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1 INTRODUCTION

In production theory it is commonly assumed that the production function is
increasing and quasiconcave. Likewise in consumer theory one often assumes
that the utility function has these properties; e.g., [2], [5]. In this paper we study
such production and utility functions under the additional property of dimin-
ishing returns to scale (DRS) [10], [16], [19]. Production and utility functions
with DRS are of particular interest.

In production theory this property is related to ’convex technologies’ [16].
In the context of a homogeneous production technology the DRS property is
equivalent to increasing average cost. Then a special decomposition of the cost
function is possible, using Shephard’s decomposition theorem [8], [18].

In consumer theory functions with DRS are of more limited use. This is
due to the fact that the same preference ordering can be expressed by different
utility functions obtained through monotone transformation, i.e., through dif-
ferent intensity of the preference order. But for special utility functions it is of
interest, for instance in von Neumann-Morgenstern utility theory [3]. Also in
the context of the Arrow-Pratt risk aversion the property plays a role [1], [19].

Duality of direct and indirect utility functions is a central concept in con-
sumer theory. Likewise a duality relationship between a producer’s production
function and indirect production function has been established [2], [5], [13].
Following the unifying approach in [5], we will refer below to the "aggregator”
function encompassing both a utility and production function. The ”indirect
aggregator” function is then the indirect utility function in consumer theory
and the indirect production function in producer theory.

An aggregator function u(x) has diminishing returns to scale (DRS) if
u(fz) < Pu(x) for all B > 1 on the nonnegative orthant. In case of a pro-
duction function it means that doubling the inputs will not more than double
the output. We note that the DRS property is a property ‘along rays’, in con-
trast to increasingness and (quasi)concavity.

DRS aggregator functions have been studied mostly in special cases so far.
Examples are concave-along-rays production functions or homogeneous with
degree 6 < 1 functions; e.g.,[6], [7]. Furthermore functions with (eventually)
diminishing marginal returns or utility are related to DRS aggregator functions.

In light of duality in microeconomic theory we will also consider inverse

DRS functions. A function v (p) is called inverse DRS if v (ap) < ()
e

all @ € (0,1] on the nonnegative orthant. In production theory it means that
the amount of output which can be produced if all input prices are divided by
two is not greater than twice the amount which could be produced before the
prices changed. Among others it will be shown that under certain regularity as-
sumptions an aggregator function has DRS if and only if the associated indirect
aggregator function is an inverse DRS function.

Some of the major results of this study will be presented in the relatively
new framework of abstract convexity [17]. In convex analysis one of the main
results asserts that every lower semicontinuous convex function is the upper

for



envelope (point-wise supremum) of a set of affine functions. Many results in
convex analysis easily follow from this fact. It is well known that similar results
hold in quasiconvex analysis: each lower semicontinuous quasiconvex function
can be represented as the upper envelope of a set of quasiaffine functions [12].

More generally, let H be a set of ‘elementary functions’. A function f is
called abstract convex with respect to H if f can be represented as the upper
envelope of a subset of H. The set H is called a supremal generator of a set
P of functions if H C P and each function f € P is abstract convex with
respect to H. In a similar manner we can define abstract concave functions
with respect to H and infimal generators of a set of functions. We will study
some classes of functions in mathematical economics from the point of view of
abstract convexity and abstract concavity. In particular we will identify some
small supremal/infimal generators in the context of duality relationships for
DRS aggregator functions.

2 FUNCTIONS WITH DRS AND SOME OF
THEIR PROPERTIES

We consider the cone R} of all nonnegative n-vectors with the coordinate-wise
order relation >. In addition, let R} , denote the cone of all positive n-vectors.
A function f : R} — R is called increasing (decreasing) if x > y implies
f(z)> Fy) (f(z) < f(y)). We also use the following notation: Ry = R} =
{xeR:2>0}, Ry =[0,4+00] =R, U{+o0}.

Definition 1 A function u : R} — R, is said to have diminishing returns to
scale (briefly, DRS) if

u(Bz) < fu(x) V8 >1, VzecRY. (1)
It is easy to see that a function u has DRS if and only if
u(az) > au(x) Va € (0,1], VzeR]. (2)

Functions with property (2) are also called co-radiant; see, for example [17].
Denote by U the set of all functions with DRS. We assume that U is equipped
with the pointwise order relation. Let us give some properties of the set U.

1) If uy,us € U, then also uq + ug € U.

)

2) f w € U and A > 0, then also Au € U.

3) Let (ut),cp beanet in U and u (x) = limyer ue (x) (z € R). Thenu € U.

4) Let (ut),cp be afamily of functions in U and u (z) = infier u; (@), @ (z) =
supyer ut (z) (z € RY). Thenu, u € U.



