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Abstract

We analyze a continuous-time bilateral double auction in the presence of two-sided incomplete

information and a smallest money unit. A distinguishing feature of our model is that intermediate

concessions are not observable by the adversary: they are only communicated to a passive auctioneer.

An alternative interpretation is that of mediated bargaining. We show that an equilibrium using

only the extreme agreements always exists and display the necessary and sufficient condition for the

existence of (perfect Bayesian) equilibra which yield intermediate agreements. For the symmetric case

with uniform type distribution we numerically calculate the equilibria. We find that the equilibrium

which does not use compromise agreements is the least efficient, however, the rest of the equilibria

yield the lower social welfare the higher number of compromise agreements are used.
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1 Introduction

In this paper, we present an in-depth analysis of mediation in bargaining. Mediation being a wide-spread

practice –from international negotiations to divorce proceedings– this is empirically relevant in its own

right. Our concurrent intention is more theoretical though: to provide an alternative approach to the

study of bargaining with incomplete information. The difficulties encountered by this literature are mostly

due to the issues arising from unrestricted –or, arbitrarily restricted– conditional belief structures, which,

unfortunately, arise most naturally in dynamic games of incomplete information. Instead of constraining

the ways in which beliefs can be updated, we work with an extensive form that exogenously restricts the

generation of the information events, which would trigger the formation of new posteriors. In particular,

we assume that all offers that do not lead to agreement are unobservable. The easiest way to think of this

situation is to say that it is a dynamic double auction: 2 the players keep sending offers to an auctioneer,

who only reveals them once they are compatible, and therefore an agreement has been reached. Within

this context, we are able to give a complete characterization, as well as a number of interesting insights.

Following Zeuthen (1930), we consider the bargaining problem as a process of mutual concessions.

While this seems to be the most natural interpretation, it is seldom an equilibrium feature in the literature.

As in Bishop (1964) –within the context of a concession game– the force driving our negotiators to concede

is impatience. The major difference is that we do not make any ad hoc assumption about how impatience is

related to the rate of concessions. Instead we present a full-fledged game-theoretic model, where the speed

of conceding arises as an equilibrium phenomenon. Since we also generalize to incomplete information,

the Hicksian (1932) argument, that the negotiators can calculate what would be the eventual agreement

and implement it without delay, does not apply in our context. In our model, delay is real, since it serves

as a screening/signaling device (c.f. Admati and Perry, 1987).

Our paper can also be read as a study focused on the analysis of mediated bargaining. Mediation

is generally seen as a useful tool to improve on the efficiency of negotiations. On the one hand, it may

make agreement viable in situations where otherwise there would be an impasse. On the other hand, it

may lead negotiators to speed up mutual concessions, thereby decreasing the inefficient delay in reaching

an agreement. As John T. Dunlop, former US Secretary of Labor and one of the foremost authorities on

dispute resolution, explains:

“The mediator has a special opportunity in the “end-game” of negotiations... The critical

2See Chatterjee and Samuelson (1983), Broman (1989), Leininger et al. (1989), Satterthwaite and Williams (1989) and

Gresik (1996) –among others– for static models of bargaining, using the bilateral double auction mechanism.
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problem is... that any move may create the impression of being willing to move all the way

to the position of the other side.... In these circumstances a third party may greatly facilitate

agreement. The separate conditional acceptance to the mediator by one side of a proposal

does not prejudice the position of that side if there is no agreement. It is not unusual for a

mediator to secure the separate acceptance of each side... and then to bring the parties together

to announce that, even if they do not know it, they have an agreement.” [Dunlop (1984), pg.

24]

We carry out our analysis in the framework of a model with four identifying characteristics: i) two-

sided incomplete information (about reservation values), ii) two-sided offers, iii) a discrete set of feasible

agreements, and iv) continuous time.

The immediate efficient agreement predicted by most models under complete information seems to be

at odds with the perception that delays and impasses are common in all kinds of negotiations. Indeed,

most real life bargaining situations are best described as games with two-sided private information.

In addition, the essence of mediation is that the negotiators can take actions without their opponents

knowing. However, in a complete information setup, in equilibrium, nothing could remain secret.

The simplest dynamic model of bargaining with two-sided private information is the one where only

one of two extreme proposals can prevail: the War of Attrition. Under mild assumptions,3 the War of

Attrition has a unique equilibrium. This is mostly due to the fact that it is a game of timing rather

than one of bids. Interesting bargaining models, however, must contemplate the possibility of compro-

mise agreements. In the standard models of bargaining with incomplete information where compromise

agreements are feasible, a player offering a concession to her opponent incurs costs of two different types

– she bears right away the direct cost of accepting a smaller portion of the surplus and, in addition, she

weakens her bargaining position by having revealed herself as weaker than her opponent. These phe-

nomena generate immense problems of belief updating that result in sets of multiple equilibria that are

very difficult to characterize. Thus, in spite of the natural appeal of bargaining models with two-sided

incomplete information, clear-cut general results have remained elusive.4

We overcome these difficulties by importing the advantages of the War of Attrition approach: we

examine a continuous-time bargaining game with a finite number of possible agreements. Apart from the

fact that this is a more realistic scenario –the existence of a smallest money unit and the non-existence

3See Ponsat́ı and Sákovics (1995).
4See Fudenberg and Tirole (1983), Cramton (1984,1992), Chatterjee and Samuelson (1987), Cho (1990), Ausubel and

Deneckere (1992b,1993), Ponsati (1997) and Watson (1998) for some valuable partial results.

3



of a smallest time unit are facts– it is also technically advantageous. Once the finite set of agreements

is fixed, one can again think of the bargaining game as one of timing: all the players have to decide is

the speed at which they should make consecutive concessions. This point of view drastically simplifies

the problem and it makes possible to characterize the equilibrium strategies as solutions to a system of

ordinary differential equations. Additionally, this extensive form is rather robust, since it is practically

“procedure free” (c.f. Ponsat́ı (1992, 1997), Perry and Reny (1993), Sákovics (1993) and Abreu and Gul

(2000)).

We model the auctioneer/mediator in the simplest possible way. He is not an active player, his only

role is to restrict the information flow between the negotiating parties (and to enforce that the agents

honor their offers). At every date t players confidentially report to the mediator the agreements they

are willing to accept. The mediator remains passive while the players make insufficient concessions but

announces the agreement as soon as it is reached. Since players do not observe the partial concessions of

their opponent, the updating of beliefs is greatly simplified and we are able to attain a full characterization

of the Perfect Bayesian Equilibrium (PBE) outcomes.

Players may decide to ignore the possibility of non-revealing partial concessions offered by the presence

of the mediator, and thus a PBE that reproduces the outcome of the War of Attrition, where only the

two extreme proposals are feasible always exists. We explore the set of PBE further and show that the

mediator does play a positive role in generating compromise outcomes: in addition to the War of Attrition

Equilibrium (WAE), there also exists an ex post efficient5 Mediation Equilibrium (ME) –whenever the

relative weight of the types who cannot make any concession is not too high. In the ME agreements

occur with positive probability at all the feasible prices and in all time intervals.

The above result is perhaps best interpreted in the light of the findings of Ponsat́ı (1997). She examines

the face-to-face version of our bargaining game with three feasible agreements and shows that if players

use Markov strategies (that is, they choose their action at each stage based only on current proposals

and beliefs) then face-to-face bargaining yields the same outcome as a War of Attrition in which only the

extreme agreements are possible.6 That is, since in the current model the restriction to Markov strategies

would play no role, we can conclude that if we expect the players to use such strategies, mediation can

lead to an outcome where more agreements are used and thus it improves ex post efficiency. On the other

hand, she also shows that on all the other equilibrium paths (involving compromise offers) there must

5Relative to the feasible prices, of course.
6Note that this result is consistent with the finding of Ausubel and Deneckere (1992a) that in a game of one-sided incom-

plete information the informed player prefers to remain silent: in the two-sided case both prefer not to make intermediate

concessions.
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exist intervals of time, where no concessions are made. Consequently, without the restriction to Markov

strategies, mediation improves ex ante efficiency.7

The set of equilibria is completed by a unique ex post efficient (relative to the subset of agreements

they employ) equilibrium for each subset of the feasible agreements containing the two extreme ones.

Only when the type distributions are very skewed, some ex post inefficient equilibria may also exist.

