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Abstract

This paper aims at assessing the importance of the initial technological
endowments when firms decide to establish a technological agreement. We
propose a Bertrand duopoly model where firms evaluate the advantages they
can get from the agreement according to its length. Allowing them to exploit
a learning process, we depict a strict connection between the starting point
and the final result. Moreover, as far as learning is evaluated as an iterative
process, the set of initial conditions that lead to successful ventures switches
from a continuum of values to a Cantor set.

Keywords: Bertrand Competition, Duopoly, Learning, Firm agreements.

JEL classification: D21, D43, L1.

CORRESPONDENCE ADDRESS:

CODE and Departament d’Economia
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1 Introduction

Particular attention is commonly addressed to the analysis of the benefits that firms

may exploit by participating in bilateral agreements. The importance of this phe-

nomenon should be directly related not only to the incentives inducing firms to

engage in a bilateral agreement, but also to the perspectives that these agreements

entail.

According to Harrigan (1986), firms engage in a few basic R&D partnerships

to exploit knowledge in new applications, to enter in new fields etc. Indeed, these

ventures allow to share research costs, to save on assets, and to avoid to replicate

laboratories and testing periods. Agreements often involve dissimilar partners and

in such deals, usually the partner with better technology exchanges it against retail

access in new markets. In those situations contract agreements are preferred to joint

ventures, since managers seem uncomfortable with long term ventures. Neverthe-

less, successful agreements or ventures do not last forever. Generally agreements

do not last for more than ten years, particularly when they involve firms of unequal

size.

Commercial agreements undoubtedly display more flexible features than joint

ventures, mergers, or acquisitions. In agreements, both parts benefit from the ad-

vantages of their collaboration still keeping their own identity and still behaving

independently in the market. From this viewpoint, the great challenge for the part-

ners is to define as precisely as possible the object of the agreement itself.

In recent years, a few stylized facts have contributed to open a new line of

analysis. In particular, the proliferation of partnerships and collaborations between

transnational firms in Europe has fostered research to capture the rationale of the

choice among such heterogeneous kinds of agreements. In the European context,

we may easily realize that most of the actual agreements involve the develop-

ment and exploitation of the so-called new technologies (see Leamer and Storper

(2001).).

Note however that in addition to the traditional commercial/R&D agreements

signed by firms endowed with similar technology, an increasing number of con-
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tracts involve specific agreements between very asymmetric firms. In particular,

we observe a significant increase of agreements between firms in industrialized

countries and in transition countries (see various issues by the EBRD). It is pre-

cisely the structural asymmetry between the partners involve in these agreements

that calls for an analysis of the basic factors favoring the success of these deals.

There exists a wide range of contributions focusing on the elements supporting

the creation of an agreement. In general, they study the conditions guarantee-

ing the stability of the agreement. This is particularly relevant in R&D settings

where the problem of the appropriation of the profits plays a crucial role (cfr. Hin-

loopen (1997)). The interest of this topic is often related to the existing trade-off

between R&D activity, in some sense external to a firm and other forms of collab-

orations such as joint ventures (Kabiraj and Mukherjee (2000)). In these models,

the property rights dilemma and the exploitation of the benefits from the synergies

stemming from the collaboration turn out to be the two factors that drive firms’

decisions and ensure the positive outcome of the agreement. Indeed, according

to some empirical results, the decision to continue or discontinue an agreement

will depend on the balance between re-deployable information and specific assets.

The conclusion of an agreement can be caused by the failure of the venture or the

attainment of satisfactory results (Bureth et al. (1997)).

Another strand of literature tackles the problem of defining an optimal contract

supporting a stable agreement between equal or different firms. This is addressed

in Pérez-Castrillo and Sandonı́s (1996). In particular, they focus on the existence

of incentive contracts making firms disclose and share their know-how in research

joint ventures (RJVs) via technical uncertainty. They show that sometimes prof-

itable RJVs do not start when the disclosure of know-how is not contractible. They

also describe the incentive contracts when existing. If projects are advantageous, it

is always possible to find contracts acceptable to both firms that give incentives to

disclose knowledge to the more advanced firm. In addition Veugelers et al. (1994)

prove that the emergence of a stable joint venture is directly related to the im-

portance of the synergies between the two partners. The higher the synergies the
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partners expect, the less incentives firms have to cheat. They also show that even in

an asymmetric case, a stable equilibrium may involve a loyal partner and a cheat-

ing one. Indeed, the dominant strategy for the loyal partner is to comply with the

agreement as far as it earns more from the venture than from the own development

of a new technology.

