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Abstract

We analyze a situation where individuals and coalitions can obtain
effective property rights over a resource by means of an exclusion con-
test. Coalitions face a trade-off when they decide to incorporate new
members: Big groups control the resource more likely but individual
property rights are more diluted. Under cooperative explotation of the
resource the grand coalition is the efficient partition. It is also stable
if players are committed to minimize deviators’ payoffs. This is not
the case when players play best responses and the conflict technology
is sufficently effective with respect to the concavity of the production
function: Then there is a strong tendency towards bi-partisan conflicts.
Moreover, under non-cooperative exploitation of the resource, conflict
may be socially efficient and Pareto dominate free access.
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1 Introduction

Suppose a society to fall into such want of all common nec-
essaries that the utmost frugality and industry cannot preserve
the greater number from perishing, and the whole from extreme
misery: It will readily be admitted that the strict laws of justice
are suspended in such pressing emergence, and give place to the
motives of necessity and self-preservation...”
David Hume (1751), An Enquiry Concerning the Principles

of Morals.
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1.1 Motivation and overview

Individuals often face situations in which to interact with many other agents
provokes a decline in individual payments (the exploitation of natural re-
sources or markets for instance.) In these cases, agents perceive the presence
of others as potentially dangerous or harmful; They are rivals in nature. But
what if they can anticipate this ”tragic” result? Will not they be tempted
to invest effort in non-economic means in order to avoid such ending? In
these settings, diverting part of the productive endowments into appropria-
tive activities aiming to reduce the number of rivals or competitors arises as
a natural option.

Historically, fights for the control over or access to resources have been
a main root of conflict among individuals and states: During the English
Enclosure on the 18th century, land, traditionally of common property, was
privatized through the political initiative of the upper classes1; in 1998, the
Project on Environmental Scarcities, State Capacity and Civil Violence of
the University of Toronto concluded that resource scarcity has triggered
predative behavior by elite groups in Indonesia, China and India (among
other countries). These groups aim to change property rights in order to
obtain monopolistic access to the resources. The immediate consequence is
the defensive reaction of excluded groups2.

Rivalry leads to competition, but competition may lead to cooperation:
Even if individuals are rivals in nature, it is not obvious that they will re-
main in the state of ”the war of all against all”. Sooner or later they realize
that by joining with others individuals and agreeing on a peaceful arrange-
ment, groups may face external hostilities in a much better position. A
natural question is: Does this clustering process eventually lead to universal
agreement, or to social fragmentation?

This paper investigates the formation of groups or coalitions when indi-
viduals may engage in activities aiming to exclude others from a resource
of common ownership. With that purpose we explore a general equilibrium
model where, once the population is partitioned into a coalition structure,
members of coalitions allocate their endowments into conflict effort (effort
henceforth) and productive activities (labor henceforth). Agents are identi-
cal and budget constrained by their initial endowments. For each coalition,

1”Where enclosure involved significant redistribution of wealth it led to widespread
rioting and even open rebellion” (North and Thomas, 1973).

2This was the case of the events in the Senegal River valley in 1989: Anticipating the
construction of a dam that increased land values, the Moor elite in Mauritania rewrote
legislation governing land ownership, effectively abrogating the rights the black Africans
to continue their economic activities on that lands. After the subsequent explosion of
violence in response, the black Mauritanians were stripped of their citizenship, expelled
from the country and their properties seized. For more examples of recent conflicts over
water or land supply see Homer-Dixon (1994).
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a conflict technology maps the profile of total coalitional efforts to the prob-
ability of winning the exclusion contest that follows the group formation
stage. According to these probabilities, Nature selects one coalition as the
winner of the contest. Therefore, agents use conflict to create effective prop-
erty rights3. Once control is granted, members of the winning coalition
exploit the resource with the supplied labor. The sharing rule employed
is a convex combination between equal sharing and proportional to labor
contributions. This specification not only satisfies some desirable proper-
ties, but also encompasses as specific cases joint production, where agents
can sign binding agreements over labor contributions, and individual pro-
duction case, where members of the winning coalition exploit the resource
non-cooperatively and the ’tragedy of the commons’ arises.

In this model the coalition formation process presents two particular
features. First, coalitions face a trade-off when they decide to incorporate
a new member: Given that output is shared among the members of the
winning coalition, the more players join in a coalition the more likely is
that it obtains control but the more diluted the control rights are. Second,
group formation induces externalities in non-members: When two individu-
als merge they agree not to fight each other. Consequently, their exclusion
effort changes. This affects the winning probabilities across coalitions, and
thus payoffs.

We are interested on what coalition structures arise in this game and
their impact on efficiency.

We first analyze the basic properties of the non-cooperative game played
after coalitions have formed: For any partition of the set of players and
any sharing rule considered, there exists a unique interior Nash Equilibrium.
This result is very important because it allows us to associate a unique vector
of individual payoffs to each possible coalition structure. We then explore
comparative statics and show that low-elasticity production technologies and
more egalitarian sharing rules lead to higher total levels of conflict.

Next, we focus on the coalition formation stage for the two polar cases
described above. There is not a unique approach to this issue. We consider
the following procedures. First, we simplify the existence of externalities by
assuming a fixed pattern of behavior on outsiders. This approach defines
game in characteristic form where the coalitional worth is independent of
outsiders’ movements. In the second approach we assume that coalitions
play only best responses and form sequentially following the game proposed
by Bloch (1996). In the game ensuing payoffs depend on the entire coalition
structure. Unfortunately, general closed forms are not possible and results
are thus limited. However, the qualitative features can be displayed by
examples.

3Following Grossman (2001), to say that an agent has an effective property right over
an object means that this agent controls its allocation and distribution.
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We first analyze the joint production case. We show that sufficiently ef-
fective conflict technologies make coarser coalition structures induce higher
levels of overall conflict. Under the assumption that players are committed
to inflict as much harm as possible to possible deviators the grand coali-
tion is stable. When only best responses are employed a conflict among
coalitions of the same size cannot improve upon universal agreement. The
game shows a strong tendency towards (at most) bi-partisan conflicts, the
incentives to open conflict depending upon the relation between effectivity
of conflict and rivalry/congestion: Under constant returns to scale of conflict
effort, coalitions do not find profitable to open conflict if they believe that
the complementary coalition will break up into singletons; but it may be
profitable for small coalitions to break the grand coalition if their deviation
will not be followed by any other. Increasing returns to effort reverse these
results. In any case the size of the population turns out to be critical in the
generation of deviations.

We continue addressing the case of individual production in which, once
a coalition obtains control over the resource, its members exploit it non-
cooperatively. In this case, the production stage takes the form of the
’tragedy of the commons’, one of the most clear examples of economic rivalry.
Recall that this phenomenon occurs when, due to negative externalities, a
resource of common use becomes overexploited. For instance, when herds-
men put the individually optimal amount of cattle in the pasture they do
not take into account that this decreases the available pasture for other
herdsmen’s cattle. Inefficiency increases as the number of individuals who
exploit the resource grows.

Normative approaches to the problem of the commons are perhaps too
naive if appropriative activities are available. In fact, we show that conflict
may be socially efficient. It acts as a discipline device that deters players
from devoting too much labor in the exploitation of the resource: Under
these circumstances, the formation of the grand coalition is much more dif-
ficult than under joint production because coalitions may prefer to expel
members and put up with higher hostilities in order to avoid overexploita-
tion of the resource. Moreover, contrary to the joint production case, it is
very likely that a conflict among coalitions of the same size Pareto dominates
free access.

The paper is structured as follows: In the subsection below the present
work is related with the literature. In Section 2 we give some basic notation
and assumptions. In Section 3 we show the uniqueness of the Nash equilib-
rium for any coalition structure and do some comparative statics. Section
4 and 5 address coalition formation for the polar cases of joint and individ-
ual production respectively. In Section 6 we conclude and discuss questions
opened for further research. All proofs are in the Appendix.
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1.2 Related literature

This paper is related with three different strands of the economic literature:
Economic models of conflict, coalition formation games with externalities
and common property resources.

