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Abstract

We review recent likelihood-based approaches to modeling demand for
medical care. A semi-nonparametric model along the lines of Cameron
and Johansson’s Poisson polynomial model, but using a negative binomial
baseline model, is introduced. We apply these models, as well a semi-
parametric Poisson, hurdle semiparametric Poisson, and finite mixtures of
negative binomial models to six measures of health care usage taken from
the Medical Expenditure Panel survey. We conclude that most of the
models lead to statistically similar results, both in terms of information
criteria and conditional and unconditional prediction. This suggests that
applied researchers may not need to be overly concerned with the choice
of which of these models they use to analyze data on health care demand.
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1 Introduction

Demand for medical care - doctor visits, prescription drugs taken, etc., is usually
observed as an event count over some time period. When possible, it is desirable
for efficiency reasons to estimate by maximum likelihood, which implies the use
of count data models. This paper offers a review of recent likelihood-based
methods for explaining demand for health care, when demand is observed as a
count. The models are applied to the 1996 Medical Expenditure Panel Survey
data, for six measures of health care usage. With few exceptions, the different
statistical models achieve very similar values of information criteria and in- and
out-of-sample fit. Looking at predicted usage conditional on income and age,
we again observe few differences between most of the models. The important
conclusion of the paper is that which among the models considered is used for a
policy analysis is unlikely to importantly affect the conclusions of the analysis.
This suggests that applied researchers might more profitably concentrate on
issues such as the selection of conditioning variables or the parameterization
of the model, rather than the choice of the density function. The densities
employed in this paper appear to be sufficiently flexible to capture the important
features of the sort of data under consideration.

Health care demand often exhibits overdispersion, in that the ratio of the
conditional variance to the conditional mean is greater than one (Cameron and
Trivedi, 1986; Pohlmeier and Uhlrich, 1995). Another common characteristic is
that many zeros are observed, more than can be accounted for by simple count
densities (Pohlmeier and Uhlrich, 1995; Gerdtham, 1997). To better focus on
the special characteristics of this sort of data, and to relate the econometric
methods to theoretical issues in the analysis of the demand for medical care,
we limit our attention to the demand for medical care, though the count data
models that are considered here could be applied in areas such as analysis of

the production of patents or demand for recreation trips.



One important issue from which we will abstract is that of the exogeneity of
the explanatory variables. Variables such as private insurance coverage or self-
reported health status may be jointly determined with variables related to usage
of health care services (Cameron et. al., 1988; Windmeijer and Santos Silva,
1997; Vera-Hernandez, 1999). For example, if both usage and the decision to
purchase private insurance are in part determined by an unobservable personal
characteristic such as health status, then there will exist a problem of endo-
geneity in the estimation of the usage model, if usage depends upon insurance
status. When this problem is encountered, a possibility is to step away from
distributional assumptions and to estimate using GMM. A disadvantage of this
approach is that GMM estimates, especially for the coefficients of the suspected
endogenous variables, may be quite imprecise (Windmeijer and Santos Silva,
1999; Vera-Hernandez, 1999). Another possibility is to estimate a joint density
for all endogenous variables using MLE (Cameron and Johansson, 1998; Romeu
and Vera-Hernandez, 2001), though this has not been completely developed.
Our primary goal in this paper is to compare the ability of likelihood-based
approaches to fit data on demand for medical care, supposing that the regres-
sors may be treated as exogenous. The papers by Windmeijer and Santos Silva
(1997) and Vera-Hernandez (1999) find mixed evidence regarding endogeneity of
self reported health status, one the one hand, and duplicate insurance coverage,
on the other. Hausman tests do not reject exogeneity when based only on the
coefficient of the possibly endogenous variable, but they do reject when based
upon all coefficients. It seems that a conclusive answer will depend upon formu-
lating a GMM estimator using more informative moment conditions, or perhaps
using the joint density approach for all endogenous variables. While we expect
that problems of endogeneity will sometimes complicate or rule out single equa-
tion MLE for health care usage as a method for obtaining consistent estimates,
we nevertheless believe that even in these cases it is an empirically interesting

question to know which models can fit best, since this knowledge might assist in



formulating moment conditions upon which to base a GMM estimation strategy.
In the case that the regressors can be treated as exogeneous, a comparision of
the statistical models upon which MLE is based is clearly relevant in its own
right.