It follows from 1)-3) that U is a closed convex cone in the space of all
nonnegative functions R} — R. Due to 4) we conclude that U is a complete
lattice. We now give some examples of functions with DRS.

Example 2 1) If u is a concave function and w(0) > 0, then u € U. In-
deed, let a € [0,1] and v € R}. Then u(ar) = u(ar + (1 - a)0) > au(x) +
(1—a)u(0) > au(x).

2) Each nonnegative decreasing function u has DRS. Indeed, for a € [0,1]
we have

u(azx) > u(x) > au(x) Vo e RYy.

3) A function w is called positively homogeneous of degree 6 if u(ax) =
o®u(z) for all x € RY. If0 < 6 <1, then a positively homogeneous function of
degree 6 has DRS.

4) Let p(x) be a polynomial of degree m with nonnegative coefficients. Then

the function u(x) = (p(x))'_t (xz € RT) has DRS. See [17] for details.

We now give a more complicated example.
Let F': R — R be a mapping with increasing returns to scale: F'(8x) >
BF (x) for all x € R’} and 3 > 1. Let p € R and

u(y) =inf {(p,z): F(z) >y}  (y€RY).

foor (L) =) o fer hr )

for a € (0,1] and y € R?, it follows that

Since

wloy) = il (p)s F () > oy} —int { (pa) s 27 (@) > v

Y

inf {<p,:z:> ' F (%) > y} — inf {(p,ax’) : F (2/) > y}
— it {alp) F(2) 2y} = au(y).

Thus u has DRS. We now give a simple economic interpretation of the example
under consideration; see [2] for details.

Example 3 Let F be a production mapping and p be a price vector. Let y be a
required output vector. Then u(y) is the minimal cost of inputs that provide the
production of the output y. Thus the increasing returns to scale of a production
mapping implies the DRS property of the cost of outputs.



We now describe some properties of functions with DRS.

Note that DRS is a so-called ”property along-rays”: in order to verify that
a function u possesses this property we need to consider only the restriction of
u to each ray R, = {ax : @ > 0} starting from zero. Let x € R, x #£ 0, and
uy be the function of one variable defined on [0, +00) by uy (@) = w (ax). The
definition of DRS relates only to properties of the functions u,, and there is no
link between these functions for non-proportional z. Clearly this property is
very weak. So we have to consider it together with other properties that are not
”along rays”. Nevertheless we can extract some information about functions
with DRS without any additional properties.

Let u be a nonnegative function which has DRS. Consider the domain of
this function dom u = {33 ceRY 1u(r) < +oo}, the complement to the domain
C(dom u) = {x € R? : u(z) = +oo} and the null set {x € R : u(z) =0} of
u. The domain is co-radiant, that is, it enjoys the following property: z= €
dom v = Bz € dom wu for all 8 > 1 which follows from (1). The null set is
also co-radiant. The set C (dom u) is radiant: = € C (dom u),a € (0,1] =
az € C (dom u) which follows from (2).

We now describe differential properties of the functions v € U.

Let © € dom u. Since Sz € dom w for 8 > 1, the lower Dini derivative
ul (2, z) of the function u at the point z in the direction z is well defined.
Recall that, by definition,

S | /
ut (2, ) = lim aglf-o =~ (u(z+ax) —u(x)) = (ug), (1),

where (uw)/+ (y) is the right derivative of the function u, at the point .
Proposition 4 A function u : R} — Ry has DRS if and only if
u(z) > ut (z,2) Vo € RY. (3)

Proof. It is easy to show that u has DRS if and only if the function ¢,

defined by ¢, (v) = Uz_(’Y) is decreasing for all . Indeed, let v have DRS and
a> (3 >0. Then !
1 1 1 1
6. (3) = u (o) 5 = (2 (00)) 3 > Zulon) 3 = wloa) 3 = 6 (a).

Assume now that ¢, is decreasing for all . Then ¢, (a) > ¢, (1) for all 2 € R}
and o € (0,1), so u has DRS.

Since ¢ (A) = @, it follows that

Ul T, T —Uu Z
(6,12 (= LRI U0y @




S0 (¢w),—|— (1) = u! (z,2)—u (x). Since ¢, is decreasing, it follows that (q&x)'_i_ (1) <

0. So (3) holds. Assume now that (3) holds. Then (¢w),—|— (1) <0 forall x € RT.
Let y = Az. We have ug (A\) = u (Az) = v (y) = uy (1). Then

1
! — lim i -
u* (Az, x) hmtmfotu(()\th)gc u (Ax))

It follows from (4) that

ul Az, 2) A —u (\x) (d)y)+ (1) = ¢, (1)
2 B A2
for all A > 0. Hence the function ¢, is decreasing. Thus the result follows. m
We note that in general w is not differentiable or even continuous.

