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Abstract

We consider collective choice problems where a set of agents have to choose an

alternative from a �nite set and agents may or may not become users of the

chosen alternative. An allocation is a pair given by the chosen alternative and

the set of its users. Agents have gregarious preferences over allocations: given

an allocation, they prefer that the set of users becomes larger. We require that

the �nal allocation be e¢ cient and stable (no agent can be forced to be a user
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and no agent who wants to be a user can be excluded). We propose a two-stage

sequential mechanism whose unique subgame perfect equilibrium outcome is

an e¢ cient and stable allocation which also satis�es a maximal participation

property.

Keywords: Public Goods, Gregarious Preferences, Subgame Perfect Implemen-

tation.

JEL Classi�cation Numbers: D62, D71, H41.

1 Introduction

In many collective choice problems, after the social alternative (or level of a public

good) has been chosen, agents may decide whether or not to use it. If the �nal set of

users a¤ects the welfare of each member, then the decision process has to take into

account the set of agents that will eventually become users. In this paper we study

the case when participation is not compulsory and agents�preferences are gregarious

in the sense that they are (set-inclusion) monotonic with respect to the set of users.

There are many examples of such problems. Members of a club choose the amount of

some non-rival public good to be provided to themselves and the cost of its provision

is usually equally shared among the set of its �nal users. This choice a¤ects the

composition (and the size) of the club, since some members may choose to leave

the club if the level provided and its corresponding cost are unacceptable to them.

Similarly, a local community which decides to provide a public facility (a swimming

pool, a common garden, etc.) cannot set aside considerations regarding how many

community members support this decision if those who are not in favor of it have the

right to not pay for the facility. Many other problems do not directly involve money

but can be similarly modeled. For instance, a group of nations decides which common

technological standard to adopt. Each country may prefer a di¤erent standard, but

once a standard is adopted, social and individual welfare are increasing in the number

of nations which agree to adopt it.
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All these problems have the common feature that agents also care about the set of

users of the public good. For this reason, and since participation is not compulsory,

the �nal allocation has to satisfy not only e¢ ciency but also stability. While the �rst

requirement is well-known and desirable in many collective choice problems, the latter

deserves to be brie�y explained. Stability requires that no agent can be forced to be a

user and that no agent who wants to be a user could be excluded. Stability may be a

necessary requirement due to technological or institutional constraints: for instance,

no nation can be forced to adopt any technological standard, or according to the law

agents can not be forced to contribute to the provision of a public facility, but at the

same time it is impossible or too costly to exclude someone from its consumption.1

The aim of this paper is to implement an e¢ cient and stable social choice function

when agents�gregarious preferences are private information. We focus on the case

where agents have to select a single alternative. Namely, only one level of the public

good can be provided and agents have to decide whether or not to be users of it, but

a subset of agents cannot secede and choose (and use) another alternative.

Our analysis starts by showing that, for any gregarious preference pro�le, the set

of e¢ cient and stable allocations is non-empty. However, we can easily establish a

negative result: no e¢ cient and stable social choice function is Nash implementable

(because it is not Maskin monotonic). This result is related to previous results in

Jackson and Nicolò (2004) who study similar social choice problems in a context

where agents have single-peaked preferences over an in�nite and linearly ordered set

of alternatives. They show that, in general, strategy-proof and e¢ cient social choice

functions must �x the group of users independently of agents�preferences. Namely,

when gregarious e¤ects are present strategy-proofness and e¢ ciency impose that the

group of users coincide with the entire society. Therefore, stability is incompatible

with strategy-proofness and e¢ ciency. But this result suggests that the trade-o¤

between informational constraints and normative properties of social choice functions

1See also Bogomolnaia and Nicolò (2005) for a brief discussion of the normative content of a

slightly di¤erent de�nition of stability in the context of multiple provision of public goods.
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could be overcome if we separate the decision of which alternative has to be chosen

from the selection of the group of its users. We therefore investigate if an e¢ cient

and stable social choice function is subgame perfect Nash implementable. We present

a mechanism with two features: �rst, it is invariant with respect to the names of the

agents and second, it is simple enough to be implemented in real collective decision

problems. Roughly, the proposed two-stage game is as follows. In Stage 1 agents

sequentially (iteratively and publicly), following an exogenously given order, propose

a level of the public good and a natural number between 1 and the number of agents

(interpreted as the number of users); among the proposed levels, one with the maximal

number of users is chosen (if there are several, one of them is chosen in accordance

with a pre-speci�ed selection rule). In Stage 2 agents sequentially (and publicly),

following the same given order, decide whether or not to use the level of the public

good chosen at the �rst stage.

The game is relatively simple: it is �nite, bounded, and the needed penalties out-

of-equilibrium play do not have to be large. Interestingly, the unique subgame perfect

Nash equilibrium outcome of the game does not depend on the order according to

which agents take decisions along the game. We think that this is an important

property should the mechanism be used. The mechanism selects among the set of

e¢ cient and stable allocations an alternative which maximizes the number of its users.

We justify this maximality property on a purely normative ground, since it allows to

minimize the number of agents with the minimum level of welfare.

Finally, our paper is related to Bag and Winter (1999), in which the authors

propose a sequential iterated mechanism to uniquely implement a core allocation

for an economy with an excludable public good. In their model a level of a public

good is produced using a technology and the contributions of a private good made

by the �nal set of users. However, our setting is di¤erent from theirs at least with

respect to the following features. First, in our setting exclusion is voluntary (our

stability notion re�ects that). Second, their setting is cardinal (preferences are quasi-
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linear in the private good) while our ordinal setting not only admits a larger class

of preferences but also admits problems in which the choice of a social alternative

does not generate costs. Third, in their setting e¢ ciency implies no exclusion, and

thus, in the equilibrium outcome of their game all agents consume the public good;

in contrast, in our setting e¢ ciency may require that only a subset of agents be the

�nal set of users of the public good.

The paper proceeds as follows. In Section 2, we give preliminary notation and

de�nitions, describe the preference domain, establish the existence of e¢ cient and

stable allocations, and provide a negative result for Nash implementation. In Section

3, we describe the mechanism and state our main result. In Section 4, we o¤er some

examples that illustrate the role of some features of the mechanism, discuss its non-

neutrality, and give the relationship between the set of e¢ cient and stable allocations

and the set of group stable allocations. An Appendix at the end of the paper contains

the formal de�nitions of strategies and outcome functions of the game in extensive

form and collects the proofs omitted in the text.

2 Preliminaries

Let N = f1; :::; ng be the set of agents and X be the �nite set of levels of a public

good (or social alternatives). We assume that n;#X � 2. Subsets of N are denoted

by S and T , elements of N by i and j, and elements of X by x and y. An allocation is

a pair (x; S) 2 A � X � 2N , where x 2 X is the level of the public good and S 2 2N

is the subset of its users. Agents have preferences over the set of allocations. The

preference relation of agent i 2 N over the set of allocations A, denoted by Ri, is a

complete, re�exive and transitive binary relation. As usual, let Pi and Ii denote the

strict and indi¤erence preference relations induced by Ri, respectively. We assume

that preference relations satisfy the following properties:

(Greg) Gregariousness: For all x 2 X and S; T 2 2N such that i 2 T � S,
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(x; S)Pi (x; T ) :

(Apa) Apathy: For all x; y 2 X and S 2 2N such that i =2 S, (x; S) Ii (y; ;) :

(Strict) Strictness: For all x; y 2 X and S; T 2 2N such that i 2 S if (1) x 6= y

or (2) x = y and #S 6= #T hold, then not (x; S) Ii (y; T ).

Gregariousness implies that adding new members to a group of users increases

users�welfare. Notice that Gregariousness does not impose any condition when

comparing two allocations with di¤erent levels of public good. In particular, Gre-

gariousness admits the possibility that agent i 2 S \ T strictly prefers (x; S) to

(x0; T ), for x 6= x0, even if S � T . Moreover, Gregariousness does not imply

anonymity: agent i 2 S \T may prefer (x; S) to (x; T ), even if #S < #T when there

exists some j 2 S but j =2 T: Hence Gregariousness restricts agents�preference to

be positively a¤ected by the enlargement of the set of users, but it also admits that

agents may have non-anonymous preferences over the set of users (i.e., agents are not

only interested in the cardinality of the set of users but also in their identities).2

Apathy says that agent i does not care about the level of the public good if

he does not use it.3 Finally, Strictness requires that agent i is never indi¤erent

between two di¤erent allocations with the properties that i is a user of at least one

of them and the two allocations di¤er either on the level of the public good and/or

on the size of its users.

