
CEDI
 
 

 

Working Paper No. 07-15 
 
 

A Location Game on Disjoint Circles 
 
 
 

Marcin Dziubiński, Debabrata Datta and Jaideep Roy 
 
 
 

                                 July 2007 
 

C
ED

I 
D

IS
C

U
SS

IO
N

 P
A

PE
R

 S
ER

IE
S 

 
 
 
 
 

 

 
Centre for Economic 

Development & Institutions 
Brunel University 

West London 
http://cedi.org.uk 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6993352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Location Game On Disjoint Circles
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Abstract

Two players are endowed with resources for setting up N locations on K

identical circles, with N > K ≥ 1. The players alternately choose these

locations (possibly in batches of more than one in each round) in order to

secure the area closer to their locations than that of their rival’s. They face

a resource mobility constraint such that not all N locations can be placed in

the first round. The player with the highest secured area wins the game and

otherwise the game ends in a tie. Earlier research has shown that for K = 1,

the second mover always has a winning strategy in this game. In this paper

we show that with K > 1, the second mover advantage disappears as in this

case both players have a tying strategy. We also study a natural variant

of this game where the resource mobility constraint is more stringent so

that in each round each player chooses a single location where we show that

the second mover advantage re-appears. We suggest some Nash equilibrium

configurations of locations in both versions of the game.

Keywords: Competitive locations, Disjoint spaces, Winning/Tying strate-

gies, Equilibrium configurations.

JEL Classification: C72, D21, D72.



1 Introduction

The possibility and practice of choosing locations competitively in order

to maximize influence over sources that generate payoffs is widespread in

economics and politics. For example, retail firms compete over geographic

location of chain stores in order to capture a larger share of the market.

Political parties may set up party-offices or affiliated bodies in order to

spread political influence over the electorate. In such situations, the ability

of players to maximize influence by choosing locations may depend upon

the order in which such locations are chosen, thereby bringing up issues

concerning the first and second mover advantages.

Games involving choice of locations has long been an important area of

study in economics. The corresponding literature centers around the seminal

work by Hotelling [1929] which considers a profit maximizing firm’s decision

about optimal location when the consumers are located uniformly on a line

segment. Subsequently, this was extended to the celebrated circular city

model in Chamberlin [1953] and later by Salop [1979]. While in Hotelling

[1929], Chamberlin [1953] and Salop [1979] simultaneous-move games are

considered, Prescott and Visscher [1977] and Economides [1986] study the

problem when firms are allowed to enter sequentially on a line segment and

circular city respectively to show that the outcomes of a sequential location

game can differ significantly from those obtained in a simultaneous-move

scenario.

In some environments involving location games, players may have the

sole objective of being the one with the highest influence, as for example, in

a competition to win the race for establishing its product as the standard

product in the market, a firm may set shops to acquire patronage from a

majority of customers (like popularizing a software) which may then have

long term benefits for the firm. In politics, having the highest ideological
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influence is a natural objective under plurality rules and political parties

locate their representatives in order to spread this influence. It is of partic-

ular interest in situations where voters have but a small cost of voting in

which case it is hard to justify voter participation and several papers try to

explain large voter turnouts by assuming that parties are able to influence

individual voters to join ideological groups. As put in Martinelli and Her-

rera [2006], voters are to belong to groups and groups are formed by leading

party activists (see also for example Shachar and Nalebuff [1999] and Coate

and Conlin [2004]). While Martinelli and Herrera [2006] extend the existing

literature on how parties influence voters by forming groups through group

leaders to the case where these leader arrive endogenously from the popu-

lation, the game we study can be applied to situations where two existing

parties locate respective party leaders across the electorate to do the same.

With such objectives, it is important to find specifically a winning or tying

strategy for a player.

A recent work in this respect is a game of influence studied by Ahn et al.

[2004], where there are two players (firms or political parties) who are each

endowed with the same number of facilities (resources to set up a number

of shops or finance a number of party leaders) to locate (possibly in batches

of more than one facilities) on a circle in a sequential manner. In order to

win the game, a player must try to secure as much area as possible that

is closer to its locations than those of its competitor. Each player faces a

resource mobility constraint such that not all facilities can be located in the

first round. They show that in such a game (to be described precisely in

section 2) where play must involve at least two rounds, the second mover

always has a winning strategy and the game would always result in a tie

if players were forced to end the game in a single round. In Cheong et al.

[2002] the existence of a winning strategy for the second mover is shown,
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even for a single round location game played on a two dimensional closed

plane. In Chawla et al. [2003] an upper bound for the size of the first mover

disadvantage is provided in a game where firms compete to maximize market

shares and consumers are distributed over a d-dimensional Euclidean space.

A variant of the the above mentioned games of influence is where players

compete over a collection of disjoint areas in which locations can be placed.

To the best of our knowledge, this variant has not been studied so far and

there are many real life situations that suggest its importance. For example,

retail chains set up stores in different cities or countries. In politics, these

disjoint areas can represent different sections of the citizens with distinct

group-identities (like workers, students, or simply electorally disconnected

geographic neighbourhoods like districts and states) and to set up locations

in a given region can be viewed as an attempt by the political parties to open

political units (like politically motivated trade unions, district party offices

or students unions in academic institutions wth designated leaders) to spread

influence among target groups and increase favorable voter participation.

