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1 Introduction

The paper proposes an algorithm to compute the set of many-to-many stable

matchings when agents have substitutable preferences.

Many-to-many matching models have been useful for studying assignment

problems with the distinctive feature that agents can be divided from the

very beginning into two disjoint subsets: the set of �rms and the set of

workers.1 The nature of the assignment problem consists of matching each

agent (�rms and workers) with a subset of agents from the other side of the

market. Thus, each �rm will hire a subset of workers while each worker may

work for a number of di�erent �rms.

The problem becomes interesting because agents have preferences on the

subsets of potential partners. Stability has been considered the main property

to be satis�ed by any sensible matching. A matching is called stable if all

agents have an acceptable subset of partners and there is no unmatched

worker-�rm pair who both would prefer to add the other to their current

subset of partners. To give all blocking power to only individual agents and

worker-�rm pairs seems a very weak requirement in terms of the durability

of the matching.

Unfortunately the set of stable matchings may be empty. Substitutabil-

ity is the weakest condition imposed on agents preferences under which the

existence of stable matchings is guaranteed. An agent has substitutable pref-

erences if he continues to want to partner an agent of the other side of the

market even if other agents become unavailable.2

Surprisingly, the set of stable matchings under substitutable preferences is

very-well structured. It contains two distinctive matchings: the �rm-optimal

stable matching (denoted by �F ) and the worker-optimal stable matching

(denoted by �W ). The matching �F is unanimously considered by all �rms

to be the best among all stable matchings and by all workers to be the worst

among all stable matchings. Symmetrically, the matching �W is unanimously

considered by all workers to be the best among all stable matchings and by

all �rms to be the worst among all stable matchings. They can be obtained

by the so-called deferred-acceptance algorithm (originally de�ned by Gale

and Shapley (1962) for the one-to-one case and later adapted by Roth (1984)

to the many-to-many case). Additionally, Blair (1988) shows that the set of

1We will be using as a reference (and as a source of terminology) labor markets with

part-time jobs and we will generically refer to these two sets as the two sides of the market.
2See De�nition 3 for a formal statement of this property. Kelso and Crawford (1982)

were the �rst to use it to show the existence of stable matchings in a many-to-one model

with money. Roth (1984) shows that if all agents have substitutable preferences the set of

many-to-many stable matchings is non-empty.
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stable matchings has a lattice structure.3 In particular, Roth (1984) and Blair

(1988) show that this unanimity and opposition of interests of the two sides

of the market is even stronger in the sense that all �rms, if they had to choose

the best subset from the set of workers made up of the union of the �rm-

optimal stable matching and any other stable matching, would choose the

�rm-optimal stable matching. Also, all �rms, if they had to choose the best

subset from the set of workers made up of the union of the worker-optimal

stable matching and any other stable matching, would choose the stable

matching. And symmetrically, the two properties also hold interchanging

the roles of �rms and workers.4

While there are many algorithms designed to compute the full set of one-

to-one stable matchings as well as the two-optimal stable matchings (for the

many-to-many model) we are not aware of any algorithm which can compute

the full set of matchings for this more general many-to-many case.5 This

paper provides such an algorithm.

Roughly, our algorithm works by applying successively the following pro-

cedure. First, and given as input an original pro�le of substitutable pref-

erences, it computes by the deferred-acceptance algorithm the two optimal

stable matchings �F and �W . Second, it identi�es all �rm-worker pairs (f; w)

where �rm f hires the worker w in �F but not in �W . Successively, for each

of these pairs, it modi�es the preference of �rm f by declaring all subsets of

workers containing worker w unacceptable but leaving the orderings among

all subsets not containing w unchanged. This is called an (f; w)-truncation

of the original preference. By the deferred-acceptance algorithm it computes

(for each pair) the �rm-optimal stable matching corresponding to the prefer-

ence pro�le where all agents have the original preferences except that �rm f

has the (f; w)-truncated preference. Third, although this new �rm-optimal

stable matching may not be stable relative to the original preference pro�le

it is stable provided that all workers, if they had to choose the best subset

from the set of �rms made up of the union of the two �rm-optimal stable

matchings (the original and the new one) they would choose the new one.

If it passes this test (and hence, if it is stable relative to the original pro�le

of preferences) we keep it and proceed again from the very beginning using

this modi�ed pro�le as an input.6 The algorithm stops when there is no

3Roth (1985), Sotomayor (1999), Alkan (1999), and Mart�inez, Mass�o, Neme, and

Oviedo (1999) also study the lattice structure of the set of stable matchings in di�er-

ent models.
4See Remark 1 in Section 2 for a formal statement of these four properties.
5See Gus�eld and Irving (1989) for an algorithmic approach to the one-to-one and

roommate models.
6In the formal de�nition of the algorithm the reader will �nd an additional (but dis-
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�rm-worker pair with the above property.

The paper is organized as follows. In Section 2 we present the preliminary

notation, de�nitions, and results. Section 3 contains the de�nition of the

algorithm, the Theorem stating that the outcome of the algorithm is equal

to the set of stable matchings, and an example illustrating how the algorithm

works. In Section 4 we prove the Theorem. Finally, an Appendix at the

end of the paper illustrates by means of an example the deferred-acceptance

algorithm of Gale and Shapley adapted to the many-to-many case.