A preference relation Ri satisfying these three properties is called a gregarious

preference relation and Ri denotes the set of all such preference relations for agent

i. Notice that all conditions are agent speci�c and therefore Ri 6= Rj for di¤erent

2A preference relation Ri is anonymous if for all x 2 X and S; T 2 2N such that i 2 S \ T and

#S = #T; (x; S) Ii (x; T ) :

3Note that when the public good to be chosen has some type of externality, even those members

who are not direct users may have strict preferences over which alternative has to be selected. In

these cases (Apa) turns to be too restrictive. Nevertheless in many interesting contexts, like the

provision of club goods, it seems a natural assumption.
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agents i and j. We want to stress that the set of gregarious preference relations for

agent i admits preferences with very di¤erent trade-o¤s between the selected level of

the public good and the set of its users; for instance, gregarious preference relations

Ri and R0i might well order (1) (x; fig)Pi(y;N) for x 6= y, and (2) (x; ;)P 0i (x;N). The

reason is that gregarious e¤ects might be relatively small for agent i when compared

with i�s evaluation of the alternatives. For instance, in (1) y may be considered as

being a very bad alternative compared with x; and in (2), i considers x undesirable

even if all agents use it.

A pro�le R = (R1; :::; Rn) is a n-tuple of gregarious preference relations. Let

R = R1�� � ��Rn be the set of pro�les. To emphasize the role of agent i�s preference

relation a pro�le R is represented by (Ri; R�i).

We say that an allocation (y; T ) Pareto dominates the allocation (x; S), denoted

by (y; T )PD(x; S), if (y; T )Ri (x; S) for all i 2 N and (y; T )Pj (x; S) for at least one

j 2 N .

De�nition 1 An allocation (x; S) is e¢ cient under R if it is not Pareto dominated

by any other allocation.

De�nition 2 An allocation (x; S) is stable under R if for all i 2 N :

(Internal Stability) i 2 S implies (x; S)Pi (x; Snfig).

(External Stability) i =2 S implies (x; S)Pi (x; S [ fig).

Observe that (Apa) implies that if (x; S) is internally stable then, i 2 S implies

(x; S)Pi(x; f;g). Given a pro�le R 2 R, let Z (R) denote the set of e¢ cient and stable

allocations under R. Proposition 1 below establishes the fact that for all R 2 R the

set of e¢ cient and stable allocations under R is non-empty. But �rst, we show two

preliminary results concerning e¢ cient and stable allocations. Lemma 1 says that for

each level of the public good x we can �nd a (maximal) set of users Sx for which the

allocation (x; Sx) is stable.

Lemma 1 Let R 2 R be given. For each x 2 X there exists a unique Sx 2 2N

such that (x; Sx) 2 A is stable under R while Sx is set-inclusion maximal among all
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T 2 2N where (x; T ) 2 A is stable under R. Moreover (x; Sx) Pareto dominates all

allocations (x; T ) with T 6= Sx that are stable under R:

Proof Let R 2 R and x 2 X be given. For each 1 � k � n, de�ne

Nk(x) =
�
S 2 2N j #S = k and (x; S)Pi(x; ;) for all i 2 S

	
: (1)

Namely, Nk(x) is the family of sets of users with cardinality k that satisfy internal

stability at x under R.

First, suppose

Nk(x) = ; for all k = 1; :::; n: (2)

Then, set Sx = ;: The allocation (x; ;) satis�es internal stability trivially. Since

N1(x) = ;, (x; ;) is externally stable and therefore stable under R. By (2), there

does not exist T 6= ; such that (x; T ) is stable under R: Hence, the conclusions of

Lemma 1 follow in this case.

Second, suppose there exists 1 � k � n such that Nk(x) 6= ;: Let 1 � K � n be

such that NK(x) 6= ; and for all k > K (if any), Nk(x) = ;:

Claim 1: #NK(x) = 1.

Proof of Claim 1: Assume #NK(x) > 1: Let S; S 0 2 NK(x) with S 6= S 0: By

(Greg), the de�nition of NK(x); and the facts that S  S [ S 0 and S 0  S [ S 0

hold, it follows that (x; S [S 0)Pi(x; S)Pi(x; ;) if i 2 S; and (x; S [S 0)Pi(x; S 0)Pi(x; ;)

if i 2 S 0: Hence, S [ S 0 2 Nk(x) for some k > K; contradicting the de�nition of K:

This ends the proof of Claim 1.

Let Sx be the unique set of users in NK(x):

Claim 2: (x; Sx) is stable under R.

Proof of Claim 2: Internal stability of (x; Sx) directly follows from (1). If (x; Sx)

is not externally stable, then there exists i =2 Sx such that (x; Sx [ fig)Pi(x; Sx).

By (Apa), (x; Sx)Ii(x; ;): By (Greg), (x; Sx [ fig)Pj(x; Sx) for all j 2 Sx: Hence

Sx [fig 2 NK+1(x); contradicting the de�nition of K: This ends the proof of Claim

2.

8



Claim 3: If (x; T ) is internally stable under R, then Sx � T:

Proof of Claim 3: Assume that (x; T ) is internally stable and there exists

i 2 TnSx: (3)

Consider Sx [ T: By de�nition of Sx; #Sx = K: Thus, by (3), #(Sx [ T ) > K: By

de�nition of K; SxnT 6= ;; otherwise, T 2 Nk(x) for some k > K: By (Greg) and

internal stability of (x; T ) and (x; Sx), (x; Sx [ T )Pi(x; Sx)Pi(x; ;) for all i 2 Sx and

(x; Sx [ T )Pi(x; T )Pi(x; ;) for all i 2 T: Hence, Sx [ T 2 Nk(x) for some k > K;

which is a contradiction. This ends the proof of Claim 3.

Assume (x; T ) 2 A is stable under R: Then, (x; T ) is internally stable and, by

Claim 3, Sx � T: Thus, Sx is set-inclusion maximal among all T 2 2N where

(x; T ) 2 A is stable under R:

Claim 4: Let (x; T ) be stable under R and T 6= Sx. Then, (x; Sx) Pareto dominates

(x; T ):

Proof of Claim 4: Let (x; T ) be stable under R and T 6= Sx. By Claim 3, T  Sx.

Thus, Sx 6= ;: Hence, by (Greg), (x; Sx)Pi(x; T ) for all i 2 Sx and (x; Sx)Ii(x; T ) for

all i =2 Sx: Thus, (x; Sx)PD(x; T ): This ends the proof of Claim 4 and Lemma 1. �

Observe that gregarious preference pro�les admit the possibility that the maximal

stable set of users of an alternative x is the empty set. We call the stable allocation

(x; Sx) identi�ed in Lemma 1 the stable and e¢ cient allocation relative to x, and refer

to Sx as the maximal stable set of users at x. As a direct consequence of Lemma 1,

Lemma 2 below states that if (x; Sx) is Pareto dominated, then it is Pareto dominated

by some stable (y; Sy):

Lemma 2 Let R 2 R and x 2 X be given. Assume (x; Sx) is not e¢ cient under

R. Then there exists y 2 X such that the stable allocation (y; Sy) Pareto dominates

(x; Sx):

Proof Let R 2 R and x 2 X be given. Assume that (x; Sx) 2 A is not e¢ cient

under R. There exists (y; T ) 2 A such that (y; T )PD(x; Sx). Next, we show that
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(y; T ) satis�es internal stability. Assume otherwise; namely, there exists i 2 T such

that

(y; Tnfig)Pi(y; T ): (4)

By (Apa), (y; Tnfig)Ii(y; ;): If i 2 Sx then, by internal stability of the allocation

(x; Sx), (x; Sx)Pi(x; Sxnfig) and by (Apa), (x; Sxnfig)Ii(y; ;). Hence, by (4) and tran-

sitivity, (x; Sx)Pi(y; T ): Thus, (y; T ) cannot Pareto dominate (x; Sx): If i =2 Sx then, by

(Apa), (x; Sx)Ii(y; ;). By (4), (x; Sx)Pi(y; T ) which contradicts that (y; T )PD(x; Sx):

Hence, (y; T ) is internally stable. By Claim 3 in the proof of Lemma 1 and de�nition

of Sy, either T = Sy or T  Sy: If T = Sy; then (y; Sy) is stable under R by Lemma 1

and (y; Sy)PD(x; Sx): If T  Sy; by (Greg), (y; Sy)PD(y; T ): By transitivity of the

Pareto dominance relation (y; Sy)PD(x; Sx); and the proof is completed. �

Lemmata 1 and 2 have two important consequences. First, to know whether or

not a stable allocation is e¢ cient it is enough to check that it is not Pareto dominated

by any other stable allocation. Second, given that the set of stable allocations is non-

empty, the set of stable and e¢ cient allocations is non-empty. We state this second

consequence as Proposition 1 below.

Proposition 1 For all R 2 R, Z(R) 6= ;.

Proof Let R 2 R be given. Consider any stable allocation (x; Sx) under R, whose

existence is established by Lemma 1. If (x; Sx) is e¢ cient under R, Proposition 1

follows; otherwise, by Lemma 2, there exists a stable allocation (z; Sz) under R which

Pareto dominates (x; Sx). Since X is �nite and the Pareto dominance relation is

transitive, there must exist a stable and e¢ cient allocation (y; Sy) under R. �

A social choice function is a mapping ' : R ! X � 2N selecting an allocation

for each preference pro�le. A social choice function is e¢ cient and stable if, for each

R 2 R, the allocation ' (R) is e¢ cient and stable under R.