This paper adresses such location games on disjoint areas by extending Ahn

et al. [2004] to a family of disjoint circles. In what follows we shall abstract

away from parties and firms and simply refer to them as players. We are

not interested in studying any particular model in politics or industry, but

rather analyze the issue of stratgic influence in abstract. It is also important

to mention that all our results can be easily extended to any closed curves

rather than just circles.

We show that the second mover advantage as in Ahn et al. [2004] disap-

pears and the first mover always has a tying strategy. We also show that in

any Nash equilibrim of the game, there must be a tie. We then extend this

game by making the resource mobility constraint more stringent so that in

each round, each player places exactly one location. In this extended game
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we show that the second mover advantage as in Ahn et al. [2004] reappears.

We also provide some characterizations of final equilibrium configurations.

The rest of the paper is structured as follows. In section 2 we define the

game. Section 3 states and proves our results. Examples of final equilibrium

configurations are depicted in section 4 and the paper concludes in section 5.

2 The Multiple Circle game

The circle game studied in Ahn et al. [2004] has two players, called1 Red

(R) and Green (G) each having N points to place (or locations to choose)

alternately on a circle with R making the first move. Moreover, (i) each

player must place at least one point in each round, (ii) in the first round

when play begins, R cannot place all N points (perhaps because not all

resources are available at the beginning of the game), 2 (iii) the game ends

only after all players have placed all 2N points, (iv) at any round, the total

points placed so far by G cannot exceed that of R3, and (v) a location on the

circle cannot serve more than one points. This results in a sequential game

where roles (that is first and second mover identities) cannot be reversed

and the number of rounds is endogenous and can be controlled by R subject

to the restriction that there must be at least 2 rounds. The objective of

each player, as in Voronoi games (a term coined by Ahn et al. [2004]), is to

maximize the total length of the curve that is closer to that player than to
1originally called White and Black in Ahn et al. [2004]
2requirements (i) and (ii) imply that N ≥ 2.
3This is basically a condition required to preserve the first and second mover identities

over any play. These identites could be preserved even with the assumption that players

place equal number of points in each period. In this sense, the condition given in Ahn

et al. [2004] and used here is general and hence weaker. In Subsection 3.1 we shall study

a natural variant of this game where each player must place exactly one point in each

round.

4



the other so that a player wins if and only if the area it secures is strictly

the largest one. Otherwise there is a tie. It is shown in Ahn et al. [2004]

that in this game G always has a winning strategy, though R can bring its

length of influence as close as that of G’s. Our objective is to check if such

a second mover advantage prevails when there are more that one disjoint

identical circles. We now present these ideas and the finding in Ahn et al.

[2004] formally.

Let {R,G} be a set of players, where R stands for Red and G stands

for Green. The game on the family of disjoint circles is defined by a pair

〈N, {Cj}Kj=1〉, such that N > K ≥ 1 and {Cj}Kj=1 is a family of K disjoint

circles. Notice that the game studied in Ahn et al. [2004] is the special case

whereK = 1. Throughout the game each player p ∈ {R,G} will select a total

of N points on K circles. The set of points selected by R is Γ ⊆
⋃K

j=1Cj

and the set of points selected by G is Ω ⊆
⋃K

j=1Cj . Players re-arrive in

alternating sequence with R moving first, and are in principle allowed to

place points in batches. Let Γr be the set of points that R places in round

r ≥ 1 while Ωr be the same for G. The game ends when all 2N points are

placed on the circles.4 We will use w ∈ Γ (b ∈ Ω) to denote a point placed

by R (G) during the game. We will call points placed by the player R red

points and those placed by the player G green points.

As discussed above, the game has the following conditions:

1. |Γr| , |Ωr| ≥ 1 for every r ≥ 1.

2. |Γ1| < N .

3.
∑r

i=1 |Γi| ≥
∑r

i=1 |Ωi| for every r ≥ 1.

4Please note that we put no restriction on how players distribute these points across

the circles (some circles are allowed to remain empty in which case it is ignored while

computing payoffs).
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4.
∑

i≥1 |Γi| =
∑

i≥1 |Ωi| = N .

The endogenously determined number of rounds in a given play of the

game will be denoted by Z. Obviously Γ =
⋃Z

r=1 Γr and Ω =
⋃Z

r=1 Ωr.

Notice that the restrictions of the game imply that Z ≥ 2.

Let C be any circle and let (x, y) be an ordered pair of elements of C.

We will use (x, y) to denote the arc of the circle between x and y in clockwise

direction. Let a(x, y) ∈ [0, 1] denote an angle in clockwise direction between

halflines starting from the center of the circle and going through x and y

(we normalize an angle, so that a full circle has angle equal to 1). Then

d(x, y) = min{a(x, y), a(y, x)} is the angular distance between x and y.

Notice that d(x, y) = d(y, x) ∈ [0, 1/2]. Given an arc (x, y), the length (or a

volume) of (x, y) is a(x, y).