Differently from the previous contributions, we address neither the stability

problem of the agreements nor the design of a optimal contract. Our analysis con-

centrates on the case of firm agreements concerning R&D or, more generally, tech-

nological cooperation between two firms. The main contribution of the paper is the

modeling of the dynamic interaction between the partners to study the initial tech-

nological conditions allowing firms to join in profitable agreements. That is, we

focus the attention not in the existence of optimal and stable contracts (we will as-

sume the conditions ensuring their existence), but in the previous stage of selecting

a proper partner. Our purpose is to examine whether firms’ initial technological en-

dowments are relevant in the successful completion of an agreement in a dynamic

framework where we introduce a learning process in time.

We propose a duopoly model where firms compete à la Bertrand and share the

market demand according to the degree of substitutability of goods. An original

feature of our model is the introduction of a learning process throughout the length

of the agreement. Bureth et al. (1997) show that learning is a key factor in the

evolution of firms’ collaboration. Indeed, a continuous collaborative interaction

may influence the decision to continue or not the agreement. In out paper, learning

turns out to be the crucial element in the cumulation of advantages stemming from

the collaboration. It is the influence of the learning process that, at the end, allow

for selecting the kind of initial endowments in technology leading to successful

collaborations.

The paper is organized as follows. Section 2 presents the main building blocks

of the theoretical setting. Section 3 studies the conditions for the completion of

successful agreements with and without learning. In particular, a learning iterative

process gives rise to a Cantor set of solutions. Section 4 concludes.
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2 The model

Following Vives (1999) and Singh and Vives (1984), we consider a differentiated

duopoly with two firms (1, 2). They use a constant, but different marginal cost

technologies without fix costs. Firms compete à la Bertrand. Market demand is

linear and goods (respectively 1, 2) produced by firms may be substitutes or com-

plements.

2.1 Consumers’ program

As in Singh and Vives (1984) we consider an economy composed of an oligopolis-

tic sector and a competitive (numeraire) sector summarizing the rest of the econ-

omy. Consumers are all identical. They select a consumption bundle to maximize

a separable utility function linear in the numeraire good. Thus, we can consider a

representative consumer and concentrate in the (sub)utility function corresponding

to the differentiated sector of the economy. Formally, the representative consumer

selects a pair (q1, q2) solving

max
q1,q2

U(q1, q2) s.t. R = p1q1 + p2q2, (1)

where qi, i = 1, 2 is the amount of good 1 consumed at price pi, and R denotes

the income devoted to the differentiated sector.

We consider a quadratic and strictly concave utility function,

U(q1, q2) = α1q1 + α2q2 −
1

2
(β1q

2
1 + 2γq1q2 + β2q

2
2), (2)

where αi > 0, αiβj − γαj > 0, and β1β2 − γ2 > 0. Goods are substitutes,

independent or complements according to γ greater than, equal to or less than

zero. When α1 = α2 and β1 = β2 = γ, goods are perfect substitutes. Also,

when α1 = α2 we can define an index of product differentiation as γ2/β1β2.

This index takes value zero for independent goods and one for perfect substitutes

or complements. The solution of the problem (1) yields the following system of
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inverse demands,

p1 =α1 − β1q1 − γq2, (3)

p2 =α2 − β2q2 − γq1.

Let δ = β1β2 − γ2, c = γ/δ, ai = (αiβj − γαj)/δ, bi = βj/δ for i 6= j and

i = 1, 2, we can write the direct demand functions as:

q1 =a1 − b1p1 + cp2, (4)

q2 =a2 − b2p2 + cp1.

A quick inspection of this demand system reveals that the demand for a single

good is downward sloping in its price and increasing in the price of the competitor

if goods are substitutes.

2.2 Firms’ program

We consider an asymmetric duopoly, as described in Vives (1999). Firms compete

à la Bertrand. They use constant but different marginal cost technologies given by,

Ci(qi) = mξqi, i = 1, 2,

where m > 0 and ξi ∈ [0, 1] is a parameter linked to the efficiency in the reduction

of costs (see below). For simplicity we normalize ξ1 = 1 and assume that ξ2 =

ξ ≤ 1. Firms use the same technology if ξ = 1, while the lower ξ the more efficient

is firm 2 with respect to firm 1.

