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Abstract

Inductive learning aims at finding general rules that hold true in a
database. Targeted learning seeks rules for the prediction of the value
of a variable based on the values of others, as in the case of linear or
non-parametric regression analysis. Non-targeted learning finds regu-
larities without a specific prediction goal. We model the product of
non-targeted learning as rules that state that a certain phenomenon
never happens, or that certain conditions necessitate another. For all
types of rules, there is a trade-off between the rule’s accuracy and
its simplicity. Thus rule selection can be viewed as a choice problem,
among pairs of degree of accuracy and degree of complexity. However,
one cannot in general tell what is the feasible set in the accuracy-
complexity space. Formally, we show that finding out whether a point
belongs to this set is computationally hard. In particular, in the con-
text of linear regression, finding a small set of variables that obtain
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a certain value of R2 is computationally hard. Computational com-
plexity may explain why a person is not always aware of rules that, if
asked, she would find valid. This, in turn, may explain why one can
change other people’s minds (opinions, beliefs) without providing new
information.

“The process of induction is the process of assuming the sim-

plest law that can be made to harmonize with our experience.”

(Wittgenstein 1922, Proposition 6.363)

1 Motivation

Ann: “Russia is a dangerous country.”

Bob: “Nonsense.”

Ann: “Don’t you think that Russia might initiate a war against a Western

country?”

Bob: “Not a chance.”

Ann: “Well, I believe it very well might.”

Bob: “Can you come up with examples of wars that erupted between two

democratic countries?”

Ann: “I guess so. Let me see... How about England and the US in 1812?”

Bob: “OK, save colonial wars.”

Ann: “Well, then, let’s see. OK, maybe you have a point. Perhaps Russia

is not so dangerous.”

Bob seems to have managed to change Ann’s views. He did it by drawing

her attention to “the democratic peace” phenomenon, sometimes attributed

to Kant.1 Observe, however, that Bob has not provided Ann with any new
1Kant (1795) wrote, “The republican constitution, besides the purity of its origin (hav-

ing sprung from the pure source of the concept of law), also gives a favorable prospect for
the desired consequence, i.e., perpetual peace. The reason is this: if the consent of the
citizens is required in order to decide that war should be declared (and in this constitution
it cannot but be the case), nothing is more natural than that they would be very cautious
in commencing such a poor game, decreeing for themselves all the calamities of war.” Ob-
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factual information. Rather, Bob has pointed out a certain regularity in the

cases that are known to both Ann and Bob. This regularity is, apparently,

new to Ann. Yet, she had had all the factual information needed to observe

it before meeting Bob. It simply did not occur to Ann to test the accuracy

of the generalization suggested to her by Bob.

Much of human knowledge (and, indeed, all of mathematics) has to do

with noticing facts and regularities that, in principle, could have been figured

out based on existing knowledge, rather than with acquiring new informa-

tion per se. Why do people fail to draw all the relevant conclusions from

the information they possess? Sometimes the reason is that certain aspects

of the observations they have simply do not occur to them. In the example

above, it is quite possible that Ann never thought of the type of regime as

an explanatory variable for the occurrence of wars. Sometimes a regularity

involves a combination of several variables. For many real life prediction

problems there are many potentially relevant variables. But the number of

combinations of these variables is much larger than the number of variables

(in fact, the latter increases in an exponential fashion as a function of the

former), making it practically impossible to think of all possible regularities

that might, once observed, prove true. A recent paper by La Porta, Lopez-

de-Silanes, Shleifer, and Vishny (1998) on the quality of government states,

“We find that countries that are poor, close to the equator, ethnolinguisti-

cally heterogeneous, use French or socialist laws, or have high proportions of

Catholics or Muslims exhibit inferior government performance.” One level

of difficulty is to come up with all the variables listed above as potential ex-

planatory variables. A second level of difficulty is to consider sophisticated

combinations as the one suggested in this paragraph.

In conclusion, there are many regularities that people do not notice, even

though they might find them true once these regularities are pointed out to

serve that Kant wrote in favor of the republican constitution, rather than democracy per
se. For recent documentations of this phenomenon, see Maoz and Russett (1992, 1993),
Russett (1993), and Maoz (1998).
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them. The main results of this paper attempt to explain this phenomenon

more formally. Before we present these results, however, we attempt to

convince the reader that the issue under discussion has more than anecdotal

interest.

2 Belief Formation

Economic theory does not in general deal with the question of belief forma-

tion. Economic agents are assumed to have beliefs and to act on them, and

these beliefs tend to take the form of a Bayesian prior probability. The lit-

erature offers axiomatizations of this paradigm, which may be used to elicit

beliefs of agents who follow the axioms, but there is no description of a

process by which one generates such beliefs.

There are several reasons for an interest inthe process of belief formation.

Assume, first, that one takes a normative interpretation of expected utility

theory. One may be convinced by Savage’s (1954) axioms that one would like

to be an expected utility maximizer. The next step would be to determinea

utility function and a probability measure. At this step, one needsproba-

bilistic beliefs. Whereas any probability measure would do in order to be

“rational” in the sense of satisfying Savage’s axioms, one would normally

like to choose a reasonable probability measure. Thus, one is faced with the

question, what are reasonable beliefs to hold?

This question is also faced by organizations or teams, who attempt to

aggregate beliefs of various individuals. Even if each of these individualshas a

Bayesian prior, when these priors differ, the group mustdecide on a reasonable

priorbased on their shared information.

There are also descriptive reasons to be interested in the process of belief

formation. First, having a theory of this process might shed light on regular-

ities in the prior probabilities that Bayesian agents entertain. One may be

able to categorize economic problems by the type of information available in
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them, and by the corresponding process by which the available information

results in probabilistic beliefs. Second, a better understanding of this process

can potentiallydelineate the scope of the Bayesian paradigm, and facilitate

speculationabout the types of beliefs that people might have when they do

not have a Bayesian prior.

The question of belief formation is beyond the scope of this paper, but

the problem we deal with here can be viewed as a particular sub-problem of

belief formation. Specifically, we ask how individual instances are generalized

into rules.This inductive process is likely to be a part of any theory of belief

formation. If the sun rises every day, we tend to believe that it would rise

tomorrow. Naturally, only a small part of our beliefs can be attributed to such

simple and clear regularities. Yet, slightly more complex and less accurate

regularities also feed the belief formation process.

Moreover, there are many circumstances in which beliefs are captured

byrules. For example, when one uses linear regression to generate predic-

tions, one may be viewed as believingin the simple rule of the regression

equation.2 Organizations often have simple rules that may be viewed as re-

flecting the organization’s beliefs. A credit card agency has to make daily

decision on approval of potential card holders, where each such decision is an

act that reflects beliefs regarding the applicants’ financial credibility.But the

agency is not free to select any probabilistic beliefs to guide its decisions. It

may berestricted by organizational feasibility to rules that can be followed

by many clerks, or by a software package. Furthermore, there are legal re-

strictions for which the agency has to be able to justify its decisions based

on simple rules. (There may also belegal restrictions on the type of variables

used in these rules.) Thus, to the extent that the agency’s strategy reflects

its beliefs, these beliefs are given by simple rules.

It follows that for some situations, the analysis of rules in this paper may

be viewed as a simplistic theory of belief formation. More generally, we tend
2Indeed, Bray and Savin (1986) suggest to model agents’ beliefs by linear regression.
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to view the analysis of rules merely as a first step in any reasonable account

of the process of belief formation. The motivating example above suggests

that even this first step is, in reality, far from trivial.

3 Outline

As argued by Wittgenstein (1922), “The process of induction is the process

of assuming the simplest law that can be made to harmonize with our expe-

rience.” (Proposition 6.363).3 Thus, in performing induction, people have a

general preference, other things being equal, for rules that are as simple as

possible and as accurate as possible. Simple rules that accurately describe

the data give reason to hope that one may be able to predict future obser-

vations. Generating such rules appears to be a rather modest condition that

scientific theories are expected to satisfy. Simple and accurate rules can also

be used to transfer information succinctly from one person to another, or to

remember what seems to be the essence of a database.

One should normally expect to face a trade-off between simplicity and

accuracy. Consider the example of linear regression.4 Given a set of “predict-

ing” variables, one attempts to provide a good fit to a “predicted” variable.

A common measure of accuracy is the coefficient of determination, R2. A

reasonable measure of complexity is the number of predictors one uses. As is

well known, sufficiently increasing the number of predictors will generically

provide a perfect fit, namely, a perfectly accurate rule. But this rule will be

complex. In fact, its complexity will be equal to the number of observations

in the database, and it will be considered to have little predictive value. By

contrast, a small number of predictors may not obtain a satisfactory level of
3Simplicity was mentioned by William of Occam seven centuries earlier. But Occam’s

razor is an argument with a normative flavor, whereas here we refer to a descriptive claim
about the nature of human reasoning.

4While regression analysis is a basic tool of scientific research, it can also be viewed as
a (somewhat idealized) model of non-professional human reasoning. See Bray and Savin
(1986), who used regression analysis to model the learning of economic agents.
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accuracy. Thus, the trade-off between simplicity and accuracy is inherent in

the problem of induction.

