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Abstract

We study markets where the characteristics or decisions of certain agents are

relevant but not known to their trading partners. Assuming exclusive trans-

actions, the environment is described as a continuum economy with indivis-

ible commodities. We characterize incentive constrained eÆcient allocations

as solutions to linear programming problems and appeal to duality theory to

demonstrate the generic existence of external e�ects in these markets. Because

under certain conditions such e�ects may generate non-convexities, random-

ization emerges as a theoretic possibility. In characterizing market equilibria

we show that, consistently with the personalized nature of transactions, prices

are generally non-linear in the underlying consumption. On the other hand,

external e�ects may have critical implications for market eÆciency. With ad-

verse selection, in fact, cross-subsidization across agents with di�erent private

information may be necessary for optimality, and so, the market need not even

achieve an incentive constrained eÆcient allocation. In contrast, for the case of

a single commodity, we �nd that when informational asymmetries arise after

the trading period (e.g. moral hazard; ex post hidden types) external e�ects are

fully internalized at a market equilibrium. Keywords: Asymmetric Information,

General Equilibrium, Linear Programming.
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1 Introduction

A company supplying insurance services has a direct concern in the personal risk of

each of its customers as well as the prevention measures that they will provide to

avoid an accident. The fact that these circumstances are observed privately by the

buyers gives rise to adverse selection and moral hazard problems in the insurance

market. While it has long been argued that this type of phenomena are typical

of competitive markets, attempts to apply standard general equilibrium analysis to

model competition under asymmetric information have proven diÆcult. The purpose

of this work is to study the relation between incentive compatibility and pricing from

the point of view of duality theory, thus providing a new methodology for introducing

asymmetric information into general equilibrium theory.

An essential element of the analysis, as the case of insurance illustrates, is the

personalized nature of transactions. This is in contrast to the standard model where

trade is anonymous. For full information economies, Makowski's (1979) shows how

price discrimination over quantity is characteristic of competitive markets with per-

sonalized transactions. Because such instances may be formalized as economies with

linear prices and indivisibilities, that result is yet consistent with the basic general

equilibrium model; in particular, the standard welfare and existence theorems con-

tinue to hold. The personalized environments we are concerned with, on the other

hand, display informational asymmetries. We restrict to the simplest informational

scenario where transactions are completely veri�able and it suÆces to consider exclu-

sive trading relations (in which each informed agent deals with a single uninformed

partner)1. We formalize the objects of trade as relatively complex personalized goods.

Insurance, for instance, is sold in indivisible packages which apart from specifying

state-contingent payments, include also personal recommendations (e.g. a level of

care prevention) as well as information about the customer (e.g. her risk type). The

general environment is then described as a continuum economy with indivisible com-

modities. In this model incentive constraints are critical; we �nd that, in contrast to

Makowski's model, external e�ects arise which the market may fail to internalize.

There are two main parts to the analysis. The �rst part characterizes incentive

constrained eÆcient allocations as optimal solutions to linear semi-in�nite program-

ming (LSIP) problems. As a critical �nding the presence of incentive-related external

e�ects is identi�ed in the dual image of the program. We argue that such e�ects may

generate endogenous non-convexities, and so randomization emerges as a theoretic

1For recent contributions which study non-exclusive transactions see Bisin and Gottardi (1998)

and Bisin and Guaitoli (1995).
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possibility2 (�rst introduced by Prescott and Townsend (1984a,b)). We also provide

conditions under which non-convexities do not arise. With hidden types, it is enough

that (i) utilities are type-invariant or|as a weaker condition|that (ii) individuals

who have an interest in misrepresenting their type are no more risk averse than the

individuals they try to impersonate. These conditions in turn ensure the suboptimal-

ity of random allocations when preferences and technologies are convex. With hidden

actions, either (i) the agent's utility is separable in the action (e.g. e�ort) or (ii)

absolute risk aversion is non-decreasing in the action level. Moral hazard economies,

however, are typically non-convex and random allocations may still be optimal.3

The second part of the analysis studies market equilibria. In the presence of

incentive e�ects Walrasian equilibrium prices|though linear in the space of trade

objects|are generally non-linear in the underlying consumption, as in Makowski's

model. These prices moreover mail fail to internalize the incentive e�ects, leading to

a market failure. In particular, competitive markets need not achieve an incentive

constrained eÆcient allocation in adverse selection economies. We identify the reason

for this failure as the existence (prior to the trading period) of gains from cross-

subsidization. Whereas cross-subsidies are not feasible in decentralized competitive

markets, the planner can always implement a second best allocation in which the

\good type" (e.g. low risk) subsidizes the \bad type" (e.g. high risk). The implied

transfer scheme is incentive compatible as the good types are willing to pay a fee

to signal their type; bad types, in contrast, are just as happy with their subsidized

allocation. In fact, when such optimal cross-subsidies can be found, market equilibria

fail to exist unless some extra restrictions are imposed on the trading possibilities of

the uninformed agents. A very di�erent result is obtained when trading takes place

before asymmetries in information arise (e.g. moral hazard; ex post hidden types).

For these economies market equilibria exist and are incentive constrained eÆcient;

i.e. external e�ects are fully internalized.

Whereas the analysis as well as the main results can be presented in an abstract

set-up with di�erent types of informational asymmetries|as well as many physical

goods and contingencies|this paper introduces the basic methodology and presents

an intuitive discussion of our results by analyzing two simple economies. Namely, a

variation of the adverse selection model of Rothschild and Stiglitz's (1976) and a moral

hazard version of the former. The ex post hidden types model proves analytically

equivalent to the moral hazard model. This illustrates also how our approach provides

2On the role of randomization in non-convex economies see Shell and Wright (1993) and Garrat

et al. (1998).
3See Bennardo and Chiappori (1998).
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a uni�ed framework to study particular economies case by case, bridging the gap

with the partial equilibrium literature (Rothschild and Stiglitz (1976), Spence (1973),

Stiglitz and Weiss (1981) and Wilson (1977) among others; see Riley (1998) for a

comprehensive review). A necessary remark is that our equilibrium characterization

describes economies with a single (type of) commodity. In future work we would like

to extend the analysis to a multi-commodity world.

The paper is organized as follows. Section 2 presents the adverse selection model.

First, the LSIP model is developed. Second, incentive constrained eÆcient allocations

are fully characterized. Third, Walrasian equilibria are de�ned and their eÆciency

and existence properties are studied. Section 3 presents an analogous study for the

case of moral hazard. The proofs are gathered in the Appendix.

1.1 Related Literature

This paper related to the seminal work of Prescott and Townsend (1984a) and the

methodology that we propose applies to the class of economies which they study. A

key modelling assumption in that work|from which we shall deviate|is that the

transactions of the informed agents are restricted ex ante to the incentive compatible

ones. One implication is that in their model equilibrium prices are always linear in

consumption, as in the standard full information model. That the uninformed agents

should face the incentive compatibility constraints of their informed partners may,

on the one hand, seem more natural. Further, assuming that the informed agents

face their own incentive constraints amounts to abstracting from the incentive e�ects

associated to their transactions (by imposing the corresponding shadow costs on the

agents generating the externality and, hence, implicitly assuming that such an in-

ternalization is possible4). In contrast, our dual approach highlights the presence of

external e�ects and focuses on the issue of to what extent these e�ects will be in-

ternalized by competitive markets. This focus connects our work to a quite di�erent

line of research pursued by Greenwald and Stiglitz (1986) and Arnott, Greenwald

and Stiglitz (1994). An interesting contribution of our methodology is to identify

the source of the problems encountered by Prescott and Townsend's approach to de-

centralization with adverse selection|namely, the need of cross-subsidization. This

shows that external e�ects may be critical and indeed need to be directly analyzed.

The eÆciency result for economies where agents are allowed to trade before asym-

metries in information are generated is in fact one of the main results of Prescott

and Townsend. Because for this class of economies we show that external e�ects are

4Yet, the property rights approach seems problematic given the nature of these e�ects.
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fully internalized by the market, the two approaches are essentially equivalent. The

key is that when ex ante trade is allowed|knowing that she will get a subsidy if she

turns out to be a \bad type"| each agent agrees to pay the fees in advance when-

ever there are gains from (incentive compatible) cross-subsidization (see for instance

Kehoe, Levine and Prescott (1998)). The problem in adverse selection economies is

that this possibility is not allowed.

Prescott and Townsend pioneered the introduction of random allocations on the

basis of potential non-convexities in the agents' incentive constraint sets. Following

their work, Cole (1989) emphasized the separating role of lotteries when the agents'

degree of risk aversion depends on their private information (see also Arnott and

Stiglitz (1988)); even with convex incentive constrained sets. Kehoe, Levine and

Prescott (1998) recently show that, in a class of exchange economies with ex post

hidden types and no indivisibilities, lotteries are never used in equilibrium provided

the natural assumption of decreasing absolute risk aversion (DARA) is made. Theirs

is in fact a general version, for a setting with many goods, of our condition (ii)

for the case of ex post hidden types. Intuitively, in their model agents in a high

endowment private state may want to claim a low endowment state (which under

DARA corresponds to a more risk averse agent). Our result is di�erent in that it shows

that the idea generalizes to any type of informational asymmetry and, in particular,

to the case of ex ante hidden types. The corresponding condition for economies

with hidden actions is also derived by Arnott and Stiglitz (1988). Furthermore,

our methodology brings to light the theoretical ground underlying this discussion,

formally linking the separating role of lotteries and the importance of di�erences in

risk aversion to the presence of non-convexities arising from incentive e�ects.

The adverse selection analysis is related to Gale (1996). In that model, however,

prices are embedded in the traded contracts and equilibrium is achieved through

endogenous market rationing. Individual rational expectations about rationing prob-

abilities as well as re�nements of out-of-equilibrium beliefs play a central role. A

similar equilibrium concept has been used by Perktold (1995) to study the case of

heterogeneously informed buyers. The description of equilibrium which we present

abstracts from these game theoretic considerations. In the spirit of classical model,

agents will optimize taking the prices as given and the latter adjust to clear the

market.