Solving firms’ profit maximization problems, we obtain the system of reaction

functions:

p1 =
a1 + mb1 + cp2

2b1

, (5)

p2 =
a2 + mξb2 + cp1

2b2

. (6)

Following Singh and Vives (1984) and Vives (1999), we consider prices net of

marginal costs. Thus, we define

p̂1 = p1 −m; â1 = a1 − b1m + cmξ,

p̂2 = p2 −mξ; â2 = a2 − b2mξ + cm,
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so that firm i’s profit function is Πi = p̂i(âi − bip̂i + cp̂j) with i 6= j and i = 1, 2.

Let also m = 1 without loss of generality.

Equilibrium prices are,

p̂∗1 =
2b2â1 + câ2

4b1b2 − c2
; p̂∗2 =

2b1â2 + câ1

4b1b2 − c2
, (7)

In the case of independent goods (i.e. c = 0), markets are separated and we

obtain monopoly prices:

p̂m
1 =

a1 + b1

2b1

; p̂m
2 =

a2 + b2ξ

2b2

. (8)

From the equilibrium prices (7), we compute the associated equilibrium quan-

tities,

q∗1 = b1p̂
∗

1; q∗2 = b2p̂
∗

2. (9)

Finally, equilibrium profits are given by,

Π1 = b1

(

2b2â1 + câ2

4b1b2 − c2

)2

; Π2 = b2

(

2b1â2 + câ1

4b1b2 − c2

)2

. (10)

For future reference, monopoly profits are,

Πm
1 =

1

b1

(

a1 − b1

2

)2

; Πm
2 =

1

b2

(

a2 − b2ξ

2

)2

. (11)

3 The agreement

Let us now consider that firms decide to make an agreement. We can think of

agreements between firms in industrialized countries that are technically similar

and agreements where one firm is located in an industrialized area while the other

belongs to a less developed country, like those between enterprises in western and

eastern Europe. In either case, we can envisage two scenarios. On the one hand,

(i) the agreement may be renewed period by period both in a finite and infinite pe-

riod of time; on the other hand, (ii) the agreement contemplates a dynamic learning

process in discrete time, when firms agree in keeping the collaboration for more

than one period. In either scenario, the agreement aims at improving the technol-

ogy, namely to reduce their production costs. We concentrate in the second kind
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of agreement. We assume that benefits stemming from the agreement do not allow

the technological lagged firm to fill up the existing gap respect to the other firm.

We are interested in studying the conditions under which this kind of agreement is

sustainable stressing the role played by the benefits the collaboration.

Let us consider a parameter λ ∈ [0, 1] representing a combination of the exist-

ing technologies ξ1 and ξ2 at the moment firms decide to collaborate. The index

λ tends to one when ξ1 is similar to ξ2. It tends to zero in the opposite case.

We follow some well known models in industrial organization literature, such as

Mansfield (1961) or De Palma et al. (1991), where technological changes or the

spreading of new technologies follow a diffusion process.

Looking at this diffusion process in the discrete time, one possible represen-

tation to transpose that idea to our situation is considering the following general

dynamic process F (λ) = µλ(1− λ) so that (see May(1976) and Li-Yorke (1975))

λt+1 = µλt(1− λt), (12)

where λ ∈ [0, 1], λ0 > 0, µ > 0, t = 0, 1...n.

Equation (12) tells us that λ increases from one period to the next when it is

small, while decreases when it is large. The parameter µ is a multiplier of this

dynamics. It affects the steepness of the hump in the curve. Indirectly, this process

also captures a learning or cumulation process that appears when the agreement

lasts for several periods. In terms of our model, this process can be interpreted as

follows. There exists a continuum of possible agreements that span from the case in

which firms participating to the agreement display different technologies ( λ small)

to the case in which firms are very similar in technology ( λ large). Formalizing

an agreement allow them to improve their technology reducing production costs.

Of course, the size of these advantages and expectations of benefits of these two

extreme types of agreement are different. The maximum is reached at a point

where although technologies are not identical they match in an optimal way. This

is so because the law of motion of λ given by (12) is quadratic and concave in λ.