Given a circle Ck, let

AR(Ck) =
{
x ∈ Ck : min

w∈Ck∩Γ
d (x,w) < min

b∈Ck∩Ω
d (x, b)

}
be a set of points of Ck that are closer to points placed by R on Ck than

to points placed there by G. Let AG(Ck) be the analogical set defined for

G. Notice that each of these sets is a finite set of arcs of a circle Ck. Let A

be a finite set of arcs and let V (A) denote the volume (sum of lengths, in

angular terms) of arcs in A. When the game ends, each player p receives a

score Sp equal to the volume of the set of arcs constituting the set of points

closest to a position chosen by that player over all circles, that is

Sp =
K∑

k=1

V (Ap(Ck))

for p ∈ {R,G}. Given these scores, the payoff of the players is up(Sp, Sq) =

Sp − Sq, where {p, q} = {R,G}. We say that the game is a tie if Sp = Sq,

while player p wins if Sp > Sq. A strategy in general will be a contingent

plan for every possible history of the game. We do not need to define this
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general notion formally although we lay out complete specifications of the

strategies we report. We will use uppercase letters S, T , X, Y to denote

pure strategies. Strategy X is called a winning strategy (a tying strategy)

for player p if no matter what player q does, by using X player p guarantees

that Sp > Sq (Sp ≥ Sq). Throughout the paper we will use the standard

notation m |n, to denote the fact that m divides n and m -n, to denote its

negation.

2.1 Some definitions and existing results

We first develop some concepts and notations. Let C be a circle and let

P ⊆ C be a finite set of points on the circle. Then an arc (x, y) ⊆ C

such that {x, y} ⊆ P and (x, y) ∩ P = ∅ is called an interval. Now let

PR and PG such that PR ∪ PG = P be sets of red and green points of P ,

respectively. Then an arc (x, y) ⊆ C such that {x, y} ⊆ PR ({x, y} ⊆ PG)

and and (x, y) ∩ PR = ∅ ((x, y) ∩ PG = ∅) is called a red (green) interval.

An interval that is neither red nor green is called a bichromatic interval

and an interval which is not bichromatic shall be at times referred to as

a monochromatic interval in general. We will use rC (gC) to denote the

number of red (green) points placed on the circle C. We will also use IR(C)

(IG(C)) to denote the number of red (green) intervals on the circle C.

Given a circle C and a point x ∈ C, an antipode of x is the point y ∈ C

such that d(x, y) = 1/2. The pair of points {x, y} is called a pair of antipodes

of C. Let m be a positive natural number. Then the set of key positions5

on C determined by point x and m is the set

κ(C, x,m) = {p ∈ C : a(p, x) = l/m, where l ∈ {0, . . . ,m− 1}}.

By the set of key positions determined by m we mean a set of key positions
5We use a term key position here for what was called a key point in the paper Ahn

et al. [2004]. We found the name key position somewhat more apropriate in our context.
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determined by m and some point in C. A point placed in a key position

will be called a key point and an interval formed by two key points will be

called a key interval.

Before presenting our results in the next section, we report the main

result from Ahn et al. [2004] for the case K = 1. Consider the following

strategy, S∗ used by player G (where key positions are simply N equidistant

points on the circle:

Strategy S∗

if there is an empty key position left then
(a) place a point on s key position

else if if r < Z then
(b) place a point in the middle of a maximal interval of the opponent

else

(c) if there is more than one interval of the opponent then
place a point in the middle of a maximal interval of the

opponent
else if there is exactly one interval of the opponent and its length

is l then
place a point in a bichromatic key interval at distance less

than 1/N − l from endpoint of the opponent

Theorem 1 (Ahn et al. [2004]) Let 〈N, {Cj}Kj=1〉 define a game on a sin-

gle circle such that K = 1. Then S∗ is a winning strategy for G although R

can always bring the difference SG − SR as close as possible to zero.
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3 Results

We first show that for any game 〈N, {Cj}Kj=1〉 with K ≥ 2 and N ≥ K,

R, i.e. the first mover, has a tying strategy. We will consider two cases

separately: K -N and K |N . We start by demonstrating a tying strategy for

R for the first case. The general idea of this strategy is for R to capture key

positions on the circles. Key positions on each circle will be determined by

the first point placed on the circle and either dN/Ke or bN/Kc, depending

on the situation (and G’s play, in particular). Let r be a round and let L(r)

be the number of circles occupied after R places the first of the points he is to

place in round r. Key positions on the occupied circles are determined with

respect to dN/Ke and the first point placed on the circle. The number of

total key positions on these circles is L(r)dN/Ke and the number of vacant

key positions is

V (r) = L(r)dN/Ke − Y (r),

where Y (r) is the number of key position already occupied after R places

the first point in round r. Let ϕ(r) stand for the number of points R is

left with if after placing his first point in round r he would have covered all

vacant key positions in the occupied circles, that is

ϕ(r) = N − r − V (r).

We first prove the following lemmas and a corollary, which are gener-

alizations of the lemmas presented in Ahn et al. [2004] for more than one

circle.