Economic models of conflict date back to Bush and Meyer (1974) and
have received important contributions by Skaperdas (1992), Hirshleifer (1995)
and Neary (1996)4. The basic idea underlying this literature is that if prop-
erty rights are not properly defined individuals face a trade-off between
undertaking productive and non-economic or appropriative activities. The
main consequence is that the allocations resulting from economic interac-
tions may not be exclusively those derived from productivity but also from
relative performance in a conflict stage: Agents engage first in productive
activities -labor is transformed into output- and output is redistributed by
force in the second stage when players devote effort to appropriation. The
probability of winning the conflict can thus be identified as the proportion
of the total output allocated to each agent.

This canonical model however has been criticized because it can be in-
terpreted only as a theory of the right of access to common property, but
fails to account for the creation of private property rights5. Grossman and
Kim (1995) and Muthoo (2002) deal with the enforcement of the right to
enjoy the fruits of one’s labor. Rather than over some aggregate, the con-
test is over individual productions. In any case, all these models render
conflict activities as socially wasteful because resources are diverted away
from productive uses. On the contrary, we show that when players fight
for the right to exploit a common good, conflict activities may be socially
efficient precisely because of that.

All the mentioned models ignore as well the issue of coalition formation6.
Moreover, they share the unsatisfactory feature of focusing on struggles
over objects rather than over rights: In the former case agents produce
in the shadow of expropriation of the common output so they might be
appropriate to discuss pre-modern conflicts. However, victory in present-
day contests (as the cases above show) implies that winners control (or
have effective property rights) some contested object that enables them to
produce without further opposition7. Under this broader view the role of

4These models are closely related to rent-seeking models. In fact, they belong to the
more general class of models of rivalry. We refer the reader to Neary (1997) for a nice
exposition of these issues.

5See Grossman and Kim (1995), Neary (1996) and Muthoo (2002)
6The only exception is the recent paper by Noh (2002) who extends the canonical

conflict model to the case of three heterogeneous players.
7To the best of our knowledge, the only model of coflict that makes this distinction is

Skaperdas and Syropoulos (1998), where two agents fight for the right to access to some
fixed factor that they can use in production in case of victory.
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coalitions in conflicts is more sensitive and clearer8. Then, the main trade-
off is no longer between productive and unproductive activities but between
a higher chance of success and shared property rights.

The issue of coalition formation in common-pool resources in the absence
of conflict for control has been explored by Funaki and Yamato (1999) and
Meinhardt (1999). If players can communicate, they can form groups in or-
der to exploit the common. This (partially) solves the externality problem
because members internalize the negative effects on other members. Al-
though the grand coalition is the most desirable outcome, the presence of
external effects may prevent its formation because all players prefer others
to form coalitions: Funaki and Yamato (1999), in a partition function ap-
proach, show that the core of their game is non-empty if players have the
most pessimistic expectations but not if they have the most optimistic ones.
Meinhardt (1999) addresses the issue through a characteristic function ap-
proach that turns out to be convex and whose core coincides with the Von
Neumann-Morgenstern’s stable set.

Our model would be therefore complementary to these two because we
all address, from a positive point of view, situations in which the tragedy of
the commons may not be an irreversible outcome.

Third, the present work adds up to the existing literature on coalition
formation games with externalities, surveyed in Yi (1999), that departs from
traditional characteristic form games in that coalitional payoffs depend on
outsiders actions. With the exception of Tan and Wang (2000) and Noh
(2002), appropriative activities have been ignored as a source of externalities.
In this context, we also try to provide foundations to conflict models by
analyzing what coalition structures arise in our game.

Finally, our model is somehow related with some works in the field of so-
ciobiology as an instance of the competitive exclusion principle9 that states
that two species cannot coexist indefinitely under a limited amount of re-
source. Anyway, we assume implicitly this principle rather than proving
it.

2 The model

Consider a set N = {1, 2, ..., n} of identical players. Each of them owns
one unit of endowment that can be transformed into effort in the exclusion

8On the models of enforcement of private property rights, the simple existence of more
than two players may lead to inconsitencies: If an agent challenges two outsiders he may
loose two times his individual production!

9See Carneiro (1970) and (1978).
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contest (effort henceforth) or in labor. We denote these investments by ri
and li respectively, subject to the constraint ri + li ≤ 1.

Players may form coalitions. A coalition structure π is a partition of
N in a collection of disjoint coalitions {Sk}k∈K . Let us denote by sk the
cardinality of Sk. We say that a coalition structure is symmetric when all
coalitions in it are of the same size. Finally, the structure π is said to be a
coarsening of π0 if π can be obtained from π0 by merging coalitions in π0.

Once a coalition structure π has formed an exclusion contest takes place:
Denote by r(π) = (rS1, rS2 , ..., rSK ), where rSk =

P
i∈Sk ri, the vector of

coalitional efforts (we will denote individuals by subscripts and coalitions
by superscripts). The result of the contest among coalitions is driven by the
conflict technology that maps r(π) to a vector p ={pSk}k∈K of coalitional
winning probabilities (with probability pSk the coalition Sk attains the con-
trol of the resource and so on). We adopt a simple functional form where a
generic element of π denoted, with some abuse of notation, by S accesses to
the resource with probability

pS(r) =
(rS)m

(rS)m + r−S
(1)

where (rS)m is the coalitional outlay, r−S =
P

Sk∈π\{S}
(rSk)m is the sum

of all coalitional outlays outside S, and m represents the returns to scale or
effectivity of conflict effort. It is assumed that m ≥ 1. Notice that S cares
only about the supply of effort r−S and not about the exact composition of
π. However, the particular π we are considering makes a difference: The total
of coalitional efforts may be the same for two different coalition structures
but, for m > 1, they lead to different levels of total coalitional outlays;
the limit case when m = ∞ is formally equivalent to a first-price auction
where the coalition with the highest coalitional effort wins the contest with
probability 1.

Exploitation of the resource is carried through the production function
f(L), where L =

P
i∈S li, satisfying f(0) = 0. This technology is continuous

and concave in labor and satisfies that f 0(0) > nω, where ω is the unit
cost of labor, in order to ensure the existence of an interior solution to the
production problem of all coalitions.

The elasticity of production with respect to labor

ε =
f 0(L)L
f(L)

,

is a useful proxy for scarcity; by concavity ε ≤ 1. We establish a partial
ordering: technology f is said to dominate technology g if and only if εf > εg
for any L.
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Each member of the winning coalition receives a share

αi =
λ

s
+ (1− λ)

li
L

(2)

of the output generated so the individual payoff in the production stage is

αif(L)− ωli.

This family of sharing rules presents some advantages: The parameter
λ can be related with the enforceability of the contracts over labor that
members of a coalition can sign. If λ = 0 we are in a case of joint or
cooperative production in which players are pre-committed to share the final
output equally. However, if λ = 1 production is totally individual or non-
cooperative; sharing is proportional to labor contributions and members
of S play the ’tragedy of the commons’10. Second, it is the only family
that satisfies the axioms of Additivity and Non Advantageous Reallocation
(NAR)11; the latter ensures that no sub-coalition in S can benefit from
redistributing labor contributions among its members; The total dividend
for any subgroup depends only upon its contribution and the total labor
contribution12.

3 The Exclusion game

In this Section we explore the game agents play once a particular coalition
structure π has formed and analyze its properties.

The individual payoff for an individual i ∈ S is

uSi =
(rS)m

(rS)m + r−S
[αif(L)− ωli]. (3)

Players in N are identical: All of them are equally efficient when transform-
ing their endowments in effort or labor and the constant marginal cost of
labor ω is also the same for all players.

It is easy to see that at any optimal decision, individuals will employ
their entire endowments in both activities. Consequently, L = s − rS and
one can rewrite (3) as

uSi =
(rS)m

(rS)m + r−S
[αif(s− rS)− ω(1− ri)]. (4)

10This formulation of the tragedy of the commons can be found, among others, in Cornes
and Sandler (1983). With it we try to focus only on the trade-off between exclusionary
and productive activities rather than between labor and leisure.
11See Moulin (1987).
12This is equivalent to a decentralization property because in order to compute his

payoff an agent does not need to know who contributed by how much. Other rules like

αi =
lλiP
i²N lλi

does not satisfy it.
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where αi is now equal to λ
s + (1 − λ) 1−ri

s−rS . Then, the strategy space of all
individuals is Ri = [0, 1]. They make their choice of ri simultaneously and
non-cooperatively.

