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1 Introduction

The purpose of this paper is to introduce a new compromise value for non-

transferable utility games (NTU-games): the Chi-compromise value. As with

all compromise values it chooses as the solution of the game the eÆcient vec-

tor lying in the segment between the vectors of maximal and minimal utilities

that each player may expect to obtain; that is, it is a compromise between

their maximum and minimum aspirations. For pure bargaining problems

(that is, situations where all agreements have to be unanimous) the Kalai-

Smorodinsky solution (Kalai and Smorodinsky (1975)) is based on a com-

promise of this type. When partial agreements are possible and utility is

transferable across players (that is, TU-games) we de�ned (Berganti~nos and

Mass�o (1996)) a compromise value called the Chi-value. Our proposal here

extends these two particular solutions to general problems where players may

reach partial agreements and utility is not necessarily transferable (that is,

NTU-games).

We propose as the maximum aspiration for a player in a game his maximal

(among all coalitions) marginal contribution and as the minimum aspiration

the maximum remainder he can obtain by going with a coalition of players

and o�ering them their maximum aspirations. In non-level NTU-games our

proposed vectors of aspirations have the following three properties: (1) Giv-

ing players their maximum aspirations will always exhaust all possible gains

from cooperation. (2) The vector of maximum aspirations is component-wise

larger than the vector of minimal aspirations. (3) The minimum aspiration

obtained in this rather indirect way coincides with the vector of individually

rational payo�s. We �nd this last property interesting because it means that

we have as a result that the minimum aspiration for each player in a game

coincides with what they can obtain without any cooperation. It seems to us

that this property may also be a good indication that the proposed maximum

aspiration is meaningful.

The paper is organized as follows. After a preliminary section which gives

the main notation and concepts comes Section 3. This contains the de�ni-

tion of the Chi-compromise value; Propositions 1, 2, and 3 which establish

that properties (1), (2), and (3) above hold for non-level NTU-games; the

demonstration that the Chi-compromise value exists for all non-level and es-

sential NTU-games; and �nally, a number of examples which illustrate the

concept. Section 4 provides two characterizations of the Chi-compromise
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value using the following axioms: Pareto optimality, covariance, symmetry,

and restricted monotonicity (or strong symmetry instead of symmetry and

restricted monotonicity). Section 5 proposes a di�erent compromise value

based on applying our Chi-value for TU-games to the characteristic func-

tion obtained by the classical ��transfer approach. Section 6 concludes

by suggesting (as a generalization of Moulin (1984)'s implementation of the

Kalai-Smorodinsky solution for pure bargaining problems) a non-cooperative

extensive form game whose subgame perfect equilibrium payo�s coincide with

the Chi-compromise value. We also compare, briey, our value with other

well-known NTU-values.

2 Preliminaries

Players are the elements of a �nite set N = f1; :::; ng where n � 2. A non-

empty subset of players is called a coalition . We denote by s the number of

players of coalition S and, abusing notation, by i the set fig.

A (cooperative) game with non-transferable utility (NTU-game) is an or-

dered pair (N; V ) where N = f1; :::; ng is the set of players and V is a

mapping, called the characteristic function, which assigns to each non-empty

coalition S a non-empty subset of IRs. The set V (S) is interpreted as the

collection of payo�s or utilities that members of S can reach by cooperating

among themselves. We will concentrate only on games with non-transferable

utility having the standard properties that for each coalition S, the set V (S)

is closed, non-empty, and comprehensive (i.e., x 2 V (S) and y � x imply

y 2 V (S)).1 Also, the set V (S) \ IRs

+
is bounded and non-empty (where

IRs

+
= fx 2 IRs

j x � 0g). This last requirement is a payo� normalization

and it implies that 0 2 V (S) for each coalition. For each player i 2 N

there exists a payo� wi � 0, called the individually rational payo�, such

that V (i) = fx 2 IR j x � wig. We denote by Vn the class of games with

non-transferable utility with n players.

We will often use the following properties of games with non-transferable

utility.