Regression analysis is an example of targeted learning. It is geared to

the prediction of a specific variable in a given set-up. Targeted learning

must provide an answer to a prediction problem, typically because a decision

is called for. But inductive learning can also be untargeted. Untargeted

inductive learning is a process by which rules are observed for future use,

without a concrete problem in mind. For example, the democratic peace

example above may be modelled as a rule, “democracies do not engage in

wars among themselves”. Such a rule does not predict when wars would occur

in general, nor does it state that dictatorships would necessarily declare wars

on other countries. It does, however, provide an observation that may prove

useful.

Observe that people engage in targeted as well as in untargeted learning.

In fact, it may be hard to avoid untargeted learning when the data seem

obviously to suggest an accurate and simple rule. One may speculate that

the human brain has evolved to engage in untargeted learning for several

reasons. First, since learning may be complex, it might be wise to perform

some learning tasks “off-line”, without a concrete goal in mind, and to retain

their output for future use. Second, memory constraints may not allow one

to retain all data. In such a case, a meaningful summary of the data is

called for, and untargeted learning may result in simple and accurate rules

that will be easy to remember, while retaining the most relevant parts of the

information.5

In this paper we deal with targeted as well as with untargeted learning.

We consider linear regression and non-parametric regression as models of tar-

geted learning, and we offer two models of untargeted learning. Our focus

in these models is on the trade-off between simplicity and accuracy. This
5Observe that this process may generate biases as well. In particular, one may tend

to remember pieces of evidence that are consistent with the rules one has observed more
than one would remember inconsistent evidence.
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trade-off is especially conspicuous in a targeted learning problem, such as a

prediction problem, where one needs to select a single method for prediction.

But it is also implicitly present in untargeted learning, where one has to de-

cide which rules are worthwhile rememberingfor future use. Our main results

state that the trade-off between simplicity and accuracy is hard to perform.

The reason is that, in these models, determining whether there exists a rule

with pre-specified degrees of accuracy and of simplicity is a computation-

ally hard problem. It follows that people cannot be expected to know all

the possible rules that may apply to any database of more than trivial size.

This, in turn, may explain why people may be surprised to learn rules that

hold in a database they are already familiar with. Thus, the motivating

examples above may be explained by the computational complexity of the

accuracy-simplicity trade-off of inductive learning.

We employ a very simple model, in which observations (or past experi-

ences) are vectors of numbers. An entry in the vector might be the value

of a certain numerical variable, or a measure of the degree to which the

observation has a particular attribute. For the quality of government ex-

ample above, one vector might represent information for a single country

for a particular year, with the attributes/variables including the proportion

of the population of different religious orientations, the linguistic and legal

background of the country, the physical location of the country, etc.Thus, we

model the information available to an individual as a database consisting of

a matrix of numbers, where rows correspond to observations (distinct pieces

of information) and columns to attributes.6

Targeted learning is modelled by functional rules: rules that point to a

functional relationship between several (“predicting”) variables and a given

variable(the “predicted” variable). A well-known example of such a ruleis

linear regression, where we take R2 to be a measure of accuracy and the

number of predictors to bea measure of complexity. However, we will also
6The degree to which an observation has a certain attribute will normally be in [0, 1].
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discuss non-parametric regression, where one may choose not only the set

of predicting variables but also any function thereof in attempting to fit the

predicted variable.

To model untargeted learning, we investigate two types of rules. The

first are exclusionary: they state that certain phenomena cannot occur.7 For

instance, consider the rule “There are no instances in which a democratic

country initiated war against another democratic country”. Formally, an ex-

clusionary rule is an assignment of values to a subset of columns, interpreted

as claiming that this combination of values cannot occur. It is likely that

there will often be counter-examples to conjectured rules. Indeed, the war

between England and the US in 1812 was quoted as a counter-example to

this rule. But such a counter-example need not render the rule useless. We

define a notion of accuracy of rules that can roughly be thought of as the

average degree to which the rule holds in the given knowledge base. As a

measure of the rule’s complexity we use the number of attributes it involves.

The second closely related type of rules are conditional : they state that if

an observation has certain attributes, then it also has another. For instance,

the rule “Democratic countries have universal schooling” can be thought of

as saying that if attribute “democratic” has the value 1, then so will attribute

“universal schooling”. Formally, a conditional rule is a pair, where the first

element is an assignment of values to certain columns, and the second is an

assignment of a value to another column, interpreted as claiming that the

first assignment necessitates the second. The complexity of a conditional rule

will be defined as the number of attributes it involves.

Conditional rules can be stated as exclusionary rules. For instance, “De-

mocratic countries have universal schooling” is equivalent to “There are no

countries without universal schooling that are democratic”. Conversely, ex-

clusionary rules can also be stated as conditional ones. For instance, the
7This is in line with Popper’s (1965) dictum, which suggested that a scientific theory

be formulated by stating what cannot happen, highlighting the conditions under which
the theory would be falsified.
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democratic peace phenomenon can be restated as “If two countries are de-

mocratic, then they will not initiate wars against each other”. Moreover, the

simplicity of a conditional rule is identical to the simplicity of the correspond-

ing exclusionary rule. However, we will argue below that the equivalence

between exclusionary and conditional rules only holds at perfect accuracy.

More generally, we find that natural definitions of the degree of accuracy

of these two types of rules are rather different, and that one cannot easily

reduce one type of ruleto the other.

A functional rule can be viewed as the conjunction of many conditional

rules, each stating the value of the predicted variable for a particular com-

bination of values of the predicting variables. Yet, functional rules deserve a

separate discussion for several reasons. First, they are typically described in

a much more parsimonious way than the conjunction of conditional rules. In

fact, they are often represented by formulae that are defined for any combina-

tion of values of the predicting variables, and not only for the combinations

that appear in the database.8 Second, the way we assess their accuracy

also tends to differ from the way we assess the accuracy of a collection of

conditional rules. Finally, functional rules represent targeted learning, and

they highlight the accuracy-simplicity trade-off when one is forced to make

a choice among (prediction) rules.

Our aim is to demonstrate that finding “good” rules, of any of the types

described above, is a difficult computational task. We use the concept of

NP-Completeness from computer science to formalize the notion of difficulty

of solving problems. A yes/no problem is NP if it is easy to verify that a

suggested solution is indeed a solution to it. When an NP problem is also NP-

Complete, there is no known algorithm, whose (worst-case time) complexity
8The fact that a functional rule is formally represented by a function whose domain

extends beyond the given database does not imply that the rule would necessarily hold for
combinations of values that have not been encountered. Moreover, the rule may not hold
even in future observations of combinations of values that have already been observed in
the past. We return to this point below.
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is polynomial, that can solve it. However, NP-Completeness means somewhat

more than the fact that there is no such known algorithm. The non-existence

of such an algorithm is not due to the fact that the problem is new or that

little attention has been devoted to it. For NP-Complete problems it is

known that, if a polynomial algorithm were found for one of them, such an

algorithm could be translated into algorithms for all other problems in NP.

Thus, a problem that is NP-Complete is at least as hard as many problems

that have been thoroughly studied for years by academics, and for which no

polynomial algorithm was found to date.

An appendix describes the notion of NP-Completeness more fully. For

the time being, it suffices to mention that NP-Completeness, and the related

concept of NP-Hardness, are the standard concepts of computational diffi-

culty used in computer science, and that NP-Complete problems are generally

considered to be intractable.

We show that finding simple rules is a computationally hard problem.

Formally, once the concepts of a rule and its accuracy are defined, we prove

that the question “Is there a rule employing no more than k attributes that

has a given accuracy level?” is NP-Complete. This result holds for lin-

ear regression, for non-parametric regression, for exclusionary rules, and for

conditional rules.

Our measures of the simplicity of rules is admittedly crude, but it offers a

reasonable approximation to the intuitive notion of complexity, especially in

the absence of additional structure that may distinguish among attributes.

We should emphasize that the rules we discuss here have no pretense

to offer complete theories, identify causal relationships, provide predictions,

or suggest courses of action. Rules are merely regularities that happen to

hold in a given database, and they may be purely coincidental. Some of the

examples and terminology we use may suggest that these rules are backed

by theories, but we do not purport to model the entire process of developing

and choosing among theories.
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The rest of this paper is organized as follows. The next two sections are

devoted to formal modelling of targeted and untargeted learning and to a

statement of the complexity results. Section 6 concludes. It is followed by

two appendices. Appendix A contains proofs of all results, and Appendix B

contains an informal introduction to the theory of computational complexity

and NP-Completeness.

4 Targeted Learning

4.1 Linear Regression

Assume that we are trying to predict a variable Y given the predictors X =

(X1, ..., Xm). For a subset K of {X1, ..., Xm}, let R2K be the value of the

coefficient of determination R2 when we regress (yi)i≤n on (xij)i≤n,j∈K .

Throughout this paper we assume that the data are given in their entirety,

that is, that there are no missing values. Incomplete matrices or vectors

introduce conceptual issues that are beyond the scope of this paper.