Definition 1 The Exclusion game Γ = (N, {Xi, uSi }i∈S∈π, f,ω,λ,m) in-
duced by the coalition structure π is defined by the payoff function in (4)

The profile of individual choices yields both the vector r(π) of coali-
tional effort and individual payoff in the production stage. If π is the grand
coalition, all players accede to the resource without contest.

Let us now define the best reply of an agent: Denote by r(π)\ri the
strategy profile under the unilateral deviation of player i from the strategy
profile r(π).

Definition 2 (Individual Best reply) Given a coalition structure π, the
set of individual best replies, denoted by BSi (r−i), of agent i ∈ S to the
strategy profile r−i = {rj}i6=j, chosen by the rest of members of S (if any)
and the outsiders is

BSi (r−i) =
©
ri ∈ [0, 1] / uSi (r(π)) ≥ uSi (r(π)\ri)

ª
.

In the Nash Equilibrium of Γ all players are playing their best response
ri(r−i) to the strategy profile r−i. More formally:

Definition 3 (Nash Equilibrium of the Exclusion game) A profile of
effort choices (r1, ..., rn) is a Nash Equilibrium of the Exclusion game Γ in-
duced by π if and only if uSi (r(π)) ≥ uSi (r(π)\ri) ∀i ∈ N .

Proposition 4 The Exclusion game Γ induced by any coalition structure
π has a unique interior Nash Equilibrium. Moreover, it is symmetric, i.e.
ri = rj ∀i, j ∈ S, ∀S ∈ π, and it is given by the following system of equations

m

srS
r−S

(rS)m + r−S
[f(s− rS)− ω(s− rS)] = (5)

(1− λ)
s− 1
s

f(s− rS)
s− rS +

1

s
f 0(s− rS)− ω ∀S ∈ π

When we introduce the exclusion contest the supply of effort becomes
a ”rat race”: Every unit spent by outsiders in excluding me reduces the
opportunity cost of investing one more unit in excluding others, i.e. best
response functions are increasing in r−S. On the other hand effort of the
members of a given coalitions are strategic substitutes. The reason is that
whereas the winning probability is a public good, αi is non increasing in ri.
So there are always incentives to free ride on other members’ effort.
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Our target now is to investigate the effect of different productive and
conflict technologies, parametrized by ε and m respectively and the partic-
ular sharing rule employed (parametrized by λ) on the agents’ optimal and
equilibrium choices.

Proposition 5 In the Exclusion game Γ the equilibrium level of total effortP
sk∈π(r

Sk)m

(i) is higher under g than under f provided that f dominates g;

(ii) is increasing in λ;

(ii) is increasing in m if

X
k∈π\S

(rSk)m(ln
rSk

rS
)≥0.

Conflict is linked to scarcity: In a world of constant returns to labor
conflict makes less sense. As the opportunity cost of labor increases exclusion
effort may be advantageous. In the same fashion, more egalitarian groups
behave more aggressively because they can overcome free-riding in effort
contributions. If the coalitions in π would differ in λ, these groups would
have an advantage in the exclusion contest.

Unfortunately, the last part of the Proposition allow us to extract partial
conclusions only: We can ensure that symmetric coalition structures induce
higher conflict expenditures in equilibrium when the conflict technology im-
proves.

For the rest of the paper we will consider two families of production
functions:

Linear quadratic: with f(L) = aL− bL2 that can be parametrized through
θ = a

b as measure of linearity

Exponential: with f(L) = Lα where α ≤ 1 that satisfies constant elasticity
of labor, i.e. ε = α.

Example 1: Let us illustrate Proposition 5 with the following example.
Take N = {a, b, c, d, e}. Initially, let f(L) = √L, m = 1, ω = 0.1 and
λ = 0. The coalition structure we assume that has previously form is π =
{{a, b, c}, {d, e}}.

In Figure 1 we plot the effect of different sharing rules and conflict tech-
nologies. In the vertical axis we project the coalitional effort of {a, b, c} and
of {d, e} in the horizontal one. The intersection of these reaction functions
constitutes the Nash equilibrium of the coalitional game.
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Fig. 1a: The effect of λ.
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Fig 1b: The effect of m.

The lighter lines represent the baseline case. In panel 1a, the darker
line depict the case λ = 0.5. As stated above, players put less effort as λ
decreases because free-riding. In panel 1b, the dark lines correspond to the
case when m = 2. As shown in the last Proposition the effect of this change
is ambiguous: For low values of outsiders’ effort, best replies below the ones
for the baseline. However, the equilibrium takes place at higher investments
of effort.

4 Coalition formation under Joint production

When λ = 1, agents in the winning coalition share the output equally.
This is equivalent to say that they can sign binding agreements on labor
contributions. As a consequence the resource is never overexploited, that is
the total labor supply always satisfies f 0(L) > ω (this can be seen in the
RHS of expression (5).) Hence, for simplicity and throughout this Section
we will assume that ω = 0 : An Exclusion game with a production function
h(L) = f(L) + ωL would yield the same equilibrium13.

Then, the payoff function can be rewritten as

uSi =
(rS)m

(rS)m + r−S
1

s
f(L). (6)

Let us now state some basic properties of the coalition formation game
in this case. First. we identify the sign of the spillovers that coalition forma-
tion generates: Games with positive externalities are those where mergers
of coalitions produce positive effects on non-members; with negative exter-
nalities, the effect is the opposite. It turns out that in our case this depends
on the effectivity of conflict effort
13The only relevant effect of doing this is that the Exclusion game has multiple payoff

equivalent equilibria: A game where players are coalitions instead of individuals can be
defined. It yields a unique Nash equilibrium profile r∗(π). Given that there is no personal
cost of contributing labor, any sharing of the equilibrium coalitional effort among its
members is an equilibrium at individual level.
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Proposition 6 The coalition formation game under joint production (i) is
of negative externalities if m ≥ 2 (ii) and of positive externalities under
linear quadratic and exponential technologies if m = 1.

Proposition 6 and the fact that coalitional effort is increasing in r−S

allow us to state the following Corollary

Corollary 7 When m ≥ 2 coarser coalition structures induce higher levels
of total effort.

Another basic property of the coalition formation game is the following

Proposition 8 Under joint production and productive linear quadratic and
exponential technologies, in any symmetric coalition structure π, uSi < u

N
i .

It immediately implies that the ’war of all against all’ will never be the
outcome of a coalition formation process; universal agreement will be broken
only in favor of an asymmetric coalition structure.

4.1 Characteristic function approach

The main difficulty of the non-orthogonal games of coalition formation, in
contrast with standard characteristic form games, is that outsiders’ actions
affect coalitional payoffs. Static approaches simplify this issue by assuming
a specific pattern of behavior for the rest of players that pins down only
one coalitional payoff. In this context there are two alternatives: One can
make assumptions over the particular strategies that outsiders will choose
and about the coalition structure that they will form.

4.1.1 The α and β characteristic functions

The α and β concepts, introduced by Aumann (1959), assume that players
are committed to punish deviations as much as they can. It implies as well
the formation of a particular coalition structure in order to achieve that
goal. Notice that this behavior will not be rational most of the times.

For our purposes, it will be important to define an indirect payoff func-
tion. Denote by rS(r−S) the maximizer of expression (6).

Definition 9 The indirect payoff function is

u∗(r−S) = uS(rS(r−S), r−S) =Max
rS

uS(rS , r−S) (7)

Now we can define the α and β characteristic functions:
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Definition 10 The α-characteristic function, vα, in the Exclusion game is
defined by:

vα(S) =Max
rS

Min
r−S

uS(rS , r−S) =Max
rS

uS(rS, br−S) = uS(rS(br−S), br−S) = u∗(br−S)
where br−S is the minimizer of the coalitional payoff. This expression cor-

responds to the indirect payoff function (7) when the outsiders have chosen
the action (and therefore a partition) that minimizes the coalitional payoff:
It is the minimum payoff that coalition S can guarantee to itself.

The beta notion defines the payoff coalition cannot prevented from for
any choice of outsiders:

Definition 11 The β-characteristic function vβ in the Exclusion game is
defined by:

vβ(S) =Min
r−S

Max
rS

uS(rS , r−S) =Min
r−S

uS(rS(r−S), r−S) =Min
r−S

u∗(r−S).

Notice that both characteristics functions coincide if br−S =Minr−S u∗(r−S).
Under joint production this holds.