Nevertheless, it worth noting that the two kinds of agreements deserve attention

since each of them allows firms to improve their available technology.
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Indeed, given that optimal contracts supporting such agreements exist (see

Pérez-Castrillo and Sandonı́s (1996) and Veugelers and Kesteloot (1994)), our con-

cern is to find the initial technological conditions allowing two firms to join the

agreement leading to the optimal contract.

3.1 Static agreement

Let us start our analysis of the agreements that do not span in time and thus there is

no learning process. We want to study the constellation of parameter values allow-

ing firm top benefit from the agreement. As we have mentioned before, the agree-

ment aims at developing a new cost reducing technology in the spirit of Veugelers

et al. (1994).

From (12), and recalling that m = 1, the cost functions for each of the two

firms are:

C1 = µλ0(1− λ0)q1; C2 = µλ0(1− λ0)ξq2.

Also, we can easily imagine that the degree of differentiation of the products

supplied by the firms may range from independent goods (so that firms serve sepa-

rate markets) to some level of substitutability, so that markets will be interrelated.

We will consider both cases as well.

3.1.1 Separate markets

First, we consider the case where firms’ markets are separated. That is firms pro-

duce products so differentiated that they hold monopoly status in their respective

markets (i.e. c = 0). We find condition under which firms both with similar and

very different technologies are willing to engage in an agreement.

Proposition 1. When firms are local monopolies, at stage 1 they are willing to

engage in an agreement for µ > 4 when λ0 ∈
[

0, 1

2
− µ

2

]

∪
[

1

2
+ µ

2
, 1

]

, where

µ =
(µ−4

µ

)1/2 ∈ (0, 1).

Proof. We start by computing the corresponding equilibrium prices, quantities and
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profits for both firms.

p̃m
1 =

a1 + µλ0(1− λ0)b1

2b1

; q̃m
1 =

a1 − µλ0(1− λ0)b1

2
,

Π̃m
1 =

1

b1

(

a1 − µλ0(1− λ0)b1

2

)2

, (13)

p̃m
2 =

a2 + µλ0(1− λ0)bξ

2b1

; q̃m
2 =

a2 − µλ0(1− λ0)b2ξ

2
,

Π̃m
2 =

1

b2

(

a2 − µλ0(1− λ0)b2ξ

2

)2

. (14)

Not surprisingly, equilibrium values are symmetric. Hence, we can concentrate on

firm 1 and extend the conclusions to firm 2. Comparing profits firm 1 gets in (11)

and in (13), it is easy to see that firm 1 will participate in the agreement if,

1

b1

(

a1 − µλ0(1− λ0)b1

2

)2

>
1

b1

(

a1 − b1

2

)2

,

that reduces to a quadratic function of λ0,

b1[1− µλ0(1− λ0)] > 0. (15)

Given b1 > 0 by assumption, we need to verify that [1 − µλ0(1 − λ0)] > 0.

This inequality admits real roots for µ > 4. These are λ1,2 = 1

2
± µ

2
with µ =

(µ−4

µ

)1/2
. Note that 0 < 1−µ

2
< 1+µ

2
< 1. Therefore, inequality(15) is fulfilled

for λ0 ∈
[

0, 1

2
− µ

2

]

∪
[

1

2
+ µ

2
, 1

]

.

Figure 1 summarizes the discussion.

3.1.2 Interrelated markets

Next, we consider the case where products are substitutes so that the two firms

interact in the market. We have now two degrees of freedom to characterize the

conditions under which firms may engage in an agreement. On the one hand the

degree of substitutability given by c; on the other hand, the degree of technical

similarity between firms given by λ. As the next proposition states, we obtain a

qualitatively similar result to the previous case.
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Figure 1: Range of solutions for a one-period iteration.

Proposition 2. When markets interact, firms are willing to engage in an agreement

for µ > 4 and goods are either poor substitutes or close substitutes. Then, (i) for

c → 0 technological conditions making the agreement sustainable are described

by λ0 ∈ [0, 1−µ
2

] ∪ [1+µ
2

, 1], and (ii) for values of c large enough the agreement is

sustainable for λ0 ∈ (1−µ
2

, 1+µ
2

), where µ =
(µ−4

µ

)1/2
.