1Given x; y 2 IR
k, y � x means yi � xi for all i = 1; :::; k while y < x means yi < xi

for all i = 1; :::; k. Given x 2 IR
n and a coalition S, denote by xS the restriction of x to

the coordinates corresponding to the members of S; i.e., xS = (xi)i2S .
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De�nition 1. A game (N; V ) is non-level if for each coalition S we have

that for all x; y 2 V (S) \ IRs

+
such that y � x � wS and x 6= y there exists

z 2 V (S) with the property that z > x.

De�nition 2. A game (N; V ) is essential if w 2 V (N).

We denote by Cn the subclass of non-level and essential games with non-

transferable utility.

A solution on a subclass of games Gn � Vn is a function ' :Gn ! IRn

which assigns a vector ' (N; V ) 2 V (N) to each (N; V ) 2Gn.

We will consider, and use as references, two special subclasses of games.

A game (N; V ) has transferable utility if there is a real-valued function v

such that V (S) =
�
x 2 IRs

j

P
i2S

xi � v (S)
	
; namely, each coalition S can

achieve a maximum level of utility v (S) which can be distributed amongst

its members in all possible ways. We denote by vn the subclass of games with

transferable utility with n players. A generic game with transferable utility

will be denoted by (N; v). A game (N; V ) is a bargaining game if w 2 V (N)

and V (S) = fx 2 IRs
j x � wSg for every coalition S 6= N ; namely, gains

from cooperation come only from unanimous agreements. We denote by Bn

the subclass of bargaining games with n players. A generic bargaining game

will be denoted by (w;B), where B stands for the set V (N) and w represents

the disagreement point.

We are specially interested in extending two compromise solutions of these

subclasses to games with non-transferable utility. The �rst one is the Kalai-

Smorodinsky solution (Kalai and Smorodinsky (1975)) on bargaining games

which represents an eÆcient compromise between the maximal aspiration of

each player, compatible with individual rationality of the others, and the dis-

agreement point. Formally, given (w;B) 2 Bn de�ne the Kalai-Smorodinsky

solution, denoted by KS (w;B), as follows: for all i 2 N

KSi (w;B) = �MKS

i
(w;B) + (1� �)wi;

where MKS

i
(w;B) = max

�
xi 2 IR j

�
xi; xNni

�
2 B and

�
xi; xNni

�
� w

	
and

� 2 [0; 1] is such that KS (w;B) 2 P (B), where P (B) denotes the Pareto

frontier of B.2

2In general, given a set A � IR
k , the Pareto frontier of A is the set P (A) =

fx 2 Aj@y 2 A with the property that y � x; y 6= xg and the weak Pareto frontier of A

is the set WP (A) = fx 2 Aj@y 2 A with the property that y > xg. Given a set A and

a vector y we say that y is undominated for A if @x 2 A such that x � y and x 6= y.

Obviously, if y 2 V (S) n P (V (S)) then y is dominated for V (S).
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The second one is the �-value (Berganti~nos and Mass�o (1996)) on the

subclass of games with transferable utility. It is also based on selecting an

eÆcient compromise between maximal and minimal aspirations of players.

In this case, the maximal aspiration of a player is his largest marginal con-

tribution while his minimal aspiration is the largest remainder he can obtain

after conceding to the other players their maximal aspiration. Formally, let

(N; v) be a game with transferable utility. For each i 2 N , de�ne player i's

maximum aspiration in the game as

M
�

i
(N; v) = max

S�N;i2S

fv (S)� v (S n i)g :

Given the vector M� (N; v) de�ne player i's minimum aspiration in the game

as

m�

i
(N; v) = max

S�N;i2S

8<
:v (S)�

X
j2Sni

M�

j
(N; v)

9=
; :

De�ne the �-value on vn, denoted by � (N; v), as the unique eÆcient vector

in the lineal segment having as extreme points m� (N; v) andM� (N; v); that

is,

� (N; v) = M� (N; v) + (1� )m� (N; v) ;

where  2 [0; 1] is such that
P

i2N
�i (N; v) = v (N). Berganti~nos and Mass�o

(1996) showed that the �-value exists in the class of essential games.