Proposition 12 Under joint production, the indirect payoff function is de-
creasing in r−S. Therefore the α and β characteristic functions coincide, i.e.
vα(S) = vβ(S).

The minimizer of the coalitional payoff is the same regardless of wether
players react passively (after) or actively (before) to outsider’s ”best” pun-
ishment: We obtain the coincidence result also obtained for Common-Pool
games (Meinhardt (1999)) and Cournot games (Zhao (1999)).

Now we ask: Can the grand coalition be blocked by some coalition S ⊂ N
under these assumptions about outsiders’ behavior? Is there any room for
cooperation?

Definition 13 The α-core (β-core) is nonempty if there is no coalition S ⊂
N such that vα(S) > vα(N) (vβ(S) > vβ(N)).

Scarf (1971) showed that the α-core of a NTU game is non-empty if the
strategy space for each player is compact and convex and payoff functions
are all continuous and quasiconcave. This conditions are satisfied by our
game . Then, Proposition 12 implies the next result.

Proposition 14 Under joint production, the α−core and β−core are nonempty.
Moreover, they coincide.
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Given that Proposition 14 is important we briefly outline its proof: Sim-
ple inspection of (6) show us that the worst case scenario for S when they are
waiting for the choice of their rivals occurs when r−S attains its maximum.
When m ≥ 1 the coalition N\S must form and all its members must put
their entire endowment; then br−S = (n−s)m. Then, the alpha characteristic
function is just the best response to (n− s)m.

We know by Proposition 12 that the indirect characteristic function is
decreasing in r−S . This ensures that for any coalition u∗(r−S) attains its
minimum when r−S = (n− s)m. So finally we have:

vα(S) = u
S(rS((n− s)m), (n− s)m) = u∗((n− s)m) =Min

r−S
u∗(r−S) = vβ(S).

Hence, if individuals are committed to inflict as much harm as possible
to potential deviators universal agreement prevails.

4.1.2 The γ and δ characteristic functions

The static approach to coalition formation allows for non optimal reactions
because it is never optimal for them to invest the entire endowment in con-
flict. Agents in the complement coalition may not be able thus to commit to
total warfare in case of deviation. Hence, the next step would be to exoge-
nously impose a coalition structure but allow players to use best responses.
Coalitions will still be associated with a single payoff.

The idea, first introduced by Hart and Kurtz (1983) is to model the
coalition formation process as a normal form game where the strategy space
of the players is the set Si = {S ⊆ N / i ∈ S}. They define two possible
games: In the γ game, a coalition forms if and only if all its members
announced that coalition; in the δ game a coalition forms among those that
announced the same coalition even though some of its prospective members
announced something else.

Given that in the Joint production case the grand coalition is the efficient
coalition structure, in the sense that the sum of individual payoffs is the
maximum14, a natural question is if the universal agreement is stable, that
is, if it can be supported as a (Strong) Nash equilibrium of these games.

When analyzing the stability of the grand coalition the γ and δ con-
cepts can be easily interpreted as expectations of players about the coalition
structure that outsiders will form after an individual or group decides to
open hostilities: In the γ case they believe that the deviation will trigger a
chain reaction until all remaining players form singletons; in the δ case they
believe that remaining players will stick together. This allow us to define
again two characteristic functions.
14Notice that the total output is maximized under the grand coalition: Any other

coalition structure yields a convex combination among lower total productions.
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Definition 15 The grand coalition is γ−immune or γ stable [δ−immune or
δ stable] if there is no coalition S ⊂ N such that vγ(S) [vδ(S)] >

P
i∈S u

N
i .

Proposition 16 Under joint production, constant returns to scale of effort
and an exponential production function

(i) the grand coalition is γ stable;

(ii) the grand coalition is δ immune to deviations by coalitions with s ≥ n
2

but it is not δ immune to deviations by smaller coalitions.

In particular for α = 0.1 the grand coalition is not δ immune to the
deviation os a single player when n ≥ 15 and to the deviation of a two
players coalition when n ≥ 31.

When players hold ”optimistic” expectations about the behavior of out-
siders is hard to get the stability of the grand coalition. To have optimistic
expectations means different regarding m : When m = 1 the coalition for-
mation presents, optimism happens under the δ concept and, as Proposition
16 shows, universal agreement breaks up. However, it is in the other way
around when m ≥ 2. In such case we show with the following example that
the previous result get reversed

Example 3: Suppose that n = 5 and α = 0.1. Then the γ and δ
characteristic functions are

m vδ(1) vδ(2) vδ(3) vδ(4) vδ(5)
1 0.160 0.183 0.185 0.193 0.234
2 0.080 0.147 0.210 0.228 0.234
3 0.039 0.105 0.218 0.246 0.234

Table 1: δ characteristic function when n = 5

m vγ(1) vγ(2) vγ(3) vγ(4) vγ(5)
1 0.160 0.172 0.182 0.193 0.234
2 0.142 0.233 0.241 0.228 0.234
3 0.138 0.291 0.280 0.246 0.234

Table 2: γ characteristic function when n = 5

Notice first that vδ(s) ≤ vγ(s) only when m ≥ 2. In that case, incentives
to deviate are in the hands of big coalitions: Whenm = 2 the grand coalition
is not γ-immune and it is neither γ or δ-immune for m = 3. It seems that
the stability of the grand coalition m depends critically on the relationship
between m and α : Given a productive technology one only needs to have a
sufficiently effective technology of conflict to attack N successfully.

15



4.2 Sequential coalition formation approach

We now assume that players rationally predict the coalition structure that
outsiders will form after a deviation. There is no a unique approach to tackle
this issue. Here, we will follow Bloch (1996), where coalitions form if and
only if all members agree to do it à la Rubinstein: The first player in a
pre-determined protocol makes a proposal for a coalition; the players in this
proposed coalition decide sequentially to accept or not. The process stops
when all members accept or one rejects. In the former case, the coalition
finally forms; in the latter, the rejector must make another proposal. Bloch
(1996) shows that this game yields the same stationary subgame perfect
equilibrium coalition structure as the much simpler ”Size Announcement
game”: First player proposes a coalition of size s1 that immediately forms.
Then the (s1 + 1)-th player in the protocol proposes a coalition s2 and so
on, until the player set is exhausted. The game is solved through backward
induction and has generally a unique subgame perfect equilibrium.

However, we face a new difficulty: Contrary to the existing literature
on coalition formation games with externalities, the payoff function cannot
be characterized uniquely by the number of coalitions in π. So we can only
provide some partial results that show the importance of the relationship
between the productive and conflict technology for the stability of the grand
coalition.

Proposition 17 Under joint production and exponential production func-
tions, the Bloch’s stable coalition structure

(i) is the grand coalition under constant returns of labor (α = 1).

(ii) is not the grand coalition if labor is unproductive (α = 0) and under
increasing returns of effort. In particular it is of the form {s, n − s}
when m ≥ 2 and where s satisfies

(
n

s
− 1)m−1((m− 1)n

s
+ 1) = 1. (8)

(iii) is of the form {s, n − s} with s ≥ min{ n
2(1−α) , n} in the first-price

auction-like case if the coarsest stable partition is selected.

With constant returns of labor, conflict activities are wasteful from an
individual point of view: The first player in the protocol announces the coali-
tion that maximizes his probability of access because the cost of absorbing
one rival is zero.

The case of total congestion coincides with Tan and Wang (2000) for
the case of n identical players: Given that the prize is unaffected by labor
investments, players invest all their endowments in the exclusion contest and
this allows to derive a closed form for uSi . Under increasing returns to scale

16



of effort there is a strong tendency towards bi-partisan conflicts because
the formation of an outside group reduces the cost of joining with others.
The first coalition formed is less inclusive as m increases: It is of size

√
2
2 n

(ignoring the integer problem) when m = 2, 23n when m = 3, and 0.54n
when m = 20.

Finally, in the first-price-auction-like any coalition structure in which
the first coalition is greater or equal than n

2 is Bloch’s stable. In order
to be consistent with the previous result, we take the criterion of selecting
the coarsest stable partition (because then the first coalition formed when
α = 0 is of size n

2 .) In that case, the grand coalition if and only if α ≥ 1
2 .

Again, universal agreement can only be supported as a Bloch stable coalition
structure if returns to scale of labor are not too decreasing with respect to
the effectivity of effort.