How does one select a set of predictors? That is, how does one select a

functional rule? Let us first consider the feasible set of rules, projected onto

the accuracy-complexity space. For a set of predictors K, let the degree of

complexity be k = |K| and a degree of accuracy — r = R2. Consider the k-r
space and, for a given database X = (X1, ...,Xm) and a variable Y , denote

by F (X,Y ) the set of pairs (k, r) for which there exists a rule with these

parameters. Because the set F (X) is only defined for integer values of k, and

for certain values of r, it may be more convenient to define a connected set:

F 0(X,Y ) ≡ { (k, r) ∈ R+ × [0, 1] |∃(k0, r0) ∈ F (X,Y ), k ≥ k0, r ≤ r0 }

The set F 0(X,Y ) is schematically illustrated in Figure 1. Notice that it

need not be convex.

_________________________
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Insert Figure 1 about here

_________________________

It seems reasonable that, other things being equal, people would prefer

both simplicity (low k) and accuracy (high r). How does a person make

this trade-off? One possibility is that a person may be ascribed a function

v : R+×[0, 1]→ R that represents her preferences for simplicity and accuracy.
For example, the widely used adjusted R2 can be viewed as such a function.9

Thus, if v(·, ·) is decreasing in its first argument and increasing in the second,
a person who chooses a rule so as to maximize v may be viewed as if she

prefers both simplicity and accuracy, and trades them off as described by v.

The optimization problem that such a person faces is depicted in Figure 2.

_________________________

Insert Figure 2 about here

_________________________

This optimization problem is hard to solve, because one generally cannot

know its feasible set. More precisely, given X,Y, k, r, determining whether

(k, r) ∈ F 0(X,Y ) is computationally hard. Formally, we define
Problem LINEAR REGRESSION: Given a matrix X and a vector

Y , a natural number k ≥ 1, and a real number r ∈ [0, 1], is there a subset K
of {X1, ..., Xm} such that |K| ≤ k and R2K ≥ r?

Theorem 1 LINEAR REGRESSION is an NP-Complete problem.

This result shows that it is a hard problem to find the smallest set of

variables that obtain a pre-specified level of R2. Alternatively, it can be
9Observe that the adjusted R2 is a function of the degree of accuracy, R2, of the degree

of complexity, k, as well as of the number of observations, n. As long as we compare rules
given a fixed database, n is identical for all candidate prediction rules and need not appear
explicitly as an argument of the function v. We return to this issue below.
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viewed as pointing out that finding the highest R2 for a pre-specified number

of variables k is a hard problem.

Theorem 1 might explain why people may be surprised to learn of simple

regularities that exist in a database they have access to. A person who

has access to the data should, in principle, be able to assess the veracity

of all linear theories pertaining to these data. Yet, due to computational

complexity, this capability remains theoretical. In practice one may often

find that one has overlooked a simple linear regularity that, once pointed

out, seems evident.

While the focus of this paper is on everyday human reasoning, Theorem

1 can also be interpreted as a result about scientific research. It is often

the case that a scientist is trying to regress a variable Y on some predictors

(Xj)j, and to find a small set of predictors that provide a good fit. Our

result shows that many practicing scientists can be viewed as coping with a

problem that is NP-Hard.

There is definitely more to scientific research than finding a small set

of variables that provide a good fit. Yet, scientific research needs to take

goodness of fit and complexity into account. While our model does not

capture many other aspects of scientific research, it highlights the inherent

difficulty of this one.

Our discussion here (and throughout the paper) presupposes a fixed data-

base X. In reality, however, one may have to choose among prediction rules

that were obtained given different databases. For instance, assume that two

researchers collected data in an attempt to predict a variable Y . Researcher

A collected 1,000 observations of the variables W , Z, and Y , and obtained

R2 = .9 (for Y regressed on W and Z). Researcher B collected two obser-

vations of the variables T and Y and, quite expectedly, obtained R2 = 1

(for Y regressed on T ). Observe that the two databases cannot be combined

into a single database, since they contain information regarding different
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variables.10 Which prediction rule should we use?

While database A suggests a rule that is both less accurate and more

complex than the rule suggested by database B, one would be expected to

prefer the former to the latter. Indeed, obtaining R2 = .9 with two variables

and 1,000 observations is a much more impressive feat than obtaining a per-

fect fit with one variable and two observations. Rules should be accurate and

simple, but also general. Other things being equal, a rule that has a higher

degree of generality, or a larger scope of applicability, is preferred to a rule

that was found to hold in a smaller database. With a given database, all pre-

diction rules have the same scope of applicability, and thus this criterion may

be suppressed from the rule selection problem. Yet, in a more general set-up,

we should expect accuracy and simplicity to be traded off with generality as

well.11

We have shown that determining whether a given pair (k, r) is in F 0(X,Y )

is a hard problem when the input is (X,Y, k, r). In the proof, however, we

only use the value r = 1. Thus, we actually prove a stronger result, namely,

that the following problem is also NP-Complete: “Given a database X, a

variable Y , and a natural number k, is there a set of predictors that uses no

more than k variables and that achievesR2 = 1?” (Observe that this problem

trivially reduces to LINEAR REGRESSION.) If we replace the value 1 above

by a pre-determined degree of accuracy r, we obtain a family of problems

parametrized by r. Our proof can be easily modified to show that these

problems are also NP-Complete for any positive value of r.12

It follows that, for any positive value of r, it is also hard to determine
10To be precise, a combination of the databases would result in a database with many

missing values. Indeed, a theory of induction that is general enough to encompass data-
bases with missing values will be able to deal with induction given different databases as
well.
11In sub-section 5.3 we discuss rules that vary in their degree of applicability even though

they are derived from the same database.
12The results that follow are also stated for the case that r is given as input. All of

them are proven for the case r = 1, and all of them can be strengthened to show that the
respective problems are NP-Complete for ranges of values of r.
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whether a given k is in the r-cut of F 0(X,Y ) when the input is (X,Y, k). For

a given k, computing the k-cut of F 0(X,Y ) is a polynomial problem (when

the input is (X,Y, r)), bounded by a polynomial of degree k. Recall, however,

that k is bounded only by the number of columns in X. Thus, finding the

frontier of the set F 0(X,Y ), as a function of X and Y , is a hard problem.

The optimization problem depicted in Figure 2 has a fuzzy feasible set, as

described in Figure 3.

_________________________

Insert Figure 3 about here

_________________________

A predictor or a decision maker may choose a functional rule that max-

imizes v(k, r) out of all the rules she is aware of, but the latter are likely to

constitute only a subset of the set of rules defining the actual set F 0(X,Y ).

Hence, many of the rules that people formulate are not necessarily the sim-

plest (for a given degree of accuracy) or the most accurate (for a given degree

of complexity).

4.2 Non-Parametric Regression

Linear regression may not always be the most natural model of prediction.

First, one may wish to consider non-linear functions. Second, one may not

wish to commit to a particular functional form. Consider, for example the

variable “the degree of corruption of the judiciary”. Such a variable allows

more than one obvious quantification. However, the choice of a quantification

should be made in tandem with the choice of the functional form of the

regression.

In this sub-section we focus on the informational content of the variables.

Thus, we consider a regression problem in which one is free to choose both a
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set of predicting variables and a function thereof that approximates a given

variable. We refer to this problem as non-parametric regression.13

Consider a database consisting of observations, or cases C = {1, ..., n},
with attributes (predicting variables) A = {1, ...,m}. The data are X =

(xij)i≤n,j≤m and Y = (yi)i≤n where xij, yi ∈ R. We wish to predict the value
of Y as a function of (Xj)j≤m.

Let a predictor for Y be a pair (E, g) where E ⊂ A and g : RE → R.
Given a predictor for Y , (E, g), it is natural to define its degree of inaccuracy

in case i ∈ C as the squared error:

SE((E, g), i) = (g(xij)j∈E − yi)2

and its degree of accuracy over the entire database as the mean squared error:

MSE(E, g) = 1
n

P
i≤n SE((E, g), i).

Thus, MSE(E, g) corresponds to the mean of squared errors (MSE) in

linear regression analysis.

Observe that if the matrix X and the vector Y are sampled from a con-

tinuous joint distribution, then, with probability 1 all values of each variable

are distinct. In this case, every single variable Xj (defining E = {j}) will
predict Y perfectly for an appropriately chosen function g : R → R. The
accuracy-simplicity trade-off is rather trivial in this situation. But this is not

the case if, for instance, the variables can assume only finitely many values,

and, in particular, if these are binary variables that indicate the existence

of attributes in cases. In this situation, some values of each variable Xj are

likely to recur, and it is no longer clear whether Y is a function of a particular
13We remind the reader that our use of the terms “predicting variables” and “predicted

variable” should be taken with a grain of salt. This section addresses the formal problem of
finding a set of variables that, in a given database, provides a good fit to another variable.
Such a set of variables need not suggest a theory by which one can predict, let alone
influence, the so-called “predicted variable”.
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Xj or of a combination of several Xj’s. In interpreting the following result,

the reader is asked to focus on models in which it is not implausible to find

recurring values in the matrix X and the vector Y .14

We define the following problem:

Problem NON-PARAMETRIC REGRESSION: Given a matrixX
and a vector Y , a natural number k ≥ 1 and a real number r ∈ R, is there a
predictor for Y , (E, g), such that |E| ≤ k and MSE(E, g) ≤ r?