Lemma 1 Let {Ck}Kk=1 be a family of circles. Then

K∑
k=1

IR(Ck)−
K∑

k=1

IG(Ck)) =
K∑

k=1

rCk −
K∑

k=1

gCk ,
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Strategy T ∗

if r = 1 then
place one point in some circle

else if r ≥ 2 then

(a) if at r − 1 G played in a free circle then
place one point in that circle taking a key position (defined by

the position of the green point and dN/Ke

if (K − L(r))dN/Ke = ϕ(r) then
take all key positions in the occupied circles and then

divide the free circles equally by taking key positions on

them with all remaining points

(b) else if at r − 1 G played in the circle with at least one red point

and vacant key position, not taking a key position then
place one point in that circle taking a key position (defined by

the position of the red point and dN/Ke

(c) else if there is a circle with red points only and vacant key

positions then
place one point in that circle taking a key position (defined by

the position of the red points and dN/Ke

(d) else
place one point in a free circle

if (K − L(r))dN/Ke = N − r or (K − L(r))bN/Kc = N − r

then
divide the free circles equally by taking key positions on

them with all remaining points
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i.e. the difference between the number if red points and green points placed

on the family of circles is equal to the difference between the number of red

and green intervals on that family of circles.

Proof. In Ahn et al. [2004] it is shown that for any circle C it holds that

IR(C)−IG(C) = rC−gC . Then
∑K

k=1(IR(Ck)−IG(Ck)) =
∑K

k=1(rCk−gCk)

and, so
∑K

k=1 I
R(Ck)−

∑K
k=1 I

G(Ck)) =
∑K

k=1 r
Ck −

∑K
k=1 g

Ck .

The following corollary is immediate from the above lemma.

Corollary 1 Let {Cj}Kj=1 be a family of circles where each of the players R

and G placed the same number of points. Then the number of red and green

intervals is the same.

Lemma 2 Let {Ck}Kk=1 be a family of circles with key positions with respect

to some M for each circle. Assume that (i) there are r =
∑K

k=1 r
Ck ≤ KM

red and g =
∑K

k=1 g
Ck < r green points on the family of circles covering all

KM key positions and (ii) there is only one red interval which is not a key

interval. Then there exists a bichromatic key interval.

Proof. The argument used in Ahn et al. [2004] for an analogical lemma

for one circle works for this lemma as well. We have r + g ≤ 2KM − 1

points on the circles and KM of them are key points. Thus there are at

most KM − 1 points lying within some key intervals. This leaves one key

interval without a point. This key interval cannot be red, as there is only

one red interval which is not a key interval. The key interval cannot be

green, as by Lemma 1, this would mean that there are more then one red

intervals (notice that r > g). Thus the key interval must be bichromatic.

We now prove our first main result by identifying a tying strategy called

T ∗ for R, the first mover.
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Theorem 2 Let 〈N, {Cj}Kj=1〉 define a game on the family of disjoint circles

with K ≥ 2. If K -N , then T ∗ is a tying strategy for R.

Proof. We start by showing that strategy T ∗ is implementable. The

only situation, where the strategy may not be applied is the one where at

some round r, R faces the situation where there is no key position left (and

he is having e > 0 points left). This means that in each of the K circles,

dN/Ke key positions are taken (notice that if G does not take any key

position up to the round r, then this situation cannot appear). Let r′ ≤ r

be the last round such that at the round r′ − 1, G took a key position.

Observe that it must be that r′ = r, as R is able to cover all remaining key

positions at r. Consider R’s move at the round r − 1. Since R has enough

points to cover all remaining key positions at this stage, he would do that

and this contradicts the assumption that G places a point in a key position

at this round. Thus the strategy is implementable.

Now we will show that using this strategy either R wins or ties. Firstly,

observe that after R’s move in the last round all key positions must be

covered. For assume throughout the game G did not take any key position

(this means in particular that G has never placed a point in an empty circle,

as such point is always a key position). Then at round (N mod K)dN/Ke+

16 R plays in an empty circle and he can cover bN/Kc key positions in each

of the remaining empty circles, so the game finishes and all key positions

are covered. Now assume that at some round r, G places a point in a

key position. Then R is still capable of covering all remaining key positions

towards the end of the game. Moreover after G’s move, the number of circles

where R would have to take bN/Kc key positions decreases by 1. After G

takes K − (N mod K) key positions, R is capable of covering all remaining

key positions and at the and of the game dN/Ke key positions will be taken
6Notice that N = (N mod K)dN/Ke+ (K −N mod K)bN/Kc.
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in each of K circles.

Secondly, observe that if G and R covered all key positions in L circles

(k key positions on each of the circles) using the same number of points,

and so that R’s points are placed on key positions only then G cannot be

winning on these circles. This is because if G is to be winning then there

must be some green intervals on the circles (for if there are not then there

is a tie, as each bichromatic interval is divided equally between G and R).

According to the fact 1, there must be the same amount of red intervals.

Since each red interval is of size 1/k and each green interval is of size ≤ 1/k,

so G cannot be winning.