Information about individual preference relations is often not available to the

decision-maker. In addition, the institution under which the social decision has to be
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taken may give to each agent the right to claim as one�s own any gregarious preference

relations (even if it is known that this is not the case). Therefore, if we want the choice

of the allocation to be dependent on the preference pro�le (in the appropriate way

to insure e¢ ciency and stability), we have to design a mechanism to implement an

e¢ cient and stable social choice function. But it is easy to prove that no e¢ cient and

stable social choice function is Nash implementable in the set of pro�les of gregarious

preference relations. Before stating this result we need some additional notation and

de�nitions.

A mechanism (or game form) is a pair (M;�) where M = M1 � � � � � Mn is

a Cartesian product of message spaces (one for each agent) and � : M ! A is

an outcome function. Thus, each player i submits a message mi 2 Mi and, given

(m1; :::;mn) 2 M , the allocation �(m1; :::;mn) 2 A is selected. A social choice

function ' : R ! A is Nash implementable if there exists a mechanism (M;�) such

that for all R 2 R, '(R) = �(m�
1; :::;m

�
n) for all Nash equilibria (m

�
1; :::;m

�
n) 2 M of

the induced normal form game (N; (M;�); R): A social choice function ' : R! A is

Maskin monotonic if for any R 2 R; R0 2 R; and a = '(R) such that a 6= '(R0) there

exist i 2 N and b 2 A such that aRib and bP 0ia. Maskin monotonicity is a necessary

condition for a social choice function to be Nash implementable.4

Proposition 2 No e¢ cient and stable social choice function ' : R ! X � 2N is

Nash implementable.

Proof Let ' : R ! X � 2N be an e¢ cient and stable social choice function. Take

x; y 2 X arbitrary and select any pro�le R 2 R of gregarious preference relations

with the following properties: (1) (x;N)P1(y;N)P1(z; f;g)P1(z;N) for all z 6= x; y (if

any); (2) for all i 6= 1, (y;N)Pi(x;N)Pi(z; f;g)Pi(z;N) for all z 6= x; y (if any); and

(3) for all i 2 N and S 2 2N such that S 6= N and i 2 S,

(z;N)Pi(z
0; S) for all z; z0 2 X: (5)

4See, for instance, Maskin (1999)�s original paper or Jackson (2001)�s survey on implementation

theory.
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That is, no agent wants to be a user of an alternative z 6= x; y; agent 1 prefers

alternative x to y; all other agents prefer alternative y to x, but all agents prefer to

be users of their second best alternative with the entire society than be users of their

preferred alternative with a smaller group of users. By e¢ ciency, either '(R) = (x;N)

or '(R) = (y;N):

Assume '(R) = (y;N): The case '(R) = (x;N) proceeds similarly. Consider

now the gregarious preference relation R01 2 R1 with the following properties: (1)

for all y0 2 X and all S; S 0 2 2N such that 1 2 S \ S 0, (y; S)P 01(y0; S 0) if and only

if (y; S)P1(y0; S 0); and (2) (x;N)P 01(z; ;)P 01(z;N) for all z 6= x. Thus, agent 1 does

not want to use the public good at any level z 6= x, regardless of the set of its users.

Hence, by stability, if '(R01; R�1) = (z; S) with z 6= x then 1 =2 S: Therefore, by

e¢ ciency and (5), '(R01; R�1) = (x;N). Thus, Maskin monotonicity is violated since

(x;N) is the best alternative for agent 1 according to R1 and R01.

Thus, the e¢ cient and stable social choice function ' is not Nash implementable.

�

Before �nishing this section, three remarks are in order.

Remark 1 A natural question is to ask if the non-resolute allocation rule Z which,

at each preference pro�le R; selects the set of stable and e¢ cient allocations Z(R)

is Maskin monotonic.5 The answer is negative and follows from the observations

that in the proof of Proposition 2, Z(R) = f(y;N); (x;N)g, Z(R01; R�1) = f(x;N)g

(i.e., (y;N) 2 Z(R) and (y;N) =2 Z(R01; R�1)), and for all (z; S) 2 A such that

(y;N)R1(z; S) it holds that, by condition (1) in the de�nition of R01, (y;N)R
0
1(z; S):

Remark 2 Jackson and Nicolò (2004) showed that, in the continuous version of

our model, there are no strategy-proof, e¢ cient, internally stable, and outsider inde-

pendent social choice functions on the anonymous domain of gregarious and single-

5A social choice correspondence  : R � A is Maskin monotonic if for all R;R0 2 R and all

a 2  (R) such that a =2  (R0) there exist i 2 N and b 2 A such that aRib and bP 0ia.
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peaked preference relations.6 Since negative implementation results on smaller do-

mains are stronger, observe that the preference pro�le R 2 R and the preference

relation R01 2 R1 used in the proof of Proposition 2 are anonymous and might be

single-peaked. Hence, the proof of Proposition 2 shows that any e¢ cient and stable

social choice function de�ned on the anonymous domain of gregarious and single-

peaked preference relations is not Nash implementable.

Remark 3 All the results contained in this section, namely Lemmata 1 and 2 and

Propositions 1 and 2, have been proved without using (Strict), and therefore they

hold without assuming that preferences satisfy this property. In particular, in the

proof of the impossibility result of Proposition 2 we use pro�les R and (R01; R�1)

with strict preferences. If we enlarge the domain of pro�les by admitting also pref-

erence relations satisfying (Greg) and (Apa) but not necessarily (Strict), the

impossibility result still holds since the pro�les R and (R01; R�1) remain in the en-

larged domain. However, (Strict) is a necessary property in order to obtain positive

subgame-perfect implementation results, as Example 5 in Subsection 4.2 will show.

3 The Implementation

3.1 SPNE Implementation: Preliminaries

Given the impossibility to implement any e¢ cient and stable social choice function

as Nash equilibria of a game in normal form, we now address the natural question of

whether or not it is possible to implement some of them as Subgame Perfect Nash

6A social choice function ' : R ! X � 2N is outsider independent if for all i 2 N; R 2 R and

R0i 2 Ri, if i =2 S [ S0 where (x; S) = '(R) and (x0; S0) = '(R0i; R�i), then '(R) = '(R0i; R�i).

Assume X is endowed with a linear order <. A preference relation Ri 2 Ri is single-peaked if

there exists p (Ri) 2 X such that for all x; y 2 X

y < x � p (Ri) or p (Ri) � x < y implies (x; S)Pi (y; S) ,

for all S 2 2N such that i 2 S.
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Equilibria (SPNE) of a game in extensive form. Our aim is not only to prove that

an e¢ cient and stable social choice function can be implemented in our preference

domain, but also to show that it can be implemented by means of a simple mechanism.

Hence, we do not look at those general games proposed by Moore and Repullo (1988),

Abreu and Sen (1990), and Vartiainen (2005 and 2006), who �nd general results

for SPNE implementation, but we directly propose a mechanism that can be easily

implemented in real collective decision problems within our framework.

However, it is interesting to note that the no veto power property (that together

with Condition � and n � 3 is one of the su¢ cient conditions for SPNE implemen-

tation in Moore and Repullo (1988) and Abreu and Sen (1990)) does not hold in our

setting. A social choice function ' : R! X�2N satis�es the no veto power condition

if, whenever some allocation (x; S) 2 X�2N is top-ranked for at least n�1 agents at

pro�le R 2 R then '(R) = (x; S): It is easy to see that the no veto power condition is

incompatible with internal stability. Free participation, in fact, must be guaranteed

even if all the other agents have a common preferred allocation, which might require

that the set of users be the full set of agents.

The structure of the problem (the social choice has two components: the level of

the public good and the set of its users) as well as previous results in similar frame-

works (see Jackson and Nicolò (2004) and Bogomolnaia and Nicolò (2005)) suggest

that in order to achieve e¢ ciency and stability the selection of the alternative to be

chosen and the group of its users must be separated. Therefore a two-stage mech-

anism seems to be a natural way to implement an e¢ cient and stable social choice

function. Observe that mechanisms constructed to prove general SPNE implementa-

tion results are unbounded and in�nite. They contain, for instance, integer subgames

(without Nash equilibria) or large out-of-equilibrium penalties. In contrast, our pro-

posed mechanism has the following simple features: each player has a �nite set of

choices and strategies, out-of-equilibrium penalties may be (in�nitely) small, and all

subgames have Nash equilibria.
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3.2 Maximal Participation

Among the set of e¢ cient and stable allocations we will be specially interested in

those that have the largest set of users. Given R 2 R, de�ne

MP (R) = f(x; S) 2 Z(R) j #S � #T for all (y; T ) 2 Z(R)g :

Observe that since Z(R) is non-empty and �nite, MP (R) 6= ; for all R 2 R. We will

refer to the set MP (R) as the e¢ cient and stable set with maximal participation. In

our setting there is a minimum level of welfare that any agent i can secure; this is the

level that i obtains in any allocation (x; S) where i =2 S: In fact, stability guarantees

that each agent can always refuse to use the public good and, by (Apa), all allocations

where agent i is not a user are indi¤erent for him. Maximality hence guarantees that

the �nal allocation minimizes the number of agents with the minimum level of welfare.