To obtain further insight, we also calculate (numerically) the equilibrium strategies and the resulting

(utilitarian) social welfare for the case of symmet ric and uniform type distributions. Our most important

findings are that the more agreements are used in equilibrium, the stricter are the necessary support

conditions for existence and the lower is social welfare. That is, ex ante and ex post efficiency are

antagonical.

Abreu and Gul (2000) also propose a “war-of-attrition based” approach to the modelling of bargaining

games without complete information. Replacing uncertainty about some fundamentals (reservation val-

ues, discount factors etc.) they assume that the uncertainty is “strategic”: with some positive probability,

each player is of the irrational type, and will not change his initial demand.8 This assumption corresponds

to the opposite extreme to ours: rather than filtering the information flow, they make information events

so revealing, that once a player makes any concession, in equilibrium, she must fully concede.

The rest of the paper is organized as follows. Section 2 formally presents the model. In Section 3 we

derive some preliminary results. The characterization of the set of equilibria is in Section 4. Section 5

exhibits the numerical solutions and the welfare analysis. Section 6 concludes. The proofs not presented

in the text are relegated to the Appendix.

2 The mediated bargaining game

We study the following bargaining situation. Two players (i = 1, 2) bargain about how to share some

potential surplus that will be available only if and when they reach an agreement. We denote an agreement

by a number, x ∈ (0, 1), that indicates the portion of the surplus assigned to Player 1, while Player 2

receives 1 − x. Feasible proposals and agreements are restricted to elements of the set X = {x1, ..., xR}
where 0 < x1 < ... < xr < ... < xR < 1.

7Ausubel and Deneckere (1993) showed that, if the agents are allowed to use strategies that are non-monotonic in their

valuation, the ex ante efficiency of the equilibrium can approximate the welfare bound imposed by incentive compatibility.

It is questionable though, whether such strategies are indeed commonly used.
8See Inderst (1999) for a model where both types of uncertainties are present.
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An agreement can be reached at any time t ∈ [0,∞). Let (xr , t) denote an outcome of the bargaining,

where xr ∈ X is the agreement and t is the date at which it is reached. Define s1 and s2 as reservation

values of Players 1 and 2, respectively. Then the outcome, (xr, t), gives a payoff of us1

1 (xr , t) = (xr −
s1)e

−z1t to Player 1 of type s1, while Player 2 of type s2 receives us2

2 (xr, t) = (1−xr−s2)e
−z2t, where the

zi (> 0) denote the players’ discount rates. If offers never become compatible the outcome is perpetual

disagreement, yielding payoff 0 to both players, regardless of their type. An easy way to think about this

situation is to say that type s1 of Player 1 is the seller of an item which she values at s1, while type s2 of

Player 2 is the buyer who values the item at 1− s2 and they are bargaining over the price, xr , the buyer

should pay the seller in exchange for the item.

The reservation values are private information. They are the realizations of independent draws from

the probability distributions Fi(si), i = 1, 2. These distribution functions are common knowledge and

have positive densities fi ∈ C∞[sL
i , sH

i ], i = 1, 2. We require that sL
1 < x1 ≤ 1 − sH

2 < x2 and

xR−1 < sH
1 ≤ xR < 1 − sL

2 . That is, for each player there is at least one acceptable agreement (we

rule out types that cannot get a positive surplus from any agreement, since they will never show up at

the bargaining table anyway). Moreover, for each type there is a positive probability that gains from

trade are possible. Finally, there is a positive mass of types who cannot yield from their most preferred

agreement. A natural way in which this situation can arise is that the set of relevant feasible agreements

are endogenously determined as a function of the distribution of types.

Our bargaining procedure has the following rules. The traders send private messages (sealed bids, if

you will) to a mediator, whose only active role is to make the agreement public as soon as it is reached.

The content of a message is the price at which the trader is willing to trade. As time goes by, the players

can change their proposals at any point. We only impose the restriction that they have to honor any

previously made offer. That is, we –or the mediator, if you will– do not allow offers to be withdrawn.

Consequently, the demands of both players have to be non-increasing over time.9

A (pure) strategy for Player i, σi, is a measurable function from [sL
i , sH

i ] × [0,∞) to X , i = 1, 2,

specifying for every type and every point in time the player’s standing proposal. Note that concessions

need not be made one by one. For instance, a strategy for Player 1 can “jump” at some time t from

proposal xk to proposal xl with l < k − 1.

9Technically speaking, this assumption causes a loss of generality. However, the resulting player behavior is much more

plausible under this assumption than when it is not satisfied. With unrestricted strategies, the players would not hold

compromise offers for any positive amount of time. Instead they would periodically “sample” whether their opponent is

currently offering a compromise. Apart from the inefficiency and the huge multiplicity that this would generate, these

equilibria would also require an important degree of coordination between the parties.
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Since strategies are monotone in time and there are a finite number of feasible prices, the strategies

are continuous in time except at a finite number of t’s. At these points we assume right–continuity (that

is, σi(s, t) = limε↓0(σi (s, t + ε))) and thus we ensure the existence of a first time at which a proposal xr ∈
X is made. Consequently, a strategy can also be described using a vector valued function identifying the

first time the player makes each feasible proposal. To this effect, we let µi : [sL
i , sH

i ] → [0,∞]R, i = 1, 2

satisfying

(a) µR
1 (s1) = 0 and µi

1(s1) ≤ µi−1
1 (s1), i = 2, . . . , R,

(b) µ1
2(s2) = 0 and µi

2(s2) ≤ µi+1
1 (s2), i = 1, . . . , R− 1,

where the inequalities are strict if and only if proposal xi is held for a positive length of time. An

equivalent representation for σ1 is then as follows (a similar representation applies to σ2)

σ1(s, t) =





xR, for t < µR−1
1 (s),

...

xk, for µk
1(s) ≤ t < µk−1

1 (s),

...

x1, for t ≥ µ1
1(s).

Given a pair of types, (s1, s2), a strategy profile determines a unique outcome of the game denoted

by (x(σ, s1, s2), t(σ, s1, s2)). To define this outcome, we adopt the convention that if, when the offers

first become compatible, that is, Player 1 is proposing xk while Player 2 is proposing xl, k ≤ l, they are

inefficient (i.e., l > k), then the resulting outcome is agreement at the offer that was made first, but

naturally at the time when the later one was made.10

A system of beliefs for Player i, βi, maps each point in time into some probability distribution on the

support [sL
j , sH

j ] of types of Player j, j 6= i. Given a strategy-belief profile (σ, β), let usi

i (σ, βi, t) denote

the expected payoff to Player i of type si conditional on having followed its strategy and not having

arrived at an agreement by t. That is,

us1

1 (σ, β1, t) =

∫

[sL

2
,sH

2
]

(x(σ, s1, v)− s1) e−z1t(σ,s1,v)dβ1(v; t)

10If the inefficient offers are made simultaneously then the outcome is defined as a fair lottery over the two offers.
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and

us2

2 (σ, β2, t) =

∫

[sL

1
,sH

1
]

(1− x(σ, v, s2)) − s2)e
−z2t(σ,v,s2))dβ2(v; t).

A strategy-belief profile (σ, β) constitutes a Perfect Bayesian Equilibrium (PBE) if and only if for

all (s1, s2) ∈ [sL
1 , sH

1 ] × [sL
2 , sH

2 ], and for all t, usi

i (σi, σj , βi, t) ≥ usi

i (σ′i, σj, βi, t) for i = 1, 2 for all

right-continuous σ′i, and βi is consistent with σj , according to Bayes’ Rule.11

3 Preliminaries

In this section we introduce some preliminary results and notation that will prove to be of great use in

the analysis of our mediated bargaining game. We start by showing that equilibrium strategies must be

type-monotone: µk
i (s) ≤ µk

i (s′) for all s ≤ s′, where the inequality is strict unless µk
i (s) = 0.

Let Hk
i (σ, t) denote the probability that player i gives xk no later than t according to σ. We will

write Hk
i (t) if no confusion arises.

Lemma 1 The best response to any strategy is type-monotone.

Proof: Fix σ2 and the associated Hk
2 (t). Pick two types of Player 1: s1 < s′1. Denote by τ1 and τ ′1

the time they concede xk+1 in equilibrium, and by tk and t′k the time they concede xk in equilibrium,

respectively. We now argue by contradiction, assuming that t′k < tk.

First, note that the equilibrium times at which Player 1 will concede the rest of the proposals xl, l =

k − 1, . . . , 1 does not depend on the fact that whether she conceded xk at time t = tk or t = t′k. This is

so because the optimal time to concede xl, l = k− 1, . . . , 1 does not depend on the (observable) history.

