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Abstract

In this paper we consider a model of cooperative production in which
rational agents have the possibility to engage in sabotage activities that
decrease output. It is shown that sabotage depends on the interplay between
the degree of congestion, the technology of sabotage, the number of agents
the degree of meritocracy and the form of the sharing rule. In particular it
is shown that, ceteries paribus, meritocratic systems give more incentives to
sabotage than egalitarian systems. We address two questions: The degree of
meritocracy that is compatible with absence of sabotage and the existence

of a Nash equilibrium with and without sabotage.
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1. Introduction

Economics is the study of resource allocation under certain constraints. His-
torically, the first constraint considered was feasibility, i.e. the quantity of the
good to be allocated can not exceed its available quantity. As economics devel-
oped, other constraints were considered, for instance Incentive Constraints: Any
economic system must not give incentives to the agents to transmit wrong infor-
mation -adverse selection- or to take socially unwanted actions -moral hazard.

In this paper we want to broad the scope of incentive theory by considering
situations in which agents can sabotage production by destroying other people
inputs. Thus, the input supplied by an agent reflects her effort and the sabotage
done by others on this agent. We assume that sabotage is undetectable because
effort and the technology of sabotage are not contractible.! On the contrary,
inputs are contractible. Our first concern is to look for distribution rules that do
not give incentives to rational agents to sabotage production.? An example of
how sabotage may arise as a rational action is the following.

Two people are collecting grapes. Andy collects white grapes -whose quantity
is denoted by R;— and Beth collects red grapes, whose quantity is denoted by
Ry. These grapes are transformed in wine -denoted by Y — according to the
production function ¥ = (R; + R2)'/2. The consumption of wine allocated to

each worker -C; and Cs respectively- is determined by the Proportional Sharing

! Another possibility -not considered in this paper- is that sabotage takes the form of offering

information that, if taken into consideration, destroys part of the output (adverse selection).
2We do not deny that sabotage is, sometimes, an irrational action, taken by revenge, etc.

Our purpose here is to show that even if such unfriendly feelings do not exist, there is room for

sabotage.



Rule, i.e.

C; = %(R1 +Ry)YV? i=1,2.

For future reference we notice that this sharing rule is meritocratic, in the sense
that allocates wine depending on relative inputs. Suppose that when the working
day is about to finish, Ry = Ry = 50. Thus, Y = 10, C; = Cy = 5. Now an
unexpected event forces Beth to leave. Choices for Andy are to remain faithfully
devoted to his own work, in which case he would obtain 21 extra units of grape

or to destroy the crop assembled by Beth and pretend that somebody stole it.3

In the first case his consumption of wine -the only thing he cares about- is

! 12
C1 = 7 (121)"% > 6,45.

In the second case, Andy’s consumption of wine is

50

= %(50)1/2 ~7,07.

Ch

Therefore, if Andy is rational, he will destroy Beth’s crop. Suppose now that the

sharing rule is Egalitarian, i.e.

1/2
C; = M7 i=1,2.

We notice that this rule is not meritocratic at all, in the sense that allocates
wine irrespectively of relative inputs. In this case, faithful work yields to Andy
C; = 5.5 and sabotage C; = 3.5, i.e. sabotage is not a rational action.?

What is going on in these examples? When an agent decides to sabotage other

agent’s crop, there are two effects. On the one hand wine output falls and there is

3The fact that Andy’s output still 50 at the end of the day can be explained by saying that

he spent the remaining labor time chasing the robber.
4We have not considered the possibility of stealing the output. In the example this is has been

motivated by assuming that the colour of the grapes collected by the two agents are different.



less to distribute. This is bad from the saboteur’s interest. On the other hand, the
relative ranking of the agent whose crop has been sabotaged falls. This penalizes
this agent and, with a given wine output, is good for the saboteur. Intuitively,
the importance of the second effect depends on how meritocratic the sharing rule
is, for instance in the egalitarian sharing rule this effect does not exist. When
the rule is very meritocratic, the second effect dominates and sabotage may be
rational, as in the case of the proportional sharing rule. The relationship between
meritocracy and sabotage will be a central theme throughout our paper. Our
analysis will unveil other determinants of sabotage too.

The model is presented in Section 2. In order to simplify the picture we make
a number of simplifications. First we assume that the total quantity of labor
supplied by any agent is fixed. Thus, labor can be spent on the production of an
intermediate input (by exerting effort) or on the destruction of the inputs of other
agents (sabotage). This assumption is made in order to focus attention on the
choice between productive and sabotage activities. It is appropriated when length
of working time is fixed exogenously by law, custom, etc. Second we assume that
inputs are homogeneous. Thus total output depends on the sum of inputs. Third,
the elasticity of output with respect to inputs is constant. This elasticity can be
interpreted as an inverse measure of the degree of congestion.

In Section 3 we present a necessary condition to prevent sabotage. We define
the degree of meritocracy of a sharing rule as the elasticity of the share of ¢ in the

output with respect to the inputs provided by ¢. For instance in the egalitarian

(n—1)

rule this elasticity is zero and in the proportional rule this elasticity is where

n is the number of agents. Let M be the marginal rate of substitution between
sabotage and productive activities. M is a measure of how powerful destruction

activities are in relation to production activities. The necessary condition for



inexistence of sabotage has two parts: Either M < n — 1 and then any sharing
rule qualifies or M > n—1, and in this case the degree of meritocracy of a sharing
rule must be less than a number which depends on M and the elasticity of output
with respect to total inputs. When the number of agents and the technology of
sabotage are variable and they might take any value, the latter condition simplifies
and just says that the degree of meritocracy should be less than the elasticity of
output with respect to the inputs.