Proof. Now firms compete à la Bertrand in the market. The equilibrium prices,

quantities, and profits are,

p̄1 =
2b2a1 + ca2

4b1b2 − c2
; q̄1 = b1p̄1; Π̄1 = b1

(

2b2a1 + ca2

4b1b2 − c2

)2

, (16)

p̄2 =
2b1a2 + ca1

4b1b2 − c2
; q̄2 = b2p̄2; Π̄2 = b2

(

2b1a2 + ca1

4b1b2 − c2

)2

, (17)

where a1 = a1 − µλ0(1− λ0)[b1 − cξ] and a2 = a2 − µλ0(1− λ0)[b2ξ − c].

As before, given the symmetry of the problem we concentrate on the behavior

of firm 1. Firm 1 evaluates the benefits it can get from the agreement comparing

the level of profits with and without the agreement. That is, it compares profits in
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(10) and (16). Participating in an agreement will be profitable if,

b1

(

2b2a1 + ca2

4b1b2 − c2

)2

> b1

(

2b2â1 + câ2

4b1b2 − c2

)2

.

After some algebraic computations, the previous inequality reduces to,

[1− µλ0(1− λ0)](2b1b2 − b2cξ − c2) > 0. (18)

Note that (18) differs from (15) in the term in brackets. Now for low enough

values of c, the term (2b1b2− b2cξ− c2) is positive, and inequality (18) behaves as

(15). Thus, we obtain the same results as in the monopoly case. In contrast though,

for large enough values of c, the term (2b1b2 − b2cξ − c2) is negative, so that the

inequality is fulfilled when [1−µλ0(1−λ0)] < 0 that is, for λ0 ∈ (1−µ
2

, 1+µ
2

).

Proposition 2 implicitely considers substitute goods only because this is the

sensible case in our context. Nevertheless, let us stress that the case of com-

plementary goods leads us back to the monopoly case. Now c < 0, so that

the term (2b1b2 − b2cξ − c2) is always positive. Thus, inequality (18) holds if

[1− µλ0(1− λ0)] > 0, or λ0 ∈ [0, 1−µ
2

] ∪ [1+µ
2

, 1] as in proposition 1

3.2 Agreements and dynamic iteration

We may refine the results obtained in the previous subsection by introducing the

time dimension and, as a consequence of that, a learning process. In other words,

we assume that when a firm takes its decision, it is aware that the advantages it

can get from the agreement follow an iterating dynamic process. This is possible

because the benefits carried out by the agreement (12) is modeled as a dynamic

equation and firms know the horizon of the agreement.

We will examine first whether there are combinations of technologies, embod-

ied in the parameter λ, giving firms incentive to maintain their collaboration for n

periods (lemma 1). Next, we will illustrate, by means of an example, how the set of

solutions depends on the time horizon. We will conjecture that when the number of

iterations is infinite, the set of solutions is a Cantor set. Finally, theorem 1 proves

this conjecture.
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Lemma 1. Assume µ > 4. There is a range of values of λ that in a n-period

iterative learning process among firms allows them to improve their level of profits.

It is given by λ ∈ ( 3

4
, 1].

Proof. Let us consider the case of local monopolies. Given the structure of the

iterative learning function, λ1 = µλ0(1− λ0), . . . , λt = µλt−1(1−λt−1), λt+1 =

µλt(1− λt).

As a consequence, the sequence of profits for, say, firm 1 in every iteration t

are,

Π̃m
t =

1

b1

(

a1 − λtb1

2

)2

, t = 1, 2, . . . (19)

Our local monopolies will be willing to extend the agreement from the time t− 1

to the time t if,

Π̃m
t > Π̃m

t−1. (20)

Note that from the expressions of profits it follows that sign[Π̃m
t − Π̃m

t−1] =

sign[λt−1 − λt]. Accordingly, inequality (20) reduces to studying the values of

λ satisfying λt−1 − λt > 0.

Given that λt = µλt−1(1 − λt−1), the previous expression holds for λt−1 >

1 − 1

µ . As we have seen before, for µ > 4 so that firms will be willing to extend

the agreement from period t− 1 to t if λt−1 > 3

4
.