As far as the moral hazard literature is concerned, the possibility of non-linear

competitive pricing is discussed by Lisboa (1997) for an exchange economy with

separable preferences. Our claim is that this feature is characteristic of asymmetric

information models with exclusive transactions (in which the uninformed agents face
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the incentive constraints of their trading partners).5 Bennardo and Chiappori (1998)

recently propose a strategic formulation of equilibrium in a simple moral hazard model

which clari�es the peculiarities of these competitive environments. Whether a reduced

form of that equilibrium can be constructed is an open issue. Section 3 proposes a

candidate for that reduced form.6

We would like to refer to the linear programming description of the standard model

by Makowski and Ostroy (1996) as the basic motivation of our work.7 Also, Myer-

son (1984) highlights the linear programming structure of principal agent models;

an structure which has been exploited by Manelli and Vincent (1995) to character-

ize optimal procurement mechanisms from a dual perspective. To the best of our

knowledge, however, linear programming techniques have not yet been applied to the

general equilibrium analysis of asymmetric information.

2 Adverse Selection

2.1 The Economy

Consider an economy with a single consumption good, a continuum of non-atomic

households and a �nite number of identical �rms.

Households. Households are of two types, tL and tH , with associated population

masses �L and 1� �L respectively. Each household faces two private states of nature:

in state 1 an accident occurs; in state 2 there is no accident. Whereas agents of type tL

su�er an accident with probability �L, the corresponding probability �H for an agent

of type tH is strictly higher; i.e. 0 < �L < �H < 1. Contingent endowments are type-

invariant and are denoted by w = (w1; w2) where w2 > w1 > 0. Households of type

ti are expected utility maximizers with Von-Neumann Morgenstern utility function

Ui : R+ ! R (i = L;H).8 As usual Ui is continuously di�erentiable and concave. We

also assume limc!0 U
0
i(c) =1 and limc!1U 0

i(c) = 0: The model is presented in terms

of net trades, the (type-invariant) feasible net trade set Z containing all elements z

5But see also Magill and Quinzii's (1998) study of a moral hazard �nance economy with unob-

servable trades.
6Whereas the possibility of aggregate uncertainty is not considered in Section 3, the extension is

relatively straightforward. In particular, a non-trivial (non-zero price) Walrasian equilibrium always

exists. See Bennardo and Chiappori (1998) for the problems associated to the Prescott-Townsend

reduced form with aggregate uncertainty.
7See also Gretsky, Ostroy and Zame's (1999) analysis of the continuous assignment model.
8The analysis is easily extended to state-dependent utilities.

7



in R2 such that z � �w. Finally, we assume there is no aggregate uncertainty9 and

let �w denote the economy's aggregate endowment.

Firms. Insurance companies are large as compared to the non-atomic households. In

insuring a continuum of buyers then each the company faces no aggregate risk. Thus,

the underlying technology displays constant returns to scale.

Time and uncertainty. At time zero households privately learn their type. Then

markets open and agents make transactions. As trades are assumed completely veri-

�able, it suÆces to consider exclusive transactions where each household commits to

buy insurance from a single company. After the trading period, uncertainty resolves

and the �nal state of each household is publicly observed. Finally, all contractual

obligations are enforced and consumption takes place. The structure of uncertainty

is common knowledge.

Personalized commodities. The objects of trade can be canonically described fol-

lowing Myerson (1984): insurance is traded in \packages" (contracts) specifying net

payments in each state as well as the personal risk type declared by the buyer. Each

such contract is a di�erent indivisible object of trade. While net payments may in

principle be random, only contracts for which no agent has an incentive to misrepre-

sent her type will be traded.

2.2 Allocations

An allocation for the households is a pair of probability measures on the feasible

net trade set. The space X of allocations is then the set of pairs (xL; xH) of Borel

measures on Z satisfying

Z
Z
dxi = 1; xi � 0; i = L;H: (2.1)

We show that in this model it suÆces to consider measures with �nite support (c.f.

Appendix A). Letting Æz stand for the mass point measure at z, we may then write

any allocation as10

xi =
KiX
k=1

�ki Æzki
;

KiX
k=1

�ki = 1; �ki > 0; i = L;H;

9The measurability problems associated to the formalization of individual risks as independent

random variables with a continuum of agents are well-known. For recent developments in this topic

see Hammond and Lisboa (1998) and Sun (1998). We circumvent this problem by explicitly assuming

underlying processes of individual uncertainty which preclude any macroscopic uncertainty.
10This description is related to Mas-Colell (1975).
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where Ki is a positive integer and the Ki-dimensional subset of Z

suppxi = fz1i ; � � � ; z
Ki

i g

is the support of the measure xi. In words, xi is a \lottery" which delivers contingent

net payments zki with probability �ki to a household claiming type ti (there are Ki

possible deliveries).

An allocation is feasible in terms of resources if the implied ex post aggregate

consumption does not exceed the economy's aggregate endowment. Formally, the

aggregate net trade is negative if

r(xL; xH) = �LrL(xL) + (1� �L)rH(xH) � 0; (2.2)

where for i = L;H;

ri(xi) =

Z
(zi1;zi2)2Z

�
�izi1 + (1� �i)zi2

�
dxi(zi1; zi2):

That is, �iri(xi) is the ex post net trade of the population of type ti when all house-

holds in that group are assigned xi. To emphasize the linear structure of (2.2) we

write

ri(xi) = hri; xii =

Z
Z
ridxi; i = L;H:

Implementable allocations also need to satisfy incentive conditions. For any pair

(xL; xH) the expected utility of an agent of type ti who claims to be of type tj is

EUi(xj) =

Z
(z1;z2)2Z

�
�iUi(w1 + z1) + (1� �i)Ui(w2 + z2)

�
dxj(z1; z2):

Hence, an allocation is incentive compatible if

EUi(xi) � EUi(xj); j 6= i; i = L;H; (2.3)

and agents choose not to misrepresent their type. Because (2.3) is linear on X, we

write EUi(xj) = hEUi; xji =
R
Z EUidxj:

Finally, an allocation is said to be feasible if it is feasible in terms of resources and

incentive compatible.

2.3 Incentive Constrained EÆciency

We proceed to the characterization of incentive constrained eÆcient allocations. These

are feasible allocations for which there exist no other feasible allocation which is

weakly preferred by all types and strictly preferred by at least one type. Each of the

former corresponds to a solution of the social planner's problem which (for a given

9



choice of utility weights) maximizes the weighted average of agent types' utilities

subject to constraints (2.1){(2.3).

A LSIP problem. Let L be the weight assigned to the low risk type in the social

welfare function. The planner's problem is a linear program; speci�cally, one posed

in an in�nite dimensional but for which the number of constraints is �nite|a linear

semi-in�nite programming problem.

sup LhEUL; xLi + (1� L)hEUH ; xHi

subject to

h1 ; xLi = 1 (2.4)

h1 ; xHi = 1 (2.5)

�hEUL; xLi+ hEUL; xHi � 0 (2.6)

hEUH ; xLi � hEUH ; xHi � 0 (2.7)

�LhrL; xLi+ (1� �L)hrH ; xHi � 0 (2.8)

xL; xH � 0 (2.9)

Remark 2.1 In (2.4) and (2.5), 1 stands for the characteristic function on Z; so the

former are just the adding-up constraints in (2.1) expressed in terms of the bilinear

form h:; :i.

The primal program (P ). According to LSIP theory, the above is the dual of another

LSIP problem: the so-called primal program (c.f. Goberna and L�opez (1998)). Unlike

the planner's problem the primal is posed in the Euclidean space. Its feasible set, on

the other hand, is characterized by a linear system of in�nite-dimensional constraints.

Let the shadow prices associated to the adding-up constraints (2.4) and (2.5) be

�L and �H respectively; the shadow prices associated to the incentive constraints

(2.6) and (2.7) are �L and �H ; �nally, q stands for the shadow price of the resource

constraint (2.8). Whereas a detailed derivation is provided in Appendix A, here we

simply state program (P ):11

inf �L + �H

11Prescott and Townsend (1984a) study constrained eÆcient allocations through the �rst order

conditions of the planner's problem (a formal di�erence is that in their framework the consumption

space is a �nite set, so e�ectively theirs is a standard �nite dimensional LP program). Our purpose

is to use duality theory to provide a general characterization of incentive constrained eÆciency.
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subject to

�L � LEUL(zL) + �LEUL(zL)� �HEUH(zL)� q�LrL(zL); 8zL 2 Z

�H � (1� L)EUH(zH)� �LEUL(zH) + �HEUH(zH)� q(1� �L)rH(zH);

8zH 2 Z

�L; �H ; q � 0

Unlike standard �nite dimensional linear programs, neither the existence of opti-

mal solutions nor the equality of the optimal primal and dual values is guaranteed

for in�nite dimensional programs. In Appendix A we appeal to some central results

of LSIP theory and demonstrate that the above dual pair is indeed well-behaved.

Theorem 2.1 The dual is solvable and there is no duality gap.

Theorem 2.2 The primal is solvable.

2.4 Full Information Benchmark

To clarify the economic intuition underlying program (P ) consider the case of full

information. When types are observable no incentive constraints arise in the dual.

The constraint system associated to the allocation of type ti in the primal (P FB) is

then

�i � iEUi(zi)� q�iri(zi); 8zi 2 Z; i = L;H: (2.10)

The �rst term on the right-hand side of (2.10) is type's contribution to social wel-

fare when allocated a given net trade zi. Since q measures the shadow price of the

consumption good, the second term gives the cost in terms of resources the an assign-

ment; i.e. the value of the aggregate net trade of the population of type ti. Equation

(2.10) can then be interpreted as de�ning the set of feasible values for �i as the set

of upper bounds of the type's net contribution to welfare for any trade assignment.

