by choosing cj = c−j

for all j. (This makes Im[c(e−iω)] = 0, so that ρ(ω) = 0.) The restriction
(1.4) is more complicated. TheAppendix shows that this constraint is satisfied
by choosing

cj =
{ 1

jπ
[sin(jωUpper) − sin(jωLower)] for j �= 0

1
π

[ωUpper − ωLower ] for j = 0

}
. (1.5)

Figure 1 plots these weights for the monthly trend band-pass filter with
ωUpper = 2π

96 and ωLower = 0, which passes components with periods greater
than 8 years (= 96 months). The weights die out slowly. The figure plots the
weights for the first 600 values of cj , corresponding to a symmetric 100-year
moving average of the data. Evidently, the weights are nonnegligible even
outside this 100-year window.

The weights shown in Figure 1 produce the estimated trend in a series.
The deviation of the series from the trend is the gap: Y

Gap
t = Yt − Y T rend

t =
[1 − cT rend(L)]Yt , so that the band-pass filter for the gap is 1 − cT rend(L).

Thus, the weights used to construct the band-pass estimates of the gap will
also decay very slowly.

Evidently, accurate estimates of the trend or gap in a series require a long
two-sided moving average. This leads to problems for estimating the trend or
gap for dates near the beginning of the sample period (when long lags of the
series are not available) and near the end of the sample (when long leads are
not available).

Two results suggest how these problems are best handled. First, Baxter and
King (1999) consider the problem of constructing a finite order filter ĉ(L) =∑s

j=−s c|j |Lj that provides the best L2 (or “least squares”) approximation to
the ideal g(ω) given in (1.4). They show that the best approximation is simply
the truncated version of the infeasible infinite order filter. Second, Geweke
(1978) makes the following general observation about constructing optimal
estimates of filtered series: Let Xt = ∑s

j=−r cjYt−j , and suppose that data are
available on a vector of random variables Zτ from 1 ≤ τ ≤ T . Then the best
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Figure 2 Two-Sided Band-Pass Estimates: Logarithm of the Index of
Industrial Production
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Notes: These panels show that estimated values of the band-pass estimates of the trend
(periods > 96 months), the gap (periods < 96 months), and the business cycle (periods
between 18 and 96 months). Panel D shows the standard errors of the estimates relative
to values constructed using a symmetric 100-year moving average. Values shown in Panel
A correspond to logarithms, while values shown in Panels B-D are percentage points.

(minimum mean square error) estimator of Xt is given by E(Xt | {Zτ }Tτ=1) =∑s
j=−r cjE(Yt−j | {Zτ }Tτ=1).

Taken together, the Baxter and King (1999) and Geweke (1978) results
suggest the following procedure for constructing band-pass estimates of the
trend and gap. First, approximate the ideal filter using ĉ(L) = ∑s

j=−s c|j |Lj

with filter weights given by (1.4) and s chosen sufficiently large (s = 600).

Second, letting {Zτ }Tτ=1 denote the sample observations on Y , construct
Y T rend

t |T = ∑s
j=−s c|j |Yt/τ , where Yt/T = E(Yt | {Yτ }Tτ=1). That is, Y T rend

t |T
is constructed using the ideal filter, truncated after a large number of terms
and applied to the Yt series padded into the future and past using forecasts



M.W. Watson: Output Trends and Gaps 149

and backcasts of the series.2 Truncating the filter using a small value of s

(an approach used by some applied researchers) is not necessary when the
series is padded with forecast values of the series, and as Geweke’s (1978)
analysis implies, this produces a more accurate estimate of the ideal band-pass
filtered series. Readers familiar with seasonal adjustment will recognize that
this essentially is the procedure used in the Census X-12-ARIMA seasonal
adjustment procedure (see Findley et al. 1998), and Christiano and Fitzgerald
(2003) propose a one-sided band-pass filtered estimator using this procedure
implemented with random-walk forecasts of Yt .