Let us illustrate the points made so far with an example for a linear
quadratic production function.

Example 3: Assume that N = 4. In order to obtain reader friendly
figures we assume that players have 35 units of initial endowment. Let f(l) =
20L− 1

8L
2. We allow m to be 1 or 2. Payoffs are displayed in the following

tables.

m = 1 m = 2
π ua(π) ub(π) uc(π) ud(π)

a p b p c p d 83 83 83 83
ab p c p d 144 144 85 85
abc p d 184 184 184 90
ab p cd 150 150 150 150
abcd 200 200 200 200

ua(π) ub(π) uc(π) ud(π)
60 60 60 60
151 151 50 50
202 202 202 42
123 123 123 123
200 200 200 200

It is easy to see what the Bloch stable coalitions structures are: For
player a (the first in the protocol) it is dominant to announce {N} when
m = 1 and to announce {3} when m = 2. In the latter case a deviation is
possible because increasing returns to effort make exclusion cheap for big
coalitions. In that case, the possibility of conflict breaks up the efficiency of
universal agreement.

5 Coalition formation and commons

A common good is an object that is owned by nobody or, equivalently,
by everybody: a fishery, a pasture... In this Section we will be concerned
with how the existence of an exclusion contest and the possibility of coalition
formation affect the creation of effective property rights over common goods:
Will the tragedy of the commons ”remorselessly” occur?
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If a good is of common property, one would think that it cannot be
owned by a few!15 However, as pointed out by Grossman (2001), there is
a clear difference between effective and formal property rights: The former
entail control, the latter are those stated by legal ownership and may not
confer control rights by themselves. In fact, sufficiently strong control rights
are the main step for the recognition of formal ones if they were previously
undefined. For example, in the 1960s, oil and gas were found under the North
Sea. Several countries contested for the exploitation rights. Although the
United Nations’ Law of the Sea claims that resources in the seabed are ”the
common heritage of all mankind”, Britain and Norway finally obtained such
rights because they were able to impose the ”smallest distance to the coast”
criterion.

Let us briefly described the basic analysis of the ’tragedy of the com-
mons’: In the unique symmetric Nash Equilibrium of the game the total
labor input lF when s players has free access to the common

1

s
f 0(lF ) +

s− 1
s

f(lF )

lF
= ω. (9)

Efficiency would require that f 0(lS) = ω. However the total labor input
yields a weighted average between the efficiency level (achieved only when
one agent entries) and the equalization to the average productivity, where
the resource is overexploited. Moreover, the equilibrium payoff is decreas-
ing in s because inefficiency becomes more severe as s grows; as s → ∞
individual payoff approaches zero.

As we know the Exclusion game in the presence of a common pool re-
source corresponds to the case of λ = 0. In that case condition (5) becomes

m

s− lE
r−S

(rS)m + r−S
1

s
[f(lE)− ωlE ] =

s− 1
s

f(lE)

lE
+
1

s
f 0(lE)− ω (10)

The RHS of this expression is precisely the difference between the terms
in (9) that now is positive instead of zero. It implies that lF > lE . Hence
conflict acts as a discipline device because it deters players from contribut-
ing too much labor. This result opens the door to the social efficiency of
conflict, because exclusion activities (partially) alleviate the tragedy of the
commons. However, it would be totally trivial and vacuous if the stable
coalition structures, according to the concepts employed above, yielded al-
ways free access or other inefficient partitions. Next, we analyze this issue
by using linear quadratic production functions.

The first result is in sharp contrast with the Joint production case: Play-
ers in a symmetric coalition structure may be better off than in the grand
coalition and hence conflict may Pareto dominate free access.
15 I thank Carmen Beviá for this point.
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Proposition 18 Suppose that the free access problem case has an interior
solution under a linear quadratic technology. Then there exist a tresholdem(n, k,ω, θ) such that a k-sided symmetric conflict Pareto dominates free
access if and only if m ≤ em(n, k,ω, θ).

As expected the threshold em is increasing in θ : If conflict technology
is too effective and players underexploit the common free access can be
again dominated by rising θ and making production technology sufficiently
concave.

The second observation is that the α and β characteristic functions may
not coincide, as the following Lemma illustrates.

Lemma 19 The indirect payoff function of a player i ∈ S is strictly de-
creasing in r−S if

s ≥ (m+ 1) 1− ε

1− (ω(s− rS)/f(s− rS)) −m. (11)

Why can we only state a sufficient condition? Notice first that if a coali-
tion is underexploiting, f 0(L) > ω, condition (11) holds because the right
hand side is negative. However this is not necessarily true when the coalition
is overexploiting the resource. In such cases, in increment of the effort by
outsiders reduce the total labor contribution of the coalition and payoff in
the production stage increases. One can only ensure that vα(s) = vb(s) as
long as coalition S cannot overexploit, i.e. f 0(s) > ω. As a consequence only
when no coalition can overexploit the common16.

Now we illustrate Proposition 18 and Lemma 19 by means of the fol-
lowing example where we also show that the α characteristic function is not
convex contrary to what happens in common pool games (see Meinhardt
(1999)).

Example 4: The initial data of this game are taken from Meinhardt
(1999). Note that, by symmetry, they are equivalent to those used in Ex-
ample 3. This allows to compare the three models, Meinhardt’s and joint
and individual production.

Let n = 4, players have 35 units of initial endowment, the unit cost of
labor is 3 and let f(L) = 23L− 1

8L
2. Again, we consider the cases ofm equal

to 1 and 2.
First, we compare the alpha (and beta, because they coincide for the

individual production case too) characteristic functions. The characteristic

16This does not imply that the β core is empty. In fact, if br−S = (n− s)m is the actual
minimizer of u∗i , the exclusion game satisfies all the conditions posed in Theorem 1 in Zhao
(1999) for the non-emptiness of the β core. The real problem is that it is not possible in
this framework to compare a corner solution with possible interior minimizers.
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form game of Meinhardt (1999) is convex, that is, individual contributions
to coalitional worth are greater the bigger the coalition the player joins with.
However, this does not hold for our exclusion games

vα({1}) vα({2}) vα({3}) vα({4})
Meinhardt (1999) 95 253 488 800

Joint production (m = 2) 10.2 123.4 454.5 800
Individual production (m = 2) 10.2 106.5 380.3 512

where vα({s}) is the value generated by a coalition of size s when out-
siders behave in the α fashion. Note that the joint production case is inter-
mediate between Meinhardt’s and individual production. Anyway, values
for the exclusion games are always below Meinhardt’s ones. Furthermore,
Lemma 19 does not apply: Suppose that n > 4. Then, the indirect payoff
function for the member of coalition of four players attains a maximum when
r−S ≈ 0.8.

Let us now assume that coalitions play best responses. We compute the
partition function for Meinhardt (1999):

π ua(π) ub(π) uc(π) ud(π)
a p b p c p d 128 128 128 128
ab p c p d 100 100 200 200
abc p d 118 118 118 335
ab p cd 177 177 177 177
abcd 200 200 200 200

Notice that this game is of positive externalities: When players merge
they reduce their labor input because they internalize part of the social
costs. Outsiders take advantage from it: They have now a bigger share of
a higher overall production. Then, players are reluctant to form coalitions:
They want others to do so. Knowing this, the best announcement for the
first player in the protocol can do is the grand coalition.

Things change dramatically for the individual production case:

m = 1 m = 2
π ua(π) ub(π) uc(π) ud(π)

a p b p c p d 83 83 83 83
ab p c p d 134 134 102 102
abc p d 152 152 152 156
ab p cd 177 177 177 177
abcd 128 128 128 128

ua(π) ub(π) uc(π) ud(π)
61 61 61 61
142 142 67 67
171 171 171 94
158 158 158 158
128 128 128 128

Note first that, in contrast with the joint production case, this game is
of positive externalities for both values of m. When m = 1, it is dominant
for a to announce a two-player coalition because for c it will optimal to form
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{cd}. On the other side, when m = 2 it is dominant for a to form {abc}. The
reason for this difference lies at the fact that when m = 1 the three players
coalition is overexploiting and the winning probability does not decrease too
much by expelling c although it joined d.