Let ��i (q) be the maximal net contribution of ti among all possible net trade

assignments;

��i (q) = max
zi2Z

iEUi(zi)� q�iri(zi): (2.11)

11



Given the minimization nature of the problem, we may rede�ne the primal as12

min
q�0

��L(q) + ��H(q) (P 0)

The complementary slackness theorem (c.f. Krabs (1979)) allows us to character-

ize �rst best allocations in terms of maximal net contributions.

Theorem 2.3 (Complementary slackness) Let L be given in (0; 1). Feasible solu-

tions q� and (x�L; x
�
H) for (P

FB) and (DFB) respectively are optimal if and only if

0 = q�
�
�LhrL; x

�

Li+ (1� �L)hrH ; x
�

Hi

�
(2.12)

��L(q
�) = LEUL(z

�

L) � q��LrL(z
�

L) 8z�L 2 suppx�L (2.13)

��H(q
�) = (1� L)EUH(z

�

H) � q�(1� �L)rH(z
�

H) 8z�H 2 suppx�H (2.14)

Eq. (2.12) is the complementary slackness condition associated to the (dual)

resource constraint: the shadow value of the economy's aggregate net trade is zero.

Since preferences are strictly monotone q� > 0 and all resources are consumed ex post.

More interesting are the complementary slackness conditions for the primal (2.13)

and (2.14. According to these conditions, for each type, only net trades achieving

the type's maximal net contribution are assigned with positive probability at an

optimum. The �rst order conditions for (2.11) in fact yield the standard result for

convex economies with no aggregate uncertainty: if households are risk averse it is

optimal that all agents receive full insurance. (In particular, randomization is always

suboptimal.)

2.5 Incentive-Related External E�ects

Let L be given in the interval ( �L; 1) where �L =
�
1 +

(1��L)U
0

L
( �w)

�LU
0

H
( �w)

��1
: It can be

easily shown that, for this range, the optimal (�rst best) consumption level is higher

for the low risk households. Hence, none of the corresponding optimal allocations is

implementable in a world of private information as high risk households have obvious

incentives to misrepresent their type. The restriction on L is made for the purpose of

the presentation and an identical analysis follows for values of L in (0; �L). For this

12This full information economy is an example of the general problem studied by Makowski and

Ostroy (1996). In particular, ��i (q) is the conjugate or indirect utility, rede�ned in its expected value

form for economies with uncertainty. These authors have shown how the fact that the constraints

of the primal program (the \pricing problem" in their terminology) can be incorporated into the

objective function is characteristic of the LP version of General Equilibrium.
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range, optimal allocations assign a higher consumption level to the high risk agents,

violating the incentive constraint of the low risk type. When L = �L all households

optimally consume the economy's average endowment regardless of the state. So in

this case the �rst best allocation is (trivially) constrained eÆcient.

Having said this, we let �L = 0 and focus on the incentives of the high risk agents.

Consider �rst the system of primal constraints restated as

�L � ��L(�H ; q) = max
zL2Z

LEUL(zL)� q�LrL(zL)� �HEUH(zL)

The net social contribution of the low risk type. When types are privately observed

feasible values of �L are upper bounds for an \adjusted version" of the net contribution

function of the low risk type. Apart from the direct contribution to social welfare and

the cost in terms of resources, a third term arises in the above constraint which has

its origin in the incentive constraint of the high risk type. This term represents the

negative incentive e�ect of assigning low risk households a given net trade in terms

of the potential \envy" generated upon high risk individuals. Intuitively, the better

the assignment of a low risk household in the eyes of high risk agents, the higher the

amount of resources that will need to be transferred to the latter to prevent them

from misrepresentation. This incentive e�ect must be explicitly considered in order

to evaluate the net contribution of low risk allocations.

A natural question is what is the counterpart (if any) of this negative externality

for the high risk group. The second system of constraints in (P ) may be restated as

�H � ��H(�H ; q) = max
zH2Z

(1� L)EUH(zH)� q(1� �L)rH(zH) + �HEUH(zH):

The net social contribution of the high risk type. Once more, apart from the direct

contribution to welfare and the associated cost in terms of resources of net trade

assignments for tH , a third term arises. This term identi�es a positive incentive

e�ect associated to the assignment: the higher the utility implied for the high risk

households the stronger their incentives to truthfully reveal their information. The

right-hand side of the above constraint system, given by the combination of all three

terms, thus gives the net social contribution of high-risk net trades.

Note that feasible values of �i are upper bounds for the net social contribution

function of ti. Alternatively, these values must not fall below the corresponding

maximal net social contribution (given the price q of the consumption good and the

price �H of incentive e�ects), ��i (�i; q):

The Modi�ed Primal. We may rede�ne the primal program in terms of maximal net

contributions as

min
�H ; q�0

��L(�H ; q) + ��H(�H ; q) (P 0)
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So the primal is equivalent to the unconstrained convex problem which chooses the

price of resources and the price of incentive constraint of the high risk type to minimize

the sum of the types' maximal net social contributions. Let ��H and q� denote the

optimal prices.

2.6 Randomization

Theorem 2.3 can be directly generalized to allow for incentive constraints. First,

any constrained optimal allocation satis�es that the shadow value of the economy's

aggregate net trade is zero,

q�(�LhrL; x
�

Li+ �LhrL; x
�

L) = 0:

Since preferences are monotone, q� > 0 and all resources must be consumed. Second,

any element in the support of each type's allocation necessarily achieves the type's

maximal net social contribution. For high risk households

��H(�
�

H ; q
�) = (1� L)EUH(z

�

H)� q�(1� �L)rH(z
�

H) + ��HEUH(z
�

H) 8z�H 2 suppx�H :

Because the net contribution function of the high risk agents is strictly concave when

they are risk averse, the support of x�H is a singleton. Further, the associated �rst

order conditions show that it is always optimal that these agents receive the same

consumption level regardless of the state.

Proposition 2.1 Let L 2 (�L; 1). In this part of the constrained Pareto frontier

high risk households are fully insured. In particular, lotteries are suboptimal for this

group.

A similar analysis applies to the low risk households;

��L(�
�

H ; q
�) = LEUL(z

�

L)� q��LrL(z
�

L)� ��HEUH(z
�

L) 8z�L 2 suppx�L:

Yet, note that the net contribution function of the low risk type need not be concave.

As special case of strict concavity is the original Rothschild-Stiglitz (1976) screening

model (see also Wilson (1977)).

Proposition 2.2 When utilities are type-invariant, lotteries are always suboptimal.

Proof: It Ui is type-invariant the second derivative of the net contribution of tH in

each state never changes sign. Further, if it is not strictly negative, the net contribu-

14



tion is both negative and strictly decreasing, so the maximum is achieved at a zero

consumption level; a contradiction.13 2

In general, the presence of incentive e�ects may give rise to non-convexities in the

net social contribution of the low risk type. In this case random allocations may be

optimal. Note that net trades z�L = (z�L1; z
�
L2) 2 suppx�L satisfy

z�L1 2 arg max
zL1��w1

UL(w1 + zL1)�
��H�H

L�L
UH(w1 + zL1)�

q��L

L
zL1 (2.15)

z�L2 2 arg max
zL2��w2

UL(w2 + zL2)�
��H(1� �H)

L(1� �L)
UH(w2 + zL2)�

q��L

L
zL2(2.16)

Note that if the degree of risk aversion of the high risk type is high enough as compared

to that of the low risk type, the objective functions in (2.15) and (2.16) may have more

than one global maximum. To understand why di�erences in risk aversion may lead to

gains from randomization, take the extreme case in which the low risk households are

risk neutral and the high risk households are risk averse.14 One can then easily devise

a random allocation which is in fact �rst best optimal. First, agents announcing a

high risk type are assigned their �rst best deterministic allocation. Agents announcing

low risk, on the other hand, receive a non-degenerate lottery. Whereas the implied

expected consumption (and, hence, the utility) for these agents is also the �rst best

one, the risk involved is such that the certainty equivalent high risk agents assign to

the lottery is exactly (below) their own deterministic consumption, preventing any

misrepresentation.

The idea that random allocations can be used to separate agents on the basis of

their attitude towards risk is discussed by Prescott and Townsend (1984b) and further

investigated by Cole (1989) and Arnott and Stiglitz (1988). Whenever the agent who

has incentives to misrepresent his information is more risk averse than the type which

he is trying to misrepresent, lotteries may lead to a Pareto improvement by helping

relax the incentive constraints. The bite of the LSIP methodology is to bring to

light the theoretical ground underlying this discussion by establishing a formal link

between the separating role of lotteries and the presence of non-convexities arising

from incentives e�ects

We now give suÆcient conditions for randomization to be suboptimal. Intuitively,

when low risk households are at least as risk averse as high risk households, it is

13Proposition 2.2 holds also when limc!0 U
0(c) is bounded. The di�erence is that the solution

need not be interior in this case. This conclusion is also established by Prescott and Townsend

(1984a).
14This example is essentially that in Prescott and Townsend (1984b) and Cole (1989), theirs being

a case of ex post hidden types.
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always suboptimal to assign the former a random allocation. Let the coeÆcient of

absolute risk aversion of type ti be Ai. The result is as follows.

Proposition 2.3 Let L 2 (�L; 1). Then, if AL � AH , assigning the low risk house-

holds a random allocation is suboptimal.