Before moving on to compare the statistical models, we briefly note how
theoretical perspectives regarding the demand for medical care have been re-
flected in the empirical literature. Grossman’s seminal paper (1972) offers a
human capital perspective that treats health as a capital good that is subject
to depreciation. Health care services are inputs to the production of health
capital. This model treats the individual as the prime decision maker regard-
ing the consumption of health care services. Cameron et. al. (1988) present
a model that is within this tradition. This paper is also among the first to
emphasize the count data aspect of health care visits. Zweifel (1981) presents
a principal-agent model that recognizes that while the individual may initiate
contact with the physician, as in Grossman’s model, the physician will have
much weight in deciding the treatment, which will be important in determining
the number of follow-up visits. This idea is incorporated in empirical work by
Manning et. al. (1987), who do not address count data aspects. Pohlmeier and
Ulrich (1995) and Gerdtham (1997) are examples of papers that build on the
principle-agent perspective and also account for count data issues. The more
recent papers mentioned below incorporate additional statistical refinements to

these perspectives.

2 A survey of recent approaches

In this section we briefly survey some of the newer count data models that have
been proposed for demand for health care services. Before surveying the recent
models, we briefly discuss the more standard models upon which the newer

approaches build.



Poisson

The Poisson density for a count random variable Y is
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To allow for covariates, A is usually parameterized as A = e*#. The Poisson
density implies that the conditional mean and the conditional variance of y are
both equal to A. Since data on health care demand usually exhibit overdisper-
sion and excess zeros, the basic Poisson model will usually not be suitable for

analyzing demand for health care.

Negative binomial (NB)

If the Poisson mean contains a latent component, marginalization, under some
assumptions, will lead to a negative binomial density . The negative binomial
density may be written as
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where ¢ = {\, 9}, A > 0 and 9 > 0.! As with the Poisson models, the usual
means of incorporating conditioning variables is the parameterization \ = e*?.
When 9 = A/a we have the negative binomial-I model (NB-I). When 9 = 1/«
we have the negative binomial-IT (NP-II) model. Though other versions exist,
we limit attention to these in this paper. The moment generating function of

the NB density, which is needed below, is
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! Among the numerous examples of application of the NB model to health care demand are
Cameron et. al. (1988) (1986), Pohlmeier and Ulrich (1995) and Geil et. al. (1997).



For the NB-I density, V(Y) = A + a. In the case of the NB-II model, we have
V(Y) = A+ aX?. For both forms, E(Y) = A. Thus, both forms capture overdis-
persion, with the NB-II model allowing for a more extreme form. Nevertheless,
as discussed in the introductory section, health care demand often exhibits ex-
cess zeros with respect to what a NB model can accomodate. This leads us to

consider the hurdle version of the NB model.

Hurdle negative binomial (HNB)

The hurdle? model can be rationalized as a statistical representation of a princi-
ple/agent model, where individuals decide whether or not to seek care, but once
care is sought, the physician influences how many visits will take place. It is
natural to assume that different parameters govern the decisions of the principle
and the agent. To accomodate this, the HNB model assumes that a individuals
make a binary discrete choice of whether or not care is sought. This is modeled
as a Bernoulli trial using a probit or similar model. Conditional on positive vis-
its, the count follows a zero-truncated negative binomial (TNB) density. Hurdle
count models were introduced by Cragg (1971) and Mullahy (1986), who also
presented “with-zeros”® models. Here we present only the hurdle model, due to
its more intuitive foundations relative to the zero inflated model, at least for the
case of health care demand, and due to the fact that it seems to have been used
more widely to model health care demand.* We follow Deb and Trivedi (1997),
who use a NB model to parameterize the Bernoulli trial. For a NB random

variable,

Ph
Pr(Y =0) = fy(0,¢p) = (%)
Pr(Y > 0) = 1-Pr(Y =0),

2Hurdle models are also known as “two-part” models.