Observe that, as pointed out in Proposition 18, for both values of m
the structure {ab p cd} is the most efficient one and Pareto dominates free
access. The consequence is that the latter is neither δ or γ immune. The
same happens with {abc p d} when m = 1. However, when m = 2 although
players in {abc} no longer overexploit the resource because their effort has
increased, d is in a too weak position. So big coalitions ”need” the presence
of outsiders. Not too many, as in the latter case for {ab}, but not too few,
as in the former for {abc}.

Finally let us compare the stable structures of the three models:

m = 1 m = 2
Meinhardt (1999) abcd abcd
Joint exploitation abcd abc p d

Separate Exploitation ab p cd abc p d

This results suggest that even if agents can communicate, very effective
conflict technologies make a difference. On the other side, by accepting the
possibility of conflict in non-cooperative environments, the ’tragedy of the
commons’ is partially alleviated: The expected production is closer to the
joint production of the resource, the best case scenario.

6 Conclusion

We have presented an economic model of conflict where agents reduce the
rivalry or congestion over some resource by excluding others. We have con-
sidered also the possibility that these agents may form coalitions in order to
be more successful in that endeavour. Effective property rights are created
through contests that determine what coalition gains access to the resource.
One important feature is that coalitions face a trade off: As they incorpo-
rate more members they attain control more likely, but individual property
rights within it dilute. Moreover, individual and coalitional payoffs depend
on the entire coalition structure.

We show that the more concave the technology of production is the
more likely a sufficiently effective conflict technology will break up universal
agreement. Under increasing returns to scale of exclusion efforts, the for-
mation of other groups reduces the costs of sharing property rights for the
rest of agents, leading to bi-partisan coalition structures. This would sup-
port the standard two-player models of conflict. However, the main result
under individual production is completely new in this literature: Conflict
may be socially efficient because deters individuals from using to much labor
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in the exploitation of the resource. Moreover, it is relatively easy to gen-
erate coalition structures that Pareto dominate free access and to support
them as the outcome of some well-know coalition formation games. Our
results must be interpreted with caution: We do not advocate that property
rights over commons should be allocated through conflict. Our contribution
should be regarded from a purely positive perspective; as an alternative that
would emerge when agents are not able to contract for welfare enhancing
arrangements nor communicate.

Some other comments are in order. First, our game is one shot: Once a
coalition has won the contest, its members agree not to fight again. Other
models, like Tan and Wang (2000), consider the scenario of continuing con-
flict where conflict is assumed to be fought until a conflict-proof coalition
(that is, one immune to the re-opening of conflict) prevails. We think that
this is a very relevant question with a population of identical agents where
only size matter: Why should a group of agents that fought mercilessly
with others cooperate for ever once conflict is solved?17. Continuing conflict
seems to be very well suited to overcome this problem for instance in rent-
seeking setups where the value of the prize is fixed (rather than cooperative
bargaining or fixed sharing rules). However, it seems less valid in a setting
like ours where the after-conflict stage is a production stage with its own
structure.

Another objection would be that our players are identical. It can be
argued that conflicts many times often because agents are different. Beyond
the problem of tractability, Noh (2002) points out how complex is to consider
just three heterogenous players, we can answer that assuming inequality of
endowments or strengths may be self-explanatory of the presumable unequal
allocations resting on conflict (or power relationships). Us, we are mainly
interested on exploring the validity of conflict as a mechanism that generates
such inequality as a by-product when agents use it to attains their goals.
Nevertheless, this option is worth considering: Given the complexity of the
model the easiest way would be to assume the existence of two types of
players.

Another possible extension of the model would be to relax the assump-
tion that the losing players face ”death”. This may be a source of additional
conflict investments. In Skaperdas and Syropoulos (1996) victory means that
the winners trade with the losers in a dominant position. In these line, It
could be assumed that the winning coalition also gains the power to hire
labor (or take it freely) from the losers. Then, if the payoff after exclusion
is not zero or the winners care about the left over endowments of the losers
exclusion races might be alleviated and conflict less fierce.

17We thank Serge Kolm for pointing out this question.
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A Appendix

Proof of Proposition 4. Let us denote f(s − rS) by f and so on.
Moreover, let us denote R = (sr)m + r−S. Then, the first order condition
for the maximization problem faced by i ∈ S states

m(rS)m−1
r−S

R2
[αif − ω(1− ri)]− (r

S)m

R
[(1− λ)

s− 1− rS\i
s− rS

f

s− rS + αif
0 − ω] = 0

(12)

Now we show that all optimal decisions inside any coalition S must be
the same across its members: Expression (12) can be rewritten as

m
r−S

R
[αif − ω(1− ri)] = rS [(1− λ)

1− ri
s− rS (f

0 − f

s− rS ) + (1− λ)
f

s− rS − ω]

(13)

Dividing (13) by the analogous expression a member j of S and rear-
ranging yields

αif − ω(1− ri)
ajf − ω(1− rj) = 1 +

(1− λ)
rj−ri
s−rS (f

0 − f
s−rS )

(1− λ)
1−rj
s−rS (f

0 − f
s−rS ) + (1− λ) f

s−rS − ω
(14)

Suppose that contrary to our conjecture ri > rj. Then the LHS of (14)
must be smaller than one. Otherwise ri would not be optimal for i because
by decreasing his effort would get a higher share of a higher total output.
However, the RHS of (14) is clearly greater than one because by concavity
f 0 < f

s−rS . Therefore, expression (14) only holds true when ri = rj .
Denote by r the individual level of effort inside S. Now we show that

there is a unique value of r > 0 that satisfies (12). Let

g(r) = m
r−S

R
[
1

s
f − ω(1− r)]− r[(1− λ)(s− 1) f

s− sr + f
0 − sω].
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Nest we show that whenever g(r) ≤ 0 then g0(r) < 0.

g0(r) = −mr
−S

R2
[f − ω(s− sr)]−mr

−S

R
[f 0 − ω]

−[(1− λ)(s− 1) f

s− sr + f
0 − sω]

−sr[(1− λ)
(s− 1)
s− sr (

f

s− sr − f
0)− f 00]

≤ m
r−S

R
[ω − f 0] + sr(1− λ)

(s− 1)
s− sr (f

0 − f

s− sr )

≤ (f 0 − f

s− sr )[sr(1− λ)
(s− 1)
s− sr −m

r−S

R
] ≤ 0.

where the last inequality follows from the fact that when g(r) ≤ 0

m

sr

r−S

R
≤ (1− λ)(s− 1) f

s−sr + f
0 − sω

f − ω(s− sr) < (1− λ)
(s− 1)
s− sr , (15)

because f 0 < ω ≤ (s(1− λ) + 1)ω. Therefore, if g(r) has a critical point or
it is decreasing, it is concave. This result implies that there exist at most
one r that makes g(r) = 0. Now we show that this r exists: limr→0 g(r) =
m[1sf − ω] > 018 whereas by L’Hôpital rule limr→1 g(r) = −[(s(1 − λ) +
λ)f 0(0)− sω] < 0 by assumption.

Proof of Proposition 5. Let us denote by γ the parameter of interest.
By total differentiation

drS

dγ
=

∂rS

∂γ
+

∂rS

∂r−S
dr−S

dγ
,

Define

H(rS , r−S) = m
r−S

R
[αif − ω(1− ri)]− rS [(1− λ)

s− 1− rS\i
s− rS

f

s− rS + αif
0 − ω]

(16)

One can repeat easily the procedure of the previous proposition and show
that ∂H(rS , r−S)/∂ri < 0 when H(rS , r−S) = 0. First we show that the
best reply effort is increasing in r−S : By the Implicit Function Theorem,
the sign of derivative is simply given by

∂H(rS , r−S)
∂r−S

= m
(rS)m

R2
[αif − ω(1− ri)] > 0.

18 If 1
s
f < ω then g(r) is clearly bounded from below by a level r such that when r → r,

g(r)→ 0+.
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Therefore, for any parameter γ the sign of drS

dγ and thus the direc-
tion in which R moves when γ increases is totally described by the sign
of ∂H(rS, r−S)/∂γ.