(62)} (V) =

Corollary 5 Letu: R} — Ry be differentiable on R’ , and continuous on R'}.
Then u has DRS if and only if

u(z) > (Vu(z),x) Ve e RY,.
1
Denote by V the class of all functions of the form v (z) = T where v € U.
u(x
1 1
We assume that = = +00, —— = 0. Clearly v € V if and only if
0 +00

v(z)

v(az) < "

Va e (0,1], ()
which is equivalent to

v (x)
Y

If v € V, then the set dom v is radiant. The null set {# € RT : v (x) =0} is

v (Bz) > VG > 1.

also radiant. The differential properties of v = — can easily be derived from the
u

differential properties of u.

3 Increasing functions with DRS

For applications we need to study increasing quasiconcave functions with DRS
as well as decreasing functions in the set V. Let

Ui={ueU:wuisincreasing}, Vy={veV :visdecreasing}, (6)

Uiy = {u € U; : u is quasiconcave} . (7)



In this section we only consider functions in U; and V. Note that u € U; if and
1 1 1
only if — € V; where — (z) = —— for all z € R’}
Let f: R} — Ry be a function such that f (z) = +oo for some x € R%. If f
is lower semicontinuous (upper semicontinuous, continuous), then the function

1. . . . . .
— is upper semicontinuous (lower semicontinuous, continuous).

We now describe some properties of functions v € U; and v € V.

Proposition 6 Let u be an increasing function with DRS.

1) If there exists y € R such that u (y) =0, then u = 0.

2) If there exists y € Rl such that u(y) = +oo, then u(x) = +oo for all
reRY,.

3) u is continuous on R, .

Proof. 1) We have u(8y) < Bu(y) = 0 for all 3 > 1. For each z € R}
there exists 3 > 1 such that x < By; so u(z) < u(By) =0.

2) For each x € R, there exists o € (0,1] such that ay < z; so u(x) >
u(ay) > au(y) = +oo.

3) Due to 2), we can assume that dom u=R% . Let x € R}, and 2 — x.
Then for each € > 0 we have (1 — €) x < 2, < (1 + €) z for sufficiently large k; so
u((l—e)x) <ulxg) <u((l4¢€) z). We also have (1 —e)u(zx) < u((l1—¢€)x)
ife<landu((l1+e€)x)<(l+e€)u(z). Thus the result follows. m

The following assertion follows immediately from Proposition 6 and the de-
finition of the class Vj.

Proposition 7 Let v € V.
1) If there exists y € R, such that v (y) = +o00, then v (x) = 400 for all
r e RY.
2) If there exists y € R'} such that v (y) = 0, then v (x) = 0 for all z € R ,.
3) v is continuous on R’} .

We also need the following simple proposition.

Proposition 8 1) If u is an upper semicontinuous increasing function on R,
then it is continuous;

2) If v is a lower semicontinuous decreasing function on R}, then it is con-
tinuous.

Proof. We shall prove only 1). Let € R}. Since u is increasing, it follows
that

lim sup w(z’') >lim sup w(2') > wu(z).
' —x T’ —x,x' >x
On the other hand, limsup,,_,, v (z') < u(z) due to upper semicontinuity of w.
|
The following simple example shows that there exist lower semicontinuous
increasing functions with DRS which are not continuous.



Example 9 The function u defined on R} by

1 if e € R,

is increasing and has DRS.

We now present some known results related to abstract convexity and ab-
stract concavity of increasing functions with DRS.

Let I ={1,...,n}. For avector ! € RY, define theset Iy (1) ={i e I:1; > 0}.
For each [ € R} and ¢ € Ry, consider the functions h, , and hlJrC defined on R}
by

hi, (z)= min{ min Lz, c} , R (z) = max{ max l;x;, c} .
’ i€l () ' eIy (1)

Note that hﬁc (z) = max {max;cy l;z;,c}. Let
H,:{h;c:leRi,ceﬁJr}, H+:{h;’rc:l€]l§i,ceﬁ+}.
The following statement holds [17].

Theorem 10 1) A function v : R} — R belongs to U; and is lower semicon-
tinuous if and only if it is H_-convex.

2) A function u: R} — Ry belongs to U; and is continuous if and only if it
1s H -concave.