3The “with-zeros” model is also known as the “zero-inflated” model.

4Examples of applications of the HNB model to health care demand include Pohlmeier and
Ulrich (1995), Gerdtham (1997) and Deb and Trivedi (1997).



where the parameter of the hurdle process is ¢p = {Ap,%¥p}. To achieve iden-
tification one can set ap = 1 when parameterizing vy according to the NB-I
or NB-II models. The above probabilities are used to estimate the binary 0/1
hurdle process. Then, for the observations where visits are positive, a TNB

density, with a different parameter ¢ = {\, ¢} is estimated. This density is
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Since the hurdle and truncated components of the overall density for Y share no

parameters, they may be estimated separately, which is computationally more

efficient than estimating the overall model. The expectation of Y is

s = [ ()" - 55) ]

NB-I and NB-II versions follow from the appropriate parameterizations of 1,1, Ap

and .

The HNB model can probably be considered the state of the art for model-
ing health care demand count data, up until 1997. Shortly after, the following
models were introduced. All of these models can account for excess zeros and
overdispersion, and they are more flexible than the HNB model, so that distri-

butional assumptions are considerably relaxed.

2.1 A semiparametric approach (PSP, HPSP)

The semiparametric approach to modeling count data has been developed by
Gurmu and Trivedi (1996), Gurmu (1997) and Gurmu et. al. (1999). This
approach introduces unobserved heterogeneity in a Poisson model, and allows
the unobserved heterogeneity to follow a semi-nonparametric density. The semi-

nonparametric density is closely related to that proposed by Gallant and Nychka



(1987). The difference is that Laguerre polynomials are used instead of Hermite
polynomials. Gurmu et. al. show that, under weak assumptions, the Laguerre
expansion density can consistently estimate densities of unknown form. As
such the mixture density is semiparametric, since the Poisson specification is
parametric but the modelization of the heterogeneity is not.

Gurmu and Trivedi (1996) found that the basic semiparametric approach of
Gurmu et. al. (1999)° did not fit data well. This is probably due to the reliance
on the Poisson baseline model, which often does not fit well. To overcome this
problem, Gurmu (1997) proposed a hurdle version of the semiparametric model.

The original semiparametric model is based upon an infinite mixture of a
Poisson random variable and an independent random variable V' which captures
unobserved heterogeneity. The assumption is that the Poisson mean is random,
so that E(Y|V = v) = A\v. Integrating out the heterogeneity, one obtains the

marginal density:
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where MY, (—X) is the yth order derivative of the moment generating function of
V, evaluated at —X. MJ(—X) = My(—)), is the moment generating function
itself.

To model the density gy (v,¢) flexibly, Gurmu et. al. use a normalized

Laguerre polynomial expansion around a gamma baseline density. The gamma

,Ua—l «a
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5The 1999 paper is based upon a 1996 working paper, which explains the dates of these
references.

baseline density is




where ¢ = (a, 8). The semi-nonparametric density for v is

[hp (y,7)] £ (v])
Np(#,7)

gv(v|$,7) =

where

hy (,7) = D Pe(v), (5)
k=0

v = (1,71,7%2, ---,¥p), and Py (v) is the kth order Laguerre polynomial. The term
np(¢,7y) = vy is the normalization factor that makes the density sum to one.
The restriction that y9 = 1 is used to achieve identification, since the density
homogeneous in 7. This density is semi-nonparametric in the sense that, under
weak assumptions, there exist ¢, such that a density of unknown form can
be approximated arbitrarily well as p goes to infinity. Gurmu et. al. (1999)
provide the consistency proof, which is closely modeled on that of Gallant and
Nychka (1987).