3 The Chi-compromise value

In this section we de�ne and study a compromise value for NTU-games. Let

(N; V ) be a game inVn. For each i 2 N de�ne player i's maximum aspiration

in the game as

M�

i
(N; V ) = max

S�N;i2S

�
t 2 IR j (t; x) 2 V (S) \ IRs

+
; x 2 P (V (S n i))

	
:

Notice that M
�

i
(N; V ) � wi (take S = fig and t = wi). We also have

that M�

i
(N; V ) < +1 because V (S) \ IRs

+
is compact and P (V (S n i)) is

closed. Therefore, M�

i
(N; V ) is well de�ned for all (N; V ) in Vn.
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Given the vector M� (N; V ) de�ne player i's minimal aspiration in the

game as

m
�

i
(N; V ) = max

S�N;i2S

n
t 2 IR j

�
t;M

�

Sni
(N; V )

�
2 V (S)

o
:

Of course m�

i
(N; V ) � wi (again take S = fig and t = wi). Notice that

for each S containing i, the projection of V (S) on i's coordinate is closed

and bounded above. Therefore the maximum de�ning m�

i
(N; V ) does exist

for all (N; V ) in Vn.

From now on, and when this does not lead to confusion, we will omit the

reference to the game (N; V ) to denote the aspiration vectors m� and M�.

The following propositions state that the three important properties of

the vectors of aspirations already explained in the Introduction hold for non-

level games. Proposition 1 says that, for every coalition S, the vector of

maximum aspirations is undominated for V (S).

Proposition 1. Let (N; V ) be a non-level NTU-game. Then, for all S � N

we have that

M�

S
=2 V (S) n P (V (S)):

Proof: If S has only one player the result holds. Suppose it is true when S

has at most p� 1 players; we will show that the statement holds in the case

of coalitions with p players.

In order to get a contradiction assume that S has p players and M�

S
2

V (S) n P (V (S)). Then, there exists yS 2 V (S) such that yS � M�

S
and

i 2 S with yi > M�

i
. As M�

Sni
=2 V (S n i) n P (V (S n i)) (by the induction

hypothesis) and (N; V ) is non-level we can �nd xSni 2 P (V (S n i)) such that

xSni � M
�

Sni
. Then, by comprehensiveness,

�
yi; xSni

�
2 V (S) and therefore

M�

i
� yi > M�

i
.

Proposition 2 says that for non-level games the maximum aspiration is

larger or equal to the minimum aspiration.

Proposition 2. Let (N; V ) be a non-level NTU-game. Then,

m�
�M�:

Proof: Let i 2 N be an arbitrary player and let t 2 IR be such that there

exists a coalition S � N containing i such that
�
t;M�

Sni

�
2 V (S). Since
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w � m� and w � M� we may restrict attention only to t's such that 0 �

wi � t. By Proposition 1 we must be able to �nd x 2 P (V (S n i)) such that

0 � x �M
�

Sni
. Therefore, by comprehensiveness of the game,

(t; x) �
�
t;M

�

Sni

�
2 V (S) :

Then, we have (t; x) 2 V (S) \ IRs

+
. Hence,

m
�

i
= max

S�N;i2S

n
t 2 IR j

�
t;M

�

Sni

�
2 V (S)

o
� max

S�N;i2S

�
t 2 IR j (t; x) 2 V (S) \ IRs

+
and x 2 P (V (S n i))

	
= M�

i
:

Proposition 3 below shows that, for non-level NTU-games, the vector of

minimal aspirations coincides, as it should, with the vector of individually

rational payo�s. But, again, notice that m� is obtained endogenously as

the maximum reminder after giving to other players in the coalition their

maximal aspirations. We interpret this property as an indication that our

de�nition of maximal aspiration is sensible.

Proposition 3. Let (N; V ) be a non-level NTU-game. Then,

m� = w:

Proof: From the de�nition of m
�

i
it follows that m

�

i
� wi just by taking

S = fig. To see that m�

i
� wi it will be suÆcient to show that t � wi for all

t 2 IR and all S � N such that i 2 S and
�
t;M�

Sni

�
2 V (S). The proof is

by induction on the number of players in the coalition S.