Theorem 2 NON-PARAMETRIC REGRESSION is an NP-Complete prob-
lem.

Notice that this theorem is not implied by the previous one. That is,

the fact that it is hard to tell whether a linear relationship (with parameters

(k, r)) exists does not imply that it is hard to tell whether any functional

relationship (with these parameters) exists. While a sub-class of functions

is easier to exhaust, solution algorithms are not restricted to enumeration of

all possible functions.

It follows that looking at a database and finding functional relationships

in it is, in general, a hard problem. Correspondingly, one may be surprised

to be told that such a functional relationship holds, even if, in principle, one

had all the information needed to find it.

5 Untargeted Learning

5.1 Exclusionary Rules

Rules have traditionally been modelled by propositional logic, which may

capture rather sophisticated formal relationships (see Carnap (1950)). By

contrast, we offer here a very simplified model of rules, aiming to facilitate
14When X and Y are sampled from a continuous joint distribution, one may wish to

restrict the function g (say, to be Lipschitzian with constant bounded away from 0) and
obtain similar results.
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the discussion of the process of induction, and to highlight its the similarity

of rules to regression analysis.15

As above, let C = {1, ..., n} be the set of observations, or cases, and
A = {1, ...,m} — the set of variables, or attributes. We assume that data are
given by a matrix X = (xij)i≤n,j≤m of real numbers in [0, 1], such that, for

all i ≤ n, j ≤ m, xij measures the degree to which case i has attribute j.16
Observe that no predicted variable Y is given in this problem.

An exclusionary rule is a pair (E,ϕ) such that E ⊂ A and ϕ : E →
{0, 1}.17 The interpretation of the exclusionary rule (E,ϕ) is that there is
no case whose values on the attributes in E coincide with ϕ. For instance,

assume that the set of cases consists of countries at given years. Saying

that “democratic countries provide universal education” would correspond

to setting E = {democratic, universal_education} and ϕ(democratic) =

1, ϕ(universal_education) = 0, stating that one cannot find a case of a

democratic country that did not provide universal education.

To what extent does an exclusionary rule (E,ϕ) hold in a database X?

Let us begin by asking to what extent the rule applies to a particular case i.

We suggest that this be measured by18

15For other approaches to modelling learning processes, see Mitchell (1997).
16The restriction of xij to the unit interval is immaterial. It is designed to facilitate the

interpretation of xij as the degree to which a case has an attribute. However, our results
hold also if xij are unrestricted.
17One may also define ϕ : E → [0, 1], and allow rules to have intermediate values of the

attributes. For some purposes it may even be useful to let ϕ assume interval values, that
is, to exclude ranges of the attribute value. Our analysis can be extended to these more
general cases.
18There are many alternatives to this measure. First, one may choose absolute value

of the difference instead of its square. We chose the latter mostly for consistency with
standard statistical measures. Second, sets of attributes can be used for evaluation of
accuracy. Specifically, consider the measure

θ((E,ϕ), i) = max∅ 6=F⊂E 1
|F |
P

j∈F (xij − ϕ(j))2.

Our results hold for this measure as well.
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θ((E,ϕ), i) = maxj∈E(xij − ϕ(j))2.

Thus, if case i is a clear-cut counter-example to the rule (E,ϕ), i will be a

case in which all attributes inE have the values specified for them by ϕ. That

is, xij = ϕ(j) for all j ∈ E, and then θ((E,ϕ), i) = 0. By contrast, if at least

one of the attributes in E is not shared by i at all, that is, (xij − ϕ(j))2 = 1

for at least one j ∈ E, then θ((E,ϕ), i) = 1, reflecting the fact that i fails to

constitute a counter-example to (E,ϕ), and thus (E,ϕ) holds in case i.

Generally, the closer are the values (xij)j∈E to (ϕ(j))j∈E, the closer is

i to being a counter-example to (E,ϕ). For instance, one might wonder

whether the Falkland Islands war is a counter-example to the democratic

peace rule. To this end, one must determine the extent to whichArgentina

was a democracy at that time. The more is Argentina deemed democratic,

the stronger is the contradiction suggested by this example to the general

rule.

Given the degree to which a rule (E,ϕ) applies in each case i, it is natural

to define the degree of accuracy of the rule (E,ϕ) given the entire database

X as its average applicability over the individual cases:19

θ(E,ϕ) = 1
n

P
i≤n θ((E,ϕ), i).

This definition appears to be reasonable when the database contains cases

that were not selectively chosen. Observe that one may increase the value

of θ(E,ϕ) by adding cases to C, in which rule (E,ϕ) has no bite and is

therefore vacuously true. For instance, the veracity of the democratic peace

phenomenon will be magnified if we add many cases in which no conflict

occurred. We implicitly assume that only relevant cases are included in C.

More generally, one may augment the model by a relevance function, and

weight cases in θ(E,ϕ) by this function.20

19To simplify notation, we use the letter θ for different domains. Throughout this paper
it is a measure of accuracy of a rule.
20The notion of conditional rules (in sub-section 5.3 below) offers another solution to

this problem.
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In untargeted learning, one need not select a single rule by which to

perform prediction. Rather, one may maintain many rules that appear to

be valid, and to use them when the need may arise. Yet, people tend to

prefer simpler rules also in the context of untargeted learning. For instance,

the rule “democratic countries provide universal education” is more complex

than the rule “there is always universal education”, corresponding to the set

E = {universal_education} and ϕ(universal_education) = 0. If, indeed,

the column universal_education in the matrix X consisted of ones alone,

it is more likely that one would come up with the generalization that there

is always universal education than with the democracy—universal education

relationship.

In our model, the complexity of a rule (E,ϕ) is naturally modelled by the

number of attributes it refers to, namely, |E|. Thus, performing induction
may be viewed as looking for a small set E that, coupled with an appropriate

ϕ, will have a high degree of accuracy θ(E,ϕ).

Parallelingthe discussion in the context of linear regression, one may de-

note by F (X) the set of pairs (k, r) for which there exists a rule with degree

of accuracy r and degree of complexity k. Again, one may define

F 0(X) ≡ { (k, r) ∈ R+ × [0, 1] |∃(k0, r0) ∈ F (X), k ≥ k0, r ≤ r0 }

as the feasible set of (k, r) pairs. Out of this set, a subset of rules will be

noticed and remembered. One may assume that, for a function v : R+ ×
[0, 1] → R that is decreasing in its first argument and increasing in the

second, and for an appropriate constant c ∈ R, the subset of rules that
a person would notice and remember are those for which v(k, r) ≥ c, as

depicted in Figure 4.

_________________________

Insert Figure 4 about here

_________________________
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A person who considers possible rules is confronted with the following

problem: given a database X and a pair k, r, is it the case that (k, r) ∈
F 0(X)? Or, differently stated:

Problem INDUCTION: Given a matrix X, a natural number k ≥ 1
and a real number r ∈ [0, 1], is there an exclusionary rule (E,ϕ) such that
|E| ≤ k and θ(E,ϕ) ≥ r?
We can now state the following result.

Theorem 3 INDUCTION is an NP-Complete problem.

As mentioned above, the proof of Theorem 3 can be modified to show that

the problem remains NP-Complete even if r is fixed, for a range of values of

r.

5.2 Simple Exclusionary Rules

The induction problem stated above is computationally hard for two com-

binatorial reasons: first, there are many subsets E that may be relevant to

the rule. Second, for each given E there are many assignments of values

ϕ. Our intuitive discussion, however, focussed on the first issue: we claim

that it is hard to find minimal regularities because there are many subsets of

variables one has to consider. It is natural to wonder whether the complexity

of problem INDUCTION is due to the multitude of assignments ϕ, and has

little to do with our intuitive reasoning about the multitude of subsets.21

We therefore devote this sub-section to simple exclusionary rules, defined

as exclusionary rules (E,ϕ) where ϕ ≡ 1. A simple exclusionary rule can

thus be identified by a subset E ⊂ A. We denote θ((E,ϕ), i) by θ(E, i), and

θ(E,ϕ) — by θ(E). Explicitly,

21This concern can only be aggravated by reading our proof: we actually use all at-
tributes in the proof of complexity, relying solely on the difficulty of finding the assignment
β.
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θ(E, i) = maxj∈E(1− xij)2.

and

θ(E) = 1
n

P
i≤n θ(E, i).

We now formulate the following problem:

Problem SIMPLE INDUCTION: Given a matrix X, a natural num-
ber k ≥ 1 and a real number r ∈ [0, 1], is there a simple exclusionary rule
E ⊂ A such that |E| ≤ k and θ(E) ≥ r?
We can now state the following result.

Proposition 4 SIMPLE INDUCTION is an NP-Complete problem.

It follows that the difficulty of the problem INDUCTION is not an artifact

of the function ϕ, but rather, has to do also with the selection of variables

one considers.22

5.3 Conditional Rules

Rules are often formulated as conditional statements. For instance, it is more

natural to state the rule “All ravens are black”, or “If x is a raven, then x

is black” then the rule “There are no non-black ravens”. Obviously, the two

formulations are equivalent, and they are both equivalent to “If x is not black,

then x is not a raven”. Indeed, this equivalence lies at the heart of Hempel’s

(1945) paradox of confirmation. Yet, this equivalence holds only when the

22SIMPLE INDUCTION deals with
µ
m
k

¶
possible selections of subsets of k columns.