Assume that in the last round R played according to (d). Then before

R’s move some 1 ≤ L < K circles were covered by G and R so that the

same amount of red and green points where placed there, all key positions

are taken and all red points are placed on key positions (and there are

dN/Ke key positions on each circle). Thus there is a tie on these circles.

There are two possible numbers of key positions on each of the K−L circles:

(i) dN/Ke and (ii) bN/Kc. In case (i) the situation analogous to the one

on L circles will be created, resulting in a tie. For case (ii) observe that

answering R’s move G has to place (K − L)bN/Kc points. Observe also

that after R’s move (K −L)bN/Kc red intervals where created, each of the

size 1/bN/Kc. Since R cannot gain7 by playing in any of the L circles that

where occupied before R’s move (as he can gain < 1/dN/Ke, and by playing

within newly created red interval he can gain 1/dN/Ke), he has to place his

points within newly created red intervals. Moreover by placing more than

one point within such interval he can gain < 1/bN/Kc while placing one

red point in each of the newly created red intervals he gains 1/bN/Kc and

in this case there is a tie.
7By “gain” we mean the area acquired by the player plus the area lost by the opponent.
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Now assume that in the last round R did not play according to (d).

Then at the end of the game we will have the situation where all circles are

covered with the same amount of green and red points, all key positions are

taken (dN/Ke key positions on each circle) and R placed his points on key

positions only. Then there is a tie.

Our next result deals with the case where K | N where we show that

R has a tying strategy in this case as well. The strategy is simple and is

therefore defined directly in the proof of the theorem. We shall refer to it

as T ∗ as well since its identity will be clear from whether K |N or not.

Theorem 3 Let 〈N, {Cj}Kj=1〉 define a game on the family of disjoint circles

with K ≥ 2. If K |N , then R has a tying strategy (which will be also called

T ∗).

Proof. Observe that R can implement K/N red arcs of equal size on

each of the K circles by placing N points. To see this, consider the following

strategy of R (called T ∗): place exactly N/K equidistant points in round r

on circle Cr. Obviously since Cr is continuous, G can always do that.

Thus at the end of the game both R and G placed the same amount N of

points in K circles. Moreover R points take N/K key positions determined

by a red point and N/K in each of these circles. If there is no green interval

on the circles then there is a tie. Observe that if there is a green interval,

then its size is always ≤ K/N while each red interval has size K/N . Thus

if there are any green intervals, then by the fact 1 it cannot be that G won.

By Theroem 2 and Theroem 3 we have shown that if K ≥ 2, then R, the

first mover, has a tying strategy in the game and hence the second mover

advantage present under K = 1 disappears. The question that arises now

is: can the first mover do better? The answer is no as we show the existence
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of a tying strategy for the second mover as well, as stated in the theorem

below. This strategy, which we call T ′, is simple and is as follows:

Strategy T ′

place exactly one point in each red interval created by R in any given

round

Theorem 4 Let 〈N, {Cj}Kj=1〉 define a game on a family of K disjoint cir-

cles. Then T ′ is a tying strategy for G.

Proof. Strategy T ′ requires G to place exactly one point in each red

interval created in a given round. It is easy to see that this will ensure that

at the end of the game there is no monochromatic intervals, which is then

a tie. So what requires to be proved is that this strategy is implementable

which we do by induction on the number of the current round. We will

show two things: after R plays in round r, G can place exactly one point

in a red interval and there is no monochromatic interval after G’s move.

Consider the first round. There are no intervals before players move. Assume

that R placed m points. Then, by Lemma 1 there are m red intervals

created and G can place m points, one within each interval. Thus there

is no monochromatic interval after the first round. Now consider a round

r > 1. By induction, there is no monochromatic interval before R’s move

and, by similar argument as in the case of the first round, there is exactly

the same number of newly created red intervals as the number of red points

placed. Thus G can place exactly one point in each of the newly created red

intervals and there are no monochromatic intervals after the round r. This

shows that G’s tying strategy is implementable.

The following theorem is an immediate consequence of the results we

have proved so far.
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Theorem 5 Let 〈N, {Cj}Kj=1〉 define a game on the family of K disjoint

circles. Then strategy profile (T ∗, T ′), where player R plays T ∗ while player

G plays T ′, is a pure strategy Nash equilibrium. Moreover, in every final

configuration resulting from this Nash equilibrium profile of strategies, (i)

there is no monochromatic interval on any circle and (ii) all red points lie

on key positions.

There may be other equilibrium points in this game. We shall use the

above equilibrium in the examples we set in section 4 to study equilibrium

configurations. We now deal with a variant of this game where the resource

mobility constraint becomes most binding.

3.1 “One-by-one” variant of the game

A natural variant of the game studied above is the one where players face

very strict resource mobilization constraints so that each places a single

point in each round. Recall that in the tying strategy T ∗ used by R, it was

crucial for R to place more than one point at some rounds. It turns out that

if players face such a strict resource mobility constraint as the one we are

dealing with now, then G, the second mover has a winning strategy.