Assume that S = fi; jg. If
�
t;M�

j

�
2 V (fi; jg) and t > wi then, by

comprehensiveness of the game,
�
x;M�

j

�
2 V (fi; jg) \ IR2

+
for all x � t,

which is impossible by non-levelness of the game and the de�nition of M�

j
.

Assuming that the result is true if S contains p � 2 players (the induction

hypothesis), we will show that it is true for all coalitions with p+ 1 players.

Let S = fi1; :::; ip; ig be any set with p + 1 players containing i and assume

that
�
t;M

�

Sni

�
2 V (S) \ IRs

+
. If the following implication is true

h�
t;M�

Sni

�
2 V (S)

i
)

h�
t;M�

i1
; :::;M�

ip�1

�
2 V (S n ip)

i
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then, t � wi would follow by the induction hypothesis. Therefore, to get

a contradiction, assume that
�
t;M

�

i1
; :::;M

�

ip�1

�
=2 V (S n ip). Then, there

exists a vector x 2 P (V (S n ip)) such that x <
�
t;M

�

i1
; :::;M

�

ip�1

�
. There-

fore,
�
x;M

�

ip

�
�

�
t;M

�

Sni

�
2 V (S) implying, by non-levelness of the game,

that we can �nd a vector y 2 V (S) with the property that y >
�
x;M

�

ip

�
.

Therefore, yip > M
�

ip
which contradicts the de�nition of M

�

ip
.

Example 1 below shows that the conclusion of Proposition 3 does not

hold for level NTU-games.

Example 1. Let (N; V ) be the NTU-game where N = f1; 2g, w1 = w2 = 0,

and V (N) = comp (conv (f(1; 1) ; (2; 0)g)).3 The vector of maximum as-

pirations is M� (N; V ) = (2; 1) and the vector of minimum aspirations is

m� (N; V ) = (1; 0) which for player 1 is strictly larger than w1 = 0.

We can now de�ne the Chi-compromise value for NTU-games as well as

state the most important result of the paper which identi�es a large class

of games (non-level and essential) in which the Chi-compromise value does

exist.

De�nition 3. The Chi-compromise value on Vn, denoted by � (N; V ),

is the unique eÆcient vector in the lineal segment having as extreme points

m� (N; V ) and M� (N; V ); that is,

� (N; V ) = M� (N; V ) + (1� )m� (N; V ) ;

where  2 [0; 1] is such that � (N; V ) 2 P (V (N)).

Theorem 1. For all (N; V ) 2Cn there exists � (N; V ).

Proof: It follows by combining Propositions 1, 2, and 3 and the essentiality

of the game.

Remark 1. It is straightforward to show that the Chi-compromise value

coincides with the Kalai-Smorodinsky solution in bargaining problems and

with the �-value in TU-games.

3In general, if A � IR
n, comp(A) denotes the comprehensive hull of A (i.e., the smallest

comprehensive set containing A) and conv(A) the convex hull of A.
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Now, we compare more speci�cally our value with two prominent com-

promise values in the literature: the Compromise value of Borm et al. (1992)

and the MC-value of Otten et al. (1998).

Given an NTU-game (N; V ), the Compromise value is de�ned as the

unique vector on the lineal segment betweenMC (N; V ) andmC (N; V ) which

lies in V (N) and is closest to MC (N; V ), where for any i 2 N

MC

i
(N; V ) = sup

�
t 2 IR j

(t; x) 2 V (N) ; x =2 V (Nni) nWP (V (Nni)) ;

and x � wNni

�

and

mC

i
(N; V ) = max

S�N;i2S

�
t 2 IR j

9x 2 IRs�1; (t; x) 2 V (S) ;

and x > MC

Sni
(N; V )

�
:

The Compromise value exists for the class of compromise admissible NTU-

games, de�ned as,

CAn =

�
(N; V ) 2 Vn j

mC (N; V ) �MC (N; V ) ; mC (N; V ) 2 V (N) ;

and MC (N; V ) =2 V (N) nWP (V (N))

�
:

Borm et al. (1992) proved that for any (N; V ) 2Vn and any i 2 N ,

mC

i
(N; V ) � wi. Suppose that (N; V ) is non-level and hence P (V (S)) =

WP (V (S)) for all S � N . Then, mC

i
(N; V ) � m�

i
(N; V ). If (t; x) 2 V (N),

x =2 V (Nni) nWP (V (Nni)), and x � wNni, by non-levelness, we can �nd

x0 2 P (V (Nni)) such that x0 � x and hence (t; x0) 2 V (N) \ IRn�1

+ . Now,

it is easy to conclude that MC

i
(N; V ) � M�

i
(N; V ). Then, in the class of

non-level NTU-games, CAn �Cn; that is, if the Compromise value exists

then the Chi-compromise value also exists.