INDUCTION, by contrast, deals with
µ
m
k

¶
2k selections of binary values for k columns.

Yet, the fact that SIMPLE INDUCTION is NP-Complete does not mean that INDUC-
TION is as well. The reason is that one is not restricted to algorithms that exhaust
all possible solutions. Using certain properties of a problem, one may be able to find a
solution in a larger set of possible solutions more efficiently than in a smaller set.
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rules are supposed to be perfectly accurate. By contrast, when we are trying

to assess their degree of accuracy in general, this equivalence breaks down,

as we explain shortly. We therefore introduce conditional rules as a separate

formal entity.

Let a conditional rule be a pair ((E,ϕ), (j, b)) such that E Ã A, ϕ : E →
{0, 1}, j ∈ A\E, and b ∈ {0, 1}. The interpretation of the conditional rule
((E,ϕ), (j, b)) is that, whenever the attributes in E assume the correspond-

ing values specified by ϕ, attribute j assumes the value b. Thus, the rule

“All ravens are black” can be modelled by setting E = {raven}, ϕ(raven) =
1, j = black, b = 1. Similarly, the democratic peace phenomenon may

be captured by E = {country_1_democratic, country_2_democratic},
ϕ(country_1_democratic) = ϕ(country_2_democratic) = 1, j = war, and

b = 0.

Observe that, if E = ∅, the conditional rule states that attribute j always
assumes the value b. It thus corresponds to the exclusionary rule that rules

out the value (1− b) for attribute j.
To what extent does conditional rule ((E,ϕ), (j, b)) hold in case i? We

propose that the applicability of the rule in the case be measured by

θ(((E,ϕ), (j, b)), i) = (xij − b)2.

That is, in each particular case, the rule is judged solely by the degree

to which the case agrees with the rule’s consequent. However, not all cases

are going to be equally relevant to the assessment of the rule given the entire

database. Intuitively, the rule “All ravens are black” should be assessed based

on ravens alone. Thus, a case is relevant to the assessment of a rule to the

degree that it offers an example of the antecedent of the rule. Formally, let

w(((E,ϕ), (j, b)), i) = 1−maxl∈E(xil − ϕ(l))2.

(This expression is assumed to be 1 if E = ∅.)23
23Observe that, using the notation from sub-section 5.1, the weight w can be written as
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Thus, if case i agrees with ϕ on all attributes specified in E, it is a very

relevant test case for the rule. If, however, at least one of the attributes of

case i is completely different from ϕ (that is, for one l ∈ E, (xil−ϕ(l))2 = 1),

then case i is irrelevant to the rule, and should not be part of its evaluation.

With this definition, it is natural to define the degree to which conditional

rule ((E,ϕ), (j, b)) holds in the entire database by

θ((E,ϕ), (j, b)) =
P
i≤n w(((E,ϕ),(j,b)),i)θ(((E,ϕ),(j,b)),i)P

i≤n w(((E,ϕ),(j,b)),i)

in case the denominator does not vanish. If it does, we define θ((E,ϕ), (j, b)) =

1.

Thus, a rule is evaluated by a weighted average of the extent to which it

holds in each particular case, where the weights are defined by an endogenous

relevance function. According to this definition, “All ravens are black” will

be assessed based on the population of ravens, whereas “Everything that is

not black is not a raven” will be judged by its correctness in the population

of non-black objects. If one of these rules is true to degree 1, so is the other.24

But if their degrees of correctness are in [0, 1), they need not be equal. In

fact, they can be as different as this half-open interval allows.25

w(((E,ϕ), (j, b)), i) = 1− θ((E,ϕ), i).

θ((E,ϕ), i) measures the degree to which case i satisfies the assignment ϕ over the set
E. For an exclusionary rule, a high θ indicates that the case is a counter-example to the
rule. For the antecedent of a conditional rule, a high θ indicates low relevance of the case
to the rule.
24Observe that the populations are defined as fuzzy sets. For instance, each case i offers

an example of a raven — say, attribute l — to a continuous degree xil ∈ [0, 1].
For a conditional rule to be true to degree 1, every case i withP
i≤nw(((E,ϕ), (j, b)), i) > 0 has to satisfy xij = b. In the example, “All ravens

are black” holds to degree 1 if and only if every observation that is at least partly a raven
is absolutely black. Equivalently, every example has to be absolutely black, or absolutely
not a raven. This is equivalent to the fact that the exclusionary rule “There are no
non-black ravens” holds to degree 1.
25For instance, in a database with n− 1 black ravens and one white raven, “All ravens

are black” will be true to degree 1− 1
n whereas “All non-black objects are not ravens” —

to degree 0.
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The definition above allows a conditional rule to be vacuously true (ifP
i≤nw(((E,ϕ), (j, b)), i) = 0) but it does not allow irrelevant examples to

affect the truthfulness of a conditional rule in the presence of relevant ex-

amples. Thus, in a database that consists only of white shoes, “All ravens

are black” will be deemed correct. But if there is but one case that is, to

some degree, a raven, white shoes become irrelevant. One might view this

formulation as a “resolution” of Hempel’s paradox of confirmation, although

this is not our purpose here.26

It is natural to define the complexity of a conditional rule ((E,ϕ), (j, b))

by |E| + 1. (A conditional rule of complexity 1 would correspond to the

case E = ∅.) The trade-off between accuracy and simplicity exists here

as well. Indeed, finding whether, for pre-specified k ≥ 1 and r ∈ [0, 1],
there exists a conditional rule ((E,ϕ), (j, b)) of complexity k or less, that

achieves θ((E,ϕ), (j, b)) ≥ r, is also an NP-Complete problem. We omit the
formal statement of this result and its proof because both closely mimic the

statement and the proof of Theorem 3.

As opposed to exclusionary rules, conditional rules do not apply to the

entire database. The scope of a conditional rule depends on the cases that

satisfy its antecedents, as measured by
P

i≤nw(((E,ϕ), (j, b)), i). It follows

that conditional rules differ from each other not only in their accuracy and

in their complexity, but also in their generality, or scope of applicability. As

discussed in sub-section 4.1, one would be expected to prefer, other things

being equal, more general rules, which have a larger scope of applicability, and

which are thus likely to be more useful in future decisions. An explicit model

of the trade-off between accuracy, simplicity, and applicability is beyond the

scope of this paper.
26There are many other resolutions of this paradox in the literature. One that we

found particularly convincing is offered by Gilboa (1993). It argues that, to anyone whose
intuition was shaped by Bayesian thinking, there is nothing paradoxical about Hempel’s
paradox, provided that one carefully distinguishes between weak and strict inequalities in
comparing posterior to prior.
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6 Conclusion

6.1 Related Literature

Most of the formal literature in economic theory and in related fields adheres

to the Bayesian model of information processing. In this model a decision

maker starts out with a prior probability, and she updates it in the face of new

information by Bayes rule. Hence, this model can easily capture changes in

opinion that result from new information. But it does not deal very graciously

with changes of opinion that are not driven by new information. In fact, in a

Bayesian model with perfect rationality people cannot change their opinions

unless new information has been received. It follows that the example we

started out with cannot be explained by such models.

Relaxing the perfect rationality assumption, one may attempt to provide a

pseudo-Bayesian account of the phenomena discussed here. For instance, one

can use a space of states of the world to describe the subjective uncertainty

that a decision maker has regarding the result of a computation, before this

computation is carried out. (See Anderlini and Felli (1994) and Al-Najjar,

Casadesus-Masanell, and Ozdenoren (1999).) In such a model, one would be

described as if one entertained a prior probability of, say p, that “democratic

peace” holds. Upon hearing the rhetorical question as in our dialogue, the

decision maker performs the computation of the accuracy of this rule, and is

described as if the result of this computation were new information.

A related approach employs a subjective state space to provide a Bayesian

account of unforeseen contingencies. (See Kreps (1979, 1992), and Dekel,

Lipman, and Rustichini (1997, 1998).) Should this approach be applied to the

problem of induction, each regularity that might hold in the data base would

be viewed as an unforeseen contingency that might arise. A decision maker’s

behavior will then be viewed as arising from Bayesian optimization with

respect to a subjective state space that reflects her subjective uncertainty.

Our approach models the process of induction more explicitly. In com-
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parison with pseudo-Bayesian approaches, it allows a better understanding

of why and when induction is likely to be a hard problem.