Next, they are able to obtain a closed form for My, (—X), which upon substi-
tution into equation 4 yields the semiparametric density for the count random
variable Y. In estimation, a restriction is imposed such that E(V') = 1, which
leads to E(Y) = A. In the course of the empirical work reported below, we
have found that the model is poorly identified without this restriction, and that
it is very difficult to obtain convergence if it is not imposed. The results we
report alway impose the restriction. We will refer to this model as the Poisson
semiparametric model (PSP).

To extend this to the hurdle case, Gurmu (1997) allows a first PSP model to
determine whether the zero/positive hurdle is crossed, and a second PSP model
is used to model the positives. For the hurdle crossing process, the relevant

probabilities are

Pr(Y =0) = My(—Xp)

Pr(Y >0) = 1—Pr(Y =0).



The truncated version of the PSP density is

ML)
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Just as in the case of the HNB model, the binary and truncated components of

the hurdle Poisson semiparametric (HPSP) model may be estimated separately.

2.2 Semi-nonparametric approaches (PSNP, NBSNP)

Cameron and Johansson (1997) directly adapt Gallant and Nychka's (1987)
semi-nonparametric density to the count data case. They reshape a Poisson
baseline density using a squared polynomial, and then normalize the result to
sum to one. We shall refer to this as the Poisson semi-nonparametric (PSNP)
approach, though there has been no formal proof of the conditions under which
the density has nonparametric properties.® The PSP and HPSP models embed
the semi-nonparametric density in a parametric density to obtain a semipara-
metric model, after marginalization of the latent variable. As such, one expects
that the approach of Cameron and Johansson should be able to capture more ex-
treme departures from the baseline model, though perhaps at the cost of needing
to estimate many parameters. For example, the PSNP model can accomodate
bimodal densities, while the PSP density cannot.
The PSNP density is

fY(yp‘a’Y) = p(¢’ 7) y' )
where
P
hp (yl7) = D wy, (6)
k=0

and 7,(¢,7) is a normalizing factor to make the density sum to one. The

5The consistency proofs of Gallant and Nychka (1987) and Gurmu et. al. (1999) are for
continuous random variables. While it seems reasonable to expect that the proofs could be
adapted to discrete random variables, this has not yet been done, to our knowledge.
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normalizing factor is

e\

(A7) =Y [y (M) —
y=0 v

Cameron and Johansson show that this has the closed form

(A y) = D0 D Wyt (M)

k=01=0

where m,(\) is the rth noncentral moment of the Poisson density. Because
[hp (y7)]? /mp(X,7) is a homogenous function of =, it is necessary to impose a
normalization to achieve identification: g is set to 1. The moments of Y may
be calculated using the closed form expression in Cameron and Johansson’s
equation 4.7

Since the NB model usually fits health care data dramatically better than
does the Poisson model, using only one more parameter, one might suspect
that changing the baseline model to the NB might allow the model to fit well
with fewer parameters. What we shall refer to as the negative binomial semi-
nonparametric (NBSNP) model is obtained by making this change. The density

is
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where hy, (y|y) and n,(4, v) are defined as in equations 6 and 7, respectively, and
the raw moments m, (A, 9) are obtained from equation 2. The moments of Y are
again obtained from Cameron and Johannson’s equation 4, after substituting

the NB raw moments.®

"Cameron and Johansson (1998) have extended the PSNP approach to consider multivari-
ate count data models.
8We used Mathematica (R) version 4.0 to perform these calculations.

11



2.3 A finite mixture approach (MNB, CMNB)

The finite mixture approach to fitting health care demand was introduced by
Deb and Trivedi (1997). The mixture approach has the intuitive appeal of allow-
ing for subgroups of the population with different health status. If there are two
subgroups it is natural to think of healthy and unhealthy persons. Alternatively,
one could argue for the existence of gravely ill persons, unhealthy persons, and
healthy persons. Many studies have incorporated objective and/or subjective
indicators of health status in an effort to capture this heterogeneity. Objective
measures, such as limitations on activity, are not necessarily very informative
about a person’s overall health status. Subjective, self-reported measures may
suffer from the same problem, and may also not be exogenous, in which case
there are additional modeling issues (Windmeijer and Santos Silva, 1997). The
finite mixture approach allows health status to be truly latent. The mixture ap-
proach has since been applied by Gerdtham and Trivedi (2000), who find that
it performs better than the HNB approach.