Hence it is meaningful to (recursively) define P k
1 (s, τ , t) as the expected payoff –evaluated at τ ≤ t, where

she has already conceded xk+1– of Player 1 of type s conceding xk at time t:

P 1
1 (s, τ , t) =

∫ t

τ

(x2 − s)e−z1udH2
2(u) + (1−H2

2(t))(x1 − s)e−z1t

P k
1 (s, τ , t) =

∫ t

τ

(xk+1 − s)e−z1udHk+1
2 (u) + (Hk

2 (t) −Hk+1
2 (t))(xk − s)e−z1t + P k−1

1 (s, t, tk−1).

11Strictly speaking, this definition is not even a Nash Equilibrium, since we have not described the players’ behavior off

the equilibrium path. Note however, that given the rules of our game deviations either end the game or are unobservable.

Consequently, we did not find it worthwhile to unnecessarily complicate our definitions solely to satisfy the usual convention.
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Because the best response strategy of Player 1 of type s = s1 or s = s′1 maximizes her expected payoff,

we immediately have that:

P k
1 (s1, τ, tk)− P k

1 (s1, τ, t′k) ≥ 0, (1)

P k
1 (s′1, τ, tk)− P k

1 (s′1, τ, t′k) ≤ 0, (2)

which implies

P k
1 (s1, τ, tk) − P k

1 (s1, τ, t′k) ≥ P k
1 (s′1, τ, tk)− P k

1 (s′1, τ, t′k). (3)

Expanding this inequality we obtain

tk∫

t′
k

(
xk+1 − s1

)
e−z1udHk+1

2 (u) + Γ(tk, t′k)
(
xk − s1

)
+

t′
k∫

tk

(
xk − s1

)
e−z1udHk

2 (u) ≥

tk∫

t′
k

(
xk+1 − s′1

)
e−z1udHk+1

2 (u) + Γ(tk, t′k)
(
xk − s′1

)
+

t′
k∫

tk

(
xk − s′1

)
e−z1udHk

2 (u),

(4)

where Γ(tk, t′k) =
(
Hk

2 (tk) −Hk+1
2 (tk)

)
e−tk −

(
Hk

2 (t′k)−Hk+1
2 (t′k)

)
e−t′

k . Manipulating inequality (4)

and dividing by s′1 − s1 > 0 we have

tk∫

t′
k

e−z1udHk+1
2 (u) ≥

tk∫

t′
k

e−z1udHk
2 (u)− Γ(tk, t′k). (5)

On the other hand, note that by inequality (2)

tk∫

t′
k

(
xk+1 − s′1

)
e−z1udHk+1

2 (u) −
tk∫

t′
k

(
xk − s′1

)
e−z1udHk

2 (u) ≤ −Γ(tk, t′k)
(
xk − s′1

)
,

and consequently (we substitute xk+1 by xk in the first integral and the inequality remains and becomes

strict because we are assuming tk ≥ t′k)

tk∫

t′
k

e−z1udHk+1
2 (u)−

tk∫

t′
k

e−z1udHk
2 (u) < −Γ(tk, t′k), (6)

a contradiction with (5). We have thus shown weak type monotonicity. Next, we show that in any PBE,

there is not a positive mass of types making a concession to xk at any time t > 0. Assume otherwise.

Then, there is an interval of types of, say, Player 1 making a concession to xk, k ∈ {1, . . .R− 1} at some

time t > 0. Then there must exist a δ > 0 such that in the interval (t− δ, t) no types of Player 2 concede
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beyond xk+1, since by waiting arbitrarily little they can gain a strictly positive amount. However, in

equilibrium full concessions must be made with positive probability in any time interval as shown by

Lemma 3, stated and proved in the Appendix.

Lemma 1 ensures that it is meaningful to talk about the inverse of µ(s), the time vector of type s’s

concessions. Let ϕk
i : [0,∞) → [sL

i , sH
i ], i = 1, 2, such that µk

i (si) = t > 0 if and only if ϕk
i (t) = si and

µk
i (si) = 0 if and only if si ≤ lim

t→0+
ϕk

i (t) ≡ ϕk
i (0). That is, ϕk

i (t) is the type of Player i who are conceding

xk at time t > 0, while ϕk
i (0) is the supremum of types of Player i who is conceding xk at time t = 0. At

the same time, we can also write Hk
i (t) as Fi(ϕ

k
i (t)).

Denote by Y the set of all the subsets of the feasible agreements, X, which include the extreme ones,

x1 and xR. An element Y of Y is then given by
{
y1 = x1, y2, . . . , yS = xR

}
, where 2 ≤ S ≤ R. We

say that a strategy profile is ex post efficient with respect to Y ∈ Y, if all the (pairs of) types who can

trade using prices only in Y eventually do so according to the profile. We say that a strategy “uses” an

agreement, if it holds it for a positive length of time.

Lemma 2 Let Y ∈ Y. The best response to any strategy that exclusively uses feasible agreements in Y

is a strategy that exclusively uses feasible agreements in Y .

Proof: If the opponent plays as if only yi ∈ Y were possible, any strategy in which a player proposes

xk /∈ Y during some positive time interval is strictly dominated by a strategy in which he does not make

an intermediate concession. To see this, just observe that maintaining the compromise xk for a while is

costly, since upon a concession of the opponent (to some yi ∈ Y ) that ends the game, some surplus is

lost, while otherwise it makes no difference.

Lemma 2 is instrumental in providing a full characterization of the set of equilibria. In particular, it

implies that our game always has a Perfect Bayesian equilibrium:

Corollary 1 The unique Bayesian equilibrium of the war of attrition is a Perfect Bayesian equilibrium

of the mediated game.

Proof: The existence and uniqueness of equilibrium for X= {x1, xR} is shown in Ponsat́ı and Sákovics

(1995). By Lemma 2, this continues to be an equilibrium for any Y ∈ Y.

This equilibrium has the undesirable property that it is extremely ex post inefficient: if both types are

such that they cannot afford to make a full concession, they never get to agreement even if there exists a
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feasible price at which they would both gain from trade. Does this mean that mediated bargaining leaves

unrealized gains from trade when more than two agreements are possible? Not necessarily. As we show

in the next section –while in some cases the above one is the only equilibrium– an equilibrium where an

agreement is reached between any two types who are willing to trade at a feasible price also exists for

most “reasonable” parameter values.

4 Mediated equilibria

Let us turn now to the analysis of equilibria where, unlike in the war-of-attrition equilibrium, the pos-

sibility to make unobservable concessions does play a role. In these, deals are struck at compromise

agreements with positive probability. Henceforth we restrict attention to strategies that are differentiable

almost everywhere.

4.1 Characterization

We wish to characterize those equilibria where all types agree on which agreements to skip as they are

making concessions. That is, every agreement in some Y ∈ Y is either used (held for a positive amount

of time) or never conceded, by every type.12

Proposition 1 For every Y ∈ Y, all PBE such that each type uses exactly the agreements in Y (con-

ditional on conceding beyond) are characterized by 2S − 2 strictly increasing functions ϕk
i : (0,∞) →

[sL
i , sH

i ], i = 1, 2 which must solve the differential system (F1(ϕ
S
1 ) = 1 and F2(ϕ

1
2) = 1):

ϕ̇k
1 =z2

F1

(
ϕk+1

1

)
− F1

(
ϕk

1

)

f1

(
ϕk

1

) 1− yk+1 − ϕk+1
2

yk+1 − yk
, k = 1, 2, . . .S − 1.

ϕ̇k
2 =z1

F2

(
ϕk−1

2

)
− F2

(
ϕk

2

)

f2

(
ϕk

2

) yk−1 − ϕk−1
1

yk − yk−1
, k = 2, 3, . . . , S ,

(7)

with an initial condition
(
ϕ1

1(0), . . .ϕS−1
1 (0), ϕ2

2(0), . . . , ϕS
2 (0)

)
satisfying that,

if sL
1 = ϕ1

1(0) = . . . = ϕl−1
1 (0) < ϕl

1(0), for some l = 1, . . . , S − 1 then

ϕl+1
2 (0) = . . . = ϕS

2 (0) = sL
2 ,

(8)

12The types of potential equilibria that we do not consider are those where over time the number of agreements used

varies.
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and the feasibility condition

ϕ1
1(t) < ϕ2

1(t) < . . . < ϕS−1
1 (t)

ϕS
2 (t) < ϕS−1

2 (t) < . . . < ϕ2
2(t)

(9)

for t > 0.