Proof: Denote the objective functions in (2.15) and (2.16) by fL1 and fL2. If

type tH (but not tL) is risk neutral, the result is trivial. Assume tH is strictly risk

averse. As f 00L1 > f 00L2, it suÆces to show that f 00L1 < 0. Now, f 0L1 = (g1 + g2)g3 where

g1(zL1) =
U 0

L
(zL1)

U 0

H
(zL1)

; g2(zL1) = �
�H�H�Lq

�

�L
2

L
U 0

H
(zL1)

; g3(zL1) = U 0
H(zL1)

Clearly g02; g
0
3 < 0. Finally, de�ning Ai = �

�
U 00

i

U 0

i

�
and assuming AL � AH yields

g1
0 =

U 00

L
U 0

H
�U 0

L
U 00

H

(U 0

H
)2

=

�
U00

L
U0

H
U0

L
U00

H

�1

�
U 0

L
U 00

H

(U 0

H
)2

=

�
AL
AH

�1

�
U 0

L
U 00

H

(U 0

H
)2

� 0

2

As it has been already mentioned, a similar analysis goes through for the part

of the constrained Pareto frontier where the aggregate consumption of the high risk

group if higher (and negative e�ects arise on the incentives of low risk agents); i.e. for

L 2 (0; �L). In this case there may be bene�ts from assigning a lottery to households

claiming a high risk type provided that they are suÆciently less risk averse than low

risk agents. The latter, however, will always receive full insurance. Proposition 2.4

summarizes the results for this case.

Proposition 2.4 Let L 2 (0; �L). In this part of the Pareto frontier low risk house-

holds are fully insured. Further, if AH � AL, assigning the high risk households a

random allocation is suboptimal.

Remark 2.2 We have identi�ed three parts in the constrained Pareto frontier. A

more detailed characterization applies when lotteries are suboptimal:15

A. When L 2 (0; �L).

(x�L; x
�

H) = (Æ(c�
L1
�w1;c

�

L2
�w2); Æ(c�H�w1;c

�

H
�w2))

where c�L1 < c�L2, c
�
H < �w, and �L(�Lc

�
L1 + (1� �L)c

�
L2) + (1� �L)c

�
H = �w. Note that

low risk agents always consume less in the bad state. The reason is that, for second

best allocations, the marginal social utility of each type (i.e. where social utility is

de�ned as private utility net of incentive e�ects) must be the same in both states.

For low risk agents, however, marginal social utility is always lower in the bad state:

the marginal negative e�ect of their consumption in terms of incentives is larger in

15Prescott and Townsend (1984) characterize the frontier for type-invariant utilities (so �L = �L).
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the bad state because this state is more likely for potential high risk impersonators

(see Jerez(1999)). Thus, it is optimal that these agents consume less in state 1. The

marginal social utility of high risk type, in contrast, is state-invariant.

B. When L 2 (�L; 1):

(x�L; x
�

H) = (Æ(c�
L
�w1;c

�

L
�w2); Æ(c�H1

�w1;c
�

H2
�w2))

where c�L < �w, c�L1 > c�L2, and �Lc
�
L+ (�Hc

�
H1+(1�H)c

�
H2) = �w. Whereas in this range

the marginal social utility of low risk agents is state-invariant, that of high risk agents

is higher in the bad state (which is more likely for potential low risk impersonator).

C. When L = �L:

(x�L; x
�

H) =
�
Æ( �w�w1; �w�w2); Æ( �w�w1; �w�w2)

�
:

Only at this point of the Pareto frontier is the marginal social utility equal to the

marginal private utility (i.e. external e�ects are zero) for both types. So the �rst and

second best notions of optimality coincide and both types are fully insured.

2.7 The Insurance Market

Consider a competitive market where insurance companies o�er their services to the

households. Firms have access to identical constant returns to scale technologies, so

we may consider a single �rm.

2.7.1 Prices

Let P denote the vector space C(Z) � C(Z); where C(Z) is the set of continuous

linear functions on Z. The space X of allocations is endowed with the weak topology

associated to the dual pair hX;P i denoted by �(X;P ) (c.f. Anderson and Nash

(1987)). Under this topology, P is the set of continuous linear functionals on X and

hence the natural price space.

A price functional is a pair p = (pL; pH) 2 P . Note that prices need not be

anonymous as, for given net payments z 2 Z, the price charged to low and high risk

households may di�er; pL(z) need not equal pH(z). Second, prices need not be linear

in the underlying net trade space either as, say, pL(z) need not take the form pL � z

for some pL 2 R2
+. Even when this may seem inconsistent with standard general

equilibrium analysis, the inconsistency is only apparent: in this model just as in the

standard framework prices are linear on the space of traded objects. Given a price

system p 2 P the cost associated to bundles x 2 X is given by the linear functional

hp; xi =
X

i=L;H

hpi; xii =
X

i=L;H

Z
Z
pi(z)dxi(z):
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The crucial deviation from the benchmark model is rather di�erent: in the presence

of incentive constraints and exclusive transactions, X will always be a space di�erent

from the space of consumption (in particular one of much larger dimension.)

2.7.2 Walrasian Equilibrium

We assume agents take prices as given and de�ne an equilibrium in the standard way.

A Walrasian equilibrium is an allocation for the economy (�xhL; �x
h
H ; �x

f) and a price

system �p 2 P such that the following conditions hold.

(i) Optimality for households:

�xhi = arg max
xh
i
2Xh

hEUi; x
h
i i

s:t: h�pi; x
h
i i � 0; i = L;H

where Xh is household's trading possibilities set; i.e. the set of �nitely supported

measures xh on Z which satisfy h1; xhi = 1 and xh � 0.

(ii) Optimality for the �rm:

�xf = arg min
xf2Xf

h�p; xf i

where Xf is the set of technologically feasible and incentive compatible allocations for

the �rm. So xf 2 X belongs to Xf if and only if xf = 0 or16

hrL; x
f
Li+ hrH ; x

f
Hi � 0

�

1

jjx
f
Ljj

hEUL; x
f
Li+

1

jjx
f
H jj

hEUL; x
f
Hi � 0

1

jjx
f
Ljj

hEUH ; x
f
Li �

1

jjx
f
H jj

hEUH ; x
f
Hi � 0

x
f
L; x

f
H < 0

(iii) Market clearing:

�x
f
i + �i�x

h
i = 0; i = L;H:

Since Xf is a pointed cone inX, (ii) yields the standard zero pro�t result for constant

returns to scale technologies.

16jjxfi jj stands for the norm of x
f
i ; i.e. jjxfi jj = supf2C(Z);jjf jj�1 jhf; xfi ij:
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Lemma 2.1 The �rm makes zero pro�ts in equilibrium; i.e. h�p; �xfi = 0:

Further, Walrasian equilibria satisfy a critical no arbitrage property.

Lemma 2.2 In equilibrium prices of traded lotteries measure the value of the re-

sources used by those lotteries;

h�pi; �x
h
i i = �yhri; �x

h
i i; i = L;H; (2.17)

where �y is any strictly positive constant.17

The proof of Lemma 2.2 as well as that of Theorems 2.4 and 2.5 in Section 2.7.3

is presented in Appendix B.

2.7.3 Optimality and Existence

We are now ready to explore the eÆciency properties of Walrasian equilibria. The

following result is central to our discussion.

Lemma 2.3 (No cross-subsidization) In equilibrium the aggregate consumption of

each risk group does not exceed the corresponding aggregate endowment;

�ihri; �x
h
i i � 0; i = L;H: (2.18)

Proof: The result is a trivial consequence of Lemma 2.2 and the household's budget

constraint.

The main result of this section has to do with the problems that the previous no

cross-subsidy restriction imposes on the market mechanism. On the one hand, we

show that (provided it exists) a Walrasian equilibrium is always incentive constrained

eÆcient.

Theorem 2.4 A Walrasian equilibrium household allocation is incentive constrained

eÆcient.

On the other hand, if there exists an incentive constrained eÆcient allocation

which satis�es (2.18), the latter can always be supported by an equilibrium price

system provided an extra assumption is introduced in the �rm's problem.18

17Intuitively, if lotteries o�ered in the market were not priced according to the resources they use,

�rms would have incentives to repackage these lotteries making a pro�t out of such an arbitrage

activity (see Kehoe, Levine and Prescott (1998)).
18A somewhat tedious derivation shows that this assumption is necessary for existence of such a

price system.
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Assumption 2.1 When a production plan involves a negative aggregate net trade

with one of the risk groups, the �rm rationally takes into account the fact that policies

are sold according to the population proportions. So if, for some i, hri; x
f
i i < 0 then19

jjx
f
i jj

jjx
f
j jj

�

�i

�j
: (2.19)

The above is nothing but a natural rationality assumption. If the �rm plans to

take a negative net position with one group (say ti), it needs to �nance this activity

through a positive position with the other group (tj). As default is not allowed, this

position must to be large enough for the payments promised to the �rst group to be

implementable ex post. The �rm knows however that contracts always end up being

sold according to the population proportions. In particular, the more contracts of

type tj that are sold, the more contracts of type ti that are sold as well. Hence, if

it were to o�er policies which required trading with too large a mass of tj customers

relative to the mass of ti customers (i.e.
jjx

f
i
jj

jjx
f
j
jj
> �i

�j
) it would never be able to ful�ll

its promises ex post. Assumption 1 states that the �rm rationally takes this fact into

account.

Theorem 2.5 Suppose Assumption 2.1 holds. An incentive constrained eÆcient al-

location may be decentralized by a Walrasian equilibrium if an only if it satis�es

condition 2.18.

Consider a restricted version of the planner's problem obtained by replacing the

resource constraint (2.8) by the stronger no cross-subsidy restriction; i.e. by

�LhrL; xLi � 0 (2:18:L)

(1� �L)hrH ; xHi � 0 (2:18:H)

The new program is nested in the original planner's problem. Theorem 2.5 en-

sures that if this restriction is non-binding for some choice of L|so total welfare

is una�ected| the corresponding optimal solution corresponds to a Walrasian equi-

librium household allocation. By Proposition 2.1,20 high risk individuals buy their

actuarially fair full insurance contract, x�H = Æ( �wH ; �wH). Low risk agents buy their

preferred contract among those which are (at least) actuarially fair and are no better

than x�H in the eyes of the high risk agents. So, the Walrasian equilibrium is essen-

tially the pair of separating equilibrium contracts of Rothschild and Stiglitz (1976).

19hri; x
f
i i represents the ex post aggregate net trade of the �rm with the ti-group.