Note that if in the de�nition of M
�

i
we change x 2 P (V (Sni)) to x 2

WP (V (Sni)) (denote this alternative maximum aspiration by M
�

i
) then it

is straightforward to check thatM
�

i
(N; V ) � MC

i
(N; V ) for all NTU-games.

Therefore, the corresponding Chi-compromise value using the M
�

vector

as maximum aspirations is de�ned whenever the Compromise value exists.

However, it seems to us that it is more appropriate to obtain the maximum

aspiration of a player i in a coalition S as the remainder assuming that the

members of coalition Sni exhaust all their possible gains of cooperation by

reaching Pareto (and not weakly Pareto) agreements.
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The MC-value of Otten et al. (1998) is de�ned as the eÆcient outcome

lying on the lineal segment between the vector of individually rational payo�s

and a vector of maximum aspiration obtained by giving to each player the

sum of all his marginal contributions in all possible orderings of the set of

players. Since in many cases each component of this upper value vector may

be unfeasible it seems diÆcult to justify it as a vector of maximal aspirations.

Otten et al. (1998) showed that the MC-value is well de�ned in the class of

monotonic, zero-normalized NTU-games, which is unrelated to the class of

non-level and essential NTU-games.

We end this section by calculating the Chi-compromise value in three

well-known examples of NTU-games and comparing it with other proposed

values.

Example 2 (Roth, 1980). Let (N; V ) be a NTU-game such that N =

f1; 2; 3g,

V (fig) = fxi 2 IR j xi � 0g; for i 2 N;

V (f1; 2g) = f(x1; x2) 2 IR2
j (x1; x2) � (0:5; 0:5)g;

V (f1; 3g) = f(x1; x3) 2 IR2
j (x1; x3) � (0:25; 0:75)g;

V (f2; 3g) = f(x2; x3) 2 IR2
j (x2; x3) � (0:25; 0:75)g;

and

V (N) = fx 2 IR3
j 9y 2 convf(0:5; 0:5; 0) ; (0:25; 0; 0:75) ; (0; 0:25; 0:75)g; x � yg:

For this example the Shapley-NTU value (Aumann (1985)) is (0:333; 0:333; 0:333),

the Harsanyi-NTU value (Harsanyi (1963)) is (0:416; 0:416; 0:166), the Con-

sistent value (Maschler and Owen (1989, 1992)) is (0:25; 0:25; 0:5), the MC-

value coincides with the Shapley-NTU value, and the Compromise value is

(0:5; 0:5; 0).

Although the game does not satisfy non-levelness we can compute the

Chi-compromise value, which coincides with (0:5; 0:5; 0), the unique Core

outcome.

Example 3 (Shafer, 1980).4 Consider the following exchange economy with

three agents and two commodities. The initial commodity bundles of agents

4We present the modi�cation of Shafer (1980)'s example as it was used in Hart and

Kurz (1983).
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1, 2, and 3 are

!1 = (1� �; 0); !2 = (0; 1� �); and !3 = (�; �);

where 0 � � � 1

5
, and their respective utility functions, ui : IR

2

+
! IR, are

given by

u1(y; z) = u2(y; z) = minfy; zg; and u3(y; z) =
1

2
(y + z):

Following Shapley and Shubik (1969) the corresponding NTU-game (N; V )

is given by:

V (fig) = fxi 2 IR j xi � 0g; for i = 1; 2;

V (f3g) = fx3 2 IR j x3 � �g;

V (f1; 2g) =
�
(x1; x2) 2 IR2

j (x1; x2) � (1� �; 1� �); x1 + x2 � 1� �
	
;