Proof: Any strategy (relative to Y ∈ Y) of Player 1 of type s1 is characterized by a time–vector

(t1(s1), t2(s1), . . . , tS(s1)) that determines the time of concession to every agreement, yk, k = 1, . . .S,

used in a given equilibrium.13

In equilibrium, the time–vector for Player 1 of type s1, denoted by (t?1, t
?
2, . . . , t?S) (we suppress the

dependence on s1 for simplicity), must be determined by the following recursive formula (a similar formula

applies to Player 2):14

t?1 = argmaxt≥t?
2

��� �� t�
t?
2 � y2 − s1 � e−z1udF 2

2 (u) + � 1− F 2
2 (t)� � y1 − s1 � e−z1t � ���	

t?k = argmax
t∈ 
 t?

k+1
,t?

k−1 �
���� ��� t�
t?

k+1

�
yk+1 − s1 
 e−z1udF k+1

2
(u) +

�
F k

2 (t)− F k+1

2
(t)
 �

yk − s1 
 e−z1t + Qk(s1, t)
� �����	 , k > 1,

where

Q2(s1 , t) =

� t?

1

t

(y2 − s1)e−z1udF 2
2 (u) + (1− F 2

2 (t?1))(y1 − s1)e−z1t?

1

Qk(s1 , t) =

�
t?

k−1

t

(yk − s1)e
−z1udF k

2 (u) + (F k−1
2 (t?k−1)− F k

2 (t?k))(yk−1 − s1)e−z1t?

k−1 + Qk−1(s1, t?k−1), k > 2.

(10)

To see this, note that t?1 must be the optimal time to make the final concession, conditional on having

made the penultimate concession at t?2. This optimum is the result of a trade-off: the gains from waiting

are accounted for by the integral, while the losses from waiting are given by the discounted expected value

the (final) concession would yield. For earlier concessions we must include the equilibrium continuation

value in the above formula. This is captured by the corresponding Q. Since the maximands of the RHS

of (10) are differentiable, the first order condition (when k > 1) is given by

dF k+1
2 (t)

�
yk+1 − yk 
 e−z1t + � dF k

2 (t) + z1

�
F k+1

2 (t)− F k
2 (t)
 � �

yk − s1 
 e−z1t + � ∂Qk(s1, t)

∂t � = 0.

13These correspond to the µ’s of Section 2, dropping the redundant ones.
14We denote F (ϕk(t)) by F k(t), for simplicity.
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Notice that Qk(s1, t) depends on t only through the lower limit of the integral and therefore

∂Qk(s1, t)

∂t
= −

(
yk − s1

)
e−z1tdF k

2 (t),

reducing the first order condition to

dF k+1
2 (t)

(
yk+1 − yk

)
+ z1

[
F k+1

2 (t)− F k
2 (t)

] (
yk − s1

)
= 0. (11)

When k = 1, similar computations give

dF 2
2 (t)

(
y2 − y1

)
+ z1

[
F 2

2 (t) − 1
] (

y1 − s1

)
= 0.

For any 1 < k ≤ R, we can derive an analogous first order condition for Player 2:

dF k−1
1 (t)

(
yk − yk−1

)
+ z2

[
F k−1

1 (t)− F k
1 (t)

] (
1− yk − s2

)
= 0. (12)

Noting that dF k
i (t) = fi

(
ϕk

i (t)
)
ϕ̇k

i , we obtain system (7).

By the above, system (7) is a necessary condition. Now we show that the condition is also sufficient.

To do so, we prove that the second derivative at the critical point (the one satisfying the first order

condition) is negative. We only prove here this fact for Player 1. The proof for Player 2 is similar.

The first derivative of the objective function can be written as (we suppress the dependence on time

for simplicity) e−z1tA, where A is the LHS of equation (11). Consequently, the second derivative has the

form

−z1e
−z1tA + e−z1t dA

dt

Thus, since A is zero at the singular point, we only need to prove that dA
dt

is negative. Calculating the

derivative we obtain

dA

dt
=

�
f ′2(ϕ

k+1
2 )(ϕ̇k+1

2 )2 + f2(ϕk+1
2 )ϕ̈k+1

2 � (yk+1 − yk) + z1 � f2(ϕ
k+1
2 )ϕ̇k+1

2 − f2(ϕ
k
2)ϕ̇k

2 � (yk − s1)

We can derive the expression of ϕ̈k+1
2 by differentiating both sides of the corresponding (functional)

equation of system (7). Substituting in and using the fact that s1 = ϕk
1 at the critical point, we obtain

that

dA

dt
= −

(
F2(ϕ

k+1
2 )− F2(ϕ

k
2)

)
ϕ̇k

1(t) < 0,

(where the strict inequality follows by type-monotonicity) as it was desired.
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Moreover, the solutions of system (7) that determine equilibrium paths must have the initial condition

(8) because of Lemma 4 (see the Appendix), they must be increasing in time (type–monotonicity),

and they must satisfy the feasibility condition given by (9) because of the time-monotonicity and the

assumption that no agreement in Y is “skipped” by any type.

In the next subsection, we show the existence and uniqueness (for each Y ∈ Y) of equilibria for certain

values of the parameters {sL
1 , sL

2 } when the numbers of agreements is three and discuss the existence and

uniqueness in the general case.

4.2 Existence and uniqueness

Let us first define T k
i = min{t, such that F k

i (t) = F k
i (∞)}. That is, T k

i is the earliest time by which

Player i proposes at most yk with probability one, conditional on proposing it ever.

Proposition 2 For the symmetric game of three possible agreements – Y = {y1 = x1, y2 = 1/2, y3 =

1− x1} and F1(.) ≡ F2(.) – there exists a unique ex post efficient (relative to Y ) equilibrium if and only

if sL
1 = sL

2 is close enough to y1.

Proof: By Proposition 1 any possible equilibrium path must satisfy the differential system given by (7)

and these first-order conditions indeed characterize maxima. In other words, since each type chooses

to concede yl, l = 1, 2 at the date maximizing her expected payoff, each such solution does indeed

characterize a PBE.

By symmetry, the differential system (7) becomes

ϕ̇1
1 = z2

F1

(
ϕ2

1

)
− F1

(
ϕ1

1

)

f1 (ϕ1
1)

1
2
− ϕ2

1
1
2
− y1

ϕ̇2
1 = z1

1− F1

(
ϕ2

1

)

f1 (ϕ2
1)

x1 − ϕ1
1

1
2 − y1

.

(13)

Consequently, all we have left to show is that (13) has a unique strictly increasing solution, which, if sL
1

is close enough to y1, satisfies the initial condition ϕ1
1(0) = sL

1 as well as the feasibility condition

sL
1 ≤ ϕ1

1(t) < ϕ2
1(t), (14)

and the ex post efficiency condition

lim
t→T1

1

ϕ1
1(t) = y1 and lim

t→T2
1

ϕ2
1(t) =

1

2
. (15)
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It is immediate to show that system (13) has a singular point at Φ∗ = (y1, 1
2) and its linear part is

given by the matrix


 0 A

B 0


 , (16)

where

A = −z2
F1(

1
2)− F1(y

1)

f1(y1)
(

1
2 − y1

) and B = −z1
1− F1(

1
2 )

f1(
1
2)

(
1
2 − y1

)

are both negative. Some computations show that the eigenvalues and the corresponding eigenvectors of

the above matrix are given by λ± = ±
√

AB and v± = (∓
√
−A√
−B

, 1), respectively (see Perko (1991), for

details).

Therefore, the singular point Φ∗ of the non-linear system is a saddle point, with a 1-dimensional stable

and a 1-dimensional unstable manifold, Es and Eu, respectively, locally tangent to the linear stable and

unstable manifolds Es
L and Es

L given by

Es
L ={Φ ∈ R

2 | Φ = Φ∗ + αv−, α ∈ R}

Eu
L ={Φ ∈ R

2 | Φ = Φ∗ + αv+, α ∈ R}.

For a given sL
1 , let us now define the set D{sL

1
} ∈ R

2 as follows:15

D{sL

1
} = {Φ ∈ R

2 | sL
1 < ϕ1

1 < y1, and ϕ1
1 < ϕ2

1 < y2}.