2 Preliminaries

There are two disjoint sets of agents, the set of n �rms F = ff1; :::; fng
and the set of m workers W = fw1; :::; wmg. Generic elements of both sets

will be denoted, respectively, by f , fi, fik ,
�f , and ~f , and by w, wj, wjk , �w,

and ~w. A generic agent will be denoted by a and we will refer to a set of

partners of a as a subset of agents of the set not containing a. Each agent a

2 F [W has a strict, transitive, and complete preference relation P (a) over

the set of all subsets of partners (over 2F if a is a worker and over 2W if a

is a �rm). Preference pro�les are (n+m)-tuples of preference relations and

they are represented by P = (P (f1) ; :::; P (fn) ;P (w1) ; :::; P (wm)). Given

a preference relation of an agent P (a) the subsets of partners preferred to

the empty set by a are called acceptable; therefore, we are allowing for the

possibility that �rm f may prefer not hiring any worker rather than hiring

unacceptable subsets of workers and that worker w may prefer to remain

unemployed rather than working for an unacceptable subset of �rms.

To express preference relations in a concise manner, and since only ac-

ceptable partners will matter, we will represent preference relations as lists

of acceptable partners. For instance,

P (fi) = w1w3; w2; w1; w3

P (wj) = f1f3; f1; f3

indicate that fw1; w3gP (fi) fw2gP (fi) fw1gP (fi) fw3gP (fi) ; and

ff1; f3gP (wj) ff1gP (wj) ff3gP (wj) ;.
The assignment problem consists of matching workers with �rms keeping

the bilateral nature of their relationship and allowing for the possibility that

both, �rms and workers, may remain unmatched. Formally,

De�nition 1. A matching � is a mapping from the set F [W into the set

of all subsets of F [W such that for all w 2 W and f 2 F :

pensable) step only used to speed up the algorithm.
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1. � (w) � F or else � (w) = ;:

2. � (f) � W or else � (f) = ;.

3. f 2 � (w) if and only if w 2 � (f) :

Condition 1 says that a worker can be either matched to a subset of �rms

or remain unmatched. Condition 2 says that a �rm can either hire a subset

of workers or be unmatched. Finally, condition 3 states the bilateral nature

of a matching in the sense that �rm f hires worker w if and only if worker

w works form �rm f . We say that w and f are single in a matching � if

� (w) = ; and � (f) = ;. Otherwise, they are matched. A matching � is

said to be one-to-one if �rms can hire at most one worker and workers can

work for at most one �rm. The model in which all matchings are one-to-

one is also known in the literature as the marriage model. A matching � is

said to be many-to-one if workers can work for at most one �rm but �rms

may hire many workers. The model in which all matchings are many-to-

one, and �rms have responsive preferences,7 is also known in the literature

as the college admissions model. To represent matchings concisely we will

follow the widespread notation where, for instance, given F = ff1; f2; f3g
and W = fw1; w2; w3; w4g

f1 f2 f3 ;
�1 w3w4 w1 w1w3w4 w2

�2 ; w1w2 w3 w4

represents two matchings where in matching �1 �rm f1 is matched to workers

w3 and w4, �rm f2 is matched to worker w1, �rm f3 is matched to workers

w1, w3, and w4; and worker w2 is single and in matching �2 �rm f1 and

worker w4 are single, �rm f2 is matched to workers w1 and w2, and �rm f3 is

matched to worker w3. Notice that we could equivalently represent the two

matchings as

w1 w2 w3 w4 ;
�1 f2f3 ; f1f3 f1f3 ;
�2 f2 f2 f3 ; f1:

Let P be a preference pro�le. Given a set of partners S, let Ch (S; P (a))

denote agent a's most-preferred subset of S according to a's preference or-

dering P (a). A matching � is blocked by agent a if � (a) 6= Ch (� (a) ; P (a)).

7Namely, for any two subsets of workers that di�er in only one worker a �rm prefers the

subset containing the most-preferred worker. See Roth and Sotomayor (1990) for a precise

and formal de�nition of responsive preferences as well as for a masterful and illuminating

analysis of these models and an exhaustive bibliography.
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We say that a matching is individually rational if it is not blocked by any

agent. We will denote by IR (P ) the set of individually rational match-

ings. A matching � is blocked by a worker-�rm pair (w; f) if w =2 � (f),

w 2 Ch (� (f) [ fwg ; P (f)), and f 2 Ch (� (w) [ ffg ; P (w)).

De�nition 2. A matching � is stable if it is not blocked by any individual

agent or any worker-�rm pair.

Given a preference pro�le P , denote the set of stable matchings by S (P ).

It is easy to construct examples of preference pro�les with the property that

the set of stable matchings is empty. Those examples share the feature that

at least one agent regards a subset of partners as being complements. This

is the reason why the literature has focused on the restriction where partners

are regarded as substitutes.

De�nition 3. An agent a's preference ordering P (a) satis�es substitutabil-

ity if for any set S of partners containing agents b and c (b 6= c), if b 2
Ch (S; P (a)) then b 2 Ch (Sn fcg ; P (a)).

A preference pro�le P is substitutable if for each agent a, the preference

ordering P (a) satis�es substitutability.

Roth (1984) shows that if all agents have substitutable preferences then:

(1) the set of stable matchings is non-empty, (2) �rms (workers) unanimously

agree that a stable matching �F (�W ) is the best stable matching,8 and (3)

the optimal stable matching for one side is the worst stable matching for the

other side (that is, for all � 2 S (P ) we have that �R (f)�W for all f 2 F

and �R (w)�F for all w 2 W ).

The deferred-acceptance algorithm, originally de�ned by Gale and Shap-

ley (1962) for the one-to-one case, produces either �F or �W depending on

who makes the o�ers. At any step of the algorithm in which �rms make o�ers,

a �rm proposes itself to the choice set of the set of workers that have not al-

ready rejected it during the previous steps, while a worker accepts the choice

set of the set of current o�ers plus those of the �rms provisionally matched

in the previous step (if any). The algorithm stops at the step at which all

o�ers are accepted; the (provisional) matching becomes then de�nite and it

8The matchings �F and �W are called, respectively, the �rms-optimal stable matching

and the workers-optimal stable matching. We are following the convention of extending

preferences from the original sets (2W and 2F ) to the set of matchings. However, we now

have to consider weak orderings since the matchings � and �0 may associate the same set

of partners to an agent. These orderings will be denoted by R (f) and R (w). For instance,

to say that all �rms prefer �F to any stable � means that for every f 2 F we have that

�FR (f)� for all stable � (that is, either �F (f) = � (f) or else �F (f)P (f)� (f)).
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is the stable matching �F . Symmetrically, if workers make o�ers, the out-

come of the algorithm is the stable matching �W . The Appendix at the end

of the paper illustrates by means of an example how the deferred-acceptance

algorithm works for the many-to-many case.