In Section 4 we investigate the issue of the existence of a Nash equilibrium.
We assume that sharing rules are anonymous, satisfy a separability assumption
(A1) and a technical assumption involving the sign of certain derivatives (A2).
Assumptions Al — 2 are satisfied by most sharing rules used in the literature. We
will keep them throughout the paper. We show that if M is smaller than one, a
Nash equilibrium with zero sabotage exists, and if there are two agents -or more
than two and the sharing rule satisfies a strong separability assumption (A1l’)-
zero sabotage is the unique Nash equilibrium (Proposition 1). However, if A1/
does not hold, there are cases in which a Nash Equilibrium with sabotage exists
(Example 1). If M is larger than one there are always Nash equilibria in which all
or all minus one agents do not supply a positive quantity of input (Remark 1). In
fact, we present an example in which the necessary condition for the inexistence
of sabotage holds but the only Nash equilibria are those described in Remark 1
(Example 2). The sharing rule used in this example, again, satisfies A1 but not
A1’. Under the latter assumption we prove that if M < n — 1 (so the first part
of the necessary condition holds) there is a Nash equilibrium with zero sabotage
(Proposition 2). Finally, we deal with the case where M > n — 1. In this case the
technology of destruction is very powerful and we need a new assumption (A3)

that limits the degree of meritocracy of the sharing rule. Assumption A3 is just



a generalization of the second part of the necessary condition for no sabotage
to non symmetric allocations. For the class of sharing rules satisfying A1’ — 3,
a Nash equilibrium with zero sabotage exists (Proposition 3). Summing up for
any parameters, there is a Nash equilibrium and for conditions that are slightly
stronger than the necessary condition and for a somewhat restricted set of admis-
sible sharing rules, there is a Nash equilibrium with zero sabotage. Notice that
certain forms of sharing rules (those satisfying Al but not Al’) are more prone
to yield sabotage in a Nash equilibrium than others (those satisfying Al’) as it is
shown in Examples 1 and 2.

In our model, since labor supply is fixed, zero sabotage implies efficiency.
The reader may wonder why in our case efficiency may arise in equilibrium:
Holmstrom (1982) has shown that if the whole output has to be distributed and
individual efforts are not contractible, any Nash equilibrium of a game where
efforts are strategies leads to an inefficient outcome. But in our model agents
produce an intermediate input that is contractible. As it has been shown by
Nandeibam (2002) in a model where sabotage is not possible, efficiency might arise
in equilibrium in a team model if there are contractible intermediate inputs. Thus,
our’s and Nandeibam'’s results show the importance of contractible intermediate
inputs.

Let us now comment on other papers dealing with sabotage. In the case
of a capitalistic firm, Lazear (1989) was the first to point out that, in presence
of sabotage, large differences in salaries become dysfunctional. In his model,
agents are paid according to the position achieved in a contest. Holmstrom and
Milgrom (1991) made the point that when a task is remunerated but other is not,
incentives must be “low powered”. Using a Principal-Agent model they showed

that if compensation is linear in output, optimal compensation is flat on output.



This literature is surveyed in Gibbons (1998) and Prendergast (1999). In contrast
with these models we assume that compensation can take a much more general
form, that of a sharing rule. This creates difficulties to show the existence of a
Nash equilibrium (in the case of a tournament or when compensation is linear,
existence of a Nash equilibrium easily obtains).> In a model of Rent-Seeking,
Konrad (2000) considered that the effort of an agent reduces rival s performance
by sabotaging their activities. His main result is that, in equilibrium, sabotage
disappears with a large number of agents.

Summing up, our paper finds that the design of sharing rules is constrained
by the presence of potential sabotage which, in turn, depends on five factors: (1)
The degree of meritocracy (as in Lazear et alia), (2) the number of agents (as in
Konrad), (3) the degree of congestion, (4) the technology of destruction and (5)
the form of the sharing rule. Thus our analysis of the necessary and sufficient
conditions for absence of sabotage has produced a picture that is considerably

more complex than the one we had before.

2. The Model

The setting is one of cooperative production, see, e.g., Roemer and Silvestre
(1993) for examples and applications. There are n agents. The input provided
by agent ¢ is denoted by R; € Ry. A production function relates total output, Y,
and the sum of inputs. This function is assumed to be of constant elasticity with

decreasing returns to scale, i.e. Y = (31" | R;)", where 0 < r < 1. The parameter

®Itoh (1991) and Macho-Stadler and Pérez-Castrillo (1993) have analyzed the related case
where cooperation among agents is desirable and give conditions for the existence of an equilib-

rium.



r is the elasticity of output with respect to total inputs and it can be interpreted
as the inverse of the degree of congestion. The limit case r = 1, is uninteresting
because in this case each agent is not constrained by the choices made by other
agents. Total output is shared among agents by means of a sharing rule, i.e. a list
of functions S; : Rt — Ry 7 = 1,....,n such that if C; denotes the consumption
of 7,

n

Ci = Si(Ri,..,Ry) and > Si(R1,..,Ry) =Y for all (Ry,.., Rn) €RY
i=1

where S; is a C! function in R’ , . Sharing rules can also be written as
Cz' = Si(Rl, ..,Rn)Y, with Si(Rl, ,R,n) Z 0
andZsi(Rl, - Ry) =1forall (Ry,..,R,) €R"
i=1

We will assume that s;( ) is non decreasing on R;, s;(R1,.., R,) > 0 if R; > 0,
and that sharing rules are anonymous in the following sense:

881' . 88]'
OR;  OR;

{Ri=Ry=..=R,} = {si=s; and Vi, j with ¢ # j}.