In the case of the elasticity. Condition (16) can be rewritten as

H(rS , r−S) = m
r−S

R
(1− ri)[s− r

S

1− ri
αi
ε
− ω

f 0
]− rS [(1− λ)

s− 1− rS\i
s− rS ε+ αi − ω

f 0
]

and the sign of that derivative is clearly negative, so the effort is inversely
related with the elasticity of output with respect to labor. Following the
same procedure, the sign of the derivative of the best reply with respect to
λ is given by the sign of

∂H(rS , r−S)
∂λ

= rS
s− 1− rS\i
s− rS

f

s− rS > 0.

so more egalitarian groups are more aggressive. Finally, in the case of m

∂H(rS , r−S)
∂m

> m
(rS)m

P
Sk∈π\S(r

Sk)m[ln rSk − ln rS]
R2

[
1

s
f − ω(1− r)].

Hence, the condition stated in the text is enough to obtain the desired
result. For symmetric coalition structures ln r

Sk

rS
= 0 for any Sk ∈ π and the

equilibrium level of effort is increasing in m for sure.

Proposition 7. It is shown in Proposition 12 (proved below) that the
indirect payoff function in the joint production case is decreasing in r−S then
the coalition formation game is of positive (negative) externalities if given
two coalition structures π and π0 it happens that r−S(π0) < (>) r−S(π),
where π0\{S} can be obtained by merging coalitions in π\{S}.

The next step is to look to the convexity or concavity of the coalitional
outlay with respect to size in order to discern how the overall level of hostility
changes when coalition structures become coarser. Let us define r = rS/s.
Then ∂rS/∂s = r + s∂r∂s . Monotone average coalitional outlay is sufficient
to ensure that (rS∪T )m ≥ (rS)m + (rT )m. One can rewrite the average
coalitional outlay as a function of r, i.e. r = sm−1rm, and its derivative:

∂
_
r

∂s
= sm−2rm[(m− 1) + s

r

∂r

∂s
].

Let us first investigate the sign of ∂r
∂s = −∂g(r)/∂s

∂g(r)/∂r where

g(r) = m
r−S

R

1

s
f − rf 0.
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Then

∂g(r)

∂s
= −m2 (sr)

m−1r−S

R2
r

s
f −mr

−S

R

1

s2
f +m

r−S

R

1− r
s
f 0 − (1− r)rf 00

= m
r−S

R

1

s2
f [
1− pS
r
− (m+ 1)]− (1− r)rf 00

when g(r) = 0. And

g0(r) = −m2 r
−S(sr)m−1

R2
f −mr

−S

R
f 0 − f 0 + srf 00.

But when g(r) = 0

m
r−S

(sr)m + r−S
f 0 = m2

(r−S)2

[(sr)m + r−S ]2
1

sr
f.

Then

∂r

∂s
=
mr−S

R
1
s2
f [1−p

S

r − (m+ 1)]− (1− r)rf 00
m (m+1)r−S(sr)−1

R f − srf 00
,

and it can be easily checked that ∂r
∂s > −rs . Then ∂

_
r

∂s > sm−2rm(m − 2)
and hence that is positive for any m≥2. On the other side, concavity of the
coalitional outlay implies that it is sub-additive.

∂(rS)m

∂2s
= m(rS)m−1[

m− 1
rS

(
∂rS

∂s
)2 +

∂2rS

∂2s
].

For linear quadratic and exponential production functions second deriva-
tives are:

∂2rS

∂2s
=
2m

2(rS)2(r−S)2
R2

[θ(s− rS)− (s− rS)2][mr−SR − (m+ 1)]
[m(m+1)(r

S)−2r−S
R [θ(s− rS)− (s− rS)2] + 2]2

≤ 0,

∂2rS

∂2s
=
2m(r

S)−2r−S
R [mr

−S
R − (m+ 1)]α(1− α)(s− rS)2α−3

[m(m+1)(r
S)−2r−S

R (s− rS)α + α(1− α)(s− rS)α−2]2
≤ 0.

Then, m ≤ 1 is sufficient for concavity in size.

Proof of Proposition 8. Under a symmetric coalition structure all
coalitions exert the same effort so pS = 1

k , where k is the number of coalitions
in π. Therefore, the FOC can be rewritten as

m
k − 1
k
(s− rS) = αrS ,
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Hence the equilibrium level of coalitional effort and the payoff for all
individuals in N are

rS =
n

k

m(k − 1)
m(k − 1) + αk

,

uSi = nα−1(
1

k

αk

m(k − 1) + αk
)α,

and it is easy to see that uSi < n
α−1 = uNi .

Now, under the linear quadratic production technologies we compute the
best case scenario for a coalition and show that the resulting payoff is lower
than the one received under the grand coalition:

By the results on comparative statics we know that in symmetric coali-
tion structures rS is increasing in m and therefore payoffs are decreasing.
So let us fix m = 1. Then the FOC states:

(k − 1)(s− rS − θ(s− rS)2)− (krS − 2θkrS(s− rS)) = 0,

and then the equilibrium level of effort as a function of the k and the pa-
rameters of the game is:

rS(k) =
2θn− k
2kθ

+
k − 2θn+

q¡−4kθn− 4k + 4θ2n2 + 1 + 4k2¢
2θ (3k − 1) .

The next step is to obtain the k ∈ [2, n] for which individual payoff is
maximized. Given pS = 1

k , and s =
n
k this reduces to know when total level

of labor is maximum. The derivative of s− rS w.r.t k is
∂(s− rS)

∂k
= − n

k2
− ∂rS

∂k
,

where

∂rS

∂k =
(6θn−1)

q
(−4kθn−4k+4θ2n2+1+4k2)+6kθn+2θn+2k−1−12θ2n2

2
q
(−4kθn−4k+4θ2n2+1+4k2)θ(3k−1)2

.

The latter expression only equals zero at k = 1
3 , so r

S is either increasing
or decreasing in k. Now we evaluate the derivative at k = 2 in order to obtain
its sign; It turns out that

∂rS

∂k

¯̄̄
k=2

=
(6θn−1)

q
(−8θn+9+4θ2n2)+14θn+3−12θ2n2

50
q
(−8θn+9+4θ2n2)θ

> 0,

where the last inequality follows after some tedious algebra; the deriva-
tive is thus always positive and rS is increasing in k. Finally ∂(s−rS)

∂k < 0,
so the total level of labor is decreasing in k. Therefore, it remains to check
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that a symmetric two sided conflict is worse than universal peace

rS(2) =
3θn− 3 +

q¡−8θn+ 9 + 4θ2n2¢
10θ

,

uSi =
4θn+ 3− 2θ2n2 + (θn− 1)

p
−8θn+ 9+ 4θ2n2

25nθ
.

Next we compute the payoff under universal peace: For interior solution
we need 2θn > 1. Then

uNi =
1

4θn
.

If 2θn ≤ 1 we have a corner solution and
uNi = 1− θn.

Now we show for each of these cases that this payoffs improve uSi :

(i) 2θn ≤ 1. The inequality 4θn+3−2θ2n2+(θn−1)
q
(−8θn+9+4θ2n2)

25nθ < 1 − θn
holds whenever θn is positive and smaller than 0.775, which is satisfied
by assumption

(ii) 2θn > 1. Simple algebra shows that the inequality
4θn+3−2θ2n2+(θn−1)

q
(−8θn+9+4θ2n2)

25nθ <
1
4θn holds for any value of θn.

Hence, uSi < u
N
i in any symmetric coalition structure.

Proof of Proposition 11. As stated in the text, both characteristic
functions coincide if and only if br−S =Minr−S u∗(r−S). Then, to prove that
the indirect payoff function is decreasing in r−S is a sufficient condition.

u∗ =
(rS(r−S))m

(rS(r−S))m + r−S
[f(s− rS(r−S))] (17)

Let r0 be the short hand notation of ∂r(r−S)
∂r−S . Then, by the envelope

theorem
∂u∗
∂r−S = −

(sr)m

R2
f + sr0[m (sr)m−1r−S

R2
f − (sr)m

R f 0]
= − (sr)m

R2
f < 0.

where the last equality follows from the fact that the terms in brackets
is exactly the first order condition for the joint production problem.

Proof of Proposition 16. The first order conditions for the problem
of a coalition of size s against t(= n− s) individual players are

tr1

tr1 + rS
(s− rS) = αrS

(t− 1)r1 + rS
tr1 + rS

(1− r1) = αr1
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where r1 is the effort exerted by each singleton. Now

tr1

rS
(s− rS) = (t− 1)r1 + rS

r1
(1− r1),

yielding that

r1 = rS
t− 1− rS +p(t− 1− rS)2 + 4(ts− rS)

2 (st− rS) .