Gilboa and Schmeidler (2001) offer a theory of case-based decision mak-

ing. They argue that cases are the primitive objects of knowledge, and that

rules and probabilities are derived from cases. Moreover, rules and probabili-

ties cannot be known in the same sense, and to the same degree of certitude,

that cases can. Yet, rules and probabilities may be efficient and insight-

ful ways of succinctly summarizing many cases. The present paper may be

viewed as an attempt to model the process by which rules are generated from

cases.27

6.2 Discussion

There is an alternative approach to modelling induction that potentially pro-

vides a more explicit account of the components of cases. The components

should include entities and relations among them. For example, our moti-

vating examples give rise to entities such as countries and governments, and

to the relations “fought against” and “exhibits inferior performance”, among

others. In a formal model, entities would be elements of an abstract set, and

relations, or predicates, would be modeled as functions from sequences of en-

tities into [0, 1]. Such a predicate model would provide more structure, would

be closer to the way people think of complex problems, and would allow a

more intuitive modelling of analogies than one can obtain from our present

model. Moreover, while the mathematical notation required to describe a

predicate model is more cumbersome than that used for the attribute model

above, the description of actual problems within the predicate model may

be more concise. In particular, this implies that problems that are computa-

tionally easy in the attribute model may still be computationally hard with
27Gilboa and Schmeidler (1999, 2002) attempt to model the process by which cases are

used to form probabilistic beliefs.
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respect to the predicate model.28

Observe that neither the model presented here nor the alternative predi-

cate model attempts to explain how people choose the predicates or attributes

they use to describe cases. The importance of this choice has been clearly

illustrated by Goodman’s (1965) “grue-bleen” paradox.29 This problem is,

however, beyond the scope of the present paper.

We do not claim that the inability to solve NP-Complete problems is nec-

essarily the most important cognitive limitation on people’s ability to perform

induction. Indeed, even polynomial problems can be difficult to solve when

the database consists of many cases and many attributes. On the other hand,

it is often the case that looking for a general rule does not even cross some-

one’s mind. Yet, the difficulty of performing induction shares an important

property with NP-Complete problems: while it is hard to come up with a

solution to such a problem, it is easy to verify whether a suggested solution

is valid. Similarly, it is hard to come up with an appropriate generalization,

but it is relatively easy to assess the applicability of such a generalization

once it is offered.

We need not assume that people are lazy or irrational to explain why

they do not find all relevant rules. Rather, looking for simple regularities is a

genuinely hard problem. There is nothing irrational about not being able to

solve NP-Hard problems. Faced with the induction problems discussed here,
28In Aragones, Gilboa, Postlewaite and Schmeidler (2001), we present both the attribute

and the predicate models for the study of analogies, prove their equivalence in terms of
the scope of phenomena they can describe, and show that finding a good analogy in the
predicate model is a hard problem.
29The paradox is, in a nutshell, the following. If one wishes to test whether emeralds are

green or blue, one can sample emeralds and conclude that they seem to be green. Based on
this, one may predict that emeralds will be green in the year 2010. Next assume that one
starts with two other primitive predicates, “grue” and “bleen”. When translated to the
more common predicates “green” and “blue”, “grue” means “green until 2010 and blue
thereafter” and “bleen” — vice versa. With these predicates, emeralds appear to be grue,
and one may conclude that they will appear blue after the year 2010. This paradox may
be interpreted as showing that inductive inference, as well as the concept of simplicity,
depend on the predicates one starts out with.
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which are NP-Hard, people may use various heuristics to find rules, but they

cannot be sure, in general, that the rules they find are the simplest ones.

6.3 Implications

Our results have several implications. First, we find that people may behave

differently if their information consists of raw data as compared to rules

that summarize these data. Importantly, the raw data may not be more

informative than the rules that are derived from them, because this derivation

is a non-trivial task. Second, the complexity results might explain why people

may prefer to summarize information and make predictions using simple rules

that do not employ more than a few variables. Whereas it is generally hard

to find whether a certain degree of accuracy can be obtained with a given

number of variables, one may find, in polynomial time complexity, the most

accurate rule among those that use no more than, say, two variables.

Our model suggests two distinct reasons for which people who have access

to the same information might entertain different beliefs and make different

decisions. The first is that, due to the complexity problem, different people

may happen to uncover different rules, while there is no reason to believe

that any one of them can necessarily find the rules discovered by the others.

The second reason has to do with personal tastes. Even if two people face the

same set of rules, reflected in a set F as in Figure 2, they might have different

preferences for the accuracy-simplicity trade-off (captured by the function

v). Such preferences determine these individuals’ beliefs, as reflected in the

predictions and decisions that they are likely to make.
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7 Appendix A: Proofs

Proof of Theorem 1:

It is easy to see that LINEAR REGRESSION is in NP: given a suggested

set K ⊂ {1, ...,m}, one may calculate R2K in polynomial time in |K|n (which
is bounded by the size of the input, (m + 1)n).30 To show that LINEAR

REGRESSION is NP-Complete, we use a reduction of the following problem,

which is known to be NP-Complete (see Gary and Johnson (1979)):

Problem EXACT COVER: Given a set S, a set of subsets of S, S,
are there pairwise disjoint subsets in S whose union equals S?

(That is, does a subset of S constitutes a partition of S?)

Given a set S, a set of subsets of S, S, we will generate n observations of

(m+1) variables, (xij)i≤n,j≤m and (yi)i≤n, a natural number k and a number

r ∈ [0, 1] such that S has an exact cover in S iff there is a subset K of

{1, ...,m} with |K| ≤ k and R2K ≥ r.
Let there be given, then, S andS. Assume without loss of generality that

S = {1, ..., s}, and thatS = {S1, ..., Sl} (where s, l ≥ 1 are natural numbers).
We construct n = s+l+1 observations ofm = 2l predicting variables. It will

be convenient to denote the predicting variables by X1, ..., Xl and Z1, ..., Zl
and the predicted variable — by Y . Their corresponding values will be denoted

(xij)i≤n,j≤l, (zij)i≤n,j≤l, and (yi)i≤n. We will use Xj, Zj, and Y also to denote

the column vectors (xij)i≤n, (zij)i≤n, and (yi)i≤n, respectively.31 We now

specify these vectors.

For i ≤ s and j ≤ l, xij = 1 if i ∈ Sj and xij = 0 if i /∈ Sj;
30Here and in the sequel we assume that reading an entry in the matrix X or in the

vector Y , as well any algebraic computation require a single time unit. Our results hold
also if one assumes that xij and yi are all rational and takes into account the time it takes
to read and manipulate these numbers.
31In terms of our formal model, the variables may well be defined by these vectors to

begin with. However, in the context of statistical sampling, the variables are defined in a
probabilistic model, and identifying them with the corresponding vectors of observations
constitutes an abuse of notation.
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For i ≤ s and j ≤ l, zij = 0;
For s < i ≤ s+ l and j ≤ l, xij = zij = 1 if i = s+ j and xij = zij = 1 if

i 6= s+ j;
For j ≤ l, xnj = znj = 0;
For i ≤ s+ l, yi = 1 and yn = 0.
We claim that there is a subset K of {X1, ...,Xl}∪{Z1, ..., Zl} with |K| ≤

k ≡ l for which R2K ≥ r ≡ 1 iff S has an exact cover from S.

First assume that such a cover exists. That is, assume that there is a set

J ⊂ {1, ..., l} such that {Sj}j∈J constitutes a partition of S. This means thatP
j∈J 1Sj = 1S where 1A is the indicator function of a set A. Let α be the

intercept, (βj)j≤l be the coefficients of (Xj)j≤l and (γj)j≤l — of (Zj)j≤l in the

regression. Set α = 0. For j ∈ J , set βj = 1 and γj = 0, and for j /∈ J set
βj = 0 and γj = 1. We claim that α1+

P
j≤l βjXj +

P
j≤l γjZj = Y where

1 is a vector of 1’s. For i ≤ s the equality

α+
P

j≤l βjxij +
P

j≤l γjzij =
P

j≤l βjxij = yi = 1

follows from
P

j∈J 1Sj = 1S. For s < i ≤ s+ l, the equality

α+
P

j≤l βjxij +
P

j≤l γjzij = βj + γj = yi = 1

follows from our construction (assigning precisely one of {βj, γj} to 1 and
the other — to 0). Obviously, α +

P
j≤l βjxnj +

P
j≤l γjznj = 0 = yi = 0.

The number of variables used in this regression is l. Specifically, choose

K = {Xj | j ∈ J } ∪ {Zj | j /∈ J }, with |K| = l, and observe that R2K = 1.
We now turn to the converse direction. Assume, then, that there is a

subset K of {X1, ...,Xl} ∪ {Z1, ..., Zl} with |K| ≤ l for which R2K = 1.

Equality for observation n implies that this regression has an intercept of

zero (α = 0 in the notation above). Let J ⊂ {1, ..., l} be the set of indices
of the X variables in K, i.e., {Xj}j∈J = K ∩ {X1, ..., Xl}. We will show
that {Sj}j∈J constitutes a partition of S. Set L ⊂ {1, ..., l} be the set of
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indices of the Z variables in K, i.e., {Zj}j∈L = K∩{Z1, ..., Zl}. Consider the
coefficients of the variables in K used in the regression obtaining R2K = 1.

Denote them by (βj)j∈J and (γj)j∈L. Define βj = 0 if j /∈ J and γj = 0 if

j /∈ L. Thus, we have P
j≤l βjXj +

P
j≤l γjZj = Y .