20By assumption expected consumption is lower for a high risk household, so L 2 (�L; 1).
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[Remember however that our model is slightly more general; in particular, low risk

households may buy a lottery contract in equilibrium.]

In general, however, none of the allocations in the constrained Pareto frontier

need satisfy (2.18). If so, there is always a constrained eÆcient allocation (x�L; x
�
H)

which Pareto dominates the Rothschild-Stiglitz outcome. In other words, there exists

a Pareto improving transfer scheme where the low risk households subside the high

risk households. Let SL be the weight associated to (x�L; x
�
H). For this weight, let q

�
L

and q�H denote the optimal shadow prices of (2.18.L) and (2.18.H) in the restricted

planner's problem. Since the restriction is binding, the shadow value of resources

is higher for the high risk group: q�H > q�L. Now, if each low risk agent gave up

� > 0 \units of expected consumption" these units could be transferred to the high

risk agents in a riskless fashion. Having extra �L�

1��L
units in each state, the latter

would be strictly better o� and their the incentive constraint would be relaxed. This

ultimately would allow low risk agents to better insure against their risk at the cost

of reducing their expected consumption by �. For � suÆciently small, their welfare is

also increased (the increase in total welfare being (q�H�q
�
L)�L�).

21 Clearly, the optimal

fee is �� =
(1��L)

�L
hrH ; x

�
Hi as it allows (x

�
L; x

�
H) to be attained. It is critical to note

that the optimal cross-subsidization scheme is incentive compatible and this allocation

is indeed implementable in a world of private information. Low risk households are

happy to pay a fee of �� to reveal their type and have access to the contract x�L

(which they strictly prefer to any contract that would be feasible in a world without

transfers). In contrast, high risk agents will never have incentives to pay a fee to get

x�L; they will be (just as) happy with their subsidized full insurance contract x�H .

We conclude that the relation between constrained optimal allocations and equi-

libria is much more subtle in the presence of adverse selection that in a full information

world. E�ectively, the market faces more restrictions than the social planner. These

restrictions in fact make existence problematic.22

21Note that the higher/lower the mass of low/high risk households the greater the subsidy to

the high risk households for a given fee �, and so, the more likely the existence of Pareto improving

transfers. An interesting result of Chassagnon (1996) shows that in the absence of the single crossing

property and if low risk agents are suÆciently more risk averse than high risk agents, the Rothschild-

Stiglitz outcome satis�es hrL; xLi < 0; so q
�

L = 0. In this set-up the market will never achieve a

constrained eÆcient as the low risk agents would be willing to give up consumption free!
22The idea that competitive equilibria may fail to exist with adverse selection is discussed by

Rothschild and Stiglitz (1976). Our Walrasian equilibrium is (for their set-up) a reduced form of

a variation of their strategic equilibrium description. The di�erence is that �rms would be allowed

to o�er pairs of contracts|and not just a single contract. A Walrasian equilibrium is hence more

vulnerable against arbitrage opportunities than the Rothschild-Stiglitz original construct.
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Corollary 2.1 A Walrasian equilibrium exists if and only if the no cross subsidy

constraint is not binding for the social planner for some choice of L. Hence, for a

generic set of economies, no equilibrium exists.

It is easy to show that the second welfare theorem holds (the proof is based on

that of Theorem 2.5).

Theorem 2.6 For any constrained eÆcient allocation there are feasible transfers

such that the allocation may be decentralized as an equilibrium after transfers.

In general, however, these transfers are not implementable with private informa-

tion.

3 Moral Hazard

This section presents the hidden actions model. The results extend also to the case of

ex post hidden types which proves analytically equivalent. The critical feature that

these two models share is that trading takes place before asymmetries of information

arise (see also Prescott and Townsend (1984a)). This is in contrast to the adverse

selection model where agents privately learn their type before trading takes place.

3.1 The Economy

Consider an economy with two goods|leisure l and a single consumption good c, a

continuum of ex ante identical households and a �nite number of �rms.

Households. Each household faces two states of nature: in state 1 it is su�ers an

accident and in state 2 no accident occurs. The endowment of the consumption good

in each state is w1 and w2 respectively (so w2 > w1); Z is the associated net trade

space. Households are endowed with one unit of leisure which they allocate among

leisure and accident prevention activities. The amount of leisure e which is devoted

to care prevention measures can either be high or low. This level determines the

household's probability of su�ering an accident. In particular, the lower e the more

likely the occurrence of an accident. Let �L (respectively, �H) be the probability of an

accident conditional on low care (respectively, high care) so 0 < �H < �L < 1. Agents

are expected utility maximizers with Von-Neumann Morgenstern utility function u :

R2
+ ! R twice continuously di�erentiable and concave in c, and strictly increasing

in c and l. Further, limc!0 @u=@c =1 and limc!1 @u=@c = 0.
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Firms. Companies are large compared to their customers and may insure a contin-

uum of households, facing (in doing so) no aggregate uncertainty.

Time and Uncertainty. The timing of the model is as follows. At time zero markets

open and agents make transactions. After the trading period is over households choose

their level of care prevention but their decision is only privately observed. Uncertainty

resolves and the �nal state of each household becomes common knowledge. Finally, all

contractual obligations acquired in the trading period are enforced and consumption

takes place.

Personalized Commodities. Insurance is sold in indivisible (exclusive) packages.

Each package speci�es both a personal level of care to be provided by the insured as

well as (potentially random) state-contingent net payments. Yet, only contracts for

which the insured agent has no interest to deviate from the speci�ed level of care are

traded.

3.2 Allocations

De�ne the set of e�ort levels E = feL; eHg. An allocation for the households is a

probability measure on E � Z. An allocation may be equivalently represented as a

pair (xL; xH) of measures on Z satisfying

Z
Z
d(xL + xH) = 1; xL; xH � 0 (3.20)

Without loss of generality we restrict to measures with �nite support and denote the

space of allocations by X. The interpretation is as follows. When allocated a bundle

(xL; xH) 2 X each household is recommended low care prevention with probability

�L and high care prevention with probability �H where

�i =

Z
Z
dxi; i = L;H:

Once the recommendation is made, the household is delivered potentially random

net payments. Conditional on a low care recommendation, for instance, each ele-

ment in the support of xL is a potential delivery with associated likelihood equal to

the (normalized) the mass of xL at the corresponding point. Similarly for high care

recommendations. This description highlights two possible types of randomization:

a) randomization on the level of care and, b) randomization on the net trade as-

signment conditional on a given recommendation. Bennardo and Chiappori (1998)

have recently stressed this di�erence between (using their terminology) \ex ante ran-

domization" and \ex post randomization". In this model the former will take place
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whenever both xL and xH are strictly positive measures, while the latter will occur

when (for some i) xi is a non-degenerate measure.

An allocation is feasible in terms of resources if ex post aggregate consumption

does not exceed the economy's aggregate endowment.

hrL; xLi+ hrH ; xHi � 0; (3.21)

where hri; xii is the aggregate net trade of the group of agents who are recommended

ei;

hri; xii =

Z
Z

�
�izi1 + (1� �i)zi2

�
dxi(zi1; zi2):

De�ne Ui(c) = u(c; 1� ei) for i = L;H. If a level of care ei is recommended and

ej is the actual level of care provided, the household's conditional expected utility is
1
�i
hEUj; xii where

hEUj; xii =

Z
(z1;z2)2Z

�
�jUi(w1 + z1) + (1� �j)Ui(w2 + z2)

�
dxi(z1; z2):

An allocation is incentive compatible if, for any level of care recommended with posi-

tive probability, the household �nds it optimal to conform to such a recommendation;

hEUi; xii � hEUj; xii; j 6= i; i = L;H: (3.22)

Finally, an allocation is said to be feasible if it is feasible in terms of resources and

incentive compatible.

3.3 Incentive Constrained EÆciency

A LSIP problem. The planner's problem corresponds to the optimization problem

(D) which chooses a feasible allocation to maximize the household's expected utility.

max hEUL; xLi + hEUH ; xHi

subject to

h1 ; xL + xHi = 1 (3.23)

�hEUL; xLi+ hEUH ; xLi � 0 (3.24)

hEUL; xHi � hEUH ; xHi � 0 (3.25)

hrL; xLi+ hrH ; xHi � 0 (3.26)

xL; xH � 0 (3.27)

The Primal Program. Let �, �H , �L and q be the primal variables associated with

the adding-up constraint, the incentive compatibility constraints for high and low

e�ort, and the resource constraint in (D) respectively. The primal (P ) is
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min �

subject to

� � EUL(zL)� �L[EUH(zL)� EUL(zL)]� qrL(zL); 8zL 2 Z (3.28)

� � EUH(zH)� �H [EUL(zH)� EUH(zH)]� qrH(zH); 8zH 2 Z (3.29)

�H ; �L; q � 0 (3.30)

As in Section 2, the LSIP model is well-behaved. In particular, both the primal

and dual problems are solvable and there is no duality gap.

3.4 Incentive-Related External E�ects

We consider an environment where high care prevention is optimal. In this set-up

it is Pareto eÆcient that all households exert high care and consume their expected

endowment regardless of the state. This allocation, however, fails to be incentive

compatible in a world of private information (given the opportunity cost of care

prevention activities) and cannot be implemented|it will always be in the household's

interest to shrink to a low level of care prevention.

We may let �L=0. Consider the system of primal constraints associated to high

care restated as

� � ��H(�H ; q) = sup
zH2Z

EUH(zH)� qrH(zH)� �H [EUL(zH)� EUH(zH)]

Feasible values of � are then upper bounds for a continuous real-valued function on Z.

This function has three main terms. The �rst term gives the household's contribution

to welfare when recommended high care prevention and assigned net payments zH ,

provided it conforms to the speci�cation. The second term is the associated cost

in terms of resources. (If the level of care were observable these would be the only

components of the function.)

The net social contribution with high care. In the presence of incentive constraints,

a third term arises which represents the incentive e�ect of any net trade assignment.