Our algorithm will consist of applying the deferred-acceptance algorithm

where �rms make o�ers to preferences pro�les that are obtained after mod-

ifying the preference of a �rm by making all subsets containing a particular

worker unacceptable.9 Formally,

De�nition 4. We say that a preference P (f;w) (f) is an (f; w)�truncation
of P (f) if:

1. There exists an acceptable subset of workers according to P (f) con-

taining worker w; that is, 9S 2 2W such that w 2 S and SP (f) ;.

2. The preferences P (f) and P
(f;w) (f) coincide on all subsets that not

contain w; that is, if w =2 S1 [ S2 then S1P (f)S2 if and only if

S1P
(f;w) (f)S2.

3. All subsets containing w are unacceptable according to P
(f;w) (f); that

is, if w 2 S then ;P (f;w) (f)S.

Given a preference pro�le P and an (f; w)�truncation of P (f) we de-

note by P
(f;w) the preference pro�le obtained by replacing P (f) in P by

P
(f;w) (f). We denote by �

(f;w)

F and �
(f;w)

W the �rm and worker-optimal stable

matchings corresponding to the preference pro�le P (f;w). Moreover, given

a preference pro�le P and a sequence of pairs (fi1 ; wj1) ::: (fik ; wjk) we will

represent by P
(fi1 ;wj1):::(fik ;wjk) the preference pro�le obtained from P af-

ter successively truncating the corresponding preference; we will also denote

by �
(fi1 ;wj1):::(fik ;wjk)
F and �

(fi1 ;wj1):::(fik ;wjk)
W its corresponding optimal-stable

matchings. The following lemma states that the property of substitutability

is preserved by truncations and therefore �
(f;w)

F and �
(f;w)

W exist provided that

P is substitutable.

Lemma 1. If P (f) is substitutable then P
(f;w)(f) is substitutable.

Proof. Let �w;w0 2 S be arbitrary and assume that �w 2 Ch(S; P (f;w)(f)). If

w =2 S; then �w 2 Ch(Snfw0g; P (f;w)(f)) because Ch(S; P (f;w)(f)) = Ch(S; P (f)),

9Given the symmetric role of �rms and workers it will become clear that the construc-

tion that follows could be equivalently done by interchanging the roles of workers and

�rms.
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Ch(Snfw0g; P (f;w)(f)) = Ch(Snfw0g; P (f)), and because of the substitutabil-
ity of P (f). If w 2 S; then we have that Ch(S; P (f;w) (f)) = Ch(Snfwg; P (f));
therefore, by assumption �w 2 Ch(Snfwg; P (f)). By the substitutability

of P (f) we have that �w 2 Ch([Snfwg]nfw0g; P (f)) but the two equalities

Ch([Snfwg]nfw0g; P (f)) = Ch([Snfwg]nfw0g; P (f;w)(f)) = Ch(Snfw0g; P (f;w)(f))

imply that worker �w 2 Ch(Snfw0g; P (f;w)(f)):

Before �nishing this section we present, as a Remark below, four proper-

ties of stable matchings.

Remark 1 Assume P is substitutable and let � 2 S (P ) : Then, for all f

and w:

1. Ch (�F (f) [ � (f) ; P (f)) = �F (f).

2. Ch (�W (w) [ � (w) ; P (w)) = �W (w).

3. Ch (�W (f) [ � (f) ; P (f)) = � (f).

4. Ch (�F (w) [ � (w) ; P (w)) = � (w).

Properties 1 and 2 are due to Roth (1984) while properties 3 and 4 follow

from 1, 2, and Theorem 4.5 in Blair (1988). They can be interpreted as an

strengthening of the optimality of �F and �W . Since Property 4 will play a

crucial role in the construction of our algorithm we will some times refer to

it as the Choice Property. Example 1 below shows that, although necessary,

they are far from being a characterization of stable matchings.

Example 1 Let F = ff1; f2; f3; f4g and W = fw1; w2; w3; w4g be the two

sets of agents with the preference pro�le P , where

P (f1) = w1; w2; w3; w4

P (f2) = w2; w4; w1

P (f3) = w3; w1; w2

P (f4) = w4; w2; w3

P (w1) = f2; f3; f1

P (w2) = f3; f1; f4; f2

P (w3) = f4; f1; f3

P (w4) = f1; f2; f4:

The two optimal-stable matchings are

f1 f2 f3 f4

�F w1 w2 w3 w4

�W w4 w1 w2 w3:

7



The matching
f1 f2 f3 f4

� w3 w4 w1 w2

is not stable since (w2; f1) blocks it. However, it can be veri�ed that �

satis�es the four properties of Remark 1.

3 An Algorithm to compute the set of stable

matchings

3.1 The Algorithm and the Theorem

Given a preference pro�le P , we de�ne an algorithm to compute the set of

stable matchings S (P ).

Stage 1: Input P . By the deferred-acceptance algorithm obtain �F and

�W . Set T 0 (P ) = P and S0 (P ) = f�Fg.
Step 1: De�ne T (T 0 (P )) =

�
P

(f;w) j w 2 �F (f) n�W (f)
	
.

Step 2: (a) If T (T 0 (P )) = ; set T 1 (P ) = ; and S1 (P ) = S
0 (P ).