It is easy to see that the singular point Φ∗ lies on the boundary of D, and further there is a branch

of the stable manifold lying in D{sL

1
} –which is in fact the unique orbit tending to Φ∗ in D{sL

1
}–, and

Φ � Φ∗ (where � denotes coordinate by coordinate strict inequality), for all Φ ∈ D{sL

1
}. See Figure

1. We also note that there are no other singular points in the interior of D{sL

1
}. Finally, the strictly

increasing smooth nature of the F k
i implies that at every point Φ = (ϕ1

1, ϕ
2
1) ∈ D{sL

1
} the corresponding

vector (ϕ̇1
1, ϕ̇

2
1) has both components positive. So, if we pull back the orbit passing through any point

in D{sL

1
} we must reach the boundary of D{sL

1
} given by ϕ1

1 = sL
1 or ϕ1

1 = ϕ2
1 after a finite time. In

particular, this is so if we start at any point in D{sL

1
} lying on the branch of Es.

To end the proof we claim that, for values of the parameter sL
1 close enough to y1, if we pull back the

branch of Es in D{sL

1
} we cross (first) the boundary of D{sL

1
} corresponding to ϕ1

1 = sL
1 . Such a crossing

point, (the point p in Figure 1) gives the desired initial condition (ϕ1
1(0) = sL

1 , ϕ2
1(0) ≤ sL

1 ).

15We remark that, by changing the values of the parameter sL
1 , the domain where system (13) is meaningful changes as

well. In other words, for a given sL
1
, system (13) has no meaning when ϕk

1
< sL

1
, k = 1,2.
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To see the claim we note that, on one hand, the value of ϕ̇2
1 is uniformly bounded in D{sL

1
} for all

values of the parameter sL
1 ∈ (x1−ε, x1) (hence the “vertical” component of the field is bounded), because

the density functions are strictly positive on its compact support. On the other hand, considering values

of sL
1 arbitrarily close to y1, the compact boundary of D{sL

1
} given by ϕ1

1 = sL
1 is arbitrarily close to Φ∗

while the compact boundary of D{sL

1
} given by ϕ1

1 = ϕ2
1 remains far away.

In summary, we have shown that, as long as the parameter sL
1 is close enough to y1, there exist a unique

orbit starting at sL
1 = ϕ1

1(0) ≤ ϕ2
1(0), being increasing for all t > 0, and satisfying the feasibility and ex

post efficiency condition.16 In particular, we have shown that, in this case, T k
i = ∞, i = 1, 2, k = 1, 2.

If the distribution of types is uniform, we need not impose symmetry:

Proposition 3 For the game of three possible agreements Y = {y1, y2, y3} and uniform type distribu-

tions, there exists a unique ex post efficient (relative to Y ) equilibrium if and only if the pair {sL
1 , sL

2 } is

close enough to the pair {y1, 1− y3}, respectively.

Proof: See the Appendix.

Remark 1 When asymmetric (or non-uniformly distributed) games with a unique compromise agreement

are considered, the major part of the arguments used in the above proofs work as well. The ex post efficient

equilibrium path has to be the solution of the four dimensional differential system {ϕ̇1
1, ϕ̇

2
1, ϕ̇

1
2, ϕ̇

3
2} given

by (7) satisfying the initial condition given by (8), the feasibility condition given by (9) and the ex post

efficiency condition given by

lim
t→Tk

1

ϕk
1(t) = yk, k = 1, 2 and lim

t→Tk

2

ϕk
2(t) = 1− yk, k = 2, 3 (17)

As in the proof of Proposition 3 (in the Appendix) the point Φ∗ ∈ R
4 is a generalized saddle with 2-

dimensional stable manifold Es of orbits tending to Φ∗ in forward time (this is a main difference with

respect to the symmetric case where the 1-dimensional stable manifold consist of a single orbit). Moreover,

there is a part of Es lying in D{sL

1
,sL

2
}.

Unfortunately, it is in general hard to prove that, by pulling back those orbits in Es, we cross the

suitable boundary of D to obtain the initial condition given by (8); that is, either ϕ1
1(0) = sL

1 and

ϕ3
2(0) = sL

2 , or ϕ1
1(0) = ϕ2

1(0) = sL
1 , or ϕ3

2(0) = ϕ2
2(0) = sL

2 . Clearly, by pulling back the orbit through

any point in D{sL

1
,sL

2
} we get, in finite time, the boundary of D{sL

1
,sL

2
}, but we have not succeeded in

16Intuitively, the extreme value of sL
1

for which we have such a good initial condition corresponds to sL
1

= ϕ1
1
(0) = ϕ2

1
(0)
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proving that we get one of the “correct ones” when pulling back points in Es ∩D{s
L
1 , sL

2 }. For instance

we, a priori, could get out of D{sL

1
,sL

2
} through sL

1 < ϕ1
1 = ϕ2

1.

Nevertheless, it is natural to claim that the condition {sL
1 , sL

2 } “close enough” to {y1, 1− y3} is the

right condition we need to get the existence. In this case, we have uniqueness and T k
i = ∞ for all i and

k.

Remark 2 When more than one compromise agreements are available, the main difficulty in showing

existence of a (unique) ex post efficient equilibrium is (again) to show, that, given the pair {sL
1 , sL

2 }, there

is an orbit on the stable manifold of the generalized saddle starting at some point satisfying the initial

condition given by (8). We may try to argue as before that, as long as the pair of parameters {sL
1 , sL

2 } is

close enough to the pair {y1, 1− yS}, if we pull back the orbits lying on the piece of the stable manifold

in D{sL

1
,sL

2
}, we get the suitable boundary of D. Even if this was true, when S > 3 the initial condition

given by (8) includes further equalities to be satisfied. These conditions require to continue pulling back

the orbits of Es once we have already gotten the “boundary of D” from the “interior of D”.

As we will see in the next section, when uniform distribution and symmetry is considered, at least

from the numerical point of view, such solutions exist and are unique for the suitable (close to y1) values

of the parameter sL
1 .

The above two propositions and remarks describe all the possible ex post efficient equilibrium paths.

However, a priori it is also possible to have ex post inefficient equilibria. As a first step towards the

characterization of these, note that there can be no ex post inefficient equilibrium, such that the T k are

finite. To see this, suppose otherwise. Then there would be a positive measure of types who could have

traded – say, at yk– and have not. However, this strategy cannot be part of an equilibrium since for these

types (of either player), proposing yk at T k is a profitable deviation, since they would get to agreement

with positive probability. To see this, note that the fact that yk is used in equilibrium implies that a

positive measure of types must offer at least yk at some point, and at T k they still must be doing so, by

the very fact that they happened not to trade in the candidate equilibrium.

Hence we must focus on T k = ∞. It is then clear that the strategy corresponding to an ex post

inefficient equilibrium would be given by a solution of system (7) tending in forward time to one of

the singular points on the boundary of D{sL

1
,sL

2
} different from Φ∗, and satisfying the monotonicity and

feasibility conditions.

When a single compromise agreement is considered, the only singular point different from Φ∗ =

(y1, y2, 1− y2, 1− y3) is given by q = (y1, y1, 1− y3, 1− y3) which has (locally) different phase portraits
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depending on the parameters and the density functions. In particular, as long as condition S given by17

Condition S : 1− 4

(y3 − y2)

√
(1− F1(y1))(1− F2(1− y3))

f1(y1)f2(1− y3)
< 0,

is satisfied, we ensure that there is not any orbit tending to q that satisfies the monotonicity and feasibility

conditions.

Condition S guarantees that q has two complex eigenvalues with negative real part. Hence any orbit

tending in forward time to q will spiral around the singular point losing any kind of monotonicity. In

general, distributions that do not satisfy this condition will present a very strong asymmetry where most

of the types are weak types lying in the interval (sL
1 , y1). In particular, the sufficient condition S is clearly

satisfied by uniform distribution of the player types, and consequently, Proposition 3 characterizes all

equilibria under uniform distributions.

Next, we present an example for which there are orbits tending to an “inefficient” singular point while

compatible with monotonicity and feasibility. To do so, we consider the symmetric game {y1 =
1

4
, y2 =

1

2
, y3 =

3

4
} with the density function

f(s) =
a

(s − 1

5
)2

,

defined in the interval [sL
1 , sH

1 ] = [0.23, 0.75]. The parameter a ≈ 0.031 ensures that f is a probability

density function. Notice that most of the types lie in the interval [0.23, 0.25]. Hence system (7) becomes

ϕ̇1
1 =

2(5ϕ1
1 − 1)(ϕ1

1 − ϕ2
1)(2ϕ2

1 − 1)

5ϕ2
1 − 1

ϕ̇2
1 =0.36(4ϕ1

1 − 1)(ϕ2
1 − 0.75)(5ϕ2

1 − 1).