The error in Y T rend
t |T is

Y T rend
t |T − Y T rend

t =
∑s

j=−s
c|j |(Yt−j |T − Yt−j ) +

∑
|j |>s

c|j |Yt−j . (1.6)

With s chosen sufficiently large, the second term is negligible and the vari-
ance of the first term can be computed from the autocovariances of the fore-
cast/backcast errors of the Y process. (Details are provided in the Appendix.)
Standard errors based on this variance formula will be used in the next section,
which studies estimates of the trend, gap, and business cycle component of
several economic time series.3

2. EMPIRICAL RESULTS

Figure 2 shows the results for computing the estimated trend (Panel A), gap
(Panel B), and business cycle component (Panel C) of the logarithm of the
index of industrial production (IP) using data from 1947:2–2006:11. These
estimates are computed using a 600-term approximation to the band-pass
filters and forecasts and backcasts constructed from an AR(6) model for
�ln(IPt). Panel D of the figure shows the standard error of the estimated
components, where the standard error is computed by estimating the stan-
dard deviation of the first term on the right-hand side of (1.6) using the esti-
mated parameters of the AR model. The estimated trend and gap components
have the same standard error (because the gap and trend add to the observed
series), while the estimated business cycle component is slightly smaller.

2 As a practical consideration, it is useful to follow a suggestion by Baxter and King (1999)
and modify the coefficients in the truncated trend filter so that they sum to unity. This produces
an I (0) estimate of the gap when the filter is applied to an I (1) process and assures a bounded
mean square error for the one-sided band-pass filtered estimates. The empirical analysis presented
in the next section uses this modification.

3 Harvey and Trimbur (2003) suggest an alternative procedure for approximate band-pass fil-
tering based on an unobserved components model. An attractive feature of their proposal is that
the end-of-the-sample problem is easily handled by the Kalman filter.
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Figure 3 Two-Sided (Solid) and One-Sided (Dashed) Band-Pass
Estimates: Index of Industrial Production
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Notes: The solid lines are the two-sided estimates shown in Figure 2. The dashed lines
are one-sided estimates that do not use data after the date shown on the horizontal axis.
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Table 1 Joint Frequency Distribution of the Sign of Y
BusinessCycle

2−sided and
Y

BusinessCycle

1−sided —Industrial Production: 1960–1990

Y
BusinessCycle
2−sided

> 0 Y
BusinessCycle
2−sided

< 0

Y
BusinessCycle
1−sided

> 0 0.36 0.12

Y
BusinessCycle
1−sided

< 0 0.15 0.37

Notes: This table shows the relative frequency of the events Y
BusinessCycle
2−sided

> 0,

Y
BusinessCycle
2−sided

< 0, Y
BusinessCycle
1−sided

> 0, and Y
BusinessCycle
1−sided

< 0 for 1960–1990.

Y
BusinessCycle
2−sided

is computed using the logarithm of the index of industrial production

over 1947:2–2006:11, while Y
BusinessCycle
1−sided

uses a one-sided sample from 1947 through
the date of the index.

Panel D shows that there is substantial uncertainty associated with the es-
timated value of the trend, gap, or business cycle components near the begin-
ning and ends of the sample. For example, the business cycle component has
a standard deviation of 2.3 percentage points at the end of the sample, which
corresponds to an R2 of only slightly greater than 50 percent. The uncertainty
falls as data accumulates: when there are 15 years of data after the endpoint,
the standard error falls to less than 0.4 percentage points, which corresponds
to an R2 of 99 percent.

Figure 3 shows the full-sample estimates of the components over the
period 1960–1990, together with the one-sided estimates of the components.
The one-sided estimates are computed using “pseudo-real-time” methods; that
is, the results shown for date t are constructed using data from the beginning of
the sample through time period t . Thus, for example, to compute the one-sided
estimate for 1969:12, data from 1947:2–1969:12 are used to estimate anAR(6)
model. This model, in turn, is used to forecast and backcast 300 observations,
and the 600-term band-pass filter is applied to the resulting series.