This assumption holds if, for example, s;(Ry, .., Ry) = s(Ri, > p_q f(Rg)), Le. if
the share of ¢ is a function independent of ¢, which depends on the input of 7
and the sum of a function of inputs. Examples of sharing rules fulfilling these

conditions are (see Moulin (1987) and Pfingsten (1991)):

Y
Ci=—, i=1,..,n (Egalitarian). (2.1)
n
C; = —Ri Y,i=1 n (Proportional) (2.2)
" ST R U s . .
R)A
C; B>y N efo1], i=1, .. (2.3)



n n n

Ci=9) Re)Ri+(1/n)(Y —gO Re)Y Ri), i=1,..,m, (2.4)
k=1 k=1 k=1

where 0 < g(z Ry)
k=1

Y
< —=—— for all (Ry,..,R,) € R".
Zk::l Ry, "

In (2.3) we have described a class of sharing rules parametrized by A\. If A =0
we get the egalitarian sharing rule and if A = 1, we have the proportional sharing
rule. Thus, A can be interpreted as a measure of meritocracy. In (2.4) the con-
sumption of an agent is made of a payment to the input provided by the agent and
an equal share on profits. If g(3 _; Ri)) = 0 we get the egalitarian sharing rule,
and if (> p_; Ri) = ﬁ we have the proportional sharing rule. The function
g is a measure of how relative effort is valued and thus measures the degree of
meritocracy. A particular subclass of (2.4) is defined by g(> ;_, Rx) = #};Flk
with 0 < a < 1. For this particular function g we get a convex combination of
the proportional and the egalitarian sharing rules.

aR; 11—«

C;= (22:1 i + "

)Y, a€l0,1], i=1,..,n. (2.5)

The parameter « serves as a measure of the degree of meritocracy. Another
subclass of (2.4) is given by g(3°F_; Ri) = pur(3 j_q Ri)" ! with 0 < p < 4.

n n

1 1
Ci = pr(Y B Rt ~(S R (L= pr), p €0, i =1,on. (26)
k=1 k=1

For ;n = 1, each agent is paid according to her marginal productivity plus and
an equal share of the surplus. Again, the parameter p serves as a measure of
the degree of meritocracy. For p = 0 we get the egalitarian sharing rule and for
W= % the proportional sharing rule.

Agents care only about their own consumption. As we remarked in the In-

troduction, the quantity of labor time is fixed. An agent, say i, can divide her



working time, denoted by T’, between productive labor, denoted by lf and sab-
otage activities.® Let l;j be the quantity of labor allocated by 7 to sabotage the
input of agent j. The time constraint reads, T = lip + Zj 4 l;j. The input pro-
vided by agent ¢ depends on her own productive effort and the amount of time

devoted by the remaining agents to sabotage the input of 7, i.e.
Ri = R(I{ 11y = 1)is Ui 1)is --lni)

where R( ) is a C! function such that

;—? >0 and glsz < 0. (2.7)
We will assume that for each agent, say i, the strategic variable is the time devoted
to sabotage activities, i.e. the vector (li1,li2,li(i—1), li(i+1), lin). Time devoted to
productive activities is determined by the constraint lZP =T — Zj 4 l;j. Thus,

the decision problem for an agent is to choose the vector of sabotage activities in

order to maximize s;(R1, ..., Rn)(D>_p_; Ri)" subject to

Rj = R(T - 21]171137 l(]—l)]al(]—i-l)]a lnj), j = 1, ey T,
J#i

and taking the choice of sabotage activities of the rest of the agents as given. In
other words, we look for a Nash Equilibrium (NE) in which the strategies are
sabotage activities.

We postpone to Section 4 the problem of existence of NE. In Section 3 below
we concentrate on the implications of guaranteeing that no agent has incentives

to engage in sabotage.

5We are assuming that there is no possible protection against sabotage. This is only made
by simplicity. It can be shown that identical results to those presented here hold if agents can

devote part of their time to prevent sabotage by others.

10



3. A Necessary Condition for No Sabotage

If no agent has incentive to sabotage if all other agents do not sabotage, it must

be that Vi, j:

802' " r (98i 8Rj 882' (91?4 T 1 8R (91?4
= +31 ZR 8

- MR - —Z24) <0
al;; (k_ 2 (aRj oli; OR; OIF lij azf)— ’

(3.1)

where the partial derivatives are evaluated at the point where all working time
is devoted to productive activities. This is a minimal requirement because if it is
not fulfilled, all NE imply sabotage. We will see that such a minimal requirement
imposes strong conditions on the form of the sharing rule and that such condition
boilds down to a simple formula. Let

OR;
oir

M=—

evaluated at the point where all working time is devoted to productive activities.
M is the marginal rate of substitution between sabotage and productive activi-
ties.” From our assumptions it follows that M > 0. Now using the definition of

M and dividing by (>_}_; Rk)", equation (3.1) above reads

_ Osi M 0s; LS
OR; " ORi Y R

(=M —1) <0.

Differentiating » " ; si(R1, ..., R,) = 1 and using our anonymity assumption,

881 o 88]' _ 8
or, — (" Vgg =0 1)8R

sir(M + 1) S Osi M —n-+1

(

). (3.2)

nk; — OR; n—1
"Notice that because our symmetry assumption on R( ), M = f‘g—ﬁ”—/%} any r # i.

11



Define
0s;i R;
€= ———
8]:1)4 S;
as the elasticity of the share of ¢ with respect to the input of i, evaluated at the

point of zero sabotage (this elasticity will be interpreted below). From (3.1),

r(M+1) L (Montl

n - n—1

). (3.3)

Now we have two cases. If M < n—1, the inequality (3.3) always holds. In words,
if the marginal rate of substitution between sabotage and productive activities is
small in relationship with the number of agents, no agent has incentives to start
sabotage activities no matter how meritocratic the sharing rule is. However, if
M > n — 1 the above inequality implies that

r(M+1)(n—1)

M —nt1) (34)

In this case, € is bounded. When the function R( ) can vary, M can take any
value and the equation above has to hold for any value of M, the above equation
reads

r(n—1)

e <

: (3.5)

which in turn implies € < 7.

The elasticity, € is the degree of responsiveness of the sharing rule to the input
provided by an agent. Thus it measures how meritocratic a sharing rule is. It can
be easily checked that the measures of meritocracy discussed above in sharing

rules (2.3)-(2.6) are related to e, i.e.

__Mn=1) __ Rg@R)n-1) __a(w-1) __rpn-1)

n (nR;)" ’ n n

12



respectively. In these cases the necessary condition (3.5 above) reads as follows:

r(nR;)"

A<, g(nR;) < R

,a<r, p<l1.