It is an exercise to show that the singular point (
1

4
,
1

4
) is an attracting node with the two eigenvectors

lying inside D{0.23}. Figure 2 gives the numerical plot of the equilibrium paths.

When more than one compromise is used, a similar approach shows that to control the ex post

inefficient equilibria we must study all the singular points on the boundary of D. Even though the

number of singular points is increasing with the number of compromises, there are still only a finite

number of local phase portraits that must be considered in order to state the analog of condition S for

the general case.

17Condition S is given for z1 = z2 = 1 and y3 − y2 = y2 − y1 for algebraic simplicity.
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5 Numerical Analysis

The equilibrium paths are uniquely determined by the integral curves of “large”-dimensional differential

systems that, in general, cannot be computed analytically. Hence, it is natural to consider numerical

simulations. To do so, we simplify the model to make easier the computations, and to facilitate the

comparison of the results for different numbers of agreements, but still preserving the essence of the

game. More precisely, we assume a symmetric game with uniform type distributions and uniformly

distributed feasible agreements (as if we had a smallest money unit). We fix the extreme agreements

at y1 = x1 = 0.25 and yS = x9 = 0.75 (the value of S will depend on the number of intermediate

compromises). We consider the War of Attrition, 3 agreements (with y2 = 0.5), 5 agreements (with

y2 = 0.375, y3 = 0.5, y4 = 0.625), and 9 agreements (with y2 = 0.3125, y3 = 0.375, y4 = 0.4375,

y5 = 0.5, y6 = 0.5625, y7 = 0.625, y8 = 0.6875). Note that as we add more feasible agreements we do

not vary the existing ones, to make the comparisons more meaningful. In addition, we assume a common

discount rate and normalize it to unity (z1 = z2 = 1).

The previous section has been dedicated to prove general analytic results on the existence (and

uniqueness) of the equilibrium paths. The analytic results conclude that the existence of the equilibria

depends on the support of the distribution of types. Restricting the distributions to be uniform and

symmetric we know that the existence of the equilibrium path depends on the relative distance of the

lowest type, sL
1 , and the lowest agreement, y1 = 0.25 (the symmetry forces sL

1 = sL
2 ).

We start by considering the WAE. By the assumed symmetry of the game, the equilibrium strategies

are symmetric and thus are fully described by a function ϕ1
1(t) (for player 2 we have ϕ1

2(t) ≡ ϕ1
1(t))

indicating, for each time t, the types making total concessions. This function must satisfy the differential

equation (see Proposition 1):

ϕ̇1
1 = 2(0.75− ϕ1)(0.25− ϕ1

1) (18)

with the initial condition ϕ1
1(0) = sL

1 and satisfying that ϕ1
1(t) → 1/4 as t →∞. It is now an exercise to

check that the unique solution of (18) satisfying the above conditions is given by

ϕ1
1(t) =

cet − 3

4(cet − 1)
, where c =

0.75− sL
1

0.25− sL
1

.

For the equilibria with compromise agreements, because of the symmetry, the 2(S − 1) dimensional

differential system given by (7) simplifies to an (S − 1) dimensional differential system. Hence, when

S = 3 (respectively, S = 5, S = 9), system (7) simplifies to a 2 (respectively, 4, 8) dimensional differential

system. Moreover, each differential system is invariant when considering different values of sL
1 .18

18This observation has to be read carefully. The differential system does change because the domain of definition of the
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Let us first consider the case of the 3 symmetric agreements (3-Med) game. Syste m (7) simplifies to

the planar system

ϕ̇1
1 = 4

(
ϕ2

1 − ϕ1
1

) (
0.5− ϕ2

1

)

ϕ̇2
1 = 4

(
0.75− ϕ2

1

) (
0.25− ϕ1

1

)
.

(19)

Moreover, the equilibrium strategies are fully described by the solution(s) of system (19) satisfying the

initial condition ϕ1
1(0) = sL

1 , the feasibility condition and the terminal condition (derived from ex post

efficiency), namely

lim
t→∞

ϕ1
1(t) = 0.25 and lim

t→∞
ϕ2

1(t) = 0.5. (20)

A qualitative study of the above differential system shows the existence of three singular points

(0.75, 0.75), (0.25, 0.25) and (0.25, 0.5). More precisely, (0.75, 0.75) is a repelling node, (0.25, 0.25) is

an attracting focus, while (0.25, 0.5) is a hyperbolic saddle point. Based on the proof of Proposition

2, it is easy to check that the orbit that characterizes the equilibrium path is the branch of the stable

manifold leading into the saddle point (0.25, 0.5) tangent to the vector (1, 1) and lying below the saddle

point, coordinate by coordinate. We can find the explicit expression of the stable manifold curve –

ϕ1
1(0.75− ϕ1

1) + ϕ2
1(ϕ

1
1 − ϕ2

1) = 0 – because it is an algebraic curve. From here it is immediate that the

existence of the 3-Med equilibrium is restricted to the values of sL
1 lying in the set [0, 0.25), since to the

left of that point the integral curve would not have all of its components increasing. In other words, if

sL
1 < 0 there is no solution of system (19) compatible with condition (20).

For a given sL
1 ∈ [0, 0.25), we numerically approximate the piece of the stable manifold satisfying

ϕ(0) = sL
1 (not only the curve but its parameterization by t, that is the trajectory). To do so, we have

used a 7-8 Runge-Kutta method (c.f. Bulirsch and Stoer, 1993). In Figure 3(a), (b) and (c), the red

trajectories correspond to the numerical approximations of the equilibrium paths for sL
1 = 0, sL

1 = 0.125

and sL
1 = 0.1875, respectively.

Next, we consider the case of the 5 symmetric agreements game (5-Med game). System (7) becomes

ϕ̇1
1 = 8

(
ϕ2

1 − ϕ1
1

) (
0.625− ϕ4

1

)

ϕ̇2
1 = 8

(
ϕ3

1 − ϕ2
1

) (
0.5− ϕ3

1

)

ϕ̇3
1 = 8

(
ϕ4

1 − ϕ3
1

) (
0.375− ϕ2

1

)

ϕ̇4
1 = 8

(
0.75− ϕ4

1

) (
0.25− ϕ1

1

)
,

(21)

differential equation does. However, in the intersection domain, where they are all defined, they coincide.
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with initial condition19 ϕ1
1(0) = ϕ2

1(0) = ϕ3
1(0) = sL

1 , sL
1 ≤ ϕ4

1(t) < 0.625, and satisfying the feasibility

and ex post efficiency conditions.

Similar to the 3-Med case, the above system has a generalized hyperbolic saddle at the point Φ =

(0.25, 0.375,0.5, 0.625) with a stable manifold of dimension two. However, although the topological struc-

ture of the 5-Med game is similar to that of the 3-Med game, the study corresponding to this case is more

complicated. In particular, when we have considered the 3-Med game, the equilibrium strategy was given

by the stable manifold itself, and then it was easy to identify the integral curve (trajectory) satisfying

the suitable conditions. Here the stable manifold is full of trajectories tending to the singular point as

t →∞ and it is more complicated to identify the one that satisfies a given initial condition.

The numerical experiments and the symmetry of the game show that the 5-Med equilibrium does

only exists when sL
1 ≥ 0.125 (notice that sL

1 = 0.125 corresponds to the case where the distance between

sL
1 and y1 is equal to the distance between the yi and yi+1). Again, in Figure 3 (b) and (c), the green

trajectories corresponds to the numerical approximations of the equilibrium paths for sL
1 = 0.125 and

sL
1 = 0.1875, respectively.

We finally notice that for the 5-Med game – as well as the 3-Med game – we may easily compute

the linear part of the “other” singular points in the boundary of D and show that they involve complex

eigenvalues. Thus the orbits in a neighborhood of those singular points must spiral around and cannot

represent equilibrium paths. Therefore, the equilibrium we compute numerically is the only one.

The treatment of the 9-Med equilibrium is similar. It only exists for sL
1 ≥ 0.1875. We limit ourselves

to displaying the equilibrium strategies (in blue) in Figure 3(c).

Using the equilibrium strategies calculated above, we now turn to the calculation and comparison of

the social welfare generated by the different equilibria.