Figure 3 shows that the one-sided estimates are considerably different than
the historical estimates, consistent with the standard error results shown in
Figure 2. The one-sided estimates of the gap and business cycle components
are less variable than their two-sided counterparts. This “attenuation” is a
property of optimal estimates: the difference between the two-sided and one-
sided estimates reflects unforecastable shocks that are uncorrelated with the
one-sided estimates. The figure shows the underestimation of the output gap
in the late 1960s and early 1970s as highlighted in Orphanides’s (2003a)
discussion of the “Great Inflation.”

While there is substantial error in the level of the business cycle gap, the
sign of the one-sided estimate of the output gap is a useful indicator of the sign
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of the two-sided gap. Table 1 summarizes the joint distribution of the signs of
the one-sided and two-sided estimates of the business cycle component of in-
dustrial production. During the 1960–1990 sample, P̂ (Y

BusinessCycle

2−sided > 0) =
0.51, while P̂ (Y

BusinessCycle

2−sided > 0) | Y
BusinessCycle

1−sided > 0) = 0.71, where P̂ de-

notes the relative frequency in the sample. Similarly P̂ (Y
BusinessCycle

2−sided < 0) =
0.49, while P̂ (Y

BusinessCycle

2−sided < 0 | Y
BusinessCycle

1−sided < 0) = 0.76. Thus, at least

over this sample period, positive and negative realizations of Y
BusinessCycle

1−sided

served as reasonably reliable indicators of the sign of Y
BusinessCycle

2−sided .
The index of industrial production is one of several cyclical indicators.

Figure 4 summarizes results for three other indicators: the civilian unem-
ployment rate and the logarithm of employment, both available monthly, and
the logarithm of real GDP, a quarterly time series. The figure compares
the two-sided and one-sided estimates of the trend, gap, and business cy-
cle component for each of these series over 1960–1990. Table 2 summa-
rizes uncertainty in the one-sided estimates by showing the estimated stan-
dard error associated with the one-sided band-pass filter estimate, the cor-
responding R2, and the values of P̂ (Y

BusinessCycle

2−sided > 0|YBusinessCycle

1−sided > 0)

and P̂ (Y
BusinessCycle

2−sided < 0|YBusinessCycle

1−sided < 0). The results for these series are
similar to those obtained from the index of industrial production. There is sig-
nificant error in the end-of-sample estimates with R2 values of approximately
50 percent. That said, the sign of the filtered estimates predicts the sign of the
two-sided estimates with a probability of approximately 70 percent.

3. IMPROVING THE ACCURACY OF ONE-SIDED BAND-PASS
ESTIMATES

The error in one-sided band-pass estimates arises from the use of forecasts
of future values of Yt in place of true values. The resulting forecast errors
lead to errors in the one-sided band-pass estimates. More accurate forecasts
have smaller forecast errors, and, therefore, result in more accurate one-sided
band-pass estimates. Forecasts may become more accurate through the use of
improved forecasting methods or because of good luck associated with smaller
shocks. This section quantifies the effect of both of these sources of increased
accuracy for one-sided band-pass estimates of the output gaps.

The forecasts constructed in the last section were based on univariate
information sets; that is, future values of Yt were forecast using current and
lagged values of Yt . Several authors have noted that multiple indicators can,
in principle, be used to increase the accuracy of output gaps. For example,
Basistha and Startz (2005), Kuttner (1994), and Orphanides and van Norden
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Figure 4 Two-Sided (Solid) and One-Sided (Dashed) Band-Pass
Estimates: Unemployment Rate, Employment, and Real GDP
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(2002) discuss the issue in the context of Kalman filter estimates in unobserved
components models, and Altissimo et al. (2006) and Valle e Azevedo (2006)
discuss the issue in the context of one-sided band-pass filtered estimates.
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Table 3 Standard Errors of One-Sided Band-Pass Estimates:
AR (Univariate) and VAR (Multivariate) Forecasts