V (f1; 3g) =

�
(x1; x3) 2 IR2

j (x1; x3) �

�
�;
1 + �

2

�
; x1 + x3 �

1 + �

2

�
;

V (f2; 3g) =

�
(x2; x3) 2 IR2

j (x2; x3) �

�
�;
1 + �

2

�
; x2 + x3 �

1 + �

2

�
;

and

V (N) = fx 2 IR3
j (x1; x2; x3) � (1; 1; 1); x1 + x2 + x3 � 1g:

In this game the Shapley-NTU value is (5�5�
12

; 5�5�
12

; 1+5�
6
), the Harsanyi-

NTU value is (3�5�
6
; 3�5�

6
; 5�
3
), the MC-value coincides with the Shapley-NTU

value, and the Compromise value is (1��
2
; 1��

2
; �).

The Chi-compromise value is (2�2�
5�5�

; 2�2�
5�5�

; 1��

5�5�
).

Example 4 (Owen, 1972). Let (N; V ) be an NTU-game such that N =

f1; 2; 3g;

V (fig) = fxi 2 IR j xi � 0g; for i 2 N;

V (f1; 2g) = f(x1; x2) 2 IR2
j x1 + 4x2 � 100; x1 � 100; x2 � 25g;

V (f1; 3g) = f(x1; x3) 2 IR2
j x1 � 0; x3 � 0g;

V (f2; 3g) = f(x2; x3) 2 IR2
j x2 � 0; x3 � 0g;

and

V (N) = fx 2 IR3
j

X
i2N

xi � 100; 8i 2 N; xi � 100; 8i; j 2 N; xi + xj � 100g:
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In this example the Shapley-NTU value is (50; 50; 0), the Harsanyi-NTU

value is (40; 40; 20), the Consistent value is (50; 37:5; 12:5), the MC-value is

(50; 33:33; 16:67), and the Compromise value is (36:36; 36:36; 27:27).

The Chi{compromise value is (36:36; 36:36; 27:27).

4 Characterizations of the Chi-compromise

value

In this section we study several properties of the Chi-compromise value.

Moreover two characterizations of this value are provided.

Proposition 4. The Chi-compromise value satis�es the following properties:

Pareto optimality. �(N; V ) 2 P (V (N)) for all (N; V ) 2Cn:

Covariance. Given (N; V ); (N;W ) 2Cn such that for all S � N ,

W (S) = �S � V (S) + �S (where �S � V (S) =
�
(�ixi)i2S j xS 2 V (S)

	
; � 2

IRn; � > 0 and � 2 IRn) we have that �(N;W ) = � � �(N; V ) + �:

Symmetry. If i; j 2 N are symmetric players in the game (N; V ) 2Cn

then �i(N; V ) = �j(N; V ): Players i and j are called symmetric in a game

(N; V ) if for all S � N n fi; jg and all x 2 V (S [ i) there exists y 2 V (S [ j)

de�ned by yj = xi and yS = xS .

Strong symmetry. If wi = wj and M�

i
(N; V ) = M�

j
(N; V ) then

�i(N; V ) = �j(N; V ).

RestrictedMonotonicity. If (N; V ); (N; V 0) 2Cn are such that V (N) �

V 0(N), w = w0, and M�(N; V ) = M�(N; V 0) then �(N; V ) � �(N; V 0):

Proof: It is straightforward to check that the Chi-compromise value satis�es

these �ve properties.

Theorem 2. The Chi-compromise value is the unique solution on Cn satis-

fying Pareto optimality, covariance, symmetry, and restricted monotonicity.

Proof: We have just established in Proposition 4 that the Chi-compromise

value satis�es the four properties.

Now, we prove uniqueness. Suppose F is another solution satisfying the

four properties. By covariance it suÆces to prove that �(N; V ) = F (N; V )

when, for all i 2 N , wi = 0 and M�

i
(N; V ) = 1.

11



Clearly, for all i 2 N , the vector ci 2 IRn de�ned by ci
j
= �j(N; V ) + �

if i = j and ci
j
= 0 if j 6= i belongs to V (N) for � suÆciently small. The

non-levelness ensures that � is strictly positive. Note that for all i 2 N ,

�i(N; V ) � 1.