In all the above cases the degree of meritocracy is bounded. In particular, the
proportional sharing rule never satisfies this condition. Furthermore, for the class
of sharing rules (2.6) the condition tells us that the payment to the input provided
by an agent can not be above marginal productivity.

In Figure 1 we have pictured the region in the (e, M) plane for which the

necessary condition holds.

Sabotage

\\ - r(M+2)(n-12)
r(n-1 B n(M —-n+1)

Figure 1

Notice the following:

r(M+1)(n—1)

1: An increase in 7 shifts the function R —ntT)

to the right and expands
the area for which the necessary condition holds. This is explained by the fact
that if congestion is high -r is small- aggregate output is not sensitive to inputs.

Therefore, sabotage affects essentially to the shares s;’s, and a decrease in some-

13



body’ shares means an increase in everybody’s else shares. Conversely with low

congestion, returns from sabotage are small.

r(M+1)(n—1)

n(M—nt1) 0O

2: An increase in the number of agents shifts the function
the right and expands the area for which the necessary condition holds. This is
explained by the fact that with a large n, the share allocated to, say i, depends
very little on the sum of R;-.s. Thus the only effect of sabotage is through R;.

Summing up, the necessary condition says that sabotage is likely in merito-
cratic organizations where the number of agents (n) is small, in which the technol-
ogy of destruction (M) is very productive and in which the degree of congestion
(1) is large.

4. Existence of Nash Equilibrium

In this section we study under what conditions a Nash equilibrium exists. We

assume that the individual’s input is given by

Ry =max(T =Y lj— MY 1;0), i €{1,.,n}.
i i

Let us add the following assumptions:

Al. For all i € {1,..,n}, s; = s(x;,y) with x; = R;, y = > p_; f(Rk) and f a
non decreasing and concave function.

A2, 2 <0, L5 <.

Assumption Al says that the share allocated to ¢ depends on the input sup-
plied by ¢ and an additively separable function of the inputs supplied by all agents.
It is a special case of the anonymity assumption introduced in Section 2. Notice

that sharing rules (2.3), (2.5) and (2.6) satisfy Al — 2. Sometimes we will use a

stronger version of Al, namely:

14



Al'. For all i € {1,..,n}, s; = s(x;,y) where x; = R; and y = > ;_; Rk.

Assumption A1’ excludes sharing rules like (2.3).

Proposition 1. Under assumptions A1 — A2 we get that:

(i) if M < 1, zero sabotage for all i is a Nash equilibrium.

(ii) if M < 1 and n = 2, zero sabotage for all i is the unique Nash equilibrium.
(iii) if M < 1, n > 2, and A1’ holds, zero sabotage for all i is the unique Nash

equilibrium.

Proof. (i) Let us see that if [;; = 0, then the best response for agent ¢ is

l;; = 0. For that it is enough to prove that BCZ < 0 for all l;;. If we prove that

gz; < 0 for all l;; we are done (by (3.1)). We Compute

0s; 0s; 0s;
M
o or: ' OR;

Since s; = s(x;,y) where z; = R; and y = Y p_; f(Ry), we have that:
9si _ 0s(Ri,y) Jy

8Rj 8y 8Rj ’

].

= (-1)]

Where ﬂ = f'(Rj). Notice that R; =T — Ml;j, and R; = T —l;;. Since M <1,
R; < R;. Slnce f is concave, f'(R;) > f'(Rj), and since 8 > <0and 55 <0 we

get the following:

Jsi _ 0s(Ryy) Oy Os(Ri,y) Is(Rj,y) o s
8Rj oy (9Rj Jy f (R]) B oy f (R/L) OR;
Thus,
0s; 0s; 0s; 0s; 0s;
L e (D)o + M) < (1) [ + M
o, ~ VlgR t Mg, = (Clgg + Mag -
Since Y ) _q sp =1, then > | 5 as’“ = 0, therefore,
0s; 88] B 83,€
oR, TOR T 2~ 3

k#i, k:;éj

15



which implies that
881' 88 7

0s; Os;  0Os;
alij S(_l)[aRiJ’_MaRi]S(_l)[aR,i @]SO

(ii) Let us show that if M < 1 and n = 2, this equilibrium is unique. Suppose we
have a Nash equilibrium with positive sabotage (l;‘j,l}‘i). Since we have proved
that the best response to zero sabotage is zero sabotage, in a Nash equilibrium
with positive sabotage, {i; > 0, and I3, > 0. Since M < 1, we cannot have a
Nash equilibrium with R; = Ry = 0. Let R} and Rj the individual’s input at the
equilibrium. Suppose that R} < R}. Then, C’i(l;‘j,l;fi) < %(R:‘ + R;‘-)T. If agent 7
reduces the sabotage activities to l;; =0, R; =T — M}, and R; =T —[7;. Then,
R; > R; and the total output increases. Thus, C;(0,};) > SR+ Ry)" > L(Rr +
R;f)T > C’i(l;‘j, l;‘z) So, we can not have an equilibrium with positive sabotage.
(iii) Let us see that if s; = s(R;, > _; R;) we can also guarantee that the equilibrium
is unique for any number of agents. Suppose we have an equilibrium with positive
sabotage. Then,

Step 1. There is at least one agent ¢ such that Z;-L:Lj# lj; <T.

Suppose that for all agent ¢ Z?:Lj 2ilji > T. then, if we sum for all agents,
> E?:L ki l;; > nT, but this is impossible since, by the time constraint, for all
Js 2 lin < T

Step 2. There is at least one agent ¢ such that R; > 0.

Suppose that, for all agent j , Rj = 0. Then C; = 0 for all j. By Step 1 we know
that there is an agent 7 such that Z?zl,j;éi l;; <T. Since M < 1,and R; = 0, the
amount of time devoted to sabotage activities by this agent ¢ should be strictly
positive. But this can not be an equilibrium. If this agent reduce her sabotage
activities, the total output will be positive and her input positive. Consequently,

she will get a positive amount. Therefore, she will be better off.