We argue that βj = 1 for every j ∈ J and γj = 1 for every j ∈ L. To
see this, observe first that for every j ≤ l, the s+ j observation implies that
βj + γj = 1. This means that for every j ≤ l, βj 6= 0 or γj 6= 0 (this also
implies that either j ∈ J or j ∈ L). If for some j both βj 6= 0 and γj 6= 0,
we will have |K| > l, a contradiction. Hence for every j ≤ l either βj 6= 0 or
γj 6= 0, but not both. (In other words, J = Lc.) This also implies that the
non-zero coefficient out of {βj, γj} has to be 1.
Thus the cardinality ofK is precisely l, and the coefficients {βj, γj} define

a subset of {S1, ...Sl}: if βj = 1 and γj = 0, i.e., j ∈ J , Sj is included in the
subset, and if βj = 0 and γj = 1, i.e., j /∈ J , Sj is not included in the subset.
That this subset {Sj}j∈J constitutes a partition of S follows from the first s
observations as above.

To conclude the proof, it remains to observe that the construction of the

variables (Xj)j≤l, (Zj)j≤l, and Y can be done in polynomial time in the size

of the input. ¤
Proof of Theorem 2:

We first show that NON-PARAMETRIC REGRESSION is in NP. To this

end, it suffices to show that, for any given set of attributes E ⊂ A with |E| =
k, one may find in polynomial time (with respect to n×(m+1)) whether there
exists a function g : RE → R such that MSE(E, g) ≤ r. Let there be given
such a set E. Restrict attention to the columns corresponding to E and to Y .

Consider these columns, together with Y as a new matrixX 0 of size n×(|E|+
1). Sort the rows in X 0 lexicographically by the columns corresponding to E.

Observe that, if there are no two identical vectors (xij)j∈E (for different i’s in
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C), there exists a function g : RE → R such thatMSE(E, g) = 0. Generally,
MSE(E, g) will be minimized when, for every vector (xij)j∈E ∈ RE that
appears in the matrix corresponding to C ×E, g((xij)j∈E) will be set to the
average of (yl) over all l ∈ C with (xlj)j∈E = (xij)j∈E. That is, for every

selection of values of the predicting variables, the sum of squared errors is

minimized if we choose the average value (of the predicted variable) for this

selection, and this selection is done separately for every vector of values of

the predicting variables. It only remains to check whether this optimal choice

of g yields a value for MSE(E, g) that exceeds r or not.

We now turn to show that NON-PARAMETRIC REGRESSION is in

NP-Complete. We use a reduction of the following problem, which is known

to be NP-Complete (see Gary and Johnson (1979)):

Problem COVER: Given a natural number p, a set of subsets of S ≡
{1, ..., p}, S = {S1, ..., Sq}, and a natural number t ≤ q, are there t subsets
in S whose union contains S?

(That is, are there indices 1 ≤ j1 ≤ ... ≤ jt ≤ q such that
S
l≤t Sjl = S ?)

Let there be given an instance of COVER: a natural number p, a set of

subsets of S ≡ {1, ..., p}, S = {S1, ..., Sq}, and a natural number t. Define
n = p+ 1, m = q, and k = t. Define (xij)i≤n,j≤m and (yi)i≤n as follows. For

i ≤ p, and j ≤ m = q, set xij = 1 if i ∈ Sj and xij = 0 otherwise. For i ≤ n,
set yi = 1. For all j ≤ m, let xnj = 0. Finally, set yn = 0.
We claim that there is a predictor for Y , (E, g), with |E| = k and

MSE(E, g) = 0 iff there are k = t subsets in S that cover S. Indeed,

there exists a predictor for Y , (E, g), with |E| = k and MSE(E, g) = 0 iff
there are k columns out of the m columns in the matrix, such that no row

in the matrix, restricted to these columns, consists of zeroes alone. (Observe

that the first p observations of Y are 1. Thus the only problem in defining

g to obtain a perfect match MSE(E, g) = 0 might occur if some of these

vectors, restricted to the these k columns, is equal to the last vector, which

consists of zeroes for the predicting variables and zero also for Y .) And this
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holds iff there are k sets in S = {S1, ..., Sq} that cover S.
Finally, observe that the construction is polynomial.¤
Proof of Theorem 3:

That INDUCTION is in NP is simple to verify: given a suggested rule

(E,ϕ), one may calculate θ(E,ϕ) in linear time in the size of the sub-matrix

C×E (which is bounded by the size of the input, |C×A|). That INDUCTION
is NP-Complete may be proven by a reduction of the satisfiability problem:32

Problem SATISFIABILITY: Given a Boolean function f in Conjunc-
tive Normal Form in the variables y1, ..., yp, is there an assignment of values

({0, 1}) to the variables for which f = 1?
Let there be given the function f =

Q
i≤q fi where each factor fi is the

summation of variables yj and their negations yj. (The variables are Boolean,

summation means disjunction, multiplication means conjunction, and bar

denotes logical negation.) Let n = q andm = p. For each factor fi, i ≤ q = n,
let there be a case i. For each variable yj, j ≤ p = m, let there be an attribute
j. Define xij as follows:

If yj appears in fi, let xij = 0;

If yj appears in fi, let xij = 1;

Otherwise, let xij = 0.5.

We claim that there exists a valued rule (E,ϕ) with |E| = k = n such

that θ(E,ϕ) ≥ r = 1 iff f is satisfiable by some assignment of values to the
variables y1, ..., yp. Observe that every rule (E,ϕ) with |E| = n defines an

assignment of values (0 or 1) to the variables (yj)j≤p, and vice versa. We

claim that every rule (E,ϕ) with |E| = n obtains the value θ(E,ϕ) = 1

iff the corresponding assignment satisfies f . To see this, let (E,ϕ) be a

rule with |E| = n. Note that θ(E,ϕ) = 1 iff for every case i we have
32SATISFIABILITY is the first problem that was proven to be NP-Complete. This was

done directly, whereas proofs of NP-Completeness of other problems is typically done by
reduction of SATISFIABILITY to these problems (often via other problems). See Gary
and Johnson (1979) for definitions and more details.
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θ((E,ϕ), i) = 1, which holds iff for every case i there exists an attribute j

such that (xij − ϕ(j))2 = 1, that is, xij = 1− ϕ(j). By construction of the

matrix X, xij = 1−ϕ(j) iff (i) yj appears in fi, and ϕ(j) = yj = 1, or (ii) yj
appears in fi and ϕ(j) = yj = 0. (Observe that, if neither yj nor yj appear

in fi, (xij − ϕ(j))2 = 0.25.) In other words, xij = 1 − ϕ(j) iff the variable

yj (or its negation) satisfies the factor fi. It follows that θ(E,ϕ) = 1 iff the

assignment defined by ϕ satisfies f . Observing that the construction above

can be performed in polynomial time, the proof is complete.¤
Proof of Proposition 4:

It is easy to see that SIMPLE INDUCTION is in NP. To show that

SIMPLE INDUCTION is NP-Complete, we use a reduction of COVER again.

Given and instance of COVER, n, S = {S1, ..., Sq}, and t, define n = p,

m = q, and k = t. Thus each member of S corresponds to a case i ∈ C,
and each subset Sj ∈ S — to an attribute j ∈ A. Let xij = 1 if i /∈ Sj and
xij = 0 if i ∈ Sj. We argue that there is a rule E ⊂ A such that |E| ≤ k and
θ(E) ≥ 1 iff there are k subsets {Sjl}l≤k whose union covers S. Indeed, such
a rule exists iff there is a set E of k attributes {jl}l≤k such that, for every i,
θ(E, i) = 1. This holds iff, for every i there exists an attribute jl ∈ E such

that xijl = 0. And this holds iff for each member of S there is at least one of

the k sets {Sjl}l≤k to which it belongs.
Finally, observe that the construction of the matrix X is polynomial in

the size of the data.¤
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8 Appendix B: Computational Complexity

A problem can be thought of as a set of legitimate inputs, and a correspon-

dence from it into a set of legitimate outputs. For instance, consider the

problem “Given a graph, and two nodes in it, s and t, find a minimal path

from s to t”. An input would be a graph and two nodes in it. These are as-

sumed to be appropriately encoded into finite strings over a given alphabet.

The corresponding encoding of a shortest path between the two nodes would

be an appropriate output.

An algorithm, in the intuitive sense, is a method of solution that speci-
fies what the solver should do at each stage. Church’s thesismaintains that
algorithms are those methods of solution that can be implemented by Tur-
ing machines. It is neither a theorem nor a conjecture, because the term

“algorithm” has no formal definition. In fact, Church’s thesis may be viewed

as defining an “algorithm” to be a Turing machine. It has been proved that

Turing machines are equivalent, in terms of the computational tasks they can

perform, to various other computational models. In particular, a PASCAL

(or BASIC) program run on a modern computer with an unbounded hard

disk is also equivalent to a Turing machine and can therefore be viewed as a

definition of an “algorithm”.