Let (N;W ) be such that for all i 2 N

W (fig) = fx 2 IR j x � 0g ;

for all S � N such that 2 � s � n� 1

W (S) = comp

(
xS 2 IRS

j 8i 2 S; 0 � xi � 1; and
X
i2S

xi � 1

)
;

and

W (N) = comp
�
conv

�
fci 2 IRn

j i 2 Ng [ �(N; V )
��
\ V (N):

Then (N;W ) 2Cn, M
�

i
(N;W ) = 1 for all i 2 N , and �(N; V ) = �(N;W ).

By symmetry for all i; j 2 N , Fi(N;W ) = Fj(N;W ). Note that even though

W (N) is not necessarily a symmetric set, (N;W ) is a symmetric game.

Therefore by Pareto optimality, F (N;W ) = �(N;W ). By restricted mono-

tonicity F (N;W ) � F (N; V ), which implies �(N; V ) � F (N; V ). But since

� satis�es Pareto optimality we can conclude that �(N; V ) = F (N; V ).

Theorem 3. The Chi-compromise value is the unique solution on Cn satis-

fying Pareto optimality, covariance, and strong symmetry.

Proof: Proposition 4 establishes that the Chi-compromise value satis�es these

properties.

Now we prove uniqueness. Suppose F is another solution satisfying these

properties. By covariance it suÆces to prove that �(N; V ) = F (N; V ) when,

for all i 2 N , wi = 0 and M
�

i
(N; V ) = 1.

By strong symmetry, for all i; j 2 N; Fi(N; V ) = Fj(N; V ) and �i(N; V ) =

�j(N; V ). By Pareto optimality, F (N; V ) = �(N; V ).

Note that all axioms used in both characterizations are independent. The

egalitarian solution de�ned by Kalai and Samet (1985) satis�es all �ve prop-

erties except covariance. The solution f 1 de�ned as f 1 (N; V ) = w for all

(N; V ) 2Cn satis�es all properties except Pareto optimality. The solution f 2
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de�ned as the Shapley value when (N; V ) is an essential TU-game and the

Chi-compromise value in the rest of the class Cn satis�es all properties ex-

cept strong symmetry and restricted monotonicity. The solution f 3 de�ned as

f 3
i
(N; V ) = wi for i 6= 1 and f 3

1
(N; V ) = max

�
t 2 IR j

�
t; wNn1

�
2 V (N)

	
,

satis�es all properties except symmetry.

These axiomatic characterizations can be extended in the following way.

Theorem 2 is also true for the class of NTU-games for which the Chi-

compromise value exists and the condition of non-levelness is satis�ed only

for the set V (N) \ IRn

+
. Theorem 3 is also true for the class of NTU-games

where the Chi-compromise value exists.

Moreover, notice that in both characterizations the sets V (S) need not

be convex. While this is also possible in the characterization of the MC-value

it is not the case in the characterization of the Compromise value where the

set V (N) has to be convex.

5 The Lambda-transfer Chi-value

Shapley (1969) de�ned the family of �-transfer TU-games corresponding to

an NTU-game. Using this family of games, and their corresponding Shapley

values, he de�ned the NTU-Shapley value. We proceed in the same way

using our �-value for TU-games instead of the Shapley value.

De�ne �n

+
=
�
� 2 IRn

+
j

P
i2N

�i = 1
	
as the n-dimensional unit simplex.

Given a NTU-game (N; V ) we say that the vector � 2 �n

+
is feasible if

sup
�P

i2S
�ixi j x 2 V (S)

	
< 1 for all S � N . For each feasible vector

� 2 �n

+
we de�ne the TU-game

�
N; v�

�
by associating with each coalition

S � N the number v� (S) = sup
�P

i2S
�ixi j x 2 V (S)

	
:

De�nition 4. The Lambda-transfer Chi-value onVn, denoted by �
� (N; V ),

is the set

�� (N; V ) =
�
x 2 V (N) j � � x � �

�
N; v�

�
for some � 2 �n

+
feasible

	
:

Before stating a result establishing suÆcient conditions under which the

Lambda-transfer Chi-value set is non-empty we need to de�ne two standard

properties of NTU-games.