Step 3. There is no an equilibrium with positive sabotage such that R; = Ry =

16



.. = Ry,

Suppose on the contrary that such an equilibrium exist. Then by the anonymity
condition, C; = 1(3° ; Bj)"- Suppose agent i reduces her sabotage activity to zero.
For each j let R be the input in the new situation. Since M < 1, R > Rj for all
j # 4. Thus, C; > n(z R;)" > %(ZJ R;)", which implies that agent 7 is better
off.

Step 4. In an equilibrium with positive sabotage, if R; < R; then [;; = 0.
Suppose on the contrary that I;; > 0. Let us see that this can not be an equilib-

rium because gfl <0.
ij

dsi 0s; 0s;
o, ~ “Vlgg Mg,

Since s; = s(R;,y) with y =3, R;, we have that:

Js;  0s(Ri,y)

8Rj 8y

Since R; < R; and 8 5 7 < 0 we get the following:

8S(R'Lay) > aS(R]7y) — (9s]
dy T Oy OR;’

Thus,

ds; 0s; 0s; 0s; 0s;
o, ~ TVlgR + Mgl = (Clgp + Mag .

Since Yy _; sk =1, then > ) | 5 83’“ = 0, therefore,

¢ ¢ ki k4]
which, since M < 1, implies that
0s; 0s; Os; 0s; %

o, = Vlgg FMaR < CUGER T aR;

| <0.

17



Step 5. Suppose that, in an equilibrium with positive sabotage, R} < Rp < ... <
R,, with a strict inequality because Step 3. Then if R; < R; and i # n, l;; = 0.

Suppose on the contrary that /;; > 0. Let us see that this can not be an equilibrium

because gf_? <0.
ij

0s; 0s; 0s;
(-1 M
o, ~ VR T Mg

.

Since i # n, R; < R,, and since 828y < 0 we get that:

Bmia
Js;  0s(Ri,y) < 0s(Rn,y)  Osp
OR; 9y T Oy  OR;
As it was show in Step 4,
ds;  0sp sk
tomr=— Y =0
OR; OR; My OR;
which, since M < 1, implies that
0s; 0s; 0sy, 0s;  Osy
< (- — = <.
oy = ( 1)[81%,» +M8Ri] <( 1)[8& + aRLJ <0

Step 6. There is no an equilibrium with positive sabotage.

By Step 4 and Step 5, we know that for all ¢ # n, and for all j, {;; = 0. Thus,
if there is an equilibrium with positive sabotage, only agent n is using part of
her time in sabotage activities. But since M < 1, and R, > R; for all ¢, the
productive activities of agent n is larger than the productive activities of any of
the other agents. Which implies that we can not get an equilibrium with positive

sabotage. W

In the above proposition we have shown that in order to guarantee uniqueness
we have to restrict the class of admissible sharing rules for n > 2. The following

example shows that without such restriction, uniqueness no longer holds.
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Example 1. Let n = 4 and

Ci=

(Cm)

Notice that this sharing rule is of the form s;(R;,y) wherey = Z?:l f(R;) with f

R
A
>R

non decreasing and strictly concave, %_Zi < 0 and 82283;i < 0. Therefore A1—2 hold.

Let \ = %, r= 1—10, M = % and T = 1. By Proposition 1, zero sabotage is a Nash
equilibrium. Consider now the following strategy where agent 1 is sabotaged by all
other agents, and she does not sabotage to any one. That is, li2 = l13 =114 =0,
l3 = lpg = 0, I3g = I34 = 0, lag = lyg = 0, and lzy = ls1 = ly1 = 3. Given this
strategy, R1 = 0, Ro = R3 = Ry = % Thus Ch =0, Co = Cy = (Cy = % The
proof that this strategy is a Nash equilibrium is left to the Appendix.

Let us now consider the case where M > 1. In this case, there are two kinds
of trivial Nash equilibria: In the first kind, no positive output is produced. In the

second kind (only possible if n > 2), only one agent produces a positive input.

Remark 1. Let M > 1.

I) There is a Nash equilibrium such that R; = 0 for all i (Proof: For each i, let
liix1 =T ( modulo n) and l;; = 0 otherwise. Clearly R; = 0 for all i. It is also
clear that no agent can deviate profitably).

II) If n > 2, there is a Nash equilibrium such that there is a single agent j with
R; > 0 and R; = 0 for all i # j (Proof: wlog let j = n. For each i # n, let
liiy1 = T (modulo n — 1) and l;; = 0 otherwise, l,; = 0 for all i. Clearly R; =0

for all i # n. It is also clear that no agent can deviate profitably).

The Nash equilibria in the remark above are not strict, because all but, at
most one agent, are indifferent among any distribution of their time. Therefore

these kind of equilibria are not very robust. However, in some cases they are the
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only Nash equilibria: The next example shows that if n > 2, for certain sharing
rules fulfilling A1, but not Al’, even if M <n —1 (so the necessary condition for
zero to be an equilibrium is satisfied), zero sabotage is not an equilibrium, and

there is no an equilibrium where at least two agents produce a positive input.

Example 2. Let n =3 and

R r
Ci==ps (Z Rj)
>R
Let A = % and r = 0.3, M = 2 and T" = 1. Then zero is not an equilibrium.
Let us see for example that l19 = l13 = 0 is not a best response for agent 1

to (la1,los,l31,132) = (0,0,0,0). If agent one uses half of her time to sabotage
agent two, she is better off than just working all the time. That is, C1(0,...,0) <
C1(0.5,0,0,0,0,0).

(0.5)0

0.3 _

C1(0.5,0, ..,0) =

The proof that there is no equilibrium other than those described in Remarks I

and 11 is left to the Appendix.