(b) If not, for each truncation P (f;w) 2 T (T 0 (P )) obtain �
(f;w)

F .

Step 3: De�ne

T
�
�
T

0 (P )
�
=

(
P

(f;w) 2 T (T 0 (P )) j 8w0 2 W;

Ch

�
�
(f;w)

F (w0) [ �F (w
0) ; P (w0)

�
= �

(f;w)

F (w0)

)
:

Order the set T � (T 0 (P )) in an arbitrary way and let �1 denote this ordering.

Step 4: De�ne

bT �T 0 (P )
�
=

�
P

(f;w) 2 T
� (T 0 (P )) j 8P (f 0;w0) 2 T

� (T 0 (P ))

such that P (f;w) �1
P

(f 0;w0)
; w

0 2 �
(f;w)

F (f 0)

�
:

Set

T
1 (P ) = bT �T 0 (P )

�
and

S
1 (P ) = S

0 (P ) [
n
�
(f;w)

F j P (f;w) 2 T
1 (P )

o
:

End of Stage 1.

Stage k+1: Input T k (P ) and Sk (P ). By the deferred-acceptance algo-

rithm where �rms make o�ers we have obtained, for each P (fi1 ;wj1):::(fik ;wjk) 2

T
k (P ), its corresponding �

(fi1 ;wj1):::(fik ;wjk)
F .
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Step 1: De�ne

T
�
T
k (P )

�
=

�
P
(fi1 ;wj1):::(fik ;wjk)(f;w) j w 2 �

(fi1 ;wj1):::(fik ;wjk)
F (f) n�W (f)

�
:

Step 2: (a) If T
�
T
k (P )

�
= ; set T k+1 (P ) = ; and Sk+1 (P ) = S

k (P ).

(b) If not, for each truncation P
(fi1 ;wj1):::(fik ;wjk)(f;w) 2 T

�
T
k (P )

�
obtain �

(fi1 ;wj1):::(fik ;wjk)(f;w)
F .

Step 3: De�ne

T
�
�
T
k (P )

�
=

8>>><>>>:
P
(fi1 ;wj1):::(fik ;wjk)(f;w) 2 T

�
T
k (P )

�
j 8w0 2 W;

Ch

�
�
(fi1 ;wj1):::(fik ;wjk)(f;w)
F (w0) [ �

(fi1 ;wj1):::(fik ;wjk)
F (w0) ; P (w0)

�
=

= �
(fi1 ;wj1):::(fik ;wjk)(f;w)
F (w0)

9>>>=>>>; :

Order the set T �
�
T
k (P )

�
in an arbitrary way and let �k+1 denote this

ordering.

Step 4: De�ne

bT �T k (P )
�
=

8>>>><>>>>:
P
(fi1 ;wj1):::(fik ;wjk)(f;w) 2 T

�
�
T
k (P )

�
j

8P (fi1 ;wj1):::(fik ;wjk)(f
0;w0) 2 T

�
�
T
k (P )

�
such that

P
(fi1 ;wj1):::(fik ;wjk)(f;w) �k+1

P
(fi1 ;wj1):::(fik ;wjk)(f

0;w0)
;

w
0 2 �

(fi1 ;wj1):::(fik ;wjk)(f;w)
F (f 0)

9>>>>=>>>>;
:

Set

T
k+1 (P ) = bT �T k (P )

�
and

S
k+1 (P ) = S

k (P )[

�
�
(fi1 ;wj1):::(fik ;wjk)(f;w)
F j P (fi1 ;wj1):::(fik ;wjk)(f;w) 2 T

k+1 (P )

�
:

End of Stage k + 1.

The algorithm stops at the stage K where TK (P ) is empty.

Theorem 1. Assume P is substitutable and let K be the stage where the

algorithm stops. Then S
K (P ) = S (P ).
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3.2 An Example

We illustrate how the algorithm works with the following example.

Example 2 Let F = ff1; f2; f3; f4g and W = fw1; w2; w3; w4g be the two

sets of agents with the substitutable pro�le of preferences P , where

P (f1) = w1w2; w1w3; w2w4; w3w4; w1w4; w2w3; w1; w2; w3; w4

P (f2) = w1w2; w2w3; w1w4; w3w4; w1w3; w2w4; w1; w2; w3; w4

P (f3) = w3w4; w2w3; w1w4; w1w2; w2w4; w1w3; w1; w2; w3; w4

P (f4) = w3w4; w2w4; w1w3; w1w2; w2w3; w1w4; w1; w2; w3; w4

P (w1) = f3f4; f2f3; f2f4; f1f4; f1f3; f1f2; f1; f2; f3; f4

P (w2) = f3f4; f2f3; f1f4; f2f4; f1f3; f1f2; f1; f2; f3; f4

P (w3) = f1f2; f2f3; f1f3; f2f4; f1f4; f3f4; f1; f2; f3; f4

P (w4) = f1f2; f1f3; f1f4; f2f3; f2f4; f3f4; f1; f2; f3; f4.