The strategy, which we shall call Y ∗, is a generalization of the winning

strategy S∗ of the second mover in the one circle case presented in The-

orem 1. Player G first tries to take key positions with respect to dN/Ke

or dN/Ke (depending on the situation described precisely below) and the

first point placed on that circle. Then he breaks biggest red intervals, by

placing a point inside them. In his last move he either breaks the biggest

red interval or plays in a bichromatic interval that is bigger than the biggest

red interval.
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Strategy Y ∗

if there is an empty key position left then
(a) if there is an empty key position on the circle where the opponent

took a key position in his last move then

if there is only one point in that circle then
assign the number of key positions for this circle to dN/Ke

place a point on a key position in that circle next to the point

placed by the opponent on the clockwise side of that point (if

possible), otherwise on the anti-clockwise side (if possible)

otherwise anywhere else

else if there is an empty key position in a non empty circle then
place a point on a key position in that circle

else if number of empty circles L ≤ K −N mod K then
place a point on an empty circle assigning the number of key

positions for this circle to bN/Kc

else
place a point on an empty circle assigning the number of key

positions for this circle to dN/Ke

else if if r < Z then
(b) place a point in the middle of a maximal interval of the opponent

else

(c) if there is more than one interval of the opponent then
place a point in the middle of a maximal interval of the

opponent
else if there is exactly one interval of the opponent and its length

is l then
place a point in a bichromatic key interval at distance less

than 1/dN/Ke − l from endpoint of the opponent

17



Theorem 6 Let 〈N, {Cj}Kj=1〉 define a game on the family of disjoint circles

with N > K ≥ 2 and assume that players face a very strict resource mobility

constraint so that they are allowed to place exactly one point at a time. Then

Y ∗ is a winning strategy for G.

Proof. Notice that, just as in the case of S∗, the use of strategy Y ∗ leads

to the following three stages of the game for player G. First the option (a)

is excercised, until all key positions are covered (some of them with respect

to dN/Ke and others with respect to bN/Kc). Then the option (b) is

excercised, until G reaches a round where he has only one point left (since

the game is restricted, so that both players play exactly one point at each

round this will be at the round r = Z). Finally the last stage is reached,

where G plays according to (c). We start with two claims.

Claim 1 After the end of round (a), G has at least one point left.

Proof. Observe first that key positions are taken either with respect to

bN/Kc or dN/Ke and N = (N mod K)dN/Ke+ (K −N mod K)bN/Kc,

so a player is capable of capturing all key positions on all circles, taking key

positions with respect to dN/Ke on (N mod K) circles, the remaining key

positions with respect to bN/Kc on the remaining K − N mod K circles.

Since R places at least one point in a key position (which is the first point

placed by him) and throughout the game G never assigns dN/Ke as the

number of key positions to more than N mod K circles that do not contain

a red key point (by checking each time when the green point is placed on

free circles as to whether the number of free circles L ≤ K −N mod K), so

G will have at least one point left after all key positions are taken.

Claim 2 The number of red key intervals of size 1/bN/Kc is never greater

than the number of green key intervals of that size.
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Proof. This is because whenever R places a point in an empty circle, G

places a point there in the same round, assigning the number of key positions

for that circle to dN/Ke. Thus red key intervals of the size 1/bN/Kc can

be created only on the circles where G placed the first point, and so after

all key points in each such circle are taken, G will take no less key positions

there than R. Moreover strategy Y ∗ ensures that each red key point has

at most one neighbouring red key point (because G places a point next to

a newly placed red point, if possible, and starts by placing it on the same

side (clockwise in the case of strategy Y ∗)).8 Thus the number of green

key intervals in such circles cannot be smaller than the number of red key

intervals there.

Now assume that all key positions are taken and R places a point.

Then there is one more red points than green points on the circles, and

by Lemma 1, there is at least one red interval. Thus the next move of G is

implementable and the game is either in stage (b) or (c).

Observe that in stage (b) G will place a point in all red key intervals

of size 1/bN/Kc (as he has at least twice the number of such intervals of

points left, and these intervals are being broken first). Moreover G will place

a point in all red key intervals of size 1/dN/Ke in the stage (b) (as he saves

at least one point each time such interval is created by R). Notice also that

whenever R creates a red interval of the size ≥ 1/dN/Ke, this interval is

created by placing two red points within a green key interval of the size

1/bN/Kc and at most one red interval of this size can be created in such

green key interval. Since the stage (b) ends when both players have only

one point left, so all such intervals created in the stage (b) will have been

broken by G by the end of that stage. Thus after the stage (b) there is no
8The restriction on the game, so that players move one-by-one is crucial for this prop-

erty. Notice that this issue arises only when bN/Kc 6= dN/Ke, i.e. K -N .
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red interval of the size ≥ 1/dN/Ke.

Consider now stage (c), where both players place their last points. The

following situations are possible after R places his point in that round: (i)

there are two or more red intervals, or (ii) there is one red interval. Assume

that case (i) holds. Then G places a point in the largest red interval. If the

size of the newly created red interval was ≥ dN/Ke, then the green point

was placed within this interval, as after the stage (b) there is no red interval

of the size ≥ 1/dN/Ke. Thus after the last round there is no red interval

of the size ≥ 1/dN/Ke. Since, also, by Lemma 1, there is the same amount

of green and red intervals and, moreover, each of green intervals is a key

interval (as by strategy Y ∗, G never created a green interval apart from the

first stage), so G must be winning (recall that the size of a key interval is

≥ 1/dN/Ke).9

Now assume that case (ii) holds. Consider the situation before R’s move.