Lemma 1 tells us that two local monopolies will engage in an agreement as

long as their technologies are sufficiently similar. Note that equation (12), describ-

ing the diffusion of the technological change, considers λ0 as the initial (exoge-

nous) condition. That is the description, before the agreement, of the technological

differences between firms. Thus, the lemma has to be read as saying that, given

some initial conditions, firms will maintain their collaboration period after period

as long as the diffusion process maintain their technologies similar enough. Note

also, that the degree of feasible similarity is increasing in time although the less

efficient firm never ends up catching up with its partner. Moreover, according the

expected length of the agreement, the magnitude of the benefits over the costs of

production varies.
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Let us illustrate the dynamics just described thinking of a local monopolist

forecasting the impact on its profits period by period of signing an n-period agree-

ment1.

To make the example tractable, let us think of an agreement lasting for two

periods. Firm 1 evaluates the profits it will get at the end of period two, according to

the technology available at that time. Then, it compares these profits with the ones

in absence of agreement. That is, firm 1 compares profits in (11) with profits given

by (19)2. From the expressions of the profits above, it turns out that Π̃m
2 > Πm if

b1(1− λ2) > 0, that is,

b1{1− µ2λ0(1− λ0)][1 − µλ0(1− λ0)]} > 0. (21)

As displayed in figure 2, for µ > 4, inequality (21) admits four strictly positive

critical points (0 < λ21 < λ22 < λ23 < λ24 < 1), where

λ2i =
1

2
±

√

µ2 − 2µ(1± µ)

2µ
.

As before µ =
(µ−4

µ

)1/2 ∈ (0, 1), and i = 1, 2, 3, 4 according to the combination

of positive or negative signs of the square roots chosen. Therefore, (21) is satisfied

for λ0 ∈ [0, λ21] ∪ [λ22, λ23] ∪ [λ24, 1] .

Finally, combining the range of admissible values of λ0 just obtained for pe-

riod 2 with the corresponding ones in period 1 (see Proposition 1) we obtain the

the range of values of λ0 for which the two-period agreement is profitable.

λ0 ∈ [0, λ21] ∪
[

λ22,
1

2
− µ

2

]

∪
[

1

2
+

µ

2
, λ23

]

∪ [λ24, 1] .

As it is well displayed by this example, and figure 3 illustrates, the different

intervals of solutions shrink as far as the number of iterations increases, i.e. the

length of the agreement expands.

1In general, this is the kind of cost-benefit analysis that firms carry out when they evaluate the
convenience of joining an agreement. Firms look at the evolution of profits over a finite horizon from
the actual situation by computing the present (discounted) value of the flow of future profits.

2This is so because we are assuming to be in the case of optimal long-term non renegotiable
contracts.
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Figure 2: Range of solutions for a second period iteration.

Figure 3: Range of solutions of a 2-period agreement.
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At the limit, when t → ∞ we obtain a infinite collection of points as the set

of solutions. These points are precisely the (infinite) roots of the polynomial (of

infinite degree) resulting from the comparison of profits between signing an infinite

horizon agreement and no agreement at all. To clarify this argument, define At as

the set of the points that escape from the interval I = [0, 1] at iteration t + 1, that

is, those points that were admissible at iteration t but are no longer solutions after

iteration t + 1. Formally,

At = {λ ∈ I|Ft(λ) < 0 and Fτ (λ) ∈ I, τ < t}.

As a consequence, the set of the solutions (Λ), in the case of an infinite number

of iterations, reduces to:

Λ = I \
∞

∪
t=0

At.

We will prove that Λ is a Cantor set, namely that it is a closed, perfect and

totally disconnected subset of I . Before proceeding to the formal proof, we offer

an intuitive argument.

Note that At are open sets. Thus, Λ is formed by (sequentially) suppressing

from the interval I a collection of open sets that are disjoint intervals. In other

words, Λ is the union of closed and disjoint intervals, and thus closed. Inciden-

tally, note that Λ is not empty because at least contains the extreme points of the

suppressed intervals,

Next, by definition, a set is perfect if it does not contain isolated points, that

is, all its points are limit points. Let us assume, on the contrary, that x ∈ Λ is an

isolated point. Then x must be an extreme point common to two adjacent intervals.

But as we have argued before, Λ is a collection of disjoint intervals. Hence, those

adjacent intervals do not have points in common. Accordingly, x cannot be an

isolated point.

Finally, a set is totally disconnected if it does not contain any open interval.

Again let us proceed by contradiction. Assume that there exists an open interval

δ ∈ Λ. then δ has to be contained in one of the open intervals obtained in an
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iteration τ . But this is not possible since as τ → ∞, the length of the intervals

tend to zero. Thus, at the limit Λ has infinitely many points (i.e. is a set of measure

zero).