Stage 1: By the deferred-acceptance algorithm we obtain the two optimal-

stable matchings

f1 f2 f3 f4

�F w1w2 w1w2 w3w4 w3w4

�W w3w4 w3w4 w1w2 w1w2:

Set T 0 (P ) = P and S0 (P ) = f�Fg. The set T (T 0 (P )) of Step 1 consists of

the following truncations of P :

T
�
T

0 (P )
�
=
�
P

(f1;w1); P
(f1;w2); P

(f2;w1); P
(f2;w2); P

(f3;w3); P
(f3;w4); P

(f4;w3); P
(f4;w4)

	
where in all pro�les �rms and workers have the same preference as in P;

except

P
(f1;w1)(f1) = w2w4; w3w4; w2w3; w2; w3; w4

P
(f1;w2)(f1) = w1w3; w3w4; w1w4; w1; w3; w4

P
(f2;w1)(f2) = w2w3; w3w4; w2w4; w2; w3; w4

P
(f2;w2)(f2) = w1w4; w3w4; w1w3; w1; w3; w4

P
(f3;w3)(f3) = w1w4; w1w2; w2w4; w1; w2; w4

P
(f3;w4)(f3) = w2w3; w1w2; w1w3; w1; w2; w3

P
(f4;w3)(f4) = w2w4; w1w2; w1w4; w1; w2; w4

P
(f4;w4)(f4) = w1w3; w1w2; w2w3; w1; w2; w3.
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In Step 2, and since the set T (T 0 (P )) is non-empty, we obtain for each of

its truncations the corresponding �rm-optimal stable matching

f1 f2 f3 f4

�
(f1;w1)

F w2w4 w1w2 w3w4 w1w3

�
(f1;w2)

F w1w3 w1w2 w3w4 w2w4

�
(f2;w1)

F w1w2 w3w4 w3w4 w1w2

�
(f2;w2)

F w2w4 w1w4 w2w3 w1w3

�
(f3;w3)

F w2w4 w2w3 w1w4 w1w3

�
(f3;w4)

F w1w3 w1w4 w2w3 w2w4

�
(f4;w3)

F w3w4 w1w4 w2w3 w1w2

�
(f4;w4)

F w2w4 w1w2 w3w4 w1w3:

Notice that �
(f1;w1)

F = �
(f4;w4)

F . In Step 3 we obtain the set T � (T 0 (P )) =�
P

(f1;w1); P
(f4;w3); P

(f4;w4)
	
. For instance, the truncation P

(f1;w2) does not

belong to this set because

Ch

�
�F (w2) [ �

(f1;w2)

F (w2) ; P (w2)
�

= Ch (ff1; f2g [ ff2; f4g ; P (w2))

= Ch (ff1; f2; f4g ; P (w2))

= ff1; f4g
6= ff2; f4g

= �
(f1;w2)

F (w2),

but this is not a problem since �
(f1;w2)

F is not stable because the pair (w2; f1)

blocks it. Considering the ordering P (f1;w1) �1
P

(f4;w3) �1
P

(f4;w4) we have

that bT (T 0 (P )) =
�
P

(f4;w4)
	
since P (f1;w1) does not belong to it because w4 =2

�
(f1;w1)

F (f4) and P
(f1;w1) �1

P
(f4;w4) and P

(f4;w3) does not belong to it either

because w4 =2 �
(f4;w3)

F (f4) and P
(f4;w3) �1

P
(f4;w4). Set T 1 (P ) =

�
P

(f4;w4)
	

and S1(P ) = f�F ; �1g where �1 = �
(f1;w1)

F = �
(f4;w4)

F . This �nishes Stage 1.

Stage 2: In Step 1, we obtain for the truncation P
(f4;w4) (the unique one

belonging to the set T 1 (P )) the corresponding set of truncations using �
(f4;w4)

F

and �W :

T
�
T

1 (P )
�
=

�
P

(f4;w4)(f1;w2); P
(f4;w4)(f2;w1); P

(f4;w4)(f2;w2);

P
(f4;w4)(f3;w3); P

(f4;w4)(f3;w4); P
(f4;w4)(f4;w3)

�
:

Now, in Step 2 and since T (T 1 (P )) 6= ;, for each truncation in T (T 1 (P ))
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we compute its corresponding �rms{optimal stable matching

f1 f2 f3 f4

�
(f4;w4)(f1;w2)

F w3w4 w1w2 w3w4 w1w2

�
(f4;w4)(f2;w1)

F w1w2 w3w4 w3w4 w1w2

�
(f4;w4)(f2;w2)

F w2w4 w1w4 w2w3 w1w3

�
(f4;w4)(f3;w3)

F w2w4 w2w3 w1w4 w1w3

�
(f4;w4)(f3;w4)

F w3w4 w1w4 w2w3 w1w2

�
(f4;w4)(f4;w3)

F w3w4 w1w4 w2w3 w1w2:

In Step 3 we obtain the set

T
�
�
T

1 (P )
�
=
�
P

(f4;w4)(f3;w4); P
(f4;w4)(f4;w3)

	
and consider the ordering P (f4;w4)(f3;w4) �2

P
(f4;w4)(f4;w3). In Step 4 the setbT (T 1 (P )) is the singleton

�
P

(f4;w4)(f4;w3)
	
since w3 =2 �

(f4;w4)(f3;w4)

F (f4). Set

T
2(P ) =

�
P

(f4;w4)(f4;w3)
	
and S2(P ) = f�F ; �1; �2g where �2 = �

(f4;w4)(f4;w3)

F .

Stage 3: In Step 1, we obtain for the truncation P
(f4;w4)(f4;w3) its corre-

sponding truncations using �
(f4;w4)(f4;w3)

F and �W :

T
�
T

2 (P )
�
=
�
P

(f4;w4)(f4;w3)(f2;w1); P
(f4;w4)(f4;w3)(f3;w3)

	
:

Since it is non-empty we compute, in Step 2, the corresponding �rm-optimal

stable matchings

f1 f2 f3 f4

�
(f4;w4)(f4;w3)(f2;w1)

F w1w2 w3w4 w3w4 w1w2

�
(f4;w4)(f4;w3)(f3;w3)

F w3w4 w3w4 w1w2 w1w2:

In Step 3 we obtain the set

T
�
�
T

2 (P )
�
=
�
P

(f4;w4)(f4;w3)(f3;w3)
	
:

Notice that P (f4;w4)(f4;w3)(f2;w1) does not belong to it because

Ch

�
�
(f4;w4)(f4;w3)(f2;w1)

F (w3) [ �
(f4;w4)(f4;w3)

F (w3) ; P (w3)
�

= ff1; f2g

6= ff2; f3g

= �
(f4;w4)(f4;w3)(f2;w1)

F (w3).