Therefore, it is a normative property inspired by a rawlsian maxmin principle.

Since the maximal participation setMP (R)might have several allocations we need

a selection rule on A: Since (x; S); (y; T ) 2 MP (R) and (x; S) 6= (y; T ) imply x 6= y,

it is enough to have a rule to select an alternative from each subset of alternatives.

Let � be a linear order (complete, transitive and antisymmetric binary relation) on

X: Given a non-empty subset C 2 2Xnf;g, we denote by � (C) the maximizer of �

on C; namely, � (C) = x; where x 2 C and for all y 2 C; y 6= x; x � y: We set

�(;) =�(X):

3.3 The Mechanism and the Main Result

The mechanism we propose is a two-stage game. In the �rst stage agents make

a proposal sequentially, according to the order 1; :::; n, and publicly.7 A proposal

consists of an alternative and a positive integer (smaller or equal to n) that indicates

the cardinality of the group of users according to the proposer�s view. Agents can

7We will later argue that the unique SPNE outcome of the game is invariant with respect to the

order in which players move along the game.
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make a new proposal only if they announce either a new alternative with an equal

or greater cardinality of the group of users or the same alternative with a strictly

greater cardinality. They can also pass the turn and not make any proposal. The

order is iterated until either all agents have decided to not make a new proposal, or

there are no more feasible proposals left.8 Each proposer has to burden a cost if none

of her proposals has been selected. The alternative with the largest group of users

is selected (in case there are more than one, the chosen alternative is the maximizer

of � on this set). In the second stage, agents sequentially announce (knowing the

outcome of the �rst stage) whether they want to be users of the selected alternative

or not. If the number of agents who accept to be users is equal or higher than the

number announced by the agent who made the proposal in the �rst stage, then the

�nal allocation is the selected alternative and the set of agents who accepted to be

users in the second stage. Otherwise, the �nal allocation is (� (;); ;). If the agent

who made the accepted proposal at Stage 1 is not a �nal user, he burdens a (larger)

cost: We now de�ne the mechanism formally.

� Stage 1:

� Step 1: agent 1 proposes either p1 = (x1; k1) 2 X � f1; :::; ng � A or does

not propose anything (identi�ed as the proposal p1 = (NP; 0)).

Assume that m proposals p1; :::; pm have already been made. De�ne

A(p1; :::; pm) = fpq j pq = (xq; kq) 2 A for some 1 � q � mg:

� Stepm+1: agent i = (m+1) [modn] proposes either pm+1 = (xm+1; km+1) 2

AnA(p1; :::; pm) such that km+1 � max fk1; :::; kmg or does not propose any-
8To iterate the order 1; :::; n we proceed as follows. It is easy to check that each positive integer

m 2 N can uniquely be written as m = tn + r for some t 2 N[f0g and 1 � r � n. De�ne this

number as r � m[modn]. Then, agent r (where r is between 1 and n) is the agent who has to make

a proposal in step m.
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thing (pm+1 = (NP; 0)).9

If after the �rst n steps all agents proposed (NP; 0) then the game ends

with the outcome (� (;); ;). Otherwise, let m > 1 be the step where

pm = (xm; km) 2 A and pm+1 = � � � = pm+n�1 = (NP; 0). Then, Stage 1

�nishes at step m+ n� 1:

Given p1; :::; pm; de�ne

x̂ =�(fx 2 X j 9 1 � q � m s.t. pq = (x; k) and k = kmg):

Set k̂ = km and {̂ = q [modn] where 1 � q � m is such that pq = (x̂; k̂):

Then, the outcome of Stage 1 is (x̂; k̂; {̂) 2 A�N ; namely, a proposal (x̂; k̂)

and its proposer {̂.

Each proposer has to burden an "0-cost if none of her proposals is the

selected one at Stage 1, (x̂; k̂):10

� Stage 2: Each agent j, knowing the outcome (x̂; k̂; {̂) 2 A � N of Stage 1 and

the decision of j�s predecessors in Stage 2, announces sequentially (following the

same order 1; :::; n) whether he/she wants to use (denoted by u) or not to use

(denoted by nu) the public good at level x̂.

The �nal set of users of x̂ is the set of agents who have announced to be willing

to be a user, only if this set contains at least k̂ agents; otherwise, no agent uses

x̂. Agent {̂; who made the proposal (x̂; k̂) in Stage 1, has to burden a "00�cost,

worse than the "0�cost of Stage 1, if he is not a user of x̂; i.e., either (x̂; ;) is

selected, and/or {̂ announced nu.

Before stating the main result of the paper, three general comments on the mech-

anism are appropriate. First, the equilibrium outcome of the game is invariant with
9Observe that, at Step m + 1, if (x; k) has already been proposed at earlier steps and k = km,

the current proposer can propose (z; k) if it has not been proposed yet and z 6= x, but he/she can

not propose again (x; k).

10See Subsection 4.1 for a discussion on the "-costs.
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respect to the order in which players move along the game (see Corollary 2 in Subsec-

tion 5.4). Second, stability imposes a strong restriction on the set of feasible mech-

anisms. In ours, Stage 2 makes sure that the outcome is a stable allocation. Stage

1, then, has to be designed in order to satisfy maximal participation and e¢ ciency

in the selection of the alternative. Third, the use of a liner order � as a tie-breaking

rule is necessary to guarantee that the implemented (in SPNE) social choice func-

tion ' : R ! A treats agents symmetrically, but it makes the social choice function

not neutral. Neutral social choice functions could be easily constructed (as well the

mechanisms to implement them). However a unique selection should be obtained

by breaking the ties in the maximal participation set by means of an asymmetric

treatment of the agents. Example 1 clari�es these points.

Example 1 Let X = fx; yg, N = f1; 2g and consider any two preference pro�les

R;R0 2 R such that11

(x; f1; 2g)P1 (x; f1g)P1 (x; f;g)P1 (y; f1; 2g)

(y; f1; 2g)P2 (y; f2g)P2 (y; f;g)P2 (x; f1; 2g)

(y; f1; 2g)P 01 (y; f1g)P 01 (y; f;g)P 01 (x; f1; 2g)

(x; f1; 2g)P 02 (x; f2g)P 02 (x; f;g)P 02 (y; f1; 2g) :

Assume x � y: The unique SPNE of our mechanism is (x; f1g) at pro�le R (in Stage

1, agent 1 proposes (x; 1) and agent 2 does not propose anything), and (x; f2g) at

pro�le R0 (in Stage 1, agent 1 does not propose anything and agent 2 proposes (x; 1)):

Observe that (i) in both cases to not propose (y; 1) is part of the equilibrium since

x � y and the proposer would burden a cost for proposing (y; 1); if y � x the unique

SPNE outcome would be (y; f2g) at pro�le R and (y; f1g) at pro�le R0; (ii) the

SPNE outcome in all the cases would be the same if agents play in the inverted order

2; 1; (iii) the social choice function that chooses (x; f1g) at pro�le R and (y; f1g) at

pro�le R0 does not treat agents symmetrically. This neutral social choice function

11We only list the relevant parts of the preference relations.
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could be implemented by a slight modi�cation of the mechanism in which in Stage

1 each agent makes a unique announcement according to the order 1; 2; and agent

2�s proposal, if any, has to contain a positive integer (the cardinality of the group of

users) strictly larger than the previously announced. Note that the fact that the social

choice function does not treat agents symmetrically, is re�ected by the undesirable

feature that the SPNE outcome of the mechanism now depends on the order in which

agents play. �

The mechanism de�nes a �nite extensive-game form with perfect information.

Denote it by �: Now, given a preference pro�le R 2 R, let � (R) be the �nite game in

extensive form with perfect information (the extensive-game form played by agents

that evaluate outcomes according to the preference pro�le R). The main result of the

paper states that the game in extensive form �(R) has a unique SPNE outcome which

is a stable and e¢ cient allocation in the set with maximal participation. Formally,

Theorem 1 Let R 2 R be given. The game in extensive form �(R) has a unique

SPNE outcome that belongs to the e¢ cient and stable set with maximal participation.

Proof See Subsection 5.3 in the Appendix at the end of the paper.

Before moving to the next section, we want to emphasize that no agent has to

burden any cost in equilibrium (see Lemma 6 in Subsection 5.4).