Theorem 1. Λ is a Cantor set for µ > 4.

Proof. We will structure the proof in three steps keeping Devaney (1985) as guide-

line.

1. Λ is a closed set. Let us define G = 1 − F . By construction Ai is an open

interval centered around 1/2 (see Figure 1 or 2). Let us focus on Figure 1

(one iteration), namely concentrating on A0. In that case, the function G

maps both the intervals I0 = [0, λ1] and I1 = [λ2, 1] monotonically onto I .

Moreover, G is decreasing on the first interval and increasing on the second.

Since G(I0) = G(I1) = I there is a pair of intervals (one in I0 and the other

in I1) which are mapped into A0 by G. These intervals define the set A1.

Next, let us consider Λ1 = I − (A0 ∪ A1). This set consists of four closed

intervals (see Figure 2) and G maps them monotonically onto either I0 or I1,

but, as before, each of the four intervals contains an open subinterval which

is mapped by G2 onto A0, i.e. the points of this interval escape from I after

the third iteration of G. By applying this iterative process, we note that At

consists of 2t disjoint open intervals and Λt = I − (A0 ∪ ..∪At) consists of

2t+1 closed intervals. Hence, Λ is a nested intersection of closed intervals,

and thus, a closed set.

2. Λ is a perfect set. Note that all endpoints of At, (t = 1, ...) are contained in

Λ. Such points are eventually mapped to the fixed point of G at 1, and they

stay in I under iteration. If a point x ∈ Λ, were isolated, each nearby point

must leave I under iteration and, hence, these points must belong to some

At. Two possibilities arise. We can think of a sequence of endpoints of At

converging to x. In this case the endpoints of At map to 1 and so, they are in

Λ. Alternatively, all points in a deleted area nearby x are mapped out of I by
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some iteration of G. In this case, we may assume that Gτ maps x to 1 and

all the other nearby points are mapped in the positive axis above 1. Then,

Gτ has a minimum at x, i.e. G′

τ (x) = 0. This iterative process ensures that

it must be so for some t < τ . Hence, Gt(x) = 1/2, but then Gt+1(x) /∈ I

and Gτ (x) → −∞, contradicting the fact that Gτ (x) = 1.

3. Λ is a totally disconnected set. Let us focus in the first iteration and assume µ

is large enough so that |G′(x)| > 1 for all x ∈ I0 ∪ I1. For those values

of µ, there exists γ > 1 such that |G′(x)| > γ for all x ∈ Λ. Our iterative

process yields |G′

τ (x)| > γτ . We want to prove that Λ does not contain any

interval. Let us proceed by contradiction and assume that there is a closed

interval [x, y] ∈ Λ, x, y ∈ I0 ∪ I1, x 6= y. In this case, |G′

τ (z)| > γτ , for

all z ∈ [x, y]. Choose τ so that λτ |y − x| > 1. Applying the Mean Value

Theorem, it follows that |Gτ (y) − Gτ (x)| ≥ γτ | y − x |> 1 implying

that either Gτ (y) or Gτ (x) lies outside of I . But this contradicts our main

hypothesis, hence Λ does not contain intervals.

It remains to determine the µ-values for which the previous argument holds.

Finding the values of µ allowing |G′(x)| > 1 means to identify µ values

for which [−µ (1− 2x)]2 > 1. When G = 0, this inequality holds for

µ > 2 +
√

5. Thus we have proved that Λ is totally disconnected for µ >

2 +
√

5. Recall that we have already imposed a condition on µ, namely

µ > 4. Hence, we need to verify whether Λ is also totally disconnected for

µ ∈ (4, 2 +
√

5]. We appeal to Kraft (1999) who proves that Λ is a Cantor

set for µ > 4. The idea behind the proof is that for µ ∈ (4, 2 +
√

5] it

turns out that |G′(x)| S 1. Kraft argues that the iteration process shrinks

some components of I , and stretches some others. His proof thus, consists

in showing that in the interval (4, 2+
√

5) the stretching is dominated by the

shrinking. He proves that Λ is an hyperbolic set, namely |G′

τ (x)| > kδτ > 1

for x ∈ Λ, k > 0, δ > 1.
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As we have seen, every iteration eliminates an open set of λ0-values that were

solutions in the previous iteration. The extreme points of those intervals remain in

Λ though. It is important to bear in mind that a value of λ0 that has been elimi-

nated as a solution after an iteration, it remains out of Λ forever, i.e. it cannot be

considered as solution again as the number of iterations increase.