5.1 Welfare Analysis

The aim of this subsection is to evaluate the relative efficiency of the equilibria differing in the number of

agreements used and in the support of the type distribution. A priori, it is not clear what is the specific

role of the number of possible agreements relative to the social welfare. On the one hand, as this number

is larger there are more players getting to agreements – that is, ex post efficiency increases– but, on the

other hand, these agreements show up later.

The social welfare is represented by the infinite sum (that is, the integral) of the expected payoffs

19They are implied by the symmetry and Lemma 4, stated and proved in the Appendix.
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over all types. Then, if in equilibrium two players of types s1 and s2 agree at time t (s1, s2) (at any

y ∈ Y ⊂ Y), the expected joint payoff associated to this agreement is W (s1, s2) = (1− s1 − s2)e
−t(s1,s2).

The aggregate expected welfare is then given by

W = 1/2

sH

1∫

sL

1

sH

2∫

sL

2

|W (x, y)| dF2(y) dF1(x) . (22)

Since we have assumed a uniform type distribution, by taking n uniformly distributed types, sk
i , i =

1, 2, k = 1, . . . , n, in the interval [sL
i , sH

i ], i = 1, 2, we obtain a natural discrete approximation to this

value. The (approximate) social welfare is then given by

W̃ =
1

2n2

n∑

k=1

n∑

l=1

∣∣1− sk
1 − sl

2

∣∣ e−t(sk

1 ,sl

2). (23)

Thus, using the equilibrium strategies calculated above, we first obtain numerically t
(
sk
1 , sl

2

)
for each k

and l (we have set n = 1000). Next, we use Mathematica to reduce the data and to calculate the sum

given in (23). Table 1 gives the expected social welfare approximations for different values of sL
1 for the

four equilibria calculated above:20

sL
1 WA 3-Med 5-Med 9-Med

0 0.167 0.167

0.0625 0.120 0.161

0.125 0.075 0.128 0.075

0.1875 0.034 0.095 0.063 0.034

0.25 0 0.0625 0.047

Table 1. Numerical computations of the social welfare depending on the number

of possible agreements and the parameter sL
1 .

There are three qualitative features that we can extract from Table 1.

i) When there exist multiple equilibria, they are Pareto ranked in the following way: The WA is the

least efficient and then social welfare is decreasing in the number of compromise agreements used

in equilibrium.

20The above values have been obtained by assuming we have the same unit mass of types at each interval [sL
1 , 0.75]. Then

the numerical difference between the expected social welfare for different values of sL
1 is accounted for by the change in the

distribution of types (via the support of the density function), rather than by a change in the “number” (or mass) of types.
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ii) The more agreements are used in equilibrium the smaller is the maximum allowed type-support for

existence.

iii) For the lowest sL
1 such that a given -Med equilibrium exists, the WAE and the -Med equilibrium

induce the same21 expected social welfare.

The fact that the social welfare first increases and then decreases in the number of compromise agree-

ments has a straightforward explanation. As we increase the number of agreements used in equilibrium,

two effects arise: first, the ex post efficiency increases, since pairs of types who before were unable to

get to agreement now can do so; second, as it is directly observable from (7), the use of an intermediate

agreement slows down the rate of concession to the agreements that were already in use. Now, the first

–positive– effect decreases exponentially as we decrease the smallest money unit used, while the second

–negative– effect stays constant. Therefore it is reasonable to have this non-monotonic behavior.22

We claim that the underlying game-theoretic reason for the second observation is that to the left of

the critical points (in sL
1 space) it is individually profitable to disregard the possibility of intermediate

concessions. Putting it differently, when the opponent is playing the (alleged equilibrium) 3-Med strategy

deviating to a strategy that makes only total concessions is profitable. In order to substantiate this claim,

we (numerically) show that if sL
1 = 0 the expected payoff for Player 2 is the same whether he plays the

3-Med equilibrium strategy or his best strategy ignoring the compromise against the 3-Med equilibrium

strategy used by Player 1.

If Player 2 ignores the compromise, then he maximizers with respect to t the expression
∫ t

0

(1− y1 − s)e−udF 1
1 (u) + (1 − y2 − s)e−t

(
F 2

1 (t)− F 1
1 (t)

)
+ (1− y3 − s)e−t

(
1− F 2

1 (t)
)
, (24)

that yields the first order condition

ϕ2(t) =
3ϕ1

1 − 8ϕ1
1ϕ

2
1 + (2ϕ2

1)
2

3− 4ϕ1
1

, (25)

where ϕi
1 denotes the strategies of Player 1 in the 3-Med equilibrium.23 See Figure 4. Calculating

21Of course, the values obtained only coincide approximately. However, as we argue below, we believe that the true values

indeed are the same.
22The fact that the three-agreement equilibrium is the most efficient one is not a general result: by varying the type-

distributions the “peak” in efficiency may arrive with more/less agreements.
23It is interesting to observe that the deviation strategy involves the full concession of types who, in principle, would obtain

a negative payoff doing so (.375 > .25). This is due to the fact that with some (endogenously determined) probability the

opponent is already proposing 0.5, and thus the total concession will still yield agreement at 0.5. Consequently, in expected

terms our type can still expect positive utility. The same effect is not present in equilibrium, since there the players concede

gradually, so at the time of considering a full concession they are already proposing the compromise agreement and thus

they know that the opponent is not offering a compromise at that time.

23



the expected payoff with the same approximation method as in the previous cases, we obtain that the

expected payoff for Player 2 if he ignores the compromise is 0.079, approximately the same value as the

one he would obtain if he played the 3-Med equilibrium strategy (half of the social welfare).24

Observation ii) now follows from observation i): since the efficiency of the equilibria is decreasing in

the number of compromises, the more compromises there are the less profitable the deviation needs to

be to upset the equilibrium. But the cost of ignoring a compromise is directly related to the “weight”

of the types who will be impeded from reaching an agreement. Given that the distribution is uniform,

increasing this weight is equivalent to increasing the lower bound.

We have not yet been able to find a game-theoretic argument for the third observation. In fact, it

may be a coincidence or a special result that only holds for the uniform type distribution.

6 Conclusions

We have shown that reducing the information flow between negotiators is a powerful tool not only

conceptually but technically as well. We were able to provide a full characterization, and the nature of

the multiplicity of our equilibria –it is directly related to the number of agreements used– makes it very

easy to resolve: the mediator can simply announce the prices he is willing to accept (which should be the

ones that maximize social welfare).

Our results build on the combination of a finite set of equilibrium agreements with a continuous

time structure that allows viewing the bargaining process as a game of timing. While the continuous

time structure can be relaxed, the assumption that the set of agreements used in equilibrium is finite is

technically important and cannot be dispensed with in our proofs. At the same time, the assumption is

quite realistic25 and, in fact it is reinforced by our results. Recall, that we have shown that the more

agreements are used in equilibrium the less efficient the equilibrium is (and the less likely it is to exist).

Therefore, the negotiators are naturally driven towards employing “few” prices.26 While this reduces ex

post efficiency, at no point in time could the mediator induce a Pareto improvement by allowing more

prices.

At the limit, when the set of potential agreements is an interval, things are different. While the

equilibria that we have characterized are still supported as such, equilibria where a continuous set of

24Again we have to be careful about the word same. All we can say is that the numerical values differ by less than the

precision of the algorithm itself (.01).
25For a discussion on the appropriateness of a finite set of agreements see van Damme et al. (1990).
26This concords with the observation that the higher the stakes of a negotiation the higher are the units used.
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agreements are attained with positive probability may exist as well. Addressing the problem from a

point of view complementary to ours, Copic and Ponsati (2001) show that such equilibria do indeed

exist. Instead of assuming that concessions must be discrete they impose that strategies are differentiable

patterns of concessions. Their results stand in sharp contrast to ours too: a unique symmetric equilibrium

prevails, it is always ex-post efficient and independent of the distribution of types.

7 Appendix

Lemma 3 Until the game ends, in PBE, there is no interval of time without full concessions by both

players.

Proof: Assume to the contrary, that Player 1 does not concede to y1 during some time interval (t0, t1),but

he does at t1. Let ym denote the lowest agreement that he offers with positive probability during

this period. Then, by proposing ym or more in the interval (t0, t1) (and thereby getting to an instant

agreement with positive probability), Player 2 cannot maximize payoff: since payoffs are discounted she

could increase her payoff by conceding a bit earlier (but still after t0), while the other possible agreements

will not be affected by this deviation (since the opponent does not observe it). Consequently, there will

be no agreement at all in (t0, t1). In that case, however, Player 1 would strictly prefer to make a full

concession earlier than t1, since there are always a positive measure of types of Player 2 offering y1.