From the previous example, it is clear that equilibrium with no sabotage will
not exists for certain sharing rules. Thus, in what follows we restrict to those
sharing rules fulfilling A1’

The following Lemma tell us that, under A1’ we can restrict our attention to

symmetric best responses.
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Lemma 1. Ifl; = (l;1, .-, lii—1,liit1, -, Lin) Is a best response for agent i to l_; =

2 ‘1 wi b . .
0, then l; = (l,...,1) with | = ==Y jg also a best response for agent i to

n—1
I_;,=0.

Proof. Notice first that if /; is a best response to [_; = 0, then T'—M1;; > 0 for
all j. Suppose not, that is, suppose that there is an agent j such that T'— MI;; < 0.
Then agent ¢ can decrease the time dedicated to sabotage agent j up to a point
such that T'— M l;»j = 0. Thus agent ¢ will increase her output without affecting
the output of the other agents, which implies that she will be better off and will
contradict that [; is a best response against [_; = 0.
Since T'—=MT;; > 0 for all j, the total output of all agents but ¢ is: Z]# (L, 1) =
(n-1)T-M Z] 1,57 Li-
k such that l;;, = max;l;;, T — Ml;, < 0. Then, the output of all agents but
i under I; is R;(l;,l;) = T — MI, and Yiu R (1,1 5) = (n— )T — M(n —
)l = Z#i R;(l;,1_;). Furthermore, R;(l;,1—;) = R,i(li, [_;). Therefore s;(l;,1_;) =
si(l;,1_;) which implies that C;(l;,1_;) = Ci(l;,1_;). W

Notice also that T'— M1 > 0, otherwise for the agent

Next Proposition shows that, under A1’—2, if the marginal rate of substitution
between sabotage and productive activities, M, is less than n—1, (so the first part
of the necessary condition obtained in the previous section holds) zero sabotage
is a Nash equilibrium. The intuition is that in this case the damage that agents

can inflict each other is small.

Proposition 2. Under assumptions Al’', A2 and if M < n —1, l;; = 0 for all

i,j € {1,..,n} is a Nash equilibrium.

Proof. Let us see that if [ ; = 0, the best response for agent ¢ is I; = 0.

Because of the previous Lemma, if we prove that for all j = 4, 9 (l“o) < 0 for all
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l; =(l,...,1), then [; = 0 is the best response for this agent. We know that

301_ dsi | ol 1 Al r—1
oy {alij] Yy +sir[-1—Mly
Therefore, glcl < 0, whenever 65; < 0, where,
881 . 881' 8& 881 8Rj N
o, ~ om\an,) T am,\an,) T
882' asi
(—1)[8—& + Ma_]%j}.

Since s; = s(x;,y) where x; = R; and y = Y, Rk, we have that:

05 _ 05 0y _ s
8Rj N 8y 8Rj N 8y'

Notice that for all vectors l; = (I, ..,1) and because M <n—1, R; =T —(n—1)l <

R; =T — MI. By Assumption A2, 8 ay <0, we get gg@ = 88%2;’:‘/) > as(gz;,y) =

8 R . Thus,

882'
8lij

881' 881'
M
or: ' OR;

0s; 08
R o'
or, T Moag,"

= (=1 < (=1)]

Since 7 ;s =1, then Y} | 5 ask = 0. Furthermore, we know that g%’“ = g;g

for all j, k # i. Therefore,

1=
or, T~ Ugg =0
Since M <n —1,
Os; 883 0s; ds;

which implies that &L < 0 as we wanted to prove. B
Finally, we study the case where M > n — 1. In this case, the second part of
the necessary condition obtained in the previous section suggests that we have to

impose an additional condition in order to guarantee zero sabotage in equilibrium.
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This condition is the following.

A3. For each agent 4, and for [; = (I,..,1),1 >0,1_;, =0, —g—;s% <r.

Assumption A3 requires the elasticity of the share of ¢ with respect to the
total output evaluated at points where the sabotage activities of all agents but ¢
is cero to be less than r. This condition, evaluated at the point of zero sabotage,
coincides with the second part of the necessary condition, equation (3.5). To see

this, notice that, in those points,

881' . 88

and since y = nR;,

_@g_ 0s; nR;

= —_— <
8y S; OR; (n — 1)81' =7

which implies that

0s; R; < r(n—1)
OR; s; — n )

For sharing rules (2.5) and (2.6) Assumption A3 is satisfied if:

< =, (<

7

S
S|

which imposes an extra restriction on the degree of meritocracy.

Proposition 3. Under assumptions Al’, A2 and A3 if M > n —1, l;; =0 for all

i,j € {1,..,n} is a Nash equilibrium.

Proof. Let us see that if [_; = 0, the best response for agent ¢ is l; = 0.
Because of the previous Lemma, if we prove that for all j # ¢, %Z’O) < 0 for all
l; =(l,...,1), then [; = 0 is the best response for this agent. We know that

oc;
ol; Y

882'

1‘—1[
8lij

y + s;ir(—1 — M)].
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Under our assumptions, the derivative of the share of agent ¢ with respect to the

sabotage activity can be written as follows:

ds; (— )851- L Osi 0s;
alij N 8£C1 8y

—(=1—-M).

: BSi Bsi _ BSi Bsi _ le 651
Furthermore, since o = 0, and o = o T oy WO have that (—1)5*+ <

oxr; — By
Thus,
881' S 83,» (—]W).
8lij 8y
Since — %Z”sy <r,
as; , S
y—sir(l+M) < — y—sir(1+ M) < Ms;r —sir(1+ M) = —s;r <0,
811']' 8y

(l'L 2

which implies that 2 0) < 0 as we wanted to prove. W

5. Conclusion

The classical approach to cooperative production (see, e.g., Sen (1966),
Holmstrom (1982) and Fabella (1988)) assumes that shirking may be a problem
but agents never engage in sabotage activities. In this paper we have worked out
the consequences of assuming that agents can sabotage other agent’s inputs and
we have studied necessary and sufficient conditions to avoid sabotage in a Nash
equilibrium. Let us comment on some possible extensions of our work.