Whenever it is in the household's interest to defect to low care prevention, the term

gives the cost in terms of incentives measured by the utility gain of that deviation. On

the other hand, for assignments providing the right incentives, it gives the utility loss

implied by a deviation to low care. The direct net contribution of any assignment|

calculated as the di�erence between the �rst and second term|is this way adjusted

upward (downward) when it gives the right (wrong) incentives.
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The net social contribution with low care. A similar interpretation holds for the

constraint system associated to low care,

� � ��L(q) = sup
zL2Z

EUL(zL)� qrL(zL)

Yet, no incentive e�ects arise conditional on a low care recommendation. So the net

social contribution is just the di�erence between the direct contribution to welfare

and the cost in terms of resources.

The Modi�ed Primal. Feasibility in the primal requires that � should be at least as

large as the maximal net contribution conditional on ei being recommended, for any

i = L;H. Thus, the primal may be rede�ned as the unconstrained convex program

which chooses the price q of the consumption good and that of incentive e�ects �H

to minimize whichever of the two maximal net contributions is higher.

min
�H ; q� 0

maxf��L(q); �
�

H(�H ; q)g (P 0)

Let the optimal prices be ��H and q�.

3.5 Ex post Randomization

In this section the complementary slackness theorem is applied to characterize incen-

tive constrained eÆcient allocations.

Theorem 3.1 (Complementary Slackness) Given feasible primal and dual solutions

(��H ; q
�) and (x�L; x

�
H), the latter are optimal if and only if

0 = q�
�
hrL; x

�

Li+ hrH ; x
�

Hi

�
(3.31)

0 = ��HhEUL � EUH ; x
�

Hi (3.32)

��L(q
�) = EUL(z

�

L)� q�rL(z
�

L) 8z�L 2 suppx�L (3.33)

��H(q
�; ��H) = EUH(z

�

H)� q�rH(z
�

H)� ��H [EUL(z
�

H)� EUH(z
�

H)] (3.34)

8z�L 2 suppx�L

A series of results follow from the theorem. In particular, (3.33) has the following

implication.

Corollary 3.1 Constraint eÆcient allocations satisfy that households are fully in-

sured conditional on a low-care recommendation. Thus, randomization is always sub-

optimal conditional on this type of recommendation.23

23The second part of this proposition is also stated by Bennardo and Chiappori (1998).
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When agents are risk averse the net social contribution conditional on low care

is always strictly concave, having a unique global maximum. The full insurance

result follows directly from the �rst order conditions of the maximization. Intuitively,

since recommending low care prevention does not give rise to incentive e�ects, it

is then optimal to provide the households with full insurance conditional on such a

recommendation.

The case of high care prevention is rather di�erent. Despite the fact that pref-

erences are convex, the incentive e�ects identi�ed in the previous section may give

rise to non-convexities in the net contribution function with high care. As a result,

there may be bene�ts from assigning random payments conditional on this type of

recommendation. Similarly to the adverse selection model, there is a special situation

in which (ex post) lotteries are always suboptimal. (The proof is essentially that of

Proposition 2.2 in Section 2.6).

Proposition 3.1 If utility is separable in consumption and e�ort, assigning a lottery

conditional on a high care recommendation is suboptimal.24

In more general instances though randomization might be bene�cial. In the fash-

ion of the example in Section 2.6 consider the case in which households exerting high

care are risk neutral and households with a low level of care prevention are risk averse

(so UL is linear and UH strictly concave). It is then easy to devise an allocation which

is �rst best eÆcient and incentive compatible. This allocation recommends high care

with probability one and then assigns the household a lottery with expectation equal

to the �rst best expected net trade. The key is that the lottery involves (just) enough

risk to preclude the agent from shirking its level of care.

SuÆcient conditions for ex post randomization to be suboptimal are established

below. (The proof is essentially that of Proposition 2.3 in Section 2.6)25

Proposition 3.2 When absolute risk aversion increases with e�ort assigning random

payments conditional on a high care recommendation is suboptimal.

3.6 Ex Ante Randomization

Bennardo and Chiappori (1998) study a moral hazard model in which absolute risk

aversion increases with the level of care. Even though ex post randomization is

suboptimal, they argue that there may be bene�ts to yet another type of random-

ization. (After all, moral hazard economies with discrete e�ort levels are non-convex

24This result was �rst established by Holmstr�om (1979).
25Arnott and Stiglitz (1988) derive this result through a di�erent argument.
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economies.)

The underlying idea is that when leisure and consumption are complementary

commodities {e�ort and consumption are substitutes{ there may be a limit to the

amount of the good that the household may consume while still willing to provide

high care prevention. In terms of the LSIP model, restricting the planner's choice

to deterministic allocations (recommending high care) may lead to a non-binding

resource constraint. This is clearly suboptimal given the strict monotonicity of pref-

erences and the incentive-free e�ect of consumption with low care prevention. At

any such allocation the maximal net contribution conditional on a low care recom-

mendation is higher than that of a high care (i.e. �H(0; �H) < �L(0)) and yet

households are not being recommended low care prevention at all. Recommending

low care with a positive probability is, in these instances, an optimal way to transfer

resources to the household without perversely a�ecting their incentives. At the incen-

tive constrained eÆcient allocation the two maximal net contributions are equated,

�H(q
�; ��H) = �L(q

�).

It is easy to see from (3.32){(3.34) that when ex ante randomization is optimal26

the expected utility of households exerting high care is strictly lower than that of

households with low care prevention activities. Further, for high risk agents, the

marginal utility is not even equated across states.27 While this may seem odd at �rst

sight, it really is not as the marginal utility net of incentive external e�ects|the social

marginal utility|is equated both across states and e�ort levels. The LSIP charac-

terization thus conforms to the general notion of an eÆcient allocation with external

e�ects. Since no external e�ects arise when low care prevention is recommended, in

that case the social marginal utility coincides with the private marginal utility (driv-

ing the full insurance result). For high care, however, the marginal social utility of

consumption is strictly lower in the event of an accident. Hence it is optimal to have

this agents consume less in that state.

LetMUS
is stand for the marginal social utility of consumption in state s conditional

on ei being recommended; i.e.

MUS
H1(cH1) = U 0

H(cH1) + �H [U
0
H(cH1)�

�L
�H
U 0
L(cH1)] MUS

L1(cL1) = U 0
L(cL1)

MUS
H2(cH2) = U 0

H(cH2) + �H [U
0
H(cH2)�

(1��L)

(1��H)
U 0
L(cH2)] MUS

L2(cL2) = U 0
L(cL2)

Proposition 3.3 In the Bennardo-Chiappori model q� =MUS
is(ws + z�is); 8i; 8s.

26See Bennardo and Chiappori (1998) for suÆcient conditions.
27For a related discussion see Bennardo (1998).
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3.7 The Insurance Market

Consider an insurance market similar to that in Section 2.7.2.

Let P = C(Z)�C(Z). We shall consider the weak topology �(X;P ) on X, which

makes P the natural price space. Given a price system p 2 P , the cost of a bundle

x 2 X is given by the linear functional

hp; xi =
X

i=L;H

hpi; xii:

3.7.1 Walrasian Equilibrium

A Walrasian equilibrium is an allocation for the economy (�xh; �xf ) and a price system

�p 2 P such that the following conditions hold.

(i) Optimality for the households:

�xh = arg max
xh2Xh

hEU; xhi

s:t: h�p; xhi � 0;

where Xh = f(xhL; x
h
H) 2 X :

P
i=L;Hh1; x

h
i i = 1; xhi � 0; i = L;Hg is the household's

trading possibilities set.

(ii) Optimality for the �rm:

�xf = arg min
xf2Xf

h�p; xfi

where Xf is the set of production plans which are technologically feasible and incentive

compatible; i.e. xf = (x
f
L; x

f
H) 2 X belongs to Xf if and only if

�hEUL; x
f
Li+ hEUH ; x

f
Li � 0

hEUL; x
f
Hi � hEUH ; x

f
Hi � 0

hrL; x
f
Li+ hrH ; x

f
Hi � 0

x
f
L; x

f
H � 0:

(iii) Market clearing:

�xf + �xh = 0:

Since Xf is a pointed cone, (ii) implies the following.

Lemma 3.1 The �rm makes zero pro�ts in equilibrium; i.e.h�p; �xfi = 0.

In addition, the following is a critical no-arbitrage property of equilibrium.
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Lemma 3.2 Equilibrium allocations are priced according to the amount resources

which are used conditional on any given care recommendation.

h�pi; �x
h
i i = �yhri; �x

h
i i:

where �y is any strictly positive constant.

Proof: The proof is identical to that of lemma 2.2.

3.7.2 Optimality

As the main result in this section we establish the existence of a one-to-one correspon-

dence between Walrasian equilibria and incentive constrained eÆcient allocations.

Theorem 3.2 A Walrasian equilibrium household allocation is incentive constrained

eÆcient. Conversely, an incentive constrained eÆcient allocation can be decentralized

as a Walrasian equilibrium.

Proof: See Appendix B

In the light of the previous theorem, the existence of optimal solutions to the

planner's problem guarantees also the existence of an equilibrium.

Theorem 3.3 A Walrasian equilibrium always exists.
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Appendix A

A.1 The Primal Program

Let Rn be equipped with the Euclidean norm and partially ordered by means of the

cone

Kn
m = f y = (y1; :::; yn) 2 Rn : yj � 0; j = 1; :::; m; 0 � m � ng:

Given w 2 R2
+; de�ne the set Z = f z 2 R2 : z � �w g: Let the vector space

C(Z) of continuous real-valued functions on Z, endowed with the topology of uniform

convergence on compact sets, be partially ordered by means of the cone

C+(Z) = f f 2 C(Z) : f(z) � 0 8z 2 Z g:

Let a vector c 2 Rn; a continuous linear mapping A : Rn
! C(Z) � C(Z), and a

�xed element b 2 C(Z)� C(Z) be given.