4 Final Remarks

4.1 Ordinal Penalties

The only restriction we impose on the "�costs we use as out-of-equilibrium threats

is that the "00�cost burdened at Stage 2 by the proposer who is not a �nal user be

worse than the "0�cost burdened by the proposers if none of their proposals has been

accepted (see Example 4 below). Apart from this restriction, no other one is imposed;

in particular, to be consistent with our ordinal setting, they may be non-transferable.
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But, if we embed the ordinal setting into a cardinal one, these costs can be interpreted

as monetary �nes (potentially, in�nitely small). They are only used in the proof of

our main result to take away from agents the unsubstantial incentives (which exist

due to indi¤erences) of making a proposal that has no e¤ect to themselves (because,

independently of whether or not this proposal is made, the proposer will not use the

�nally chosen alternative), yet the proposal has in�uence on the outcome of Stage 1.

In our proofs we assume that these costs never induce a preference reversal between

two allocations and therefore, the negative result for Nash implementation still holds.

We have chosen to avoid a formal treatment of these problems in the previous sections.

This would require either to have a cardinal setting or to deal explicitly with these

"-costs in the ordinal setting. We provide here a sketch of how to deal with them

when preferences are ordinal.

Let N = f1; :::; ng be the set of agents, X be the �nite set of levels of a public good

(or social alternatives), and E = f;; "0; "00g be a set of three levels of a private object,

that can be interpreted as a �ne. An allocation is a triple (x; S; e) 2 ~A � X�2N�En,

where x 2 X is the level of the public good, S 2 2N is the subset of its users and

e = (e1; :::; en) 2 En is a n-dimensional vector where ei = " 2 f"0; "00g indicates that

agent i has to burden the corresponding "�cost and ei = ; indicates that he does

not. The preference relation of agent i 2 N over the set of allocations ~A, denoted by

~Ri, is a complete, re�exive and transitive binary relation, which satis�es the following

additional restrictions.

(PC) Private Cost: For all x 2 X, S 2 2N , and e 2 En,

(x; S; (e�i; ;)) ~Pi (x; S; (e�i; "0)) ~Pi (x; S; (e�i; "00)) :

(NPR) No Preference Reversal: For all x; y 2 X and S; T 2 2N , if (x; S; e) ~Pi (y; T; e)

for some e 2 En; then (x; S; e) ~Pi (y; T; e0) for all e0 2 En:

Assume that ~R = ( ~R1; :::; ~Rn) satis�es (PC) and (NPR) for all i 2 N . Then,

we can de�ne a restricted allocation set, A � X � 2N , and focus, without loss of
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generality, on the restricted preference pro�le R = (R1; :::; Rn) 2 R, where for each

i 2 N , Ri is the preference relation on the set A induced (in the obvious way) by ~Ri.

Condition (NPR) is a reasonable assumption because the set of levels of the public

goodX is �nite. From the implementation point of view it means that the mechanism

designer, who knows the set of gregarious preference relations Ri over A = X � 2N

for each i 2 N , is able to �nd two private objects "0 and "00 (which are not necessarily

a monetary �ne) guaranteeing that (NPR) holds for all agents�preference relations.

4.2 Extensive-Game Form

Our mechanism is less simple than we would like. First, in Stage 1 the order in which

agents make proposals has to be iterated until all remaining n�1 agents do not make

new proposals (if j reacts to i�s proposal, for i 6= j, i should still be able to counteract).

Second, proposers have to burden a "0�cost in the case that none of their proposals

has been selected at Stage 1, and the proposer {̂ of the chosen proposal at Stage 1

burdens a "00�cost if he is not a �nal user.12 In the following examples we show that

these features are indispensable. In each example we consider the extensive-game

form described in Section 3, except that we remove from the original extensive-game

form one of these features.

Example 2 (The order of proposals in Stage 1 is not iterated) Let X = fx; y; zg,

N = f1; 2g, and consider the linear order x � y � z: Take any R 2 R such that

(z; f1g)P1 (x; f1g)P1 (y; f;g)P1 (y; f1; 2g)

and

(y; f2g)P2 (z; f;g) I2 (x; f;g)P2 (z; f1; 2g)P2 (x; f1; 2g) :

Observe that Z(R) = f(z; f1g) ; (y; f2g)g : It is easy to check that the unique SPNE

outcome of our game is the allocation (z; f1g) and that the same result holds if the
12The idea of using either small penalties or awards in implementation theory is not new (see Abreu

and Mastushima (1994) for penalties and Benoit and Ok (2004) and Sanver (2006) for awards).
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order in which players move is inverted.

Consider our mechanism, except that Stage 1 is played without iteration. The

unique SPNE outcome is the ine¢ cient allocation (x; f1g): Fix now the order 2; 1.

Then, the unique SPNE outcome of the game without iterating the order 2; 1 in

Stage 1 is the allocation (z; f1g): Hence, without the iteration of the order in which

proposals are made in Stage 1 the SPNE outcome might depend on the exogenously

given order, and more importantly, it might be ine¢ cient. �

Example 3 (To make a proposal is never costly) Let X = fx; y; zg, N = f1; 2g, and

consider again the linear order x � y � z. Take any R 2 R such that

(y; f1g)P1 (z; f;g) I1 (x; f;g)P1 (z; f1; 2g)P1 (x; f1; 2g)

and

(z; f2g)P2 (x; f2g)P2 (y; f;g)P2 (y; f1; 2g) :

Observe that Z(R) = f(y; f1g) ; (z; f2g)g : The allocation (z; f2g) is a SPNE outcome

of the game since there exists a SPNE in which agent 1 does not propose anything

in Stage 1 and agent 2 announces (z; 1) at step 2 of Stage 1. However, now, the

ine¢ cient allocation (x; f2g) is also a SPNE outcome of the game since there exists

another SPNE in which agent 1 �rst announces (y; 1) and then agent 2 announces

(x; 1). �

Example 4 (The proposer who is not a �nal user does not burden a "00�cost or

the "00�cost is not worse than the "0�cost) Let X = fx; y; zg and N = f1; 2; 3g

and consider the linear order x � y � z. Consider the preference pro�le R =

(R1; R2; R3) 2 R where

(x; f;g)P1 (x; fNg)P1 (y; fNg)P1 (z; fNg) ;

(z; f2g)P2 (y; f;g) I2 (x; f;g)P2 (y; fNg)P2 (x; fNg) ;

and

(y; f3g)P3 (x; f3g)P3 (z; f;g)P3 (z; fNg) :
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The SPNE of the game we propose is the allocation (y; f3g). To make the argument

more transparent assume that the "�costs are cardinal. Suppose "00 = 0; that is, the

proposer at Stage 1 who is not a �nal user does not burden any cost. Then, there is a

SPNE in which agent 1 proposes (x; 1) in Stage 1, no other agent proposes anything

else (since � (C) = x if x 2 C). Therefore, the �nal SPNE outcome is the ine¢ cient

allocation (x; f3g):

Consider now the case 0 < "00 < "0. Then, the SPNE outcome is the allocation

(z; f2g) : In fact, agent 2 can play a strategy with the following features:

f2(p1) =

8<: (z; 1) if p1 = (NP; 0)

(NP; 0) otherwise,

and

f5(p1; p2; p3; p4) =

8>>><>>>:
(x; 3) if p2 = (z; 1) and there exists 2 < m � 4 such that

pm 6= (NP; 0) and (x; 3) 2 AnfA(p1; p2; p3; p4)g

(NP; 0) otherwise.

Note that to play p5 = (x; 3), under the speci�c circumstances, is a credible threat

that prevents player 3 to propose (y; 1) at step 3 because "00 < "0: once agent 3

proposes (y; 1) agent 2 prefers to propose (x; 3) than proposing (NP; 0), since he has

to burden the "00�cost instead of the "0�cost. It is easy to see that the SPNE outcome

in this case also depends on the exogenously given order; if agents play according to

the order 3,2,1, the SPNE outcome is the allocation (y; f3g). �

Our last example shows why (Strict) is necessary in order to obtain positive

subgame-perfect implementation results.

Example 5 (Agents�preference relations admit indi¤erences) Let X = fx; yg, N =

f1; 2g ; and consider the linear order x � y. Take any R 2 R such that

(x; f1; 2g)P1 (x; f1g)P1 (y; f;g)P1 (y; f1; 2g)

and

(x; f1; 2g) I2 (x; f;g)P2 (y; f1; 2g) :
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The unique e¢ cient and stable allocation is (x; f1; 2g), but the allocation (x; f1g) is a

SPNE outcome. In fact, there exists a SPNE strategy in which agent 1 proposes (x; 1)

and at Stage 2, agent 2 chooses not to be a user in all information sets. Finally, note

that an alternative to (Strict), which restores the positive implementation result, is

to assume that in case of indi¤erence between the outcomes of two di¤erent actions,

all agents always choose the action that induces the Pareto optimal outcome. But

this is ad hoc since it has no individual strategic justi�cation. �

4.3 Neutrality

The SPNE outcome of the game depends on the liner order � used to select a single

alternative for each possible subset of alternatives. It is natural to ask whether it is

possible to implement the social choice correspondence  : R � A, where for each

R 2 R,  (R) = MP (R): The answer is positive and easy for the case n � 3: Let H

be the set of all possible linear orders. Add a preliminary stage in the extensive-game

form in which all agents simultaneously announce some �2 H: Given R 2 R, if at

least n � 1 agents announce the same � then they play the game ��(R) with the

linear order �; otherwise, the game ��0(R) is played with a pre-speci�ed linear order

�0 : It is straightforward to check that, for all R 2 R, the set of SPNE outcomes of

this enlarged game coincides with the set MP (R).