Y
Gap
1−sided

Y
BusinessCycle
1−sided

Series AR VAR AR VAR
Industrial Production 2.01 1.88 1.88 1.80
Unemployment Rate 0.46 0.41 0.43 0.40
Employment 0.78 0.77 0.75 0.75
Real GDP 1.03 0.86 0.95 0.83

Notes: This table summarizes results for the four series shown in the first column. The
entries under “AR” are the standard errors of one-sided band-pass estimates constructed
using forecasts constructed by univariate AR models with six lags. The entries under
“VAR” are the standard errors of one-sided band-pass estimates constructed using fore-
casts constructed by VAR models with six lags for monthly models and four lags for
quarterly models. The VAR models included the series of interest and first difference of
inflation, the term spread, and building permits. Monthly models were estimated over
1960:9–2006:11, and quarterly models were estimated over 1961:III–2006:III.

Table 3 shows results from constructing one-sided estimates using fore-
casts from univariate time series models with forecasts constructed fromVector
Autoregressive (VAR) models. The VAR models include the first difference of
inflation (for personal consumption expenditures [all items] deflator), the term
spread (the difference between ten-year Treasury bond yields and three-month
Treasury bill rates), and housing starts (new permits). Inflation is included be-
cause it is often used as an indicator for the output gap, and the other variables
are standard leading indicators of economic activity. VARs for the monthly
series (industrial production, unemployment rate, and employment) use six
lags of each of the variables and the quarterly VAR for real GDP uses four
lags. Results are shown for the VAR estimated from 1960:9–2006:11 for the
monthly series and 1961:III–2006:III for real GDP. The autocovariances of the
forecast errors, which together with the band-pass filter weights, determine
the standard error of the one-sided band-pass estimates, and were computed
from the estimated parameters of the VAR.

The univariate standard errors are in the columns labeled “AR” in Table
3, and the multivariate standard errors are in the columns labeled “VAR”.4

There is a small but nonnegligible increase in precision associated with the
VAR forecasts. For example, the standard error of YBusinessCycle falls by
approximately 5 percent (from 1.88 to 1.80) for industrial production and by

4 The univariate standard errors shown in Table 3 are slightly smaller than the values shown
in Table 2 because the standard errors in Table 2 included observations from the late 1940s and
1950s, which were somewhat more volatile than those in the 1960–2006 sample period used in
Table 3.
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Table 4 Standard Errors of One-Sided Band-Pass Estimates

Y
Gap
1−sided

Y
BusinessCycle
1−sided

Series 1960–1983 1984–2006 1960–1983 1984–2006
Industrial Production 2.27 1.47 2.12 1.37
Unemployment Rate 0.54 0.39 0.51 0.37
Employment 0.84 0.37 0.80 0.35
Real GDP 1.28 0.58 1.20 0.54

Notes: This table summarizes results for the four series shown in the first column. The
standard errors for the one-sided band-pass estimates are computed using the same AR
models as Table 2, but the standard deviation of the AR residual is computed over the
sample period shown in the column headings.

over 10 percent (from 0.95 to 0.83) for real GDP. That said, the standard errors
of the one-sided estimates remain large.

The standard errors for the one-sided band-pass estimates shown in Table 2
were based on autoregressive models estimated using data from the late 1940s
through 2006, and those in Table 3 used estimates from 1960 through 2006.
But, as is now widely appreciated, the volatility of real economic activity
over the past 20 or so years has been much lower than the volatility in the
preceding 30 years.5 This Great Moderation is evident in Figures 2–4. For
real variables, such as those considered here, the reduction in volatility is well
characterized as a reduction in the volatility in the “shocks” to the AR model,
rather than a change in the AR coefficients. (See Ahmed, Levin, and Wilson
2004, Blanchard and Simon 2001, and Stock and Watson 2002.) This implies
that AR forecasting formulae have been relatively constant over the postwar
period, but that the variance of forecast errors has fallen. This, in turn, implies
that the standard error of one-sided band-pass estimates has fallen.