In order to present corresponding results for functions v € V,, we consider
the following sets:

1 1
1 - 1
H7 {h_—:hl,CGH}’ HJF {hT:hICGH+}.
Lc l,c

Let I € R%}. We adopt the following notation:

, ificl, (i
ey B (8)

if i ¢ I, (1)

Proposition 11 1) h € H=' if and only if there exist m € R} and k € R,
such that

h(z)= max{ max ﬂ, k} Vo e RY. (9)

i€l (m) X

2)he H_T_l if and only if there exist m € R} and k € R, such that

h(x) min{ min ﬁ,k} vz € RY. (10)

i€l (m) T



Proof. 1) Let h ¢ H-'. Then there exist a vector [ € R? and a number
c € Ry such that

1

hiz) = = max { L 1 }
min {miniej+(l) lixq, c} miniebr([) lizi;" c

1 1
= max{ max ,—} Vo e RY.
iel (1) Liz; ¢

ﬂ, k} . The same
T

Let m = 7!, k = ¢7!. Then h(x) = max{maxiel+(,)
argument shows that a function of the form (9) belongs to H_".
2) Let h € H;l. Then there exist a vector [ € R’} and a number ¢ € Ry

such that

1 . 1 1
h(z) = , — = min4 —————, ~
max max;er, (1) {i%i, ¢} max;er, ) lii ¢
1 1
= min min { ,—} Vo e RY.
ielry () Lz ¢

Let m = ! and k = ¢ !. Then h has the form (10). The same argument
shows that the function % defined by (10) belongs to H,'. m

Theorem 12 1) A function v: R} — R, belongs to Vy and is upper semicon-
tinuous if and only if it is H='-concave.

2) A function v : R} — R belongs to V; and is continuous if and only if it
is H;l—convex.

Proof. We shall prove only part 1). Let v € V; be upper semicontinuous.
Then there exists a lower semicontinuous function v € U; such that v = 1/u.
It follows from Theorem 10 that there exists a set D C H_ such that v (x) =
sup{h(z):he€ D} forallw e R}. Let D! = {h ':heD}.Then D C H~'
We have

1 1 . 1
"W = T e e e 2
= inf{h' (z):h e D'}.

The fact that every H~'-concave function is upper semicontinuous and be-
longs to V, is obvious. m

In this section we have seen that only small supremal/infimal generators
are needed to represent the functions in U;/V; in the sense of abstract convex-
ity /concavity.

4 Increasing quasiconcave functions with DRS

Consider the set U;, of increasing quasiconcave functions with DRS. In contrast
to the set U of all functions with DRS and the set U; of all increasing functions



with DRS, the set U, is not closed under addition. However U, is a conic
set: if w € Uiy and A > 0, then Au € Ujy. The maximum of two functions in
U;q does not necessarily belong to this set. So we shall not discuss abstract
convexity of the functions in U;q. On the other hand, Uj, is a lower semilattice:
if (ut)yeq> ur € Usq for all ¢t € T and w(x) = infieru (z) (z € R%), then
u € Uiy This property allows us to discuss abstract concavity of increasing
quasiconcave functions with DRS. We shall consider infimal generators of this
set that consist of continuous functions, so infima of sets of such functions are
upper semicontinuous. However, as it follows from Proposition 6, each upper
semicontinuous increasing function with DRS is continuous. Hence it suffices to
consider only continuous functions in Us,.
Consider the following sets of functions defined on R’} :

Hy = {h:ﬂlER", ke@+:h(x):max{maxlixi,k}};

el

H:{h:HZER",/{E]R:h(:zr):max{z:lixi,k}};

icl

H{h:EIleRi,keR+:h(9:)max{Zliasi,k}}.

el

It follows from Theorem 10 that the set Hy is an infimal generator of the set of
continuous increasing functions with DRS.

We shall now show that the set H is an infimal generator of the set of all
continuous quasiconcave increasing functions with DRS.

Theorem 13 A function u : R} — R, is nonnegative, increasing, quasicon-
cave, continuous and has DRS if and only if there is a nonempty set S € R} xR
such that

= inf (z, a2y k Vo eRY. 11
u () (z*lyré)esmax{<:zrx> 4 x v (11)

Proof. Suppose first that u has a representation of the form (11). Then w is
the pointwise infimum of a family of functions {max {{-,2*),k}},. 1)cs Which
are nonnegative, increasing, quasiconcave, continuous and have DRS. Therefore
u has these properties.

To prove the converse, we shall show that (11) holds for

S ={(z*,k) e R} x Ry : max {(z,2") ,k} >u(z) VzeR}}

which implies that S # 0.
Clearly, the inequality < holds in (11). To prove the reverse inequality, we
consider two cases for a given x € R}.

10



a) The point z is a global maximum of w.

In this case one can easily see that the infimum on the right hand side of (11)
is attained at (2*, k) = (0, u (z)) € S. This clearly implies (11) for the particular
point x.

b) The point z is not a global maximum of wu.