4.4 Group Stability

Our notion of stability refers to individual decisions. According to our de�nition a

stable allocation is, in fact, a Nash equilibrium outcome of the game played once

the public alternative is already selected (see Berga, Bergantiños, Massó, and Neme

(2006) for more on this interpretation). We now want to establish the relationship

between the set of e¢ cient and stable allocations under R and the set of group stable

allocations under R. We �rst state the de�nition of group stability.

De�nition 3 An allocation (x; S) is group stable under R if:
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(Internal Group Stability) There does not exist T � S such that, for all i 2 T ,

(x; SnT )Pi(x; S);

(External Group Stability) There does not exist T � NnS such that, for all

i 2 T , (x; S [ T )Pi(x; S):

Lemma 3 Let R 2 R be given. An allocation (x; S) is group stable under R if and

only if it is stable under R and e¢ cient relative to x:

Proof Let (x; Sx) be stable under R and e¢ cient relative to x. Assume that

there exists T � NnSx such that, for all i 2 T , (x; Sx [ T )Pi(x; Sx): Thus, T 6=

;. By (Greg), for all i 2 Sx; (x; Sx [ T )Pi(x; Sx): Hence, for all i 2 Sx [ T ,

(x; Sx [ T )Pi(x; Sx): This contradicts Lemma 1. By (Greg), and because, by inter-

nal stability, (x; Sx)Pi(x; ;) for all i 2 Sx; group internal stability of (x; Sx) follows.

Let (x; S) be group stable under R: By de�nition, (x; S) is stable under R: If

S 6= Sx; by Lemma 1, #S < #Sx: For all i 2 SxnS � T; (x; S [ T )Pi(x; S): Hence,

external group stability is violated. Thus, S = Sx and (x; S) is stable and e¢ cient

relative to x. �

5 Appendix

In the �rst two subsections of this Appendix we describe formally strategies and

outcome functions of the game in extensive form �(R). Subsection 5.3 contains the

proof of Theorem 1 as well as its Corollary stating that the order in which agents take

decisions along the game does not a¤ect its SPNE outcome. Lemma 6, in Subsection

5.4, states that no agent has to burden any "�cost in equilibrium.

5.1 Strategies

A consumption strategy of agent i in Stage 1 is a choice of a feasible proposal at each

of his information sets. Since the order in which agents make proposals along the
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game and proposals are public, each information set consists of a unique node that

can be identi�ed with the history of earlier proposals. Form � 1; let hm = (p1; :::; pm)

be a history of m proposals and let Hm be the set of all possible histories of length

m. Set h0 = ; and H0 = fh0g : Observe that agent i plays at step i; given a history

of length i� 1; and agent i may have to play at steps k �n+ i; for 1 � k � K;13 given

a history of length k � n+ i� 1: For each m � 1 and hm = (p1; :::; pm) 2 Hm; de�ne

P (hm) =
�
pm+1 = (xm+1; km+1) 2 AnA(hm) j km+1 � km

	
[ f(NP; 0)g

as the set of feasible choices at step m + 1 available to agent (m + 1) [modn] given

the history hm (see Subsection 3.3 for the de�nitions of A and A(hm)). Hence, a

consumption strategy fi for agent i is a feasible choice for each possible history;

namely,

fi :
KS
k=0

Hk�n+i�1 ! A [ f(NP; 0)g ;

with the property that for all hm 2
KS
k=0

Hk�n+i�1; fi(h
m) 2 P (hm): Let Fi be the set

of consumption strategies of agent i in Stage 1.

Assume that the outcome of Stage 1 is (x̂; k̂; {̂) 2 A�N .14 In Stage 2, and after

knowing (x̂; k̂; {̂), agents decide sequentially whether or not they would like to use

the public good at level x̂ with at least k̂ users. The set of participation strategies of

agent i at the subgame starting at (x̂; k̂; {̂) 2 A�N , �(x̂; k̂; {̂), is the set of functions

Bi(x̂; k̂; {̂) =
n
bi[x̂; k̂; {̂] : 2

fj2N jj<ig ! fu; nug
o
;

where bi[x̂; k̂; {̂] (S) speci�es agent i�s willingness to use the public good at level x̂

(when {̂ made the proposal (x̂; k̂) and k̂ users are necessary), given that the set

S 2 2fj2N jj<ig of agents have already announced that they are willing to do so, and

the set fj 2 N jj < ig nS of agents have announced that they are not. Let Bi =

13K � n �#X is the maximal number of times that a player may have to play.
14Note that if after the �rst n steps all agents proposed (NP; 0) the game does not move to Stage

2 and ends with the outcome (�(;); ;).
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S
(x̂;k̂;̂{)2A�N Bi(x̂; k̂; {̂) denote the set of participation strategies of agent i in Stage

2 and let bi be a generic element of this set. Let Gi = Fi � Bi denote the set of

strategies of agent i. A strategy pro�le g = (f; b) 2 F � B is a n-tuple of strategies,

where F = F1 � � � � � Fn and B = B1 � � � � �Bn. Let G = G1 � � � � �Gn be the set

of strategy pro�les.

5.2 Outcome Functions

Given a consumption strategy pro�le f 2 F , let pm(f) be the proposal made by agent

m [modn] according to f at step m of Stage 1, and let M be the last step of Stage 1.

Let h(f) = (p1(f); :::; pM(f)) be the history generated by f . The outcome of Stage 1

is

o1(f) =

8>><>>:
(�(;); ;) if h(f) = ((NP; 0); :::; (NP; 0)| {z }

n�times

)

(x̂; k̂; {̂) otherwise,

where (x̂; k̂; {̂) is de�ned in the obvious (but tedious) way. Given a consumption

strategy pro�le f 2 F de�ne, for each agent i 2 N ,

"1(f)i =

8<: "0 if 9 1 � m �M s.t. i = m [modn] ; pm(f) 6= (NP; 0), and i 6= {̂

0 otherwise;

namely, "1(f)i = "0 means that agent i has made some proposal and none of them

has been selected, and therefore i has to burden the "0�cost.

Let (x̂; k̂; {̂) 2 A � N be the outcome of Stage 1. Given the participation strat-

egy pro�le b 2 B; de�ne recursively (in the obvious and tedious way) the indicator

function of the decision of agent j in the subgame starting at (x̂; k̂; {̂) as

�j(b[x̂; k̂; {̂]) =

8<: 1 if agent j announced u

0 if agent j announced nu.

Let S(b[x̂; k̂; {̂]) � fj 2 N j �j(b[x̂; k̂; {̂]) = 1g be the set of agents that announced their

willingness to be a user along the play generated by the participation strategy pro�le
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b[x̂; k̂; {̂]. Then, the outcome of Stage 2 starting at (x̂; k̂; {̂) generated by b[x̂; k̂; {̂] is

o2(b[x̂; k̂; {̂]) =

8<: (x̂; S(b[x̂; k̂; {̂])) if #S(b[x̂; k̂; {̂]) � k̂

(x̂; ;) otherwise;

that is, the set of �nal users is the set of agents who announced u, S(b[x̂; k̂; {̂]), as

long as its cardinality is larger or equal than k̂; otherwise, no agent becomes a user.

Moreover, de�ne

"2(b[x̂; k̂; {̂]) =

8<: "00 if either o2(b[x̂; k̂; {̂]) = (x̂; ;) or � {̂(b[x̂; k̂; {̂]) = 0

0 otherwise;

namely, "2(b[x̂; k̂; {̂]) = "00 indicates that agent {̂ (who proposed (x̂; k̂)) is not a �nal

user of the public good, and therefore {̂ has to burden the "00�cost.

Finally de�ne the outcome function o : G! A of the overall extensive-game form

� as follows. For each (f; b) = ((f1; b1) ; :::; (fn; bn)) 2 G,

o (f; b) =

8<: o2(b[o1(f)]) if o1(f) 6= (�(;); ;)

(�(;); ;) otherwise.

Additionally, to keep track of who has to burden a "�cost, given a strategy pro�le

(f; b) 2 G, de�ne, for each i 2 N ,

"i(f; b) =

8<: "2(b[o1(f)]) if i = {̂, where {̂ is s.t. o1(f) = (x̂; k̂; {̂)

"1(f)i otherwise.

5.3 Proof of Theorem 1

Let R 2 R be given. The game �(R) is a �nite game in extensive form with perfect

information. Hence, it has at least a SPNE in pure strategies.