It must be that there is no red interval. Consider the group of circles for

which dN/Ke key positions are assigned. It cannot be that R has more

points than G on these circles (as otherwise, by Lemma 1 there would be

a red interval there). Similarly R cannot have more points on the group of

the circles with bN/Kc key positions assigned. Thus on each such group of

circles, classified by the number of key positions, G and R have the same

number of points. Suppose that after R’s move, a red interval is created in

the group of circles for which bN/Kc key positions are assigned (notice that

such red interval may have the size ≥ 1/dN/Ke). Then, by Lemma 2, there

must be a bichromatic key interval in that group of circles (i.e. a bichromatic

key interval of the size 1/bN/Kc). Thus G can win by placing a point in

that key interval and creating a green interval of the size bigger than the
9Notice that G’s advantage may be arbitrarily small, as non-key intervals created by

R may be arbitrarily close in size to that of key intervals.
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size of the newly created red interval (which has the size < 1/bN/Kc).10

Analogically it can be shown that G wins when R creates a red interval

on the group of circles for which dN/Ke key positions are assigned.11 This

completes the proof.

Some footnotes used in the proof of the above theorem suggest that

although G, the second mover can win the game, R may be able to make the

difference between their scores arbitrarily small. In the following theorem

we show that the winning strategy Y ∗ for the second mover, with a slight

modification and called Y ′, can be used by the first mover R to achieve this

independent of the strategy used by G.

A strategy X is a virtually tying strategy for player p if X is not a

winning strategy and for any ε > 0, if player p uses X, then no matter what

player q does, player p can guarantee that Sq − Sp < ε.

Theorem 7 Let 〈N, {Cj}Kj=1〉 define a game on the family of disjoint circles

with N > K ≥ 2 and assume that players face a very strict resource mobility

constraint so that they are allowed to place exactly one point at a time. Then

there is a virtually tying strategy for G.

Proof. Consider strategy Y ∗ as defined before with option (c) replaced

by option (c’) (this modified strategy will be called Y ′).

Y ′: Modification of Y ∗ for player R

(c’) place a point in a maximal bichromatic interval at distance ε from

its green endpoint

10Notice that the advantage of G may be arbitrarily small and depends on how big the

red interval is.
11Analogical remark on the G’s advantage applies here.

21



We will show that if R plays according to Y ′, he achieves the required

outcome. Similarly to the case where Y ∗ is used by player G, the use of

strategy Y ′ leads to three stages of the game for player R, though the stages

are slightly different. At first, option (a) is exercised. After all key positions

become occupied, option (b) is used as long as there is a green interval. This

is the second stage. When there is no green interval, options (c’) and (b) are

selected depending on what player G does. If in his move G breaks the red

interval created by the use of option (c’) by R, in the next round R applies

option (c’) again and creates another red interval. Otherwise (which means

that G created a green interval) R applies option (b) and breaks the newly

created green interval.

After the first stage, where option (a) is exercised, R is not loosing. This

is because all his points lie in key positions. Moreover the number of red

key intervals of the size 1/bN/Kc cannot be greater than the number of key

intervals of this size (as red key intervals of the size 1/bN/Kc can be created

only on the circles where R placed the first point, cf proof of Claim 2).

Hence if there are monochromatic interval after the first stage, then all red

intervals are at least as big as the existing green intervals. Observe that

since N > K, so option (a) will be applied at least once and there will be

at least one bichromatic interval after the first stage.

In the second stage, where option (b) is exercised, R breaks maximal

green intervals. Observe that throughout this stage after each move of player

R he has an advantage of size of a key interval (either of the size of 1/dN/Ke

or of the size 1/bN/Kc). Moreover G cannot create green intervals of size

≥ 1/dN/Ke, as all key positions are occupied after the firts stage. Thus after

each round of the second stage player R cannot be loosing. This means in

particular that if G is a payoff maximizer, the game will always enter the

third stage.
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In the third stage, whenever player R creates a red interval he is gaining

an advantage of the size of this interval. If G breaks the interval, the game

is in a tie again. Otherwise in the next round (if there is a next round) R

breaks the green interval, regaining his advantage. Now assume the game

is in its last round. Assume the length of the bichromatic interval within

which R created his last red interval is l. If G is to win, he must create

a green interval within a bichromatic interval of the size > l − ε and the

created interval cannot be bigger than the red one by more than a margin

< ε (as a maximal remaining bichromatic interval has size ≤ l).

3.1.1 Nash equilibrium of the ε-adjusted game

Since G wins for sure in the one-by-one variant of the game, that points

are be placed on continuous curves and no single point on a circle can be

served by more than one loctions, R does not really have an optimal strat-

egy. Hence, a Nash equilibrium in this version of the game does not exist.

However, strategy Y ′ becomes a dominant strategy for player R if we restrict

attention further to one-by-one games where R is not allowed to place his

points within a distance smaller than 1/dN/Ke � ε > 0 to a green point.