In this case we consider any k > u (z) such that u ! ([k, +00]) # 0. Since this
set is convex and closed and does not contain x, by the separation theorem there
exist y* € R™ and ¢ € R such that (y,y*) >t > (x,y*) forally € u=! ([k, +]) .
The increasingness of u implies that y* € R}, and hence (z,y*) > 0. Take ' €

k
({x,y*},t), and define z* = t—,yx Obviously, (2%, k) € R’ x Ry.. We shall prove
that (z*, k) € S. To this aim, let y € R"}. Suppose that & < u (y). Then we have

t/ / )
(y,y*) > t/. Consider the point Wy € R’ Since <Wyy*> =t <t
t/ t/ t/
we have ——y ¢ u ' ([k, +o0]). Hence k > u <—y) > ——u(y).
{y,y%) i( (E ¥ (v, 97) vy
Y.y

Therefore u (y) < v
R either & > wu(y) or (y,2*) > u(y), that is, max {{y,2*),k} > u(y). In
other words, (z*,k) € S. To finish the proof, it only remains to observe that
max {(z,z*)  k} = max{<ﬂc, Fy*> ,k:} = kmax{< ’tly >,1} =k nm

As for U; in the previous section, we need only a small infimal generator to
represent functions in Uj, in the sense of abstract concavity. We turn now to

duality in microeconomic theory.

= (y,z"). We have thus proved that for any y €

5 Duality: the first scheme

In this section we follow the classical approach [2], [5], [13] of duality in micro-
economic analysis.

We recall that the indirect aggregator function associated with u : R} — R,
is u* : R} — Ry U {400}, defined by

u* (I) =sup{u(z) : {(z,0) <1}.

It follows directly from the definition that v* is a decreasing function for an
arbitrary function wu.

According to Corollary 2.3 in [13] one can recover u from u* by means of
the classical formula

u(x) =inf {u* (1)) : (z,1) <1} Vo € RY (12)

11



if and only if v is increasing, evenly quasiconcave! and satisfies

u(z) > lim w(ax) Va € bd R?,
a—1—
with u and bd R’} denoting the smallest upper semicontinuous majorant of
u and the boundary of R}, respectively. An aggregator function u satisfying
these properties will be called regular. One can easily see that every upper
semicontinuous increasing quasiconcave function is regular.

Theorem 14 Let v : R — Ry be a regular aggregator function, and let u* :
R — Ry U {400} be the associated indirect aggregator function. Then u has
DRS if and only if

v (ar) < D o e 0] Vot eR?; (13)

*

i.e., u* is tnverse DRS.

Proof. If u has DRS, then

uw (az™) = sup{u(x) :{(z,az™) <1} =sup{u(z) : {(az,z") <1}
< s {8 s fanan) <1} = Zowp ful): (ra) < 1)
_ u* (x*)

The converse implication can be proved similarly by using (12). m

Corollary 15 Let u be a regular aggregator function. Then u € Uq if and only
ifu* € V.

Proof. Let u € U;;. Thenu* € V due to Theorem 14. Since u* is decreasing,
it follows that u* € V4. On the other hand, if v* € Vj, then v has DRS by
Theorem 14. Since u (x) = inf {u* (1) : {(x,1) < 1}, it follows that u is increasing.
Hence u € Uyg. W

According to Theorem 12, the set H-! of all functions of the form

ms
2 — max { max;e; —, k} is an infimal generator of the set of all upper semi-
Ty

continuous functions in V; which consists of the functions that are “dual” to the
functions in U;, (Corollary 15). On the other hand, the set H which consists of
all functions of the form x +— max {(z,!),k} is an infimal generator of U;, (see
Theorem 13). We next show that the set H~' is “dual” to H.

TA function u is said to be evenly quasiconcave when all of its upper level sets
w1 [\, +20]), A € R, are evenly convex (that is, intersections of open half-spaces). Evenly
convex sets were introduced by Fenchel [9], and functions with evenly convex (lower) level sets
were considered for the first time in [11] and [15]. For an analytic characterization of these
functions, see [4].

12



Proposition 16 Let u be a regular function. Then uw € H if and only if u* €
H'.

Proof. Let v € H, that is, u(z) = max{<x,l0>,k0} where [° ¢ R?} and
k% € R,. Then

W (1) = suplue): (ol <1}
= sup max{<:1:,l0>,/<:0}
220, (z,1)<1

= max sup <ﬂc, l0>,k:0 .
x>0, (z,[)<1

‘We now calculate

sup <33, l0>
>0, (z,1)<1

= sup Z zl) = (Ti)ier, @y % 20 (€11 (1)), Z xzl; <1
i€I+(10) 'I:GIJI,(I)
First assume that I (I°) C I; (I). Then the function z — dier. (1) ;19 is

bounded on the set S; = {(aji)ieh(z) rwy 20 (0 € 11 (1), Xier, oy wili < 1}
and attains its maximum at a nonzero extreme point of this set. Note that
the nonzero extreme points of S; are e; = 1/1;, i € I, (I}, hence

0 ZO

0 i i
sup E z;l; = max - = max —+.
220, (z,))<1 107 el () Iy ier (1) I

Assume now that I (I°) € Iy (I). Then there exists i such that [{ > 0 and
[; = 0. In such a case

10
sup 2,0 = 400 = max -
w207<z7l>31< ) i€l (19) I
Thus
9
() = LK. 14
w0 maX{z-g% = } (14)

It follows from Proposition 11 that u* € H_!.