The following lemma nails down the initial condition.

Lemma 4 If Player 1 proposes yk with 1 ≤ k < S (respectively, Player 2 proposes yk with 1 < k ≤ S)

at time t = 0 with probability p > 0, then Player 2 does not propose yl, l ≥ k + 1 (respectively, Player 1

does not concede yl , l ≤ k − 1) at time t = 0 with positive probability.

Proof: If Player 2 of type s2 proposes yl , l ≥ k + 1 at time t = 0 then his expected payoff is

p

(
1− yl + yk

2
− s2

)
+ (1− p)C0

where C0 is the continuation value of having proposed yl at time t = 0. On the other hand, if Player 2 of

type s2 proposes yl at time t = δ > 0 – and so he proposes yk at time t ≤ δ – then his expected payoff is

p(1− yk − s2)e
−t + (1− p)Cδe

−δ

where Cδ is the continuation value of having proposed yl at time t = δ. Now, note that Cδ ≥ C0,

since given that the game is mediated, the opponent cannot condition her strategy on whether the
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concession has been made and therefore all that can happen in the interval (0, δ) is that she makes a

further concession. The lemma then follows from the fact that if δ is small enough, (1 − yk − s2)e
−t −(

1− (yl+yk

2 )− s2

)
> ε > 0, while Cδe

−δ − C0 ≥ C0

(
e−δ − 1

)
, which tends to zero as δ tends to 0.

Next we prove Proposition 3.

Proposition 3 For the game of three possible agreements Y = {y1, y2, y3} and uniform type distri-

butions, there exists a unique ex post efficient (relative to Y ) equilibrium if and only if the pair {sL
1 , sL

2 }
is close enough to the pair {y1, 1− y3}, respectively.

Proof: As we show in the proof of Proposition 1 any (differentiable) equilibrium path must satisfy the

differential system given by (7) and, in fact, this is a sufficient condition. In other words, since each

type chooses to concede yl at the date maximizing her expected payoff, each such solution does indeed

characterize a PBE.

Therefore, all we have left to show is that (7) has a unique strictly increasing solution, which, if and

only if the pair {sL
1 , sL

2 } is close enough to the pair {y1, 1 − y3}, satisfies the initial condition given by

(8) as well as the feasibility condition given by (9), and the ex post efficiency condition given by (17).

Assume, first that {sL
1 , sL

2 } = {0, 0} and consequently, the density functions are f1 = 1
sH

1

and f2 = 1
sH

2

on the support [0, sH
1 ] and [0, sH

2 ], respectively. In other words, system (7) becomes

ϕ̇1
1 =

(
ϕ2

1 − ϕ1
1

) (
1− y2 − ϕ2

2

)

y2 − y1

ϕ̇2
1 =

(
sH
1 − ϕ2

1

) (
1− y3 − ϕ3

2

)

y3 − y2

ϕ̇2
2 =

(
sH
2 − ϕ2

2

) (
y1 − ϕ1

1

)

y2 − y1

ϕ̇3
2 =

(
ϕ2

2 − ϕ3
2

) (
y2 − ϕ2

1

)

y3 − y2

(26)

As a first step, let us rewrite system (7) as

dΦ

dt
= H(Φ), (27)

where Φ(t) = {ϕ1
1(t), ϕ

2
1(t), ϕ

2
2(t), ϕ

3
2(t)}. It is immediate to show that system (27) has a singular point
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at Φ∗ = {y1, y2, 1− y2, 1− y3}. The linear part at Φ∗ is given by the matrix

DH(Φ∗) =




0 0 −z2 0

0 0 0 −z2

−z1 0 0 0

0 −z1 0 0




, (28)

Some computations show that the eigenvalues and the corresponding eigenvectors are given by λ±1 =

±√z1z2, both with multiplicity 2, and v±1 = (±√z1z2/z1, 0, 1, 0), v±2 = (0,±√z1z2/z1, 0, 1), respectively

(see [22] for details).

Therefore, the singular point Φ∗ of the non-linear system, is a generalized saddle with one 2-dimensional

stable and one 2-dimensional unstable manifolds, Es and Eu locally tangent to the linear stable and un-

stable manifolds Es
L and Eu

L given by the equation of the planes

Es
L ={Φ ∈ R

4 | Φ = Φ∗ + α1v
−
1 + α2v

−
2 , αi ∈ R}

Eu
L ={Φ ∈ R

4 | Φ = Φ∗ + α1v
+
1 + α2v

+
2 αi ∈ R}

Let us now define the set D{0,0} as follows (if no confusions arise we write only D):

D = {Φ ∈ R
4 | 0 < ϕ1

1 < y1, ϕ1
1 < ϕ2

1 < y2, ϕ3
2 < ϕ2

2 < 1− y2, 0 < ϕ3
2 < 1− y3}.

It is easy to see that the singular point Φ∗ is on its boundary and Φ � Φ∗ (where � denotes coordinate

by coordinate strict inequality), for all Φ ∈ D. We also note that there is no other singular point in the

interior of D.

We claim that Es ∩ D 6= ∅. To see this, observe that Es is tangent to Es
L in a neighborhood of

Φ∗ and, for α1 and α2 small and negative, the points Φ = Φ∗ + α1v
−
1 + α2v

−
2 ∈ (Es

L ∩D). Next, note

that the strictly increasing smooth nature of the F k
i implies that every point Φ ∈ D, is such that the

vector H(Φ) has all its components positive and hence every trajectory in D defines a strictly increasing

path at each component (monotonicity condition). Moreover, as long as the piece of the stable manifold

in D belongs to a small neighborhood of Φ∗, it can be represented by the graph of a “flat” function

G = (G1, G2) : R
2 → R

2, where ϕ2
1(t) = G1(ϕ

1
1(t), ϕ

3
2(t)) and ϕ2

2(t) = G2(ϕ
1
1(t), ϕ

3
2(t)). Finally, note that

for any point in Es ∩D the trajectory through that point in forward time ends at Φ∗ and it is entirely

contained in D (positive time).27

27To see this, observe that the planes {ϕ1
1 = x1, ϕ2

2 = 1− y2} and {ϕ2
1 = y2 , ϕ3

2 = 1 − x3} are invariant by the flow,

contain the eigenvectors associated to the negative real part eigenvalues and the intersection of the stable manifold in a

neighborhood of Φ∗ with the boundary of D coincides with these two planes.
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Therefore, if we chose a pair {ϕ1
1, ϕ

3
2} = {sL

1 , sL
2 } close enough to the pair {y1, 1− y3}, the function

G gives a unique point Φ ∈ Es ∩D.

Let us now consider two parameter sL
1 > 0 and sL

2 > 0 and let consider system (27) with new uniform

distributions f1 and f2 with supports [sL
1 , sH

1 ] and [sL
2 , sH

2 ], respectively.

We claim that in the suitable domain where the two differential systems (the one “defined” by [0, sH
i ]

and the one defined by [sL
i , sH

i ], i = 1, 2) have meaning, their integral curves coincide. To see this

we observe that the uniform densities fi are constant functions in their support). Notice that, when

[sL
i , sH

i ], i = 1, 2 is considered, there is no differential system defined to the “left” of sL
1 and sL

1 . In other

words, we need to modify the set D to be D{sL

1
,sL

2
} in the natural way.

To end the proof we now only need to notice that the orbit starting at the point Φ ∈ D for the “old

system” lies in D{sL

1
,sL

2
} for all t > 0. So it is an integral curve of the “new” system and satisfies all the

increasing, feasibility, initial and ex post efficiency conditions we require. In particular we have T j
i = ∞

for all i and j.
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Figure 1: The phase portrait of system (13) for a given sL
1 close to y1, near the saddle point and relative to the

set D{sL
1
}.
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Figure 2: Numerical plot of an ex post inefficient strategy.
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Figure 3: The numerical approximation of the equilibrium paths when different number of agreements and

different values of the parameter sL
1 are considered. The black, red, green and blue curves correspond to WAE,

3-Med, 5-Med and 9-Med, respectively. (a) sL
1 = 0, (b) sL

1 = 0.125 and (c)sL
1 = 0.1875.
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Figure 4: The numerical approximation of the concession paths when Player 2 plays as if only the two extreme

agreements were possible, while Player 1 plays the 3-Med equilibrium strategy.
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