It is convenient to restrict attention toYES/NO problems. Such prob-
lems are formally defined as subsets of the legitimate inputs, interpreted as

the inputs for which the answer is YES. Many problems naturally define

corresponding YES/NO problems. For instance, the previous problem may

be represented as “Given a graph, two nodes in it s and t, and a number

k, is there a path of length k between s and t in the graph?” It is usually

the case that if one can solve all such YES/NO problems, one can solve the

corresponding optimization problem. For example, an algorithm that can

solve the YES/NO problem above for any given k can find the minimal k

for which the answer is YES. Moreover, such an algorithm will typically also

find a path that is no longer than the specified k.
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Much of the literature on computational complexity focuses on time
complexity: how many operations will an algorithm need to perform in

order to obtain the solution and halt. It is customary to count operations

of reading and writing numbers, as well as logical and algebraic operations

on numbers as taking a single unit of time each. Taking into account the

amount of time these operations actually take (for instance, the number of

actual operations needed to add two numbers of, say, 10 digits) typically

yields qualitatively similar results.

The literature focuses on asymptotic analysis: how does the number of
operations grow with the size of the input. It is customary to conductworst-
case analysis, though attention is also given to average-case performance.
Obviously, the latter requires some assumptions on the distribution of inputs,

whereas worst-case analysis is free from distributional assumptions. Hence

the complexity of an algorithm is generally defined as the order of magnitude

of the number of operations it needs to perform, in the worst case, to obtain

a solution, as a function of the input size. A problem is polynomial (or,
“of polynomial complexity”) if there exists an algorithm that always solves

it correctly within a number of operations that is bounded by a polynomial

of the input size. A problem is exponential if all the algorithms that solve
it may require a number of operations that is exponential in the size of the

input.

Polynomial problems are generally considered relatively “easy”, even though

they may still be hard to solve in practice, if the coefficients and/or the de-

gree of the bounding polynomial are high. By contrast, exponential problems

become intractable even for inputs of moderate sizes. To prove that a prob-

lem is polynomial, one typically points to a polynomial algorithm that solves

it. Proving that a YES/NO problem is exponential, however, is a very hard

task, because it is generally hard to show that there does not exist an algo-

rithm that solves the problem in a number of steps that is, say, O(n17) or

even O(2
√
n).
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A non-deterministic Turing machine is a Turing machine that allows
multiple computations for a given input. These computations can be thought

of as paths in a tree, in which each node is a step in a computation, and the

depth of the tree measures the time it takes the machine to reach a solution.

A non-deterministic Turing machine can be loosely compared to a parallel

processing modern computer with an unbounded number of processors. It is

assumed that these processors can work simultaneously, and, should one of

them find a solution, the machine halts. Consider, for instance, the Hamil-

tonian path problem: given a graph, is there a path that visits each node

precisely once? A straightforward algorithm for this problem would be ex-

ponential: given n nodes, one needs to check all the n! permutations to see

if any of them defines a path in the graph. A non-deterministic Turing ma-

chine can solve this problem in linear time. Roughly, one can imagine that

n! processors work on this problem in parallel, each checking a different per-

mutation. Each processor will therefore need no more than O(n) operations.

In a sense, the difficulty of the Hamiltonian path problem arises from the

multitude of possible solutions, and not from the inherent complexity of each

of them.

The class NP is the class of all YES/NO problems that can be solved

in Polynomial time by a Non-deterministic Turing machine. Equivalently,
it can be defined as the class of YES/NO problems for which the validity of

a suggested solution can be verified in polynomial time (by a regular, deter-

ministic algorithm). The class of problems that can be solved in polynomial

time (by a deterministic Turing machine) is denoted P and it is obviously a
subset of NP. Whether P=NP is considered to be the most important open

problem in computer science. While the common belief is that the answer is

negative, there is no proof of this fact.

A problem A is NP-Hard if the following statement is true (“the con-
ditional solution property”): if there were a polynomial algorithm for A,

there would be a polynomial algorithm for any problem B in NP. There may
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be many ways in which such a conditional statement can be proved. For

instance, one may show that using the polynomial algorithm for A a poly-

nomial number of times would result in an algorithm for B. Alternatively,

one may show a polynomial algorithm that translates an input for B to an

input for A, in such a way that the B-answer on its input is YES iff so is the

A-answer of its own input. In this case we say that B is reduced to A.
A problem is NP-Complete if it is in NP, and any other problem in NP

can be reduced to it. It was shown that the SATISFIABILITY problem

(whether a Boolean expression is not identically zero) is such a problem

by a direct construction. The latter means that, for every NP problem B,

there exists an algorithm that accepts an input for B, z, and generates in

polynomial time a Boolean expression that can be satisfied iff the B-answer

on z is YES. With the help of one problem that is known to be NP-Complete

(NPC), one may show that other problems, to which the NPC problem can
be reduced, are also NPC. Indeed, it has been shown that many combinatorial

problems are NPC.

An NPC problem is NP-Hard, but the converse is not necessarily true.

First, NP-Hard problems need not be in NP themselves, and they may not

be YES/NO problems. Second, NPC problems are also defined by a partic-

ular way in which the conditional solution property is proved, namely, by

reduction.

There are by now hundreds of problems that are known to be NPC.

Had we known one polynomial algorithm for one of them, we would have

a polynomial algorithm for each problem in NP. As mentioned above, it is

believed that no such algorithm exists.

40



References

[1] Anderlini, L. and L. Felli (1994), “Incomplete Written Contracts: Un-

describable States of Nature,” Quarterly Journal of Economics, 109:
1085-1124.

Al-Najjar, N., R. Casadesus-Masanell, and E. Ozdenoren (1999), “Prob-

abilistic Models of Complexity,” Northwestern University working pa-

per.

Aragones, E., I. Gilboa, A. Postlewaite and D. Schmeidler (2001),

“Rhetoric and Analogy,” mimeo.

Bray, M. M., and N. E. Savin (1986), “Rational Expectations Equilibria,

Learning, and Model Specification”, Econometrica, 54: 1129-1160.

Carnap, R. (1950). Logical Foundations of Probability. Chicago: Univer-

sity of Chicago Press.

Dekel, E., B. L. Lipman, and A. Rustichini (1997), “A Unique Subjective

State Space for Unforeseen Contingencies”, mimeo.

Dekel, E., B. L. Lipman, and A. Rustichini (1998), “Recent Develop-

ments in Modeling Unforeseen Contingencies”, European Economic Re-

view, 42: 523—542.

Gary, M. and D. S. Johnson (1979), Computers and Intractability: A

Guide to the Theory of NP-Completeness. San-Francisco, CA: W. Free-

man and Co.

Gilboa, I. (1993), “Hempel, Good, and Bayes”, manuscript.

Gilboa, I., and D. Schmeidler (1999), “Inductive Inference: An Ax-

iomatic Approach”, Econometrica, forthcoming.

Gilboa, I. and D. Schmeidler (2001). A Theory of Case-Based Decisions.

Cambridge: Cambridge University Press.

41



Gilboa, I., and D. Schmeidler (2002), “A Cognitive Foundation of Prob-

ability”, Mathematics of Operations Research, 27: 68-81.

Goodman, N. (1965). Fact, Fiction and Forecast. Indianapolis: Bobbs-

Merrill.

Hempel, C. G. (1945). “Studies in the Logic of Confirmation I”, Mind

54: 1-26.

Kant, I. (1795). Perpetual Peace: A Philosophical Sketch.

Kreps, D. M. (1979), “A Representation Theorem for ‘Preference for

Flexibility’,” Econometrica, 47: 565— 576.

Kreps, D. M. (1992), “Static Choice and Unforeseen Contingencies” in

Economic Analysis of Markets and Games: Essays in Honor of Frank

Hahn, P. Dasgupta, D. Gale, O. Hart, and E. Maskin (eds.) MIT Press:

Cambridge, MA, 259-281.

La Porta, R., F. Lopez-de-Silanes, A. Shleifer, and R. Vishny (1998),

“The Quality of Government”, mimeo.

Maoz, Z. (1998), “Realist and Cultural Critiques of the Democratic

Peace: A Theoretical and Empirical Reassessment”, International In-

teractions, 24: 3-89.

Maoz, Z. and B. Russett (1992), “Alliance, Wealth Contiguity, and Polit-

ical Stability: Is the Lack of Conflict Between Democracies A Statistical

Artifact?” International Interactions, 17: 245-267.

Maoz, Z. and B. Russett (1993), “Normative and Structural Causes of

Democratic Peace, 1946-1986”, American Political Science Review, 87:
640-654.

Mitchell, T. (1997), Machine Learning. McGraw Hill.

Popper, K. R. (1965), Conjectures and Refutations: The Growth of Sci-

entific Knowledge (2nd edition) New York: Harper and Row.

42



Russett, B. (1993), Grasping the Democratic Peace: Principles for a

Post-Cold War World. Princeton: Princeton University Press.

Wittgenstein, L. (1922), Tractatus Logico-Philosophicus. London: Rout-

ledge and Kegan Paul; fifth impression, 1951.

43



 
 
 
 
 
 
Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k 

r 

1 

F‘(X,Y) 



 
 
Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k 

r 

1 

F‘(X,Y) 

v(k,r)=c 



 
 
 
 
 
Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k 

r 

1 

F‘(X,Y) 

v(k,r)=c 



 
 
 
 
Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k 

r 

1 

F’(X)

v(k,r)≥c 