First, we prove that for any outcome (x̂; k̂; {̂) of Stage 1, the subgame �(x̂; k̂; {̂)

has a unique SPNE outcome which can be easily identi�ed (Lemma 4). Second, we

prove Theorem 1 by arguing that the game �(R) has a unique SPNE outcome and

by showing that it satis�es the desirable properties; i.e., if (f; b) is a SPNE of �(R)

then, o(f; b) 2MP (R).
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Lemma 4 Let R 2 R be given. For each outcome (x̂; k̂; {̂) 2 A � N of Stage 1, the

subgame �(x̂; k̂; {̂) has a unique SPNE outcome. Moreover, for every SPNE partici-

pation strategy pro�le b[x̂; k̂; {̂] of �(x̂; k̂; {̂),

o2(b[x̂; k̂; {̂]) =

8<: (x̂; Sx̂) if #Sx̂ � k̂

(x̂; ;) otherwise,

where Sx̂ is the maximal stable set of users at x̂.

Proof Let b[x̂; k̂; {̂] be a SPNE of �(x̂; k̂; {̂): Consider agent n and let T 2 2fj2N jj<ng

be an arbitrary information set of agent n. By (Strict), agent n orders strictly the

two allocations (x̂; ;) and (x̂; T [ fng) : We distinguish between two cases.

Case 1: #(T [ fng) � k̂:

If (x̂; ;)Pn (x̂; T [ fng) then bn[x̂; k̂; {̂](T ) = nu and the SPNE outcome of the sub-

game starting at T is equal to (x̂; ;) if #T < k̂ or equal to (x̂; T ) if #T � k̂.

If (x̂; T [ fng)Pn (x̂; ;) then bn[x̂; k̂; {̂](T ) = u and the SPNE outcome of the subgame

starting at T is equal to (x̂; T [ fng) :

Case 2: # fT [ f(n)gg < k̂:

Then, any SPNE outcome of the subgame starting at T is equal to (x̂; ;).

Thus, by the backwards induction principle, we can replace the information set

T of agent n by the unique outcome previously identi�ed. Following the induction

argument we obtain the uniqueness of the SPNE outcome of the subgame �(x̂; k̂; {̂).

Moreover, it is straightforward to check that for all i 2 N; �i(b[x̂; k̂; {̂]) = 1 if and only

if i 2 Sx̂. Therefore, o2(b[x̂; k̂; {̂]) has the desired property. �

Proof of Theorem 1 Let (f; b) be a SPNE of �(R) and let o(f; b) � (x; S) 2 A be

its outcome. We �rst state two claims without proof.15

Claim 1 If i =2 S then "i(f; b) = 0.
15Claims 1 and 2 are immediately implied by the fact that (f; b) is a SPNE of �(R). In particular,

they hold because each agent i has always available the strategy consisting of never making a proposal

in Stage 1 and declaring nu in Stage 2; regardless of the other agents�behavior.
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Claim 2 For all i 2 N; (x; S)Ri(x; ;):

De�ne ES(R) = f(y; Sy) 2 A j (y; Sy) is stable and e¢ cient relative to yg and

MES(R) = f(y; Sy) 2 ES(R) j #Sy � #Sz for all z 2 X such that (z; Sz) 2 ES(R)g:

Observe that MP (R) � MES(R) for all R 2 R: Let L = #Sy, where y is any

alternative such that (y; Sy) 2 MES(R): Assume R is such that L = 0. Then, the

set of e¢ cient and stable allocations with maximal participation is the set MP (R) =

MES(R) = f(y0; S 0) 2 A j y0 2 X and S 0 = ;g: By Claims 1 and 2, (x; S) = (�

(;); ;): Thus, o(f; b) = (x; S) 2 MP (R): Thus, the statement of Theorem 1 holds

when L = 0: In the rest of the proof we will assume that R is such that L � 1: We

�rst show that (x; S) 2MES(R): Assume otherwise; i.e.,

(x; S) =2MES(R): (6)

Let y = �(fz 2 X j (z; Sz) 2MES(R)g): We distinguish between two cases.

Case 1: Suppose o1(f) = (� (;); ;); namely, h(f) = ((NP; 0); :::; (NP; 0)| {z })
n�times

: Since

L � 1; there exists i 2 Sy such that (y; Sy)Pi(� (;); ;). Consider agent i�s deviation
~fi from f such that ~fi is equal to fi in all histories except in the history hi�1 =

((NP; 0); :::; (NP; 0)| {z }
(i�1)�times

); where ~fi(h
i�1) = (y;#Sy) and ~fi(h

m0�1) = (NP ; 0) for all

m0 > i with i = m0[modn]: If o(( ~fi; f�i); b) = (y; Sy) then ~fi is a pro�table deviation,

contradicting that (f; b) is a SPNE of �(R): Hence, o(( ~fi; f�i); b) 6= (y; Sy). By

de�nition of y and Lemma 4, o(( ~fi; f�i); b) = (z; ;). Thus, there exist agent j 6= i

and step m > i with the properties that j = m[modn], pm( ~fi; f�i) 6= (NP; 0) and

pm+1( ~fi; f�i) = � � � = pm+n�1( ~fi; f�i) = (NP; 0): Hence, "j(( ~fi; f�i); b) = "00; since j

made the �nal proposal and j is not a user in the allocation (z; ;). Thus, j is not

best replying in the history hm�1 = (p1( ~fi; f�i); :::; pm�1( ~fi; f�i)), contradicting that

f is a SPNE of �(R).

Case 2: Suppose o1(f) = (x; q; j): By Lemma 4 and Claim 1, o(f; b) = (x; Sx)

with #Sx � 1: Our contradiction hypothesis (6) implies #Sx < #Sy: Then, there
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exists i 2 SynSx such that (y; Sy)Pi(x; Sx): Let m be the step such that pm+1(f) =

� � � = pm+n�1(f) = (NP; 0) and let m0 the last step in which agent i plays at Stage

1; i.e., m � m0 � m + n � 1 and i = m0[modn]: Consider agent i�s deviation ~fi

from f such that ~fi is equal to fi in all histories except in the history ~hm
0�1; where

~fi(~h
m0�1) = (y;#Sy) and ~fi(~hm

00�1) = (NP ; 0) for all m00 > m0 with i = m00[modn]:

If o(( ~fi; f�i); b) = (y; Sy) then ~fi is a pro�table deviation, contradicting that (f; b) is a

SPNE of �(R): If o(( ~fi; f�i); b) 6= (y; Sy), then by Lemma 4, o(( ~fi; f�i); b) = (z; ;) for

some z 2 X. Hence, there exists some agent j 6= i and step �m > m0 with the properties

that j = �m[modn], p �m( ~fi; f�i) 6= (NP; 0) and p �m( ~fi; f�i) = � � � = p �m+n�1( ~fi; f�i) =

(NP; 0). Thus, "j(( ~fi; f�i); b) = "00; i.e., j burdens the "00�cost since he makes the

�nal proposal at some step �m > m0 and j is not a user in the allocation (z; ;): Since

the "00�cost is worse that the "0�cost, even if agent j has made a proposal at some

earlier step m̂ < m0; to make the winning proposal at step �m cannot be part of an

equilibrium strategy. Hence,

o(f; b) 2MES(R): (7)

It remains to be proven that o(f; b) is e¢ cient under R, but before proceeding

with its proof, and since preference relations satisfy (Strict), we can apply the

standard backwards induction argument to show that the game �(R) has a unique

SPNE outcome.

Lemma 5 The game �(R) has a unique SPNE outcome.

Proof Suppose there exist two di¤erent SPNE equilibrium outcomes (x; Sx) =

o(f; b) 6= o(f 0; b0) = (y; Sy): Since �(R) is a �nite game in extensive form with perfect

information, the backwards induction principle and Lemma 4 imply that there exists

i 2 N and hm�1 = (p1(f); :::; pm�1(f)) = (p1(f 0); :::; pm�1(f 0)), where i = m [modn] ;

such that

fi(h
m�1) 6= f 0i(h

m�1) (8)
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and (x; Sx)Ii(y; Sy): By (Strict), i =2 Sx[Sy: By (8), either fi(hm�1) 6= (NP; 0) and

"i(f; b) 6= 0 or f 0i(hm�1) 6= (NP; 0) and "i(f 0; b0) 6= 0: This contradicts Claim 1. �

Claim 3 below states that the unique SPNE outcome of �(R) can be obtained by

an equilibrium participation strategy pro�le that generates in Stage 1 a very simple

history.

Claim 3 Let (f; b) be a SPNE of �(R) and let o(f; b) = (x; Sx) be its outcome.

Then, there exists f̂ 2 F such that (f̂ ; b) is a SPNE of �(R) and

h(f̂) = ((NP; 0); :::; (NP; 0)| {z }
(i�1)�times

; (x;#Sx)| {z }
step i

; (NP; 0); :::; (NP; 0)| {z }
(n�1)�times

);

where i 2 Sx and for all j 2 Sxnfig, j > i.16

Claim 3 holds because if (f̂ ; b) has a pro�table deviation then (f; b) has also a

pro�table deviation. To proceed with the proof that the allocation o(f; b) is e¢ cient

under R describe the set MES(R) as f(x1; Sx1); :::; (xZ ; SxZ )g; where x1 � � � � � xZ :

For all 1 � q < q0 � Z, #Sxq = #Sxq0 holds.