The mixture negative binomial (MNB) model has the virtue of being con-

ceptually simple. The density is

-1
Py (st s Ty 1) = S0, + o),
i=1
where m; > 0,i=1,2,..,p, 1y = 1 — Y- m, and SP_, m = 1. The £ (y, ¢1),
¢; = {Ni,¥;} are p separate NB-I or NB-II densities, as in equation 1. Iden-
tification requires that the m; are ordered in some way. We follow Deb and
Trivedi (1997) by imposing w1 > w9 > -+ > m, and ¢; # ¢;,i # j. This is sim-
ple to accomplish post-estimation by rearrangement and possible elimination of
redundant component densities.
The properties of the mixture density follow in a straightforward way from
those of the components. In particular, the moment generating function is the

same mixture of the moment generating functions of the component densities,
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whence E(Y) = 3%, m\;.

The MNB density may suffer from overparameterization, since the total
number of parameters grows rapidly with the number of component densities. To
address this problem, Deb and Trivedi propose a constrained mixture negative
binomial model (CMNB) which restricts all the slope parameters in \; = e*/i
to be the same across all component densities. The constants and the overdis-

persion parameters «; are allowed to differ.

3 Data

We applied the above models to the 1996 Medical Expenditure Panel Survey
data, using six different measures of annual health care usage®. These are office-
based doctor visits (OBDV), outpatient visits (OPV), emergency room visits
(ERV), inpatient visits (IPV), dental visits (DV), and number of prescription
drugs taken (PRESCR). We limited the analysis to individuals between the
ages of 18 and 65, inclusive. Women who experienced a pregnancy during 1996
were excluded from the sample. The explanatory variables are months of private
insurance coverage during the year (PRIV), months of public insurance coverage
during the year (PUB), sex (SEX), age (AGE), years of schooling (EDUC), and
family income (INC). All the variables with the exception of INC are directly
available. INC was constructed by summing the incomes of all members of the
family. Observations for which any family member’s income was “hot decked”
were dropped.'?

The number of observations for which this set of variables is complete is
4566. Because some of the models presented above can become numerically

unstable when the dependent variable takes on large values, we dropped obser-

9The raw data is available at www.meps.ahrq.gov/MEPSDATA /HC/H12DAT.zip, and the
programs used to prepare the data, the prepared data, and the estimation routines are available
at pareto.uab.es/mcreel. All programming was done using Ox version 3.0 (Doornik, 1999).

1%Hot decking” is a term used in the MEPS documentation to describe a method of replacing
missing data with conditional or unconditional means of the variable. See the documentation
at www.meps.ahrq.gov/Pubdoc/H12DOC.PDF for more details.
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vations when the respective dependent variable took on a value greater than
75. This was done for all models, to facilitate comparison. This implied drop-
ping 4 observations for OBDV, 1 observation for OPV, and 80 observations for
PRESCR. The other measures of health care usage were unaffected. Next, the
sample was randomly divided into two portions, one for estimation and one for
out-of-sample prediction. This was done by selecting observations for estimation
or prediction according to whether the value of a uniform [0, 1] random variable
was less or greater than 0.5, so that the split is approximately 50-50.

Table I provides some descriptive information on the six measures of usage,
for the in- and out-of-sample data together. The measure present a diversity
of characteristics - three of the measures present a high percentage of zeros,
but three have more moderate percentages of zeros. There is considerable vari-
ation in the means of the measures, and in their maximums. Looking at the
mean/variance ratio se see that all of the variables are unconditionally overdis-

persed, some strongly so, and some relatively moderately so.