Problem (P). The primal LSIP program, with value �(P ), is

inf c � y

s:t: Ay � b

y 2 Kn
m:

A.2 The Standard Dual

Let C(Z)�C(Z) be paired in duality with its topological dual space, Mc(Z)�Mc(Z);

i.e. Mc(Z) is the space of compactly supported signed Borel measures on Z which

are �nite on compact sets (c.f. Hewitt (1959)). The reexive space Rn is paired with

itself. The two pairings are endowed with their natural bilinear forms. [The notation

below highlights the dimensionality of the spaces in the pairing: whereas the dot

product notation applies to �nite dimensions, h :; : i is used for in�nite dimensional

spaces.]

hf; xi =

Z
Z
fLdxL +

Z
Z
fHdxH ; f = (fL; fH) 2 C(Z)� C(Z) (A.1)

x = (xL; xH) 2 Mc(Z)�Mc(Z)

y � z =
nX
j=1

yjzj; y 2 Rn; z 2 Rn: (A.2)

The mapping A� : Mc(Z)�Mc(Z)! Rn which is adjoint to A is de�ned by

y � (A�x) = hAy; xi 8x 2Mc+(Z)�Mc+(Z); 8y 2 Kn
m: (A.3)
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Program (DS). The dual of (P ); with value �(DS); is posed in Mc(Z)�Mc(Z) as

inf hb; xi

s:t: A�x � c

x � 0:

Yet, we may write Ay =
Pn

j=1 yjfj where fj = (fjL; fjH) 2 C(Z) � C(Z); j =

1; � � � ; n; so

y � (A�x) =
nX
j=1

yjhfj; xi 8y 2 Kn
m; 8x 2Mc+(Z)�Mc+(Z)

The statement A�x � c is then equivalent to

nX
i=1

yj(hfj; xi � cj) � 0 8y = (y1; :::; yn) 2 Kn
m

and (DS) can be expressed as

sup hb; xi

s:t: hfj; xi � cj; j = 1; :::; m

hfj; xi = cj; j = m+ 1; :::; n

x � 0:

A.3 The Haar Dual

Let R(Z) be the vector space of all functions �i : Z ! R which vanish outside a �nite

subset of Z; the so-called supporting set of �i (supp �i = fzi 2 Z : �i(zi) 6= 0g). The

elements of R(Z) are known as generalized �nite sequences in R (c.f. Goberna and

L�opez (1998)). Following Charnes et al. (1963), let C(Z)�C(Z) be paired in duality

with R(Z)
�R(Z), with associated bilinear form

hf; �i =
X

zL2supp�L

fL(zL)�L(zL) +
X

zH2supp�H

fH(zH)�H(zH)

f = (fL; fH) 2 C(Z)� C(Z); � = (�L; �H) 2 R(Z)
�R(Z):

Program (DH). A similar derivation to that in Section A.2 gives the dual problem

in Haar's sense, with value �(DH).

sup hb; �i

s:t: hfj; �i � cj; j = 1; :::; m

hfj; �i = cj; j = m + 1; :::; n

� � 0:
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Adverse Selection Moral Hazard

(n;m) (5; 3) (4; 3)

y (�L; �H ; q; �L; �H) (�L; �H ; q; �)

c (0; 0; 0; 1; 1) (0; 0; 0; 1)

b (LEUL; (1� L)EUH) (EUL; EUH)

f1 (�EUL; EUL) (�EUL + EUH ; 0)

f2 (EUH ;�EUH) (0; EUL � EUH)

f3 (�LrL; (1� �L)rH) (rL; rH)

f4 (1; 0) (1; 1)

f5 (0; 1) |{

Table i: Adverse Selection and Moral Hazard Models

Any pair � = (�L; �H) 2 R(Z)
�R(Z) gives rise to a pair of �nitely supported measures

x = (xL; xH) where, for example, xL =
P

zL2supp �L
�L(zL)ÆzL . Formally, R(Z)

�R(Z)

is isomorphic to the space X of allocations de�ned in Sections 2 and 3. It can be seen

from Table i that (DH) stands for the planner's problem in each such section.

A.4 Existence of Optimal Solutions and No Duality Gap

Because R(Z)
�R(Z) is isomorphic to a subspace of Mc(Z)�Mc(Z), �(DH) � �(DS).

The weak duality theorem for f(P ); (DS)g (c.f. Krabs (1979)) implies then

�(DH) � �(DS) � �(P );

so the pair f(P ); (DH)g satis�es also the weak duality inequality. We shall show that

�(DH) = �(P ), so it is in fact suÆcient to consider the Haar pair. The following fact

regarding the system of primal constraints is critical in the proof.

Lemma A.1 There exists a compact subset T � Z such that all primal constraints

associated to elements in ZjT may be eliminated without altering the set of optimal

solutions.

Proof: Let Y denote the set of feasible primal solutions (a closed convex subset

of Rn). Any y 2 Y satis�es

0 � hL(zL; y) = bL(zL)�
nX
j=1

yjfjL(zL) 8zL 2 Z (A.4)

0 � hH(zH ; y) = bH(zH)�
nX
j=1

yjfjH(zH) 8zH 2 Z (A.5)
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Since preferences are convex, it is easy to see from Table i that this system is consis-

tent. We establish the Lemma through a sequence of claims.

Claim 1: There exist Mj; j = 1; : : : ; n such that all optimal primal solutions lie in

the set M = fy 2 Y : yj �Mj; j = 1; : : : ; ng:

Since feasible solutions for (P ) belong to Kn
m and satisfy (A.4) and (A.5), it is clear

from Table A.5 that Y is bounded below. For j = fn�m+1; : : : ; ng the existence of

Mj follows from the objective of (P ), which chooses y 2 Y to minimize
Pn

j=n�m+1 yj.

Finally, any optimal solution y� must satisfy (A.4) and (A.5) with strict equality, so

y�j is bounded above for j = f1; : : : ; n�mg.

Claim 2: There is � > 0 such that yn�m > � 8y 2M .

Assume not. Then there is a sequence fykg in M such that 0 � ykn�m < 1
k
for all

k 2 N. Since one of the incentive constraint will always be redundant (this is obvious

with moral hazard and was established in Section 2 for the case of adverse selection),

without loss of generality we let y1 = 0. Table i implies then that for some i 2 fL;Hg

and all y 2 Y

0 � hi(zi; y) � bi(zi)� yn�mfn�mi(zi)� yn; 8zi 2 Z

Let y = yk. Rearranging and taking limits,

lim
k

ykn � bi(zi)� lim
k

ykn�mfn�mi(zi) = bi(zi); 8zi 2 Z:

Hence, limk y
k
n � bi(zi); 8zi 2 Z:

It utility is unbounded, limk ykn�m+1 = 1, contradicting Claim 1. If utility is

bounded, limzi!1 bi(zi) = Bi, Mn can then always be found in (0; Bi); leading to a

similar contradiction.

Claim 3: There is �z such that, 8y 2M and 8i 2 fL;Hg; rhi(zi; y) 2 R2

++ 8zi � �z:

Without loss of generality, take i = L. Note that rfjL = 0; j = n � m + 1; : : : ; n.

Also, rfn�m;L(zL) = �gL 2 R2
++. Hence,

rhL(zL; y) = rbL(zL)�
n�mX
j=1

yjrfjL(zL)

= rbL(zL)�
n�m�1X
j=1

yj(rf
+
jL(zL)�rf�jL(zL))� yn�mrfn�m;L(zL)

Where, rfjL
+;rf�jL � 0 stand for the positive and negative parts of rfjL.

Claims 1 and 2 imply then

rhL(zL; y) � rbL(zL) +
n�m�1X
j=1

MjrfjL
�(zL)� ��gL 8zL 2 Z

34



Because marginal utility decreases asymptotically to zero,

lim
zL!+1

rbL(zL) = 0

lim
zL!+1

rfjL(zL) = 0; j = f1; : : : ; n�m� 1g

Hence,

lim
zL!+1

rhL(zL; y) = ���gL << 0

Since hL(:; y) is a continuously di�erentiable map, there is �zL such thatrhL(zL; y) <<

0 for all zL > �zL.

A similar derivation gives �zH . Let �z = maxf�zL; �zHg.

Finally, by Claim 3, set T = [�w1; �z]� [�w2; �z] satis�es the lemma. 2

Consider the pair f(P T ); (DT
H)g which arises by replacing Z by T in the primal

and (Haar) dual programs. We establish the following.

Lemma A.2 The system of constraints in (P T ) is canonically closed in the sense of

Charnes et al. (1965).

Proof. First, since T is compact and b and fj, j = 1; :::n, correspond to pairs of

continuous functions, the set

f(f1(t); f2(t); : : : ; fn(t); b(t)) : t 2 Tg

is compact in Rn+1.

Second, the Slater quali�cation constraint is satis�ed; e.g. take y01 = � � � =

y0n�m�1 = 0. The map fn�m is linear and (given the convexity of preferences) b

corresponds to a pair of concave functions. Hence, there exist constants ÆL > 0 and

ÆH > 0 and values for y0n�m; � � � ; y
0
n such that,

ÆL � hL(zL; y
0) = bL(zL)� y0n�mf

n�m
L (zL)� y0n�m+1; 8zL 2 Z

ÆH � hH(zH ; y
0) = bH(zH)� y0n�mf

n�m
H (zH)� y0n; 8zH 2 Z

making y0 a Slater point. 2

Lemma A.3 �(DT
H) is attained and �(P T ) = �(DT

H).

Proof. Given Lemma A.2, the inhomogeneous Haar theorem of Charnes et al.