Assume now that v € Uj, is a function such that u* € H~'. Then, due
to Proposition 11, there exist a vector {° € R’ and a number kg € R, such
that u* ({) has the form (14). It follows from the first part of the proof that
u* (1) = uj (I) where uy (z) = max{(x,1°),ko}. Since u is regular, we can
conclude that v = u1. =

13



Proposition 17 Let u : R} — Ry be a reqular aggregator function, and let u*
be the assoctated indirect aggregator function. Assume that u* is finite. Then u
has DRS if and only if

w* (%) + (u) (25 2%) >0 Vot e R
Proof. The proof is similar to that of Proposition 4. m

Corollary 18 Let u and u* be as in Prop.17. If u* is differentiable on R
and continuous on R, then u has DRS if and only if

u* (¥) + (Vu* (2%),2") >0 vz* € RY,.

Theorem 19 Let v : R} — Ry be a regular aggregator function. If the asso-
ctated indirect aggregator function u* is lower semicontinuous, then v has DRS
if and only if there is a nonemply set § € R} X Ry such that

1
u*(z*) = sup min {—., k:} Va* e RY (15)
(2 k)ES (z,2%) o

1
with the convention 0 = +o0.

Proof. We shall first show that v* takes the value 0 only if it is identically
0. Let 2§ € R} be such that v* (25) = 0, and let 2* € R} . Take o € (0,1]

1, .
such that —2™ > 2. Since u* is nonnegative and decreasing, by Corollary 15

one has

0 <u*(2%) <u*(axf) < ¢

Hence uw* (2*) = 0. This shows that u* is identically 0 on R’ . Since it is
nonnegative and lower semicontinuous, it is identically 0 on the whole of R} .
To prove the existence of S C R’ x Ry such that (15) holds, we consider
two cases:
a) The function u* is identically 0. In this case one can take S = {0} x {0}.
b) The function u* is not identically 0. By the above reasoning u* does not

take on the value 0 at all. Consider the function w = — with the convention
U

1

T~ = 0. By (13) w has DRS, and hence by Theorem 13 there is a set T C
00

R% x Ry such that

w(x) = (x*i’r]i)fET max{(x, ") k} Vo € RY.

. 1 .1 . .
Since u* = — with the convention = = 400, from the preceding equality we
w

see that (15) holds with S = {(ﬂc* k) e R} x (Ry U{+o0}): <a:*, %) € T}.

14



To conclude, we observe that by min {;, —I—oo} = sup min {L, k:} ,
<$,.CL‘*> keER L <$a$x>
we can assume without loss of generality that S C R} x R, m
Theorem 19 demonstrates that the indirect aggregator function «* is ab-
stract convex with a small supremal generator. This result parallels the one in
Theorem 13 which proves that the aggregator function u is abstract concave
with a small infimal generator. In both results the DRS property is crucial.

6 Duality: the second scheme

In this section we consider a second duality approach. We refer to [14] where a
general class of dualities between complete lattices is introduced. It encompasses
the one underlying the approach in this section.

Definition 20 The secondary aggregator function associated with an aggregator
Junction u : R} — Ry s u# R} — Ry, defined by

u (2*) = sup {u () : (x,2%) < u(x)} (z* e RY), (16)
with the convention sup () = 0.

We give the following interpretation of u for the case of a production func-
tion. The function « assigns to each input vector z the amount of output u (z),
measured in monetary units, which can be produced by these inputs. Let z*
be a price vector. If it represents the market prices for the inputs, the owner
of these inputs (the producer) can choose between selling them on the market
which would yield (z,z*) monetary units or using them to obtain an amount
u (z) of output. The second possibility will be chosen for sure if (z, ™) < u (z).
We assume that the producer prefers selling to producing if (z, z*) = u (z), but
he prefers producing to selling if he can obtain some strictly positive net profit
u(z) — (x,2*), even if it is very small. Thus u# (2*) is the largest possible
amount of output that can be produced under the input price vector z* subject
to that ”rationality” constraint. In this interpretation the producer is an output
rather than profit maximizer.