Table 4 presents estimates of the standard errors for one-sided band-pass
estimates of YGap and YBusinessCycle over the 1960–1983 and 1984–2006 sam-
ple periods. These estimates are based on the same full-sample estimated AR
models used in Table 2, but with error standard deviations that are allowed to
be different in the two sample periods. The standard errors shown in Table
4 for 1960–1983 are computed using the AR error standard deviation esti-
mated over 1960–1983, and the results for 1984–2006 use standard deviations
estimated over 1984–2006. The reduction in volatility has been large: the
standard deviation of the AR errors has fallen by approximately 50 percent,
and this reduction is reflected in an increase in the precision of the one-sided
band-pass estimates. For example, these results suggest that the one-sided

5 For example, see Blanchard and Simon (2001), Kim and Nelson (1999), McConnell and
Perez-Quiros (2000), and Stock and Watson (2002).
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estimate of the GDP output gap was 1.3 percentage points during 1960–1983,
but fell to 0.6 percentage points in the post-1984 period.

4. SUMMARY AND CONCLUSIONS

This article has discussed the problem of estimating output trends, gaps, and
business cycle components using the “one-sided” data samples that are avail-
able in real time. The results indicate that one-sided estimates necessary for
real-time policy analysis are substantially less accurate than the two-sided
estimates used for historical analysis. The quantitative results suggest that
one-sided estimates of gaps and business cycle components have an R2 of
approximately 0.50; that is, they forecast only 50 percent of the variability in
historically measured gaps and business cycle components. Thus, the answer
to the question posed in the title of this article, “How Accurate are Real-Time
Estimates of Trends and Gaps?” is “not very.” Small improvements can be
achieved using leading indicators to help forecast future values of the output
series used in the construction of the one-sided estimates. The Great Mod-
eration has led to an increase in the accuracy of forecasts of real economic
variables and this accuracy, in turn, has led to an increase in the precision of
one-sided output trend, gap, and business cycle estimates.

The analysis in this article was based on one-sided estimates constructed
using band-pass filters, but the conclusion coincides with the conclusion
reached by other authors using different methods (see, for example, Staiger,
Stock, and Watson 1997 for an analysis of the unemployment rate gap using
spline methods and unobserved component models and Orphanides and van
Norden 2002 for an analysis of output gaps using a wide variety of methods).

APPENDIX: LINEAR FILTERS

This Appendix reviews some key results on linear filters. Let Xt = c(L)Yt ,
where c(L) = c−rL

−r + . . . + c−1L
−1 + c0L

0 + c1L + . . . + csL
s is a

time-invariant linear filter. From (1.1), the ωth component of Yt , Y (t, ω) is a
weighted average of cos(ωt) and sin(ωt). For notational simplicity, suppose
that Y (t, ω) = 2cos(ωt) = eiωt + e−iωt . In this case, X(t, ω) has a simple
representation:
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X(t, ω) =
s∑

j=−r

cjY (t − j, ω)

=
s∑

j=−r

cj [eiω(t−j) + e−iω(t−j)]

= eiωt

s∑
j=−r

cj e
−iωj + e−iωt

s∑
j=−r

cj e
iωj

= eiωtc(e−iω) + e−iωt c(eiω).

To simplify this expression further, write the complex number c(eiω) in polar
form, as c(eiω) = a + ib, where a = Re[c(eiω)] and b = Im[c(eiω)].
Then c(eiω) = (a2 + b2)

1
2 [cos(θ) + i sin(θ)] = geiθ where g = (a2 +

b2)
1
2 = [c(eiω)c(e−iω)]

1
2 and θ = tan−1[ b

a
] = tan−1[ Im[c(eiω)]

Re[c(eiω)] ]. This means
that X(t, ω) can be written as

X(t, ω) = eiωtge−iθ + e−iωtgeiθ

= g[eiω[t− θ
ω

] + e−iω[t− θ
ω

]]

= 2g cos(ω(t − ω−1θ))

= gY (t − ω−1θ, ω).