Assume (x1; Sx1) is e¢ cient under R and o(f; b) = (xq; Sxq) holds for q > 1:

Since (x1; Sx1) is e¢ cient under R; by (Strict), there exists i 2 Sx1nSxq such that

(x1; Sx1)Pi(xq; Sxq): Letm be the step such that pm+1(f) = ��� = pm+n�1(f) = (NP; 0)

and let m � m0 � m+n� 1 be such that i = m0[modn]: Consider agent i�s deviation

~fi from f such that ~fi is equal to fi in all histories except in the history hm
0�1; where

~fi(h
m0�1) = (x1;#Sx1) and ~fi(h

m00�1) = (NP; 0) for all m00 > m0 with i = m00 [modn] :

Using an argument similar to the one already used in Case 1, we obtain a contradiction

with the fact that (f; b) is a SPNE of �(R): Thus, either (x1; Sx1) is e¢ cient under R

and o(f; b) = (x1; Sx1), in which case o(f; b) 2MP (R) and the statement of Theorem

1 follows, or (x1; Sx1) is not e¢ cient under R.

Assume (x1; Sx1) is not e¢ cient under R. Let T be the smallest integer such that

1 � T � Z and (xT ; SxT ) 2MES(R), (xT ; SxT )PD(x1; Sx1) and (xT ; SxT ) is e¢ cient

16Obviously, o(f̂ ; b) = (x; Sx):
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under R. By Lemma 2, there exists such T . Observe that, by its de�nition, (i) if

(xt; Sxt) is such that 1 � t < T and (xt; Sxt)PD(x1; Sx1) then (xT ; SxT )PD(xt; Sxt);

and (ii), by (Strict), if (xT ; SxT )PD(xt; Sxt) then Sxt = SxT : Hence, there exists a

sequence (x1; Sx1); (xt1 ; Sxt1 ); :::; (xts ; Sxts ); (xT ; SxT ) in MES(R) such that

x1 � xt1 � � � � � xts � xT (9)

and

(xT ; SxT )PD(xts ; Sxts )PD � � � PD(xt1 ; Sxt1 )PD(x1; Sx1): (10)

Observe that (9) and (10) hold simultaneously without loss of generality, because if we

have t and t0 with the property that (xT ; SxT )PD(xt; Sxt)PD(xt0 ; Sxt0 )PD(x1; Sx1) and

x1 � xt � xt0 � xT then, we could proceed by eliminating (xt; Sxt) in the sequence.

However, we will have to take care of this possibility at the beginning of Case II

below. Let Q be the set of those indices; i.e., Q = f1; t1; :::; ts; Tg: Again, observe

that

Sx1 = Sxt1 = � � � = Sxts = SxT : (11)

We now show that o(f; b) = (xT ; SxT ): Assume not. By (7), there exists 1 � q � Z

such that o(f; b) = (xq; Sxq) 6= (xT ; SxT ): By Claim 3, we can assume that

h(f) = ((NP; 0); :::; (NP; 0)| {z }
(i�1)�times

; (xq;#Sxq)| {z }
step i

; (NP; 0); :::; (NP; 0)| {z }
(n�1)�times

); (12)

where i 2 Sxq and for all j 2 Sxqnfig, j > i: We distinguish between two cases.

Case I: q 2 Q: Then, by (11), Sxq = SxT : Consider agent i�s deviation ~fi from f

such that ~fi is equal to fi in all histories except in the history hi�1; where ~fi(hi�1) =

(xT ;#SxT ); i.e., agent i instead of proposing (xq;#Sxq) proposes (xT ;#SxT ): It is

easy to see that o(( ~fi; f�i); b) = (xT ; SxT ) holds because (xT ; SxT )PD(xq; Sxq) and

o(f; b) = (xq; Sxq) is a SPNE outcome of �(R). Thus, the deviation ~fi is pro�table,

contradicting that (f; b) is a SPNE of �(R).

Case II: q =2 Q. If (xq; Sxq)PD(x1; Sx1) then (xT ; SxT )PD(xq; Sxq) and Sxq = SxT

(i.e., (xq; Sxq) was eliminated in the sequence going from (x1; Sx1) to (xT ; SxT ) to make
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sure that conditions (9) and (10) hold simultaneously). Since Sxq = SxT we can pro-

ceed as in Case I above and obtain a contradiction with the fact that (f; b) is a SPNE

of �(R): Thus, assume (xq; Sxq) does not Pareto dominate (x1; Sx1). Then, there exists

j 2 Sx1 such that (x1; Sx1)Pj(xq; Sxq): Consider agent j�s deviation ~fj from f such that

~fj is equal to fj in all histories except in the history hj�1 = (p1(f); :::; pj�1(f)); where

~fj(h
j�1) = (x1;#Sx1); and ~fj(h

m�1) = (NP; 0) for all m > j with j = m [modn] :

Observe that, by (12) and the fact that x1 � xq, the proposal pj = (x1;#Sx1) is

feasible for agent j after the history hj�1: By using the argument already used in

Case 2 above and the fact that x1 � xt holds for all 1 < t � Z, it follows that

o(( ~fj; f�j); b) = (x1; Sx1): Thus, the deviation ~fj is pro�table, which contradicts that

(f; b) is a SPNE of �(R).

Hence o(f; b) = (xT ; SxT ): Thus, o(f; b) is an e¢ cient and stable allocation in the

maximal participation set. This �nishes the proof of Theorem 1. �

Observe that the unique SPNE outcome o(f; b) of �(R) is uniquely identi�ed from

R, but it depends on the given linear order � :17 Denote this outcome by (x�; Sx�):

That is, given �; de�ne the social choice function '� : R ! A as follows: for each

R 2 R; '�(R) = (x�; Sx�): Hence, the following Corollary holds.

Corollary 1 The extensive-game form �� implements in SPNE the social choice

function '� : R! A:

5.4 Order Invariance and No "-costs

To state that the SPNE outcome is invariant with respect to the order in which agents

take decisions along the game, let � : f1; :::; ng ! N be any one-to-one mapping such

that �(i) 6= i for some i 2 N ; i.e., � represents the order �(1); :::; �(n), which is

di¤erent from the order 1; :::; n used to de�ne our mechanism. Fix R 2 R and let

��(R) be the corresponding game in extensive form de�ned by our mechanism with

the order �(1); :::; �(n):

17The extensive-game form � depends on the linear order � : To make this explicit, write ��.
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Corollary 2 Let R 2 R be given. The unique SPNE outcome of ��(R) coincides

with the unique SPNE outcome of �(R):

Corollary 2 follows because all the arguments used in the proof of Theorem 1

to show that the game �(R) has a unique SPNE outcome do not depend on the

order in which agents take decisions along the game. Thus, if o(f; b) is the unique

SPNE outcome of �(R) and o(f�; b�) is the unique SPNE outcome of ��(R) then,

o(f; b) = o(f�; b�):

Finally, in Lemma 6 below we state that in equilibrium no agent pays any "�cost.

Lemma 6 Let R 2 R be given. Assume (f; b) is a SPNE of �(R): Then, for all

i 2 N , "i(f; b) = 0:

Proof Assume "i(f; b) 6= 0 for some i 2 N . Then, by Claim 1 in the proof of

Theorem 1, there are at least two agents who made a proposal at Stage 1 and both

agents consume at the �nal allocation. Let o1(f) = (x̂; k̂; {̂) and m be the step in

which {̂ made the accepted proposal; i.e., pm(f) = (x̂; k̂); where {̂ = m [modn] and

pm+1(f) = � � � = pm+n�1(f) = (NP; 0): Hence, there exist agent j 2 Nn f{̂g, step

m0; and history hm
0�1 = (p1(f); :::; pm0�1(f)) such that m0 < m, j = m0[modn]

and fj(h
m0�1) = (z; k) 6= (x̂; k̂): Thus, "j(f; b) = "0. Consider another consump-

tion strategy ~fj that coincides with fj in all histories except in the history hj�1 =

(p1(f); :::; pj�1(f)) where ~fj(hj�1) = (x̂; k̂). Note that since (x̂; k̂) was a feasible pro-

posal after (z; k) was proposed it has to be also feasible at step j: If o1( ~fj; f�j) =

(x̂; k̂; j), then f is not a SPNE since agent j does not have to pay the "0�cost, and

therefore ~fj is a pro�table deviation from f: If o1( ~fj; f�j) = (w; q; l) 6= (x̂; k̂; j) then,

using a similar argument than the one used in the proof of Theorem 1 we should

�nd a player (the �rst to propose after j proposes (x̂; k̂) when playing according to

( ~fj; f�j) should also have played the same proposal after {̂ proposes (x̂; k̂) when play-

ing according to f) with a pro�table deviation, contradicting the fact that (f; b) is a

SPNE of �(R): �
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