This is because, as follows from proof of Theroem 7, just before the last

round R is not loosing and in the last round G can create an interval of

the size greater than the interval created by R, by at most ε. With this

observation, the following theorem is immediate.

Theorem 8 Let 〈N, {Cj}Kj=1〉 define a game on the family of disjoint circles

with N > K ≥ 2 and assume that players face a very strict resource mobil-

ity constraint so that they are allowed to place exactly one point at a time.

Suppose also that R, the first mover, is not allowed to place his points within

a distance smaller than 1/dN/Ke � ε > 0 to a green point. Then strat-
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egy profile (Y ′, Y ∗), where the first mover uses strategy Y ′ while the second

player uses strategy Y ∗ is a Nash equilibrium. Moreover, in every final con-

figuration resulting from this Nash equilibrium there exists a monochromatic

interval.

We are obviously interested in the case where ε is arbitrarily close to

zero. This theorem will be used to produce equilibrium final configurations

in the one-by-one variant.

4 Examples

In this section we present examples illustrating the game when the players

use the strategies presented above. We start with general game where R

plays according to T ∗ while G plays according to T ′. There are two cases

here: K |N and K -N . We illustrate only the second case, which is more

involved. Final configurations in the first case are similar to those of the

second case if both players play these tying strategies.

Let N = 11 and K = 3. Player R starts by placing a point in an empty

circle (which defines key positions for this circle with respect to the red

point and d11/3e = 4) and G answers by placing a point in an empty circle

(taking a key position and defining remaining key positions for this circle

with respect to 4). The configurations created during the game are presented

in Fig. 1. We use empty discs to depict red points and filled discs to depict

green points. Key positions are depicted with short dashes intersecting the

circles. In the rounds 2–4 player R plays according to option (b) taking free

key positions in the first circle while G places his points within red intervals.

In the round 5 player R plays according to option (d) taking a key position in

a new circle. This determines key positions in the new circle which are taken

with respect to the red point and the number 4 obtained as above. Player G
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responds by playing within the newly created red interval, R takes another

key position in the circle and G responds in the same manner. Since in round

6 player G placed his point in a key position, so player R plays according to

option (a). After he places his point, the number of occupied key positions

at round 7 is Y (7) = 8, the number of vacant key positions on non empty

circles V (7) = 0 and the number of points R would have left if he had covered

all vacant key positions in the occupied circles is ϕ(7) = 11−7−0 = 4. Since

this is equal to (11−L(7))d11/3e = 4, player R can cover key positions with

respect to 4 in the remaining one circle, which he does. Player G answers

placing exactly one point within each newly created red interval. The game

is hence tied.

For the ε-restricted one-by-one version of the game, we take the same

parameters and present an example where players apply their respective Nah

equilibrium strategies Y ′ (used by the first mover Red) and Y ∗ (used by the

second mover Green) (see Fig. 2). Player R starts by placing a point in an

empty circle (which defines key positions for this circle with respect to the

red point and d11/3e = 4) and G answers by placing a point in a clockwise

neighbouring key position (also assigning key positions for this circle with

respect to the position of the red point and 4). Then both players continue

with taking key positions. When key positions are taken (4 of them on

each circle) player R applies (c’) of his strategy Y ′ and G responds applying

option (b) of his strategy Y ∗ by breaking the red interval created by R.

The game goes on in this manner until the last round is reached. In the

last round player R applies option (c’) of his strategy Y ′ again and player

G responds by applying option (c) of his strategy Y ∗ and creating a green

interval slightly bigger than the one created by R in this turn. This ends the

game and G wins by the margin ε, the difference between intervals created

in the last round.
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5 Concluding remarks

We have studied an extension of the two-player Voronoi game of Ahn et al.

[2004] to a playing arena involving multiple disjoint closed curves. Such

games can be used to model important real life situations as highlighted in

the introduction. We have shown that the second mover advantage, albeit

arbitrarily small as shown in Ahn et al. [2004], disappears as we find tying

strategies for both the first and the second mover, thereby enabling us to

demonstrate Nash equilibrium configurations of locations. A general prop-

erty of all such equilibrium configurations is that locations on each circle

alternate in colour. We then study a natural variant of this game where

players face very strict resource mobility constraints to show that the sec-

ond mover advantage, again though arbitrarily small, re-appears. In the

resulting equilibrium configurations of this version of the game, we show

that there exists monochromatic intervals, an interesting difference vis-a-vis

equilibrium configurations in the original game. One may think of the rules

of the game as a mechanism by which distributions of influence between the

two acting players can be affected and in that sense we have shown that

a “literally fair” division is always Nash implementable. Ahn et al. [2004]

has also studied such location games on line segments and it would be in-

teresting to study our game on a family of disjoint line segments. Also, it

would be important to generalize our games to those involving more than

two players. Note also that the tying strategy of the first mover that we

demonstrate depends crucially on the fact the the total number of points N

is known. It would be interesting to extend these environments to incom-

plete information.
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Figure 1: Unrestricted game, N = 11, K = 3
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Figure 2: “One-by-one” game, N = 11, K = 3
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