This expression shows that the filter c(L) “amplifies” Y (t, ω) by the factor g

and shifts Y (t, ω) back in time by ω−1θ time units.
Note that g and θ depend on ω, and so it makes sense to write them as

g(ω) and θ(ω). g(ω) is called the filter gain (or sometimes the amplitude
gain), g(ω)2 = [c(eiω)c(e−iω)] is called the power transfer function of the
filter, and θ(ω) is called the filter phase. In the expression below equation
(1.2), ρ(ω) = ω−1θ(ω).

To derive the band-pass filter, first consider the problem of constructing
the low-pass filter with frequency cutoff ω. Then, the gain of the band-pass
filter is given by

gain(c(L)) =| c(eiω) |= c(eiω) =
{

1 for − ω ≤ ω ≤ ω

0 elsewhere

}
,

where the second equality follows because c(eiω) is real, (c(L) is symmetric).

Since c(e−iω) =
∞∑

j=−∞
cje

−iωj , then cj = (2π)−1
∫ π

−π
eiωj c(e−iω)dω follows

generally from
∫ π

−π
eiωkdω =

{
2π for k = 0
0 for k �= 0

}
. Setting the gain equal to

unity over the desired frequencies and carrying out the integration yields

cj = (2π)−1 1

ij
eiωj |ω−ω=

{ 1
jπ

sin(ωj) for j �= 0
ω

π
for j = 0

}
.
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The difference between low-pass filters with cutoffs ωLower and ωUpper is a
band-pass filter that passes frequencies between ωLower and ωUpper , and this
difference yields the filter weights given in (1.5).

To compute the standard error of the one-sided band-pass filtered estimate,
suppose initially that Yt is I (0) with moving average representation Yt =
θ(L)εt . For any date t, Y BP

t is a function of values of Yj with j ≤ T and
values of Yj for j > T , where T represents the final date in the sample.
Write these two components as YBP

t = w(L)YT + v(L−1)YT , where w(L)

is a polynomial in nonnegative powers of L, and v(L−1) is a polynomial in
negative powers of L. The term w(L)YT represents the part of YBP

t determined
by values of Yj with j ≤ T , and the term v(L−1)YT represents the part of
YBP

t determined by Yj with j > T . The variance of the one-sided estimate of
YBP

t is then the variance of {v(L−1)YT − E[v(L−1)YT | Yj , j ≤ T ]}. Write
v(L−1)YT = v(L−1)θ(L)εT , so that v(L−1)YT −E[v(L−1)YT | Yj , j ≤ T ] =
d(L−1)εT , where d(L−1) = [v(L−1)θ(L)]−, and the polynomial operator [.]−
retains terms involving negative powers of L. The variance of v(L−1)YT −
E[v(L−1)YT | Yj , j ≤ T ] is then σ 2

ε

∑
j d2

j . Because the autocovariance
generating function is symmetric, the variance associated with pre-sample
values of Yj can be computed using the same formula after time reversing the
stochastic process. Finally, the same type of calculations can be used for I (1)

processes by computing the variance of (v(L−1)−1)YT −E[(v(L−1)−1)YT |
Yj , j ≤ T ].

REFERENCES

Ahmed, S., A. Levin, and B. A. Wilson. 2004. “Recent U.S. Macroeconomic
Stability: Good Policies, Good Practices, or Good Luck?” The Review of
Economics and Statistics 86 (3): 824–32.

Altissimo, F., R. Cristadora, M. Forni, M. Lippi, and G. Veronese. 2006.
“New Eurocoin: Tracking Growth in Real Time.” CEPR Discussion
Paper No. 5633.

Basistha, A., and R. Startz. 2005. “Measuring the NAIRU with Reduced
Uncertainty: A Multiple Indicator–Common Component Approach.”
Working Paper No. 04-07, Department of Economics, University of
Washington.

Baxter, M., and R. G. King. 1999. “Measuring Business Cycles:
Approximate Band-Pass Filters for Economic Time Series.” The Review
of Economics and Statistics 81 (4): 575–93.