De�nition 5. A NTU-game (N; V ) is compactly generated if for all

S � N there exists a compact set KS � IRs with the property that V (S) =

13



fx 2 IRs
j x � yfor some y 2 KSg. A NTU-game (N; V ) is convex if for all

S � N the set V (S) is convex.

Theorem 4. Let (N; V ) be an essential, compactly generated, and convex

NTU-game. Then, �� (N; V ) 6= ;.

Proof: First, we will show that if the NTU-game (N; V ) is essential then for

any � 2 �n

+
feasible the TU-game

�
N; v�

�
is essential as well. Consider any

i 2 N . By de�nition v� (i) = �iwi. Moreover, by the essentiality of (N; V ),

v� (N) = sup

(X
i2N

�ixi j x 2 V (N)

)

�

X
i2N

�iwi

=
X
i2N

v� (fig) ,

which means that the TU-game
�
N; v�

�
is essential.

The non-emptiness of the set �� (N; V ) follows using a �xed-point argu-

ment similar to that of Shapley (1969).

The game of Example 2 illustrates the fact that, in general, the Chi-

compromise value and the Lambda-transfer Chi-value may be di�erent. After

a simple, but very tedious computation, it is possible to see that �� (N; V ) =

(0:33; 0:33; 0:33) while � (N; V ) = (0:5; 0:5; 0) :

6 Concluding remarks

Following the Nash program, there is a long tradition of justifying axiomatic

bargaining solutions by means of equilibria of a non-cooperative game associ-

ated to the original bargaining problem. Moulin (1984) exhibits an extensive-

form game whose subgame perfect equilibria induce the Kalai-Smorodinsky

solution. Here, and following the procedure used by Hart and Mas-Colell

(1996) to obtain the Consistent value by extending the non-cooperative im-

plementation of the Nash bargaining solution (which also coincides with the

Shapley value for TU-games) to NTU-games, we extend Moulin's implemen-

tation of the Kalai-Smorodinsky solution for bargaining problems to NTU-

games as follows:
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� Round 0. Each player i makes a bid pi where 0 < pi � 1 and the players

are renumbered in decreasing order of their bids, p1 � p2 � ::: � pn
(players with tied bids are ordered randomly among themselves).

� Round 1. Player 1 proposes a payo� vector x = (x1; :::; xn) for the

approval of player n, who can either accept or reject it. If he accepts

it the game proceeds to round 2.

In Moulin's implementation, if player n rejects the initial o�er he must

make a countero�er to the rest of the players, who can reject or accept

it. If somebody rejects it the disagreement point is enforced. In our

model player n, who rejected the initial o�er, can make a proposal to

some smaller coalition. This modi�cation of Moulin's implementation is

motivated because in NTU-games partial agreements are also possible.

� Rounds 2; :::; n � 1 are similar to round 1 but now players n � 1; :::; 2

(instead of player n) have to accept or reject the o�er of player 1.

By induction on the number of players, it is possible to show that the

associated payo�s of all subgame-perfect equilibria of this extensive form

coincide with the Chi-compromise value of the NTU-game.

Before �nishing this paper we would like to briey compare our proposal

with other NTU-values. As with all compromise values it is easier to com-

pute than the Shapley, Harsanyi, and the Consistent values. However, the

Shapley and Harsanyi values have nice characterizations, while those of all

compromise values including ours are ad hoc (in the sense that the vectors

of maximum and minimum aspirations are used in the de�nitions of some

of the key axioms); on the contrast, to our knowledge the Consistent value

has yet to be fully characterized (Maschler and Owen (1989) characterize it

for the class of hyperplane games). Except for the Compromise value, whose

existence is guaranteed only for games with non-empty cores (a proper sub-

class of compromise admissible NTU-games), the existence of all other NTU-

values is guaranteed for classes of games which are relatively larger than this

and unrelated to each other. Finally, to our knowledge, only the Consistent

value (Hard and Mas-Colell (1996)) and our Chi-compromise value have been

shown to be implementable by extensive-form games.
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