(1965) implies that the system of constraints in (PT ) has the Farkas-Minkoswki prop-

erty. Since (P T ) and (DT
H) are consistent, the extended duality theorem of Charnes

et al. (1962, 1963) implies then that (DT
H) is solvable and �(DT

H) = �(P T ). 2

Given the previous results the proof of Theorem 2.1 is readily established.
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Proof of Theorem 2.1. Since R(T )
� R(Z), �(DT

H) � �(DH). By Lemma

A.1, �(P ) = �(P T ). Weak duality of the pair f(P ); (DH)g and Lemma A.3 imply

�(P ) = �(DH). Further, the solvability of (DT
H) guarantees that of (DH) as both

programs have the same value. 2

Proof of Theorem 2.2. Y is closed, and by Claim 1 in Lemma A.1, may be

assumed bounded. Hence, the primal program is equivalent to a program that maxi-

mizes a continuous function on a compact set, and so, its value is attained.2
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Appendix B

Proof of Lemma 2.2. It suÆces to show that there exists �y � 0 such that h�pi; �x
f
i i =

�yhri; �x
f
i i for i = L;H.

We �rst show that hri; �x
f
i i = 0 implies h�pi; �x

f
i i = 0. Without loss of generality,

let i = L and assume h�pL; �x
f
Li < 0 instead. Let x̂f = (�x

f
L; �x

f
H) with  > 1. Since

�xf 2 Xf , also x̂f 2 Xf . Further, h�pL; x̂
f
Li = h�pL; �x

f
Li < h�pL; �x

f
Li: So h�p; x̂

f
i < h�p; �xfi;

contradicting (ii). A similar argument applies for h�pL; �x
f
Li > 0 letting  < 1.

Second, if hri; �x
f
i i 6= 0 for i = L;H,

h�pL; �x
f
Li

h�rL; �x
f
Li

=
h�pH ; �x

f
Hi

hrH ; �x
f
Hi

: (B.1)

When h�pH ; �x
f
Hi = 0, B.1 follows trivially from Lemma 2.1. Let h�pH ; �x

f
Hi 6= 0 and

assume, without loss of generality, that left-hand side of (B.1) exceeds the right-hand

side. Since �xf 2 Xf ,

h�pL; �x
f
Li

h�pH ; �x
f
Hi

>
hrL; �x

f
Li

hrH ; �x
f
Hi

� �1:

Thus, h�pL; �x
f
Li+ h�pH ; �x

f
Hi > 0; contradicting Lemma 2.1.

Finally, for any i the sign of h�pi; �x
f
i i equals that of hri; �x

f
i i. Say i = L. Suppose

h�pL; �x
f
Li < 0 and hrL; �x

f
Li > 0. The bundle x̂f = (�x

f
L; �x

f
H) with  > 1 is in Xf .

But h�p; x̂f i < h�p; �xfi, contradicting (ii). A similar argument goes through when

h�pL; �x
f
Li > 0 and hrL; �x

f
Li < 0 letting  < 1. 2

Lemma B.1 There is an array (��
f
L; ��

f
H ;

��
f
L;

��
f
H ; �q

f) 2 R5 such that ��
f
L + ��

f
H = 0,

��
f
L;

��
f
H ; �q

f
� 0 and

��
f
L � �L�pL(zL) + ��

f
LEUL(zL)� ��

f
HEUH(zH)� �qf�LrL(zL) 8zL 2 Z;

��
f
H � (1� �L)�pH(zH)� ��

f
LEUL(zH) + ��

f
HEUH(zH)� �qf(1� �L)rH(zH) 8zH 2 Z;

with strict equality i� zL 2 supp�x
f
L and zH 2 supp�x

f
H respectively.

Proof. Since (�x
f
L; �x

f
H) solves the �rm problem, (�

�x
f

L

�L
;�

�x
f

H

1��L
) is an optimal solution

for the (dual) LSIP problem:

max �LhpL; xLi+ (1� �L)hpH ; xHi s.t.

h1 ; xLi = 1

h1 ; xHi = 1

�hEUL; xLi+ hEUL; xHi � 0
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hEUH ; xLi � hEUH ; xHi � 0

�LhrL; xLi+ (1� �L)hrH ; xHi � 0

xL; xH � 0

The Lemma states the complementary slackness conditions for the associated pri-

mal, with optimal solution ( ��
f
L;

��
f
H ; �q

f ; ��
f
L; ��

f
H). It is easy to show that the primal is

solvable and there is no duality gap. Thus, Lemma 2.1 implies ��
f
L + ��

f
L = 0. 2

Lemma B.2 Let ��hi = hEUi; �x
h
i i and let ��hi be the equilibrium marginal utility of

money for households of type ti. Then, ��
h
i � EUi(zi)� ��hi �pi(zi); 8zi 2 Z; with strict

equality i� zi 2 supp�xhi .

Proof. The household's problem in (i) is a (dual) LSIP problem, and the above

are just the complementary slackness conditions of the associated primal under the

assumption that both problems are solvable and there is no duality gap (so �hi is also

the optimal value of the primal). Given Lemma B.1, it is easy to show that the results

in Appendix A apply to this dual pair, guarantying the validity of these assumptions.

2

Lemma B.3 Let L =
�
1+

(1��L)��
h
L

�L��
h
H

��1
: Consider the array (��L; ��H ; ��L; ��H ; �q) where

��L = �L
��h
L

��hL � ��
f
L; ��H =

�
1��L
��h
H

�
��hH � ��

f
H ;

��L = ��
f
L;

��H = ��
f
H ; �q = �qf :

Then (a) (��L; ��H ; ��L; ��H ; �q) is feasible for (P ), (b) (�xhL; �x
h
H) is feasible for (D) and

(c) the complementary slackness conditions for (P ) and (D) are satis�ed.

Proof:

(a) By Lemma B.2 any xhi in Xh satis�es �vhi � hEUi; x
h
i i �

��hi h�pi; x
h
i i: For i = L,

Lemma B.1 then implies

�vhL � hEUL; x
h
Li �

��hLh�
��
f
L

�L
EUL +

��
f
H

�L
EUH + �qfrL +

��
f
L

�L
; xhLi:

for all xhL 2 Xh. In particular,

�vhL � hEUL; ÆzLi �
��hLh�

��
f
L

�L
EUL +

��
f
H

�L
EUH + �qfrL; ÆzLi �

��hL
��
f
L

�L
;

for all zL 2 Z. Rearranging,

�L�v
h
L

��hL
+ ��

f
L �

�L
��hL

EUL(zL) + ��
f
LEUL(zL)� ��

f
HEUH(zL)� �qfrL(zL): (B.2)
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Similarly for i = H, all zH 2 Z satisfy

(1� �L)�v
h
H

��hH
+ ��

f
H �

(1� �L)
��hH

EUH(zH)� ��
f
LEUL(zH) + ��

f
HEUH(zH) (B.3)

��qfrH(zH):

Thus, ( ��L; ��H ; �q; ��L; ��H) satis�es both systems of primal constraints when the weights

of tL and tH in the social welfare function are given by �L
��h
L

and 1��L
��h
H

. It remains to

normalize the weights.

(b) Follows directly from the de�nitions of Xh
i and Xf given (iii).

(c) Complementary slackness for the primal follows from Lemmas B.2 and B.1

which imply that (B.2) and (B.4) hold with strict equality for zL 2 �xhL and zH 2 �xhL,

respectively.

As far as the dual is concerned, Lemma B.1 implies

h�p; �xfi = �qf(hrL; �x
f
Li+ hrH ; �x

f
Hi) +

��
f
L

�
h

EUL

1� �L
; �x

f
Hi � h

EUL

�L
; �x

f
Li

�

+ ��
f
H

�
h

EUH

�L
; �x

f
Li � h

EUH

1� �L
; �x

f
Hi

�
+ ��

f
L + ��

f
H

Since ��L; ��H ; �q are non{negative and �xf 2 Xf ; Lemma 2.1 and (iii) yield

0 = �qf(�LhrL; �x
h
Li+ (1� �L)hrH ; �x

h
Hi) +

��
f
L(hEUL; �x

h
Hi � hEUL; �x

h
Li) +

+��
f
H(hEUH ; �x

h
Li � hEUH ; �x

h
Hi) + ��

f
H + ��

f
H

�qf(�LhrL; �x
h
Li+ (1� �L)hrH ; �x

h
Hi) � 0

��
f
L(hEUL; �x

h
Hi � hEUL; �x

h
Li) � 0

��
f
H(hEUH ; �x

h
Li � hEUH ; �x

h
Hi) � 0

Since ��
f
L + ��

f
H = 0, the three inequalities are in fact strict equalities. 2

Proof of Theorem 2.4. Follows from Lemma B.3 and the complementary slackness

theorem. 2

Proof of Theorem 2.5. By Lemma 2.3, (2.18) is necessary for decentralization.

We next show it is also suÆcient. Suppose a constrained optimal allocation exists

which satis�es (2.18). Let (��L; �
�
H ; q

�) be the associated optimal solution for the

modi�ed primal. By (2.18) L > �L so ��L = 0. Let p� 2 P be de�ned as

p�L(z) = q�rL(z) +
��H

�L
EUH(z) +K�

L;

p�H(z) = q�rH(z)�
��H

(1� �L)
EUH(z) +K�

H ;
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where K�
L = �

��

H

�L
hEUH ; x

h�
L i and K�

H =
��

H

1��L
hEUH ; x

h�
H i:

Then, (xh�L ; xh�H ) satis�es (2.17) when �p = p� (e.g. let y� = q�.) By Lemma

2.3 xh�i belongs to the type-ti household's budget set. Finally, the complementary

slackness conditions for (P ) imply that xh�i is optimal for the households (��i = 1).

Complementary slackness for (D) yields �LK
�
L + (1 � �L)K

�
H = 0 and hp�L; �Lx

h�
L i +

hp�H ; (1 � �L)x
h�
H i = 0: Finally, it is easy to check that given Assumption 2.19 any

xf 2 Xf satis�es hp�; xfi � 0. Thus, xf
�
= (��Lx

h�
L ;�(1� �L)x

h�
H ) is optimal for the

�rm and markets clear. 2

Proof of Theorem 3.2. The proof of the �rst statement is identical to that of

Theorem 2.4. The proof of the second statement is a simpli�ed version of that of

Theorem 2.5. 2
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