4 Results

Tables II through VII contain the results for the six measures of health care
use. In these tables, “Type” refers to the use of a NB-I or NB-II model, for
the NB, HNB, MNB and CMNB models. For the models that use a series
expansion, “Order” refers to the degree of the shaping polynomial, e.g. the p in
equation 5. To save space, we report only the results for the best fitting type and
order for each model, according to the values of the consistent Akaike (CAIC),
Bayesian (BIC), and the Akaike (AIC) information criteria. The information
criteria results are all divided by the lowest value across models of the respective
criterion, to facilitate comparisons. We also report the in and out-of-sample
mean squared prediction error (MSE), relative to that of the best fitting model.

Since the best order may vary according to the different information criteria,

14



the order is reported for each of the information criteria. The best type may
also differ for in- and out-of-sample relative MSE, so it is reported. The best
model, according to each of the information criteria and the two relative MSE
measures is indicated by bold highlighting. For example, in Table II, the best
model according to the CAIC is the NBSNP using a NB-II baseline model, with
order p = 2. The best model according to the AIC is the HPSP model with
order 1 for the binary part of the model and order 2 for the zero-truncated count
part of the model. The HNB-II model has minimum relative MSE, both in- and
out-of-sample. In the second column, the 2;2;2 in the line for the PSP model
means that p = 2 was best according to the CAIC, BIC, and AIC measures,
respectively. The (1,2);(1,2);(1,2) in the line for the HPSP model gives the
optimal order as a pair, first for the binary part of the model, then for the
zero-truncated part of the model.

Comparing Tables II through VII, the most striking general conclusion is
that the models, with the exception of the PSNP model in the case of several
measures of use, achieve very similar values for both the information criteria
and for relative MSE. Differences of more than two percent for the CAIC and
BIC are fairly uncommon, and the differences are even smaller for the AIC.
In many cases the differences are so small as to be almost surely statistically
insignificant. Bootstrapping confirms that, for the OBDV use measure, the
CAIC, BIC and AIC measures for the NB-I and NBSNP-II(2) models are not
significantly different at the 90% confidence level. Furthermore, the 90% boot-
strap confidence interval for CAIC, BIC and AIC for the NB model contains
the respective CAIC, BIC and AIC values for all models and all six usage mea-
sures, with the exception of the PPP model in the case of the OBDV, DV and
PRESCR usage measures. !

Across the six measures of use, the MNB, CMNB, HPSP and PSNP models

" Bootstrapping is not feasible on a large scale due to the overwhelming computational
burden it would entail. This is because some of the models, such as the MNB and HPSP,
can become numerically unstable, and others, such as the PSNP and NBSNP, can present
multiple local optima.
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are never preferred according to the CAIC and BIC criteria, though the CMNB
and HPSP models are preferred for one measure each according to the inconsis-
tent AIC criterion. Looking at relative MSE, the differences are almost always
so small that it does not seem warranted to discriminate between models on
this basis. Remarkably, the PSNP model performs best for out-of-sample fit in
the case of the PRESCR measure of use, in spite of the fact that it is strongly
dominated in terms of the information criteria.

Other results of note include the fact that the CMNB model outperforms the
more heavily parameterized MNB model in almost all cases. One may also note
that NB-I and NB-IT models, on their own or as the basis for the MNB, HNB and
NBSNP models, are preferred a roughly equal number of times. Also, superiority
of a Type I or Type Il model in terms of the information criteria is at best loosely
linked to superiority in terms of out-of-sample MSE. Another observation is that
the optimal order of the semiparametric and semi-nonparametric models that
are based on the NB model is almost always p = 1 or p = 2, according to the
two consistent information criteria.

Having seen that the models perform quite similarly in terms of information
criteria and fit, we ask whether the choice of the model, among the models under
consideration, will importantly alter the conclusions of a policy analysis.'?> To
offer a partial answer to this question, first we examine the impact of income
on usage of health care services, unconditional on other explanatory variables.
This is done by grouping fitted usage by income levels, then averaging the fitted
value for each group to marginalize out the other explanatory variables.!3 This
is done using all the observations, both in- and out-of-sample.