Since T � (T 2 (P )) is a singleton we set T 3 (P ) = bT (T 2 (P )) =
�
P

(f4;w4)(f4;w3)(f3;w3)
	

and S3 (P ) = f�F ; �1; �2; �Wg because �
(f4;w4)(f4;w3)(f3;w3)

F = �W .
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Stage 4: Finally, the algorithm stops (that is, K = 4) because T (T 3(P )) =

;. Therefore S(P ) = f�F ; �1; �2; �Wg, where

f1 f2 f3 f4

�F w1w2 w1w2 w3w4 w3w4

�1 w2w4 w1w2 w3w4 w1w3

�2 w3w4 w1w4 w2w3 w1w2

�W w3w4 w3w4 w1w2 w1w2.

3.3 Comments

Before moving to the next section to prove the Theorem few comments about

the algorithm are in order.

First, for all truncations the worker-optimal stable matching coincides

with the worker-optimal stable matching of the original preference pro�le P ;

that is, �W = �
(f11;wj1):::(fik ;wjk)
W for all P (f11;wj1):::(fik ;wjk).

Second, to make sure that the �rm-optimal stable matching correspond-

ing to a truncation is indeed stable it is suÆcient to check only that Property

4 of Remark 1 holds; that is, all workers would choose it if confronted with

the union of itself and the �rm-optimal stable matching of the original pro-

�le. This is what Step 3 does in each stage. At the light of Example 1 this is

surprising, although Lemma 2 in Section 4 states that this is the case. How-

ever, the fact that a truncation only changes one �rm's preference guarantees

that the other three properties also hold.

Third, the algorithm would also work without Step 4. However, it helps

very much to speed up the algorithm (see Corollary 1 in Section 4) because,

by adding it, we avoid carrying to subsequent stages all truncations (and all

others obtained from them) whose corresponding �rm-optimal stable match-

ing will be identi�ed later on.

Fourth, the particular ordering on the set T �
�
T
k (P )

�
is irrelevant but

necessary. Namely, it is necessary because we can not ask for individual ra-

tionality of each truncation against all other truncations. To see this consider

in Stage 1 of Example 2, the set T � (T 0 (P )) =
�
P

(f1;w1); P
(f4;w3); P

(f4;w4)
	
.

If we had de�ned it without the restriction of the ordering, i.e.

bT� �T 0 (P )
�
=
n
P

(f;w) 2 T
�
�
T

0 (P )
�
j 8P (f 0;w0) 2 T

�
�
T

0 (P )
�
; w

0 2 �
(f;w)

F (f 0)
o

this set would have been empty since P (f1;w1) =2 bT� (T 0 (P )) because w4 =2

�
(f1;w1)

F (f4), P
(f4;w3) =2 bT� (T 0 (P )) because w4 =2 �

(f4;w3)

F (f4), and (in contrast

with the correct de�nition of bT (T 0 (P ))) P (f4;w4) =2 bT� (T 0 (P )) because w1 =2

�
(f4;w4)

F (f1). Moreover, it is irrelevant because the outcome of the algorithm
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does not depend on the speci�c ordering on the set T �(T k(P )). For instance,

in Stage 1 of Example 2 we could have used (instead of �1) the ordering

P
(f4;w4) �10

P
(f4;w3) �10

P
(f1;w1) without altering the �nal outcome of the

algorithm.

4 The Proof of the Theorem

Let P be a substitutable preference pro�le and let �F and �W be its corre-

sponding optimal-stable matchings. Given an (f; w)�truncation of P where

w 2 �F (f) n�W (f), denote by S(f;w) (P ) the set of stable matchings relative

to the truncated pro�le P (f;w) that satisfy the Choice Property; namely,

S
(f;w) (P ) =

�
� 2 S

�
P

(f;w)
�
j 8w0

; Ch (�F (w
0) [ �(w0); P (w0)) = �(w0)

	
:

(1)

Lemma 2 below says that S(f;w) (P ) is a subset of S (P ) : Hence, the Choice

Property is suÆcient to guarantee stability of a matching which is stable

relative to a truncation.

Lemma 2. Let � be a matching such that � 2 S
(f;w)(P ): Then � 2 S(P ):

Proof. Assume that � =2 S(P ). If � is not individually rational for preference

pro�le P then it is not individually rational for preference pro�le P (f;w) and

hence � =2 S
f;w (P ). Therefore, let ( ew; ef) be a blocking pair of �; namely,

ef =2 � (ew) ; (2)

ew 2 Ch(�( ef) [ fewg; P ( ef)); and (3)ef 2 Ch(�( ew) [ f efg; P (ew)): (4)

Consider the following two cases:

1. ef 6= f: In this case P (f;w)
� ef� = P

� ef� and P (f;w) (ew) = P (ew) imply-

ing that the pair ( ew; ef) also blocks the matching � in the preference

pro�le P (f;w). Therefore � =2 S
�
P

(f;w)
�
. Hence � =2 S

(f;w) (P ).

2. ef = f: Then by conditions (3) and (4)

ew 2 Ch(�(f) [ fewg; P (f)) and (5)

f 2 Ch(�( ew) [ ffg; P (ew)): (6)
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Assume that � 2 S
�
P

(f;w)
�
, otherwise � =2 S

f;w(P ) and the Lemma is

proved. Therefore,

ew =2 Ch(�(f) [ fewg; P (f;w)(f)). (7)

The de�nition of P (f;w)(f) and conditions (5) and (7) imply

w 2 �(f) [ fewg.
But, by the de�nition of P (f;w)(f) again, w =2 �(f): Then ew = w. Now,

we can rewrite conditions (3) and (4) as

w 2 Ch(�(f) [ fwg; P (f)) and

f 2 Ch(�(w) [ ffg; P (w)): (8)

Notice that by hypothesis f 2 �F (w) and by condition (2) f =2 �(w).