Theorem 21 Let w : R} — R,. There exists u : R} — R, such that w is
the secondary aggregator function associated with u if and only if w is quasi-
convez, decreasing and lower semicontinuous. In this case u can be taken as a
quasiconcave increasing upper semicontinuous function and with DRS. Under
these conditions u is unique, namely u is the largest function such that u? = w.
Furthermore it satisfies

u(r) = inf max{{z,z*),w(z")} vV € RY. (17)

z*€RY

Hence the mapping u — u” is a bijection from the set of upper semicon-
tinuous increasing quasiconcave functions u : R — Ry thal have DRS onto

15



the set of lower semicontinuous decreasing quasiconver functions w : R} — R,.
The inverse mapping 1s the one assigning to each w in this set the function u

of (17).

Proof. ”Only If”. From (16) it easily follows that u# is decreasing and
that its lower level sets are intersections of closed halfspaces, hence convex and
closed:

(oo \) =[] {o"eRL:(z,2") >u(z)}  VAER

z s.t. u(z)>A

Therefore u# is quasiconvex and lower semicontinuous.

”If”. Suppose that w is quasiconvex, decreasing and lower semicontinu-
ous, and define w by (17). This function is quasiconcave, increasing and up-
per semicontinuous since it is the pointwise infimum of the set of functions
{max {(-,2*) ,w (%)} },.cp» each of which is quasiconcave, increasing and con-

tinuous. We shall prove that w is the secondary aggregator function associated
with u, that is

w(xg) :sup{ﬂigﬂ%imax{<gg7 o) w ()} @, 2d) < z*igﬂfmmax{(as7 a*) w (:1:*)}}
(18)

for all x5 € R7}. Given zg € RY, if » € RY} is such that

(e,8) < _inf max {(,2%),w (")},

then from

z*igm max {(x,z"),w (")} <max {{x,25),w (x5)}

we deduce

inf max {{z,z"),w (")} <w(xf)
z*€RY

which proves that the inequality > holds in (18). Actually, no property of w
is required for the validity of this argument. Let us now prove the reverse
inequality. Since the right hand side of (18) is not less than infy.crn w (z¥),
we only need to consider the case where w (x5) > infyvcrr w (27). Let A €
(infz*eRi w(x*),w (953)) . Notice that A > 0, given that w is nonnegative. Since

zy ¢ wl([—oo,A]) and this level set is convex and closed, by the separation
theorem there exist 2o € R™ and &k € R such that (xg, z§) < k < (xo, z*) for all
z* € w ([~00,A]) . From w™! ([00, A]) # 0 and the fact that w is decreasing,

A
one can easily deduce that zp € R’f. Hence k > 0. Thus for x; = EQEO one

has #1 € R and (z1,25) < A < (wq,2*) for all 2* € w™! ([—o0, A]). For every
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x* € R we have either w(2*) > X or 2* € w™! ([-00,]]), in which case
(x1,2*y > A. Therefore infy«cgr max {{x1,2*),w (&*)} > A > (z1,2§), that is
a1 satisfies the constraint under the supremum in the right hand side of (18).
It follows that

sup{ inf max{{x,z"),w(z")}: (z,2f) < inf max{{z,z™) w(x*)}}
z*€RY z*€RY ’
> inf max {{z1,2"),w (")} > A
z*€RY
Since A is an arbitrary number in the interval (infz*eRi w(x*),w (:z:fj)) , this

proves the inequality < in (18). Consequently, (18) holds.
We shall now prove that u of (17) is the largest function with which w is
associated. Let u : R} — R be any function satisfying

w(z*) =sup{u(x): (z,2") <u(z)} vz* € RY, (1

©

)

and let 2 € R7. Then for every 2* € R} we have either (x,2*) < u(x)
in which case by (19) u(z) < w(z*) or u(zx) < {(x,z*), and so u(x) <
max {{z,z*),w (z*)}. Thus we conclude that

W) < nf max {(@a),w/(@) = u (@)

which proves that u < u.

Finally, we have to verify that among the functions with which w is as-
sociated the only one which is quasiconcave, increasing, upper semicontinu-
ous and has DRS is v in (17). Let @ : R?” — Ry be any function satisfying
these properties and having w as its secondary aggregator function. We have
w(x*) =sup {u(z): (z,z*) < u(x)} and by Theorem 13

u(xz)= inf &Yk Vo e RY
u(z) (w*l’ré)esmax{@nc) } x i

for some nonempty set S C R’} x R,. It follows that

u(z) = inﬂf& max {(z,z*), w (z*)} Vo e RY (20)
z*€RY

with w : R} — R, being the function defined by
w(x*)=1inf{k e Ry : (2%, k) € S} (z* €RY).