Given the learning process we consider, as firms envisage longer and longer

agreements, an increasing number of smaller intervals are excluded as solutions. In

fact, in the limit as t →∞, we obtain a (countable) set of solutions with infinitely

many points. Formally, at every iteration t, the admissible values of λ0 supporting

an agreement of length t is characterized by a polynomial of degree 2t. The roots

of the successive polynomials associated to every iteration always remain in Λ. As

t increases the length of admissible intervals shrink, so that at the limit we have

a polynomial of degree infinite characterizing intervals of measure zero. That is

only the points corresponding to the infinite solutions remain in Λ as solutions of

an agreement of infinite length.

To help to visualize the evolution of the set of solutions, think of an image

where a firm willing to sign a short-term agreement can find a compatible partner

almost effortless. As the commitment the firm is willing to engage in becomes

deeper and deeper, the difficulty to find a suitable partner is also increasing. The

reason behind this difficulty is not that there are less partners available (there are

always infinite), but that getting to know about them and matching with the good

one is increasingly hard. Some casual empiricism points a the longest contracts

involving around ten years. Also, this casual empiricism suggests that the number

of joint ventures decreases as the time span increases

In addition, conditions encountered for parameter λ in Lemma 1 imply that

lasting agreements are those signed by firms displaying similar technological en-

dowments (i.e. high values of λ). Nevertheless we need to keep in mind the mean-

ing of this result. Knowing the length of the agreement, a firm evaluates the advan-

tages it can get before signing it. According to the initial conditions (λ0) it will be

able or not to fulfill its expectations. Moreover, the iteration process we analyze im-
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poses that firms need to pay as much attention as possible for choosing the proper

final agreement, given the initial technology they dispose. In other words, if a firm

wants to get the expected benefits from the agreement, needs to be extremely pre-

cise in choosing the right agreement (alias the right counterpart) allowing to fulfill

its expectations. Put differently, with an infinite number of iterations, there is just a

number of discrete points ensuring the success of the agreement. These correspond

to the optimal combination of the initial technology available at firm level.

So far, in this section we have only consider firms operating in separate mar-

kets. Recall that in the previous section studying agreements that do not span in

time, we obtained the same qualitative results for both the case of local monopolies

and of firm interaction. The introduction of time in the analysis involves a learn-

ing process but it does not change the mechanics of the decision process of firms.

Hence, we should not expect to obtain qualitatively different results either. That is,

if firms operate in the same market, we should expect to obtain also a Cantor set of

solutions as the number of iterations increase.

4 Conclusion

In this paper, we study the consequences that a given level of technological endow-

ment may exert on the successfulness of the results of a firm agreement. Based on

a duopoly setting in which firms compete à la Bertrand, we prove that not all initial

technologies are suitable for getting advantages from such an agreement. Indeed,

according to the expected length of the agreement, there exists just a particular

and precise set of initial conditions (evaluated as the technology available at firm

level at the moment they create the agreement) ensuring firms to benefit from all

the advantages that agreement can carry out. The central issue of this analysis is

related to the existence of a learning process throughout the length of the contract.

as the number of iterations increase, an increasing number of smaller intervals of

values of λ0 are excluded as solutions. In the limit, when considering agreements

lasting forever, we obtain a countable set of infinitely many points characterized

as a Cantor set. According to the structure of our framework, this last outcome
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means that in the case of agreements lasting for long periods, firms can benefit

as much as possible from the advantages issued by the agreement just in the case

they succeed in finding the proper combination of technological initial conditions.

Put differently, not all the agreements are suitable for all the firms. Of course, to

get this result we assume that, a priori firms have perfect foresight of the status of

the agreement from the initial period on. Indeed, it is this assumption that allow

them to deal properly with the cost-benefit analysis of the agreement to detect the

optimal combination of initial technological conditions.

Some extensions deserve attention. Accounting for uncertainty should com-

plete the picture of present results. Also, an effort to give structure to λ is in order.

In this paper we do not model it. Nevertheless, giving λ a particular structure,

should help in stating some further details to focus better its connection with the

successfulness of the final results engendered by the agreement.
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