Also, by hypothesis, � 2 S
(f;w) (P ) which means that, in particular,

Ch (�F (w) [ � (w) ; P (w)) = � (w)

holds. But this contradicts (8) because

Ch (� (w) [ ffg ; P (w))P (w)� (w) = Ch (�F (w) [ � (w) ; P (w)) :

Next Lemma establishes two useful properties of the choice set.

Lemma 3. For all subsets of partners A;B; and C of agent a 2 F [W :

(a) Ch (A [B;P (a)) = Ch (Ch (A) [B;P (a)).

(b) Ch (A [B;P (a)) = A and Ch (B [ C; P (a)) = B imply Ch (A [ C; P (a)) =

A.

Proof. Property (a) follows from Proposition 2.3 in Blair (1988). To prove

(b), consider the following equalities:

Ch (A [ C; P (a)) = Ch (Ch (A [ B;P (a)) [ C; P (a)) by hypothesis

= Ch (A [B [ C; P (a)) by (a)

= Ch (A [ Ch (B [ C; P (a)) ; P (a)) by (a)

= Ch (A [B;P (a)) by hypothesis

= A by hypothesis.
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Lemma 4 below can be understood as an strengthening of Lemma 2.

It says that to check the Choice Property only for the �rm-optimal stable

matching it is suÆcient to guarantee that all stable matchings relative to the

truncated pro�le are indeed stable for the original pro�le.

Lemma 4. Let P (f;w) be a truncation such that

Ch

�
�F (w

0) [ �
(f;w)

F (w0); P (w0)
�
= �

(f;w)

F (w0)

holds for all w0. Then, � 2 S(P (f;w)) implies � 2 S(P ):

Proof. Let � be a matching such that � 2 S(P (f;w)): Then by Property 4 in

Remark 1, for all w0
;

Ch

�
�(w0) [ �

(f;w)

F (w0); P (f;w) (w0)
�
= �(w0):

However, for all w0
; preferences P (f;w) (w0) and P (w0) coincide. Therefore,

Ch

�
�(w0) [ �

(f;w)

F (w0); P (w0)
�
= �(w0) (9)

also holds. By hypothesis, for all w0

Ch

�
�F (w

0) [ �
(f;w)

F (w0); P (w0)
�
= �

(f;w)

F (w0): (10)

By Lemma 3 we have that conditions (9) and (10) imply that for all w0

Ch (�F (w
0) [ �(w0); P (w0)) = �(w0):

Then, by Lemma 2, � 2 S
(f;w) (P ). Hence, � 2 S(P ):

Lemma 5 says that only adding the individual rationality condition of a

stable matching relative to a truncation ensures that the matching is stable

relative to the truncated pro�le. This will immediately imply Corollary 1

which will be crucial to the justi�cation of Step 4 in the algorithm.

Lemma 5. Let � be a matching such that � 2 S(P ) \ IR
�
P

(f;w)
�
: Then

� 2 S(P (f;w)):

Proof. Assume that � =2 S(P (f;w)) and � 2 IR
�
P

(f;w)
�
. Then, there exists a

blocking pair ( ew; ef) of �; namely,

ew 2 Ch(�( ef) [ fewg; P (f;w)( ef)) and (11)ef 2 Ch(�(ew) [ f efg; P (f;w)(ew)). (12)

Consider the following two cases:
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1. ef 6= f: Because P (f;w)(ew) = P (ew) and P
(f;w)

� ef� = P

� ef� the pair

( ew; ef) also blocks the matching � in the preference pro�le P . Hence,

� =2 S (P ).

2. ef = f: Then by conditions (11) and (12)

ew 2 Ch(�(f) [ f ewg; P (f;w)(f)) and (13)

f 2 Ch(�( ew) [ ffg; P (ew)):
The hypothesis that � 2 IR

�
P

(f;w)
�
implies that w =2 � (f). Therefore,

condition (13) can be rewritten as ew 2 Ch(�(f)[fewg; P (f)), implying

that the pair ( ew; f) blocks � in the preference P . Hence � =2 S (P ).

As we have just said, Corollary 1 below justi�es the insertion of Step 4

at each stage of the algorithm. If we have two truncations P (f;w) and P (f 0;w0)

with the properties that (1) their corresponding �rm-optimal stable match-

ings �
(f;w)

F and �
(f 0;w0)

F satisfy the Choice Property (that is, they are stable

relative to the original pro�le) and (2) the matching �
(f 0;w0)

F is individually

rational relative to P (f;w) (that is, w =2 �
(f 0;w0)

F (f)) then we may not add at

this stage �
(f 0;w0)

F (with the subsequent computational savings) because we

will �nd it later on (and add it to the provisional set of stable matchings) as

a �rm-optimal stable matching of a subsequent truncation of P (f;w).

Corollary 1. Let P (f;w)
; P

(f 0;w0) be two truncations such that �
(f 0;w0)

F 2 S (P ).

If w =2 �
(f 0;w0)

F (f) then �
(f 0;w0)

F 2 S
�
P

(f;w)
�
:

Proof. Notice that w =2 �
(f 0;w0)

F (f) implies that �
(f 0;w0)

F 2 IR
�
P

(f;w)
�
: Hence,

by Lemma 5, �
(f 0;w0)

F 2 S(P (f;w)):

Next lemma establishes a useful fact about the set of stable matchings: a

worker who is matched to the same �rm in the two optimal-stable matchings

has also to be matched to the same �rm in all stable matchings.