Let u be the function defined by (17). We know that & < u. On the other hand,
w > w which we show next. Indeed, if 2*,2 € R} are such that (z,2*) <u(x),
then by (20) one has % (z) < @w (¢*). Hence

w(z*) =sup {¥(x) : {z,2") <u(x)} <w(z").
Therefore, from (20) and (17) we obtain @ (x) > infy-cpr max {{z, ") ,w(z*)} =

u (x). We have thus proved that @ = v. =

17



Now we give an interpretation of (17) for production functions. Let x € R}
be an input vector. Given a price vector x* € R, the maximum amount of
output, measured in monetary units, that the producer can obtain subject to
the ”rationality” constraint of obtaining a strictly positive net profit is w (z*) .
By selling the input vector x under those prices he would obtain (z, 2*) mone-
tary units. Hence, under the price vector x*, the maximum amount of money
available is max {(x,2*),w (z*)}. Thus the right hand side of (17) gives the
amount of money that is attainable under any price vector when the input vec-
tor z is available. Equation (17) says that this amount of money coincides with
the amount of output u (), measured in monetary units, that can be produced
by this input vector x.

Corollary 22 Let w: R} — R, and let wy : R} — R, be defined by
wo (z*) = sup {u(x) : (z,z*) < u(x)} (z* € RY),

with w of (17). Then wy is the largest lower semicontinuous decreasing quasi-
convex minorant of w.

Proof. By Theorem 21, wqg is quasiconvex, decreasing and lower semi-
continuous. To prove that wg < w, let 2 € R} and = € RY be such that
(x,z*) < w(x). From this inequality and (17) it follows that (x, z*) < w (z*).
By using (17) again we deduce that u(z) < max {{z,2*),w(z*)} = w(z*).
Therefore wy (z*) = sup{u (z) : {r,2*) <u(x)} < w(z*), so that wy < w. It
only remains to prove that any lower semicontinuous decreasing quasiconvex
minorant wy of w satisfies wy < wq. By Theorem 21, for every x* € R’} one has

wy (x*)sup{ inf max{{z,z*) wy (z")}:{(z,2") < inf max{(x, x™) w; (a:*)}} .
z*ERT : : z*ERT

Since the right hand side of this inequality is increasing in wy,

wy (27) < sup{ inf max{(x, ") w(z")}: (z,2") < inf max{{z, ") w (nc*)}}
w*ERLIl i Jz*ERi
— sup{u(a) : (22" < ula)} — wo (2.

Thus wy < wy. W

Theorem 23 Letu: R? — Ry. There existsw : R" — Ry such that (17) holds
if and only if u is quasiconcave, increasing, upper semicontinuous end has DRS.
In this case w can be taken as a quasiconvex decreasing lower semicontinuous
function. Under these conditions w is unique, namely w is the smallest func-

tion such that (17) holds. Furthermore it is the secondary aggregator function
associated with u.

Proof. ”Omnly If”. If (17) holds, then u is the pointwise infimum of
the family {max {{-, 2*),w (x*)}}z*eR1 which consists of increasing quasiaffine
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continuous functions with DRS. Hence it is quasiconcave, increasing, upper
semicontinuous and has DRS.

”If”. If u is quasiconcave, increasing, upper semicontinuous and has DRS,
then by Theorem 13 (17) holds with w = u#. By the same theorem u# is
quasiconvex, decreasing and lower semicontinuous.

Finally, if u is quasiconcave, increasing, upper semicontinuous and has DRS
and w is a lower semicontinuous decreasing quasiconvex function for which (17)
holds, then by Theorem 13 w = u* so that w is unique. m

Corollary 24 Let u: R} — R, and let u° : R? — Ry be defined by

u () = w*igﬂgi max { (z, 2*) , u™ (z*)} (xeRY). (21)

Then u® is the smallest upper semicontinuous increasing quasiconcave majorant
of u that has DRS.

Proof. By Theorem 23 u° is quasiconcave, increasing, upper semicontinuous
and has DRS. To prove that u’ > u, let z, z* € R}. By (16), if (z,2*) < u(z),
then u (x) < u# (z). Therefore max { (z,z*),u# (x)} > u(z). Hence from (21)
we deduce that u° (z) > u (). Thus u° is a majorant of u. It only remains to
prove that any upper semicontinuous increasing quasiconcave majorant u' of u
that has DRS satisfies u! > u°. By Theorem 23, for every x € R’ one has

ut () = w*iglg\i max {(z, 2"} ,sup {u' (z) : (z,2*) <u' (2)}}.

1

Since the right hand side of this inequality is increasing in u*, we have

ul@) >l max{(e,a") sup{u(a)  o,07) < ul@)})

= z*ig{w max {(z,2") , u” (2)} = u° ().

Thus u! > 49 =

In this last section we introduced a secondary aggregator function. It has an
interesting application in case of production functions. As in previous sections
we find that the possibility of representing v with a small infimal generator is
closely related to the DRS property of w.

Acknowledgement: We are grateful to Reinhard John, University of Bonn
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