160 Federal Reserve Bank of Richmond Economic Quarterly

Blanchard, O., and J. Simon. 2001. “The Long and Large Decline in U.S.
Output Volatility.” Brookings Papers on Economic Activity 2001 (1):
135–64.

Christiano, Lawrence J., and Terry J. Fitzgerald. 2003. “The Band Pass
Filter.” International Economic Review 44 (2): 435–65.

Findley, D. F., B. C. Monsell, W. R. Bell, M. C. Otto, and B. C. Chen. 1998.
“New Capabilities and Methods of the X-12-ARIMA Seasonal
Adjustment Program.” Journal of Business and Economic Statistics 16
(2): 127–52.

Geweke, J. 1978. “The Revision of Seasonally Adjusted Time Series.”
Proceedings of the Business and Economics Statistics Section, American
Statistical Association: 320–25.

Hall, R. E. 2005. “Separating the Business Cycle from Other Economic
Fluctuations.” Paper presented at the Federal Reserve Bank of Kansas
City Economic Symposium, “The Greenspan Era: Lessons for the
Future.” Jackson Hole, WY.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge, UK: Cambridge University Press.

Harvey, Andrew C., and Thomas M. Trimbur. 2003. “General Model-Based
Filters for Extracting Cycles and Trends in Economic Time Series.” The
Review of Economics and Statistics 85 (2): 244–55.

Kim, C. J., and C. R. Nelson. 1999. “Has the U.S. Economy Become More
Stable? A Bayesian Approach Based on a Markov-Switching Model of
the Business Cycle.” The Review of Economics and Statistics 81 (4):
608–16.

Kuttner, K. N. 1994. “Estimating Potential Output as a Latent Variable.”
Journal of Business and Economic Statistics 12 (3): 361–68.

McConnell, M. M., and G. Perez-Quiros. 2000. “Output Fluctuations in the
United States: What has Changed Since the Early 1980’s?” American
Economic Review 90 (5): 1,464–76.

Orphanides, A. 2003a. “Monetary Policy Evaluation with Noisy
Information.” Journal of Monetary Economics 50 (3): 605–31.

Orphanides, A. 2003b. “The Quest for Prosperity Without Inflation.” Journal
of Monetary Economics 50 (3): 633–63.

Orphanides, A., and S. van Norden. 2002. “The Unreliability of Output-Gap
Estimates in Real Time.” The Review of Economics and Statistics 84 (4):
569–83.



M.W. Watson: Output Trends and Gaps 161

Orphanides, A., and J. C. Williams. 2002. “Robust Monetary Policy Rules
with Unknown Natural Rates.” Brookings Papers on Economic Activity
2002 (2): 63–145.

Staiger, D., J. H. Stock, and M. W. Watson. 1997. “How Precise are
Estimates of the Natural Rate of Unemployment?” In Reducing
Inflation: Motivation and Strategy, eds. Christine Romer and David
Romer. Chicago: University of Chicago Press.

Staiger, D., J. H. Stock, and M. W. Watson. 2002. “Prices, Wages and the
U.S. NAIRU in the 1990s.” In The Roaring Nineties: Can Full
Employment Be Sustained? eds. Alan B. Krueger and Robert Solow.
New York: Russell Sage Foundation.

Stock, J. H., and M. W. Watson. 1999. “Business Cycle Fluctuations in U.S.
Macroeconomic Time Series.” In Handbook of Macroeconomics, vol. 1,
eds. J. Taylor and M. Woodford. Amsterdam: North Holland.

Stock, J. H., and M. W. Watson. 2002. “Has the Business Cycle Changed and
Why?” In NBER Macroeconomics Annual 2002, eds. M. Gertler and K.
Rogoff. Cambridge, MA: MIT Press.

Valle e Azevedo, J. 2006. “A Multivariate Band-Pass Filter.” Job Market
Paper, Department of Economics, Stanford University.