Lemma 6. Assume w 2 �F (f)\�W (f). Then, w 2 � (f) for all � 2 S (P ) :

Proof. Assume otherwise; that is, we can �nd w, f , and � 2 S (P ) such that

w 2 �F (f) \ �W (f) and w =2 � (f). By Remark 1,

Ch (�F (f) [ � (f) ; P (f)) = �F (f) (14)
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and

Ch (�W (f) [ � (f) ; P (f)) = � (f) : (15)

Since w 2 �F (f) condition (14) implies that w 2 Ch (�F (f) \ � (f) ; P (f)).

Lemma 7 and its Corollary 2 guarantee that any non-optimal stable

matching � will eventually be identi�ed and selected as the �rm-optimal

stable matching corresponding to a preference pro�le which will be obtained

after truncating the preferences of a sequence of �rms.

Lemma 7. Let � 2 S(P ) be such that �F 6= � 6= �W : Then there exists

P
(f;w) such that � 2 S(P (f;w)):

Proof. Since �F 6= � then there exists w and f such that w 2 �F (f)n�(f).
Therefore, by Lemma 6, w =2 �W (f). Consider the preference pro�le P (f;w)

and notice that �
(f;w)

W = �W : Because w =2 �(f) we have that � 2 IR
�
P

(f;w)
�
:

Hence, Lemma 5 implies that � 2 S
�
P

(f;w)
�
:

Remark 2 As a consequence of Lemma 7 and the fact that �F =2 S(P (f;w))

we have that #S(P ) > #S(P (f;w)) whenever w 2 �F (f) n�W (f) :

Corollary 2. Let � 2 S(P ) be such that �F 6= � 6= �W : Then there exists

a sequence of pairs (fi1 ; wj1) ::: (fik ; wjk) such that � = �
(fi1 ;wj1):::(fik ;wjk)
F 2

S(P (fi1 ;wj1):::(fik ;wjk)):

Proof. Let � 2 S(P ) be such that �F 6= � 6= �W . By Lemma 5 there exists

P
(f;w) such that � 2 S(P (f;w)): If � = �

(f;w)

F the statement follows. Otherwise,

since �W = �
(f;w)

W ; we apply again Lemma 5 replacing the roles of P and �F

by P (f;w)and �
(f;w)

F ; respectively.

Now, we are ready to show that the outcome of the algorithm is the set

of stable matchings.

Proof of the Theorem. First, from Lemma 4, we have S1 (P ) � S (P ) :

Applying iteratively Lemma 4 to successive stages we obtain

S
K (P ) � S (P ) :

Second, assume that � 2 S (P ) : By Corollary 2, there exists k � K such

that � 2 S
k (P ). Therefore,

S (P ) � S
K (P ) :
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5 Appendix

To illustrate the deferred-acceptance algorithm in which �rms make o�ers

we use the preference pro�le P (f4;w4)(f4;w3)(f3;w3) of Example 2 to compute

�
(f4;w4)(f4;w3)(f3;w3)

F ; that is, F = ff1; f2; f3; f4g and W = fw1; w2; w3; w4g are

the two sets of agents with the following substitutable pro�le of preferences

P (f1) = w1w2; w1w3; w2w4; w3w4; w1w4; w2w3; w1; w2; w3; w4

P (f2) = w1w2; w2w3; w1w4; w3w4; w1w3; w2w4; w1; w2; w3; w4

P (f3) = w1w4; w1w2; w2w4; w1; w2; w4

P (f4) = w1w2; w1w4; w1; w2

P (w1) = f3f4; f2f3; f2f4; f1f4; f1f3; f1f2; f1; f2; f3; f4

P (w2) = f3f4; f2f3; f1f4; f2f4; f1f3; f1f2; f1; f2; f3; f4

P (w3) = f1f2; f2f3; f1f3; f2f4; f1f4; f3f4; f1; f2; f3; f4

P (w4) = f1f2; f1f3; f1f4; f2f3; f2f4; f3f4; f1; f2; f3; f4.

The o�ers made by �rms, and received and accepted by workers, in Step

1 are:

f1 f2 f3 f4

w1w2 w1w2 w1w4 w1w2

w1 w2 w3 w4

f1f2f3f4 f1f2f4 ; f3

f3f4 f1f4 ; f3:

The provisional matching �1 after Step 1 is:

f1 f2 f3 f4

�
1

w2 ; w1w4 w1w2:

The o�ers made by �rms, and received and accepted by workers, in Step

2 are:

f1 f2 f3 f4

w2w4 w3w4 w1w4 w1w2

w1 w2 w3 w4

f3f4 f1f4 f2 f1f2f3

f3f4 f1f4 f2 f1f2:

The provisional matching �2 after Step 2 is:

f1 f2 f3 f4

�
2

w2w4 w3w4 w1 w1w2:

The o�ers made by �rms, and received and accepted by workers, in Step

3 are:

f1 f2 f3 f4

w2w4 w3w4 w1w2 w1w2

w1 w2 w3 w4

f3f4 f1f3f4 f2 f1f2

f3f4 f3f4 f2 f1f2:
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The provisional matching �3 after Step 3 is:

f1 f2 f3 f4

�
3

w4 w3w4 w1w2 w1w2:

The o�ers made by �rms, and received and accepted by workers, in Step

4 are:

f1 f2 f3 f4

w3w4 w3w4 w1w2 w1w2

w1 w2 w3 w4

f3f4 f3f4 f1f2 f1f2

f3f4 f3f4 f1f2 f1f2:

the provisional matching �4 after Step 4 is:

f1 f2 f3 f4

�
4

w3w4 w3w4 w1w2 w1w2:

The algorithm stops after Step 4 because all o�ers have been accepted. The

provisional matching �4, becomes de�nite, and it is the �rm-optimal stable

matching.
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