1. Technology: We have assumed that inputs are substitutes. The case in
which inputs are complements deserves attention. In this case, one would expect
less incentive to sabotage than in the case assumed in this paper. This would
only reinforce one of the points of this paper, namely, that the technology is one

of the main forces shaping the relationship between meritocracy and sabotage.
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2. Repeated Interaction: One could argue that in the setting of cooperative
production, agents interact repeatedly and thus, the right approach to model
the strategic aspects is by means of a Supergame. Unfortunately, the theory of
supergames predicts a large number of possible outcomes, specially if agents are
sufficiently patient. However, if we restrict our attention to trigger strategies,
(short-run) Nash equilibrium of the sort analyzed in this paper is very important
because: i) it serves as the only credible threat and ii) payoffs achieved in any
long-run Perfect Nash Equilibrium must be greater or equal than the payoffs
achieved in the short-run Nash equilibrium (see Friedman (1971)). Uniqueness of
short-run Nash equilibrium (or lack of it) is also important in finitely repeated
games (see the discussion in Osborne and Rubinstein (1994), pp. 159-60).

3. Anonymity and Symmetry. Our results are restricted to anonymous or
symmetric sharing rules, which are those customarily used in the literature (see
e.g. Moulin (1987), Pfingsten, A. (1991) or Roemer and Silvestre (1993)). Our
methods can be used to show that, in some cases, symmetry may be necessary
if we want to avoid sabotage. For instance, take the generalized equal benefit

sharing rule:

n n n n

Ci=r(}_Rj)" 'R +0:(Q_Rj)" —r(Q_ R)"™' ) Rj)

j=1 j=1 j=1 j=1
with Z?Zl f;i=1and 0; >0,i=1,2,...,n. The first part of the formula above is
the marginal productivity of an agent. The second part is the share of i (#;) in

the profits of the firm. The condition of no sabotage reads:

R 1
0; > =t — .
YR (1-r)(1+M)

which for large M reads 6; > nﬂ#Rj, for all 7. Given that 2?21 f; = 1, it must

21

be that 6; = % i.e. the share in the profits of the firm must be equal to the
j=11Y
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output of ¢ divided by the sum of inputs. If the quantity of inputs provided by
each agent is the same, 6; = 1/n for all 7.

4. Agents with Different Productivities: An interesting extension of our
work is to consider that agents have different productivities in both productive
and sabotage activities. For instance assuming that agents can be of two types in
each activity we have four types of agents. This model opens up new possibilities
like the study of how sabotage depends on the relative number of types and on
the relative productivity in production and sabotage.

5. Characterization of the form taken by sabotage: We have shown that
in certain cases (first part of Remark 1) sabotage is symmetric in equilibrium.
However, other results show that sabotage may be very asymmetric, i.e. it might
be concentrated on some individuals (e.g. Example 1 or the second part of Remark
1). Also sabotage could be partial, with some resources devoted to sabotage and
others to productive activities, (as in Example 1) or extreme with all resources
devoted to sabotage (as in the first part of Remark 1). It would be nice to
know more about what kind of sabotage we might expect in equilibrium and how
the form of sabotage is shaped by factors like the form of the sharing rules, the
technology of destruction, the number of agents, etc.

Summing up, in this paper we have studied a model of cooperative production
and we have shown that an organization populated by rational agents might be
self-destructive. In broad terms we might summarize our findings by saying that
the conflict in an organization depends positively on the degree of congestion
(1), the possibilities of destruction (M) and the degree of meritocracy (e), and
negatively on the number of agents (n). And that certain forms of sharing rules
(e.g. (2.3)) are more prone than others to yield sabotage. We hope that our

paper will stimulate more work in this area that will produce additional insights
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on this problem.
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6. Appendix.

The strategy described in Example 1 is a Nash equilibrium. Let us
see that I; = (0,0,0), lo = (3,0,0), I3 = (3,0,0) and Iy = (3,0,0) is a Nash
equilibrium.

For this strategy R; = 0 and C; = 0. Therefore, agent 1 can not improve her
payoff by increasing her sabotage activities. Thus, [; = (0,0,0) is a best response
for this agent against [ ;. Let us see that for each agent i = 2,3,4, [; = (%,0,0)
is a best response against [_;. Let us prove this for agent 4. The same argument
applies for agents 2 and 3.

Step 1. Let (l41,l42,1l43) be a best response against [_4. Suppose, without loss
of generality, that R < Re < R3. Then if [4o > 0, R1 = 0.

Suppose that Ry > 0. This can not be a best response because agent 4 can be
better off using the strategy (l41 + €, l42 — €, l43) with € > 0. Notice that under
this strategy the input of agent 1 will decrease in Me, the input of agent 2 will
increase Me, the input of agent 4 will remain the same, and also the total output.
Since f is strictly concave, f(Ra 4+ Me) — f(R2) < f(R1) — f(R1 — Me). Let y =
J(R1)+f(R2)+f(Rs)+f(Ra), and y' = f(Ry+Me)+f(Ri—Me)+f(Rs)+f(Ra).
Since %_SJ < 0, s4(R4,y) < s4(Ra,y’). Thus agent 4 is better off with this new
strategy.

Step 2. Let (l41,l42,1l43) be a best response against [_4. Suppose, without loss
of generality, that R; < Re < R3. Then ljo =43 = 0.

Suppose that 149 > 0, then by Step 1, Ry = 0. Which implies that ly3 = %
(it can not be greater than %, otherwise this agent could decrease l4; without
affecting the input of agent 1 and increasing the total output, being better off
in this case). Furthermore, for this strategy, R4 < Rs and Ry < Ry. Thus
Cy < %(Rg + Rs + R4)". Suppose that agent 4 uses (%,0, 0). Let R}, R, RS,
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R), the inputs for this strategy. Notice that Ry = Ry = R)), R} = 0 and the total
output has increased. Thus, Cj = 1(R)+ Ry + R})" > Cy which contradicts that
(141,142, 143) is a best response against [_4.