In Figures 1 through 6 we see that the models predict levels that are quite

?Cameron and Johansson (1997) offer limited evidence on this issue in their Tables IV and
VI, where they compare average derivatives for several statistical models. They find that the
average derivatives are quite similar for most conditioning variables.

131t would be possible to present plots of fitted usage versus income, or any other variable,
holding the other variables fixed at given levels. A large (infinite) number of such plots could
be generated, which is the reason we use the simple approach of marginalizing the other
variables.
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similar across the models, especially for the ERV, IPV and DV measures.'*

Also, the discrete analog of a derivative almost always has the same sign across
models, for all measures. The broad conclusions one draws do not seem to be
model-dependent. To comment on the results, one may note that ERV and IPV
generally decline with income, which may reflect the effects of poverty on the
predisposition to use emergency means of care rather than preventive methods.
Dental visits (DV) and office-based visits (OBDV) both generally increase with
income, which is probably due to the more discretionary nature of such usage.
One may note that PRESCR and OBDYV share a similar shape, which is not
unexpected given that a doctor will usually prescribe medication following a
visit. These conclusions hold for all of the models under consideration.

We repeat this exercise by plotting predicted usage versus age categories
in Figures 7 through 12. We again see that the broad picture is the same
independent of the model. The measures of use, with the exception of emergency

room visits, which presents a U-shaped form, rise steadily with age.

5 Conclusions

Most of the statistical models considered in this paper are considerably more
flexible than the simple Poisson and negative binomial models which have been
the standards for count data for many years. Nevertheless, the more flexible
models do not significantly outperform the negative binomial model in terms
of information criteria or out-of-sample prediction error. As well, the negative
binomial model leads to predicted visits conditional on income and age that
are very similar to those of the other models. This is true for all six of the
dependent variables we considered, which, one will recall, encompass a variety
of characteristics. The models as a group perform quite similarly according to
these criteria.

These facts suggest that applied researchers conducting a policy analysis

One should note that the abscissa of some of the Figures does not begin at zero.
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may not need to be excessively preoccupied with which among these models
they base their analysis. The models will lead to similar results in terms of
their predictions, at least for data similar to that we employ. It seems that effort
will be better spent on the choice of the conditioning variables to include, how
these variables are to be measured, and how the model is to be parameterized
as a function of these variables. Issues of endogeneity should not be overlooked,
either, though we have abstracted from this.

These statements are not without a caveat. The models do lead in some cases
to substantially different estimates of conditional and unconditional probabilities
that a given number of visits are taken, with the important differences usually
being the probabilities of zeros and low numbers of visits. The negative binomial
model often underpredicts zeros, as is well known. Cost of care may depend on
the number of individuals treated as well on the total number of visits they
make, since files must be opened and records kept for each individual. If this is
an important feature of the analysis, then an accurate prediction of the number
of users of a service among a population will be important. This will require
an accurate predicition of the number of zero visits. In this case, the choice of
the model will be more important. However, among the more flexible models
there are only minor differences in the way they fit specific count probabilities,
so amongst this group the choice of model will not be very important even when
the goal is to fit count probabilities.

From the point of view of theoretical work, it may be more worthwhile to
try to find solutions to problems of endogeneity of regressors in count models
that lead to more precise estimates than those that result from GMM applied
to low order moments than to further develop flexible densities to be using in
univariate MLE. It seems that the currently available models do a good job of

extracting the information the data contains.

18



References

1]

[2]

3]

[4]

[5]

[6]

7]

[8]

[9]

Cameron, A.C. and P.K. Trivedi (1986), Econometric models based on
count data: comparisons and applications of some estimators and tests,

Journal of Applied Econometrics, 1, 29-54.

Cameron, A.C. et. al. (1988), A microeconometric model of the demand for
health insurance and health care in Australia, Review of Economic Studies,

55, 85-106.

Cameron, A.C. and P. Johansson (1997), Count data