Now we can rewrite the equilibrium winning probability for coalition S
as a function of the equilibrium level of rS :

pS(rS) =
2(ts−rS)

2(ts−rS)+t(t−1−rS)+t
√
(t−1−rS)2+4(ts−rS)

Now we establish the bounds for this probability. When
2s

2s+t−1+
√
(t−1)2+4ts r

S = 0

pS(0) =
2s

s+ n− 1 +pn− s− 1)2 + 4(n− s)s.
whereas when rS = s, pS(s) = s

n . It is easy to check that p
S(s) > pS(0).

Finally,

∂pS

∂rS
=

2t(ts−t+1)(1+
2(r−ts)
(ts−t+1)+t−r

S−1√
(n−s)(n−s−2−2rS)+1−2rS+(rS)2+4st

)³
2ts−2rS+t(t−1−rS)+t

√
t(t−2−2rS)+1−2rS+(rS)2+4st

´2 .
Some algebra shows that this derivative does not equal zero in the inter-

val [0, s] and hence the winning probability in equilibrium will lie for sure
in the interval [pS(0), pS(s)]. Therefore

uSi = p
S 1

s
(s− rS)α ≤ 1

n
(s− rS)α < nα−1 = uni .

So the grand coalition is γ stable.
For δ stability we follow the same procedure. First order conditions are

rT

rT + rS
(s− rS) = αrS , (18)

rS

rT + rS
(t− rT ) = αrT . (19)

where rT and t are the coalitional effort and cardinality respectively of the
complement coalition of S. Then

rT

rS
(s− rS) = rS

rT
(t− rT )
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and

rT = rS
−rS +p(rS)2 + 4t(s− rS)

2(s− rS) ..

Again the equilibrium winning probability as a function of rS is

pS(rS) =
2(s− rS)

2s− 3rS +
p
(rS)2 + 4t(s− rS)

Evaluated at the extremes pS(0) =
√
s√

s+
√
n−s and p

S(s) = s
n . It turns out

that pS(0) ≶ pS(s) if and only if s ≷ n
2 .

Again, the derivative

∂pS

∂rS
= 2³

2s−3rS+
√
(rS)2+4t(s−rS)

´2 (s− 2t(s−rS)+rSs√
(rS)2+4t(s−rS))

shows that pS(rS) has no critical point in (0, s). Therefore the equilib-
rium winning probability will lie in [

√
s√

s+
√
n−s ,

s
n ] if s >

n
2 and in [

s
n ,

√
s√

s+
√
n−s ]

otherwise. It immediately implies that no coalition greater or equal than
half of the population will deviate. Now we show that this is not the case
for small coalitions.

Manipulation of (18) shows that in equilibrium

α
(rS)

2

s−(1+α)rS = r
T =

√
(1+α)2(rS)2+4αtrS−(1+α)rS

2α .

Therefore we can be sure that in equilibrium rS < s
1+α . This, together

with the fact that when s < n
2 p

S(rS) is decreasing in rS implies that

uSi ≥ pS(
s

1 + α
)(

α

1 + α
)αsα−1 =

2α( α
1+α)

αsα−1

2α− 1 +
q
1 + 4α(1 + α)n−ss

and it is easy to generate examples where the latter term is greater than
nα−1, the individual payoff under the grand coalition.

Proof of Proposition 17. When α = 1 the individual payoff is

uSi =
(rS)m

(rS)m + r−S
(1− r

S

s
) < 1 = uNi .

So the first player in the protocol will announce {n}.When α = 0 the game
is exactly the one of Tan and Wang (2000) with n identical rivals. For
the (lengthy) proof of the statement for m ≥ 2 we refer the reader to their
paper. We briefly describe where the condition stated comes from: Once one
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proves that at most two coalitions will form the first player in the protocol
announces the coalition

s1 = argmax
1≤s1≤n

sm−11

sm−11 + (n− s1)m−1
.

Condition (8) is the FOC of this problem. For the case of m ∈ (1, 2)
notice that in that case the game is of negative externalities. In that case
we only need to find a size s such that sm−1

sm−1+(n−s)m−1 >
1
n = uni because

to announce s for the first player in the protocol dominates n. If the s + 1
player does not announce n− s payoff is even higher.

Finally, as in a first-price-auction, when m → ∞ in the Nash equilib-
rium given a π the all coalition except the biggest one will use their entire
endowments in effort. The biggest one will invest t + ε where t is the size
of the second biggest coalition. Let us assume that in the case of ties the
contest is won by the first coalition formed. Therefore, in the Bloch stable
coalition structure s1 must be the biggest coalition. However the player
s1 + 1-th player in th protocol is indifferent among all the announcements
in {1, n− s1} because all yield a payoff of zero. In order to select only the
coarsest stable coalition structure the player s1 + 1 will announce n − s1.
Knowing this player 1 in the protocol will announce

s1 = argmax
s∈{1,...,n}

(2s− n)α
s

= min{1
2

n

1− α
, n}.

and the payoff will be

us1i =

½
2αα(1− α)1−αnα−1 if α < 1

2
nα−1 otherwise

Proof of Proposition 18. In equilibrium the FOC states.

m(k − 1)((s− rS)(1− ω)− θ(s− rS)2) = krS(s(1− ω)− (s+ 1)θ(s− rS)).

From here, some calculation yields the equilibrium level of effort

rS =
n

2k
+
(m− n−mk)k(1− ω) + θnm(k − 1)

2θ (mk + k −m+ n) kq
(m− n−mk)2k2(1− ω)2 + (m(k − n)(k − 1)− n(n+ k))2θnk(1− ω) + θ2n2(n+ k)2

2θ (mk + k −m+ n) k
so one can get a (complicated) expression for uSi . If θ >

1−ω
n+1 then the

solution to the production problem of the grand coalition is interior and the
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individual payoff under free access is

uNi =
(1− ω) (1 + nω)

(n+ 1)2 θ
.

Computations yield that

uSi (r
S) > uNi ⇔ m <

(θn− k)(n+ 1) + kn(1− ω)

k(k − 1)
n(2nω + ω − n) + k(1 + nω)
(1 + nω) (2nω + ω − n) = em(n, k,ω, θ).

Moreover, given that em(n, k,ω, θ) is increasing in θ it is clear that one
can derive a treshold eθ such that m = em. Hence, the existence of an interior
solution of the free access problem guarantees as well the Pareto dominance
of conflict if 1−ωn+1 ≥ eθ.

Proof of Lemma19. Let r0 be the short hand notation of ∂r
∂r−S and

r(r−S) the best response strategy of the member of S. Then indirect payoff
function and its derivative with respect to r−S are

u∗i (r
−S) = (sr(r−S))m

(sr(r−S))m+r−S [
1
sf(s− sr(r−S))− ω(1− r(r−S))].

∂u∗i (r
−S)

∂r−S
=

∂u∗i
∂r
r0 +

∂u∗i
∂r−S

= spS [r0
s− 1
1− r −

1

R
][
1

s
f − ω(1− r)]

where:

∂r(r−S))
∂r−S =

m(sr)2m−1
R2

[ 1
s
f(s−sr)−ω(1−r)]

mr−S(sr)m−1
R

[m+1
r
− s−1
1−r ][

1
s
f−ω(1−r)]−f 00−( (s−1)

s−sr +
1
s2
)(f 0− f

(s−rS) )
> 0.

Then ∂u∗i
∂r−S has no clear sign because r

0 > 0. After making some computa-
tions, one can check that the sign of ∂u∗i

∂r−S is given by the sign of

−mr−S(sr)m−1
R2

[m+1
r
− s−1
1−r

1

1−pS ]][
1
s
f−ω(1−r)]+f 00+( (s−1)

s−sr +
1
s2
)(f 0− f

(s−rS) )
mr−S(sr)m−1

R
[m+1

r
− s−1
1−r ][

1
s
f−ω(1−r)]−f 00−( (s−1)

s−sr +
1
s2
)(f 0− f

(s−rS) )

Unfortunately we should restrict to conditions that ensure the negative
sign of this derivative. It is sufficient to show that

m+1
r − s−1

1−r
1

1−pS > 0

Finally, first order condition allows us to rewrite this condition in terms
of production and conflict technology only as stated in the text.
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