Step 3. The strategy (%, 0,0) is a best response for agent 4 against [_4.

By Step 2, if I4 is a best response against [_4 and R; < R < Rs, then Iy =
(141,0,0) with I4; < % For any strategy like I4 we have: Ry = % — %l41, Ry = %,

Rs = %, and Ry = 1 — ;. Thus,

1
1= 1)k
L)t (2~ St

Cu(lyn) =
(1— )i +2(8)% + (L — L)t

The graph of this function is represented in the following figure:

0.33
0.325
0.32
0.315
0.31
0.305

0.3

0.295
Ca(la1)
Where C4(0) = .32681, and Cy4(%) = .33333. Therefore, C4(l41) < Ca(3) for any

0 0.1 0.2 0.3 0.4 0.5 0.6

<30

There is no equilibrium with two agents producing a positive input
in Example 2. Suppose that there is an equilibrium with two agents producing
a positive input. Since zero sabotage is not an equilibrium, any possible equilibria
involve positive sabotage.

Step 1. There is no equilibrium with positive sabotage such that Ry = Ry =
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Rs > 0.
Suppose on the contrary that there is an equilibrium ((l12,113), (l21,23), (I31,132))
such that Ry = Ro = Rjs. But, in those points, it is easy to see that because

anonymity

%__8&_2881'__8Si_88j_88k_0
o,  OR; ~OR;  OR;, OR; OR;

aC;
ol; j

which implies < 0, i.e. agent ¢ is better off reducing her sabotage activities.
Step 2. In equilibrium, if R; = 0 for some %, then l;; = l;; = 0.

First notice that in equilibrium if R; = 0, then T'—1;; —l;x —2(1j;+1;) = 0. This is
because, by assumption, R; and Ry, are positive and if T'—1;; —l; —2(1i 4+ 1) <0
agent j or k can reduce her sabotage activity against agent ¢ affecting only her
input which makes her better off. Then, l;; = l;x = 0, because otherwise agent %
decreasing sabotage, increases her input and gets a positive share.

Step 3. Suppose we have an equilibrium such that R; < Ry. Let (I;;,0;;) the
strategy of agent 4. If l;, > 0, then R; = 0.

Suppose that R; > 0. This can not be an equilibrium because agent 7 can be
better off using the strategy (l;; + €, i — €) with ¢ > 0. Notice that under
this strategy the input of agent j will decrease in Me, the input of agent k will
increase Me, the input of agent ¢ will remain the same, and also the total output.
Since f is strictly concave, f(Ry + Me) — f(Rg) < f(R;) — f(Rj — Me). Let
y= F(R)) + F(Ry) + f(R), and o = f(Ry + Me) + f(R; — Me) + f(R;). Since
%syi <0, si(Ri,y) < si(Ri,y"). Thus agent 7 is better off with this new strategy.
Step 4. Suppose that ((I12,013), (I21,123), (I31,132)) is an equilibrium such that
R; < Ry < R3 with at least a strict inequality (this follows from Step 1). Then

lig =113 = 0.
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First we will see that, at this point, 315112 <0,

ds1 dsy | . 0s
N (—1)[8—R1 —}—]UaRZ}.

. : : . 2,
Since Ry < Rs < Rs, f is strictly concave, %fy’ < 0 and % <0,

0s1 88(R1,y) y Bs(Rj y) y 883' . .
0Ty By f'(R2) > By f'(R1) R, with j = 2,3
Thus,
881 881 882 883
Zol = 0.
o = YR Tam, T o, 0

This implies 115 = 0. We also have l13 = 0. Otherwise, by Step 3, Ry = 0, and
then R; = 0. But, by assumption, at least two inputs are positive.

Step 5. In an equilibrium where Ry < Ry < Rj, with a strict inequality Ry = 0.
Suppose that Ry > 0. By Steps 3 and 4, Ry = 1 — 2(lo1 + I31), R2 = 1 — Iy,
Rs = 1 — l37. Let us see that this can not be an equilibrium because agent 3
will be better off by reducing the input of agent 1 to cero. Let I} =1y, Il = Iy,
lh =l31 + %. For this new strategy, R} = 0, R, = Ry, and R} = R3 — %. The
consumption of agent 3 for those strategies is given by the following expressions:

(R3)°
(R1)® + (R2)® + (Rs)®

C3(R1,R2,R3) = (Ry + Ry + R3)3,

Ry — fL)5 R
(B3 — 5) (Ro+ Ry — FLy3.

C /7 /7R/ —

Let us define w = %, and h = g—;, since Ry < Ro < Rg, with a strict inequality

andR1>0,0<h<w,and%<w§1.Let

1 .3
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The next graph shows that this function is always negative for 0 < h < w, and
1 <w < 1. Which implies that C3(R1, R, R3) < C3(R}, Rb, R).

// |
""flg’[

/L7
L]
ziz'z'é:,g

==ee28? <2

f(w,h)

Step 6. There is no an equilibrium with 0 = R; < R < Rs,

Let us see that 0 < Ry < R3 can not be an equilibrium because agent 3 can be
better off by reducing the input of agent 2 to cero. The new vector of inputs
is: Ry =0, R, =0, and R, = R3 — %. The consumption of agent 3 in both

situations is given by:

(R3)®

C3(Ry,Ry,R3) = ———2 — _(Ry+ R3)3
3(R1, R, R3) (R2)~5+(R3)~5( 2+ R3)”,
R
Cs(RY, Ry, By) = (Rs — 7).
Letw:g—i,thusogwgl. Let
(W) = —— (1 +w)? — (1-2)3
I\ = s 1 9/

The next graph shows that this function is always negative for 0 < w < 1. Which
implies that C5(Ry, R2, R3) < Cs( /1, IQ,Rg).
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Therefore, there is no an equilibrium with at least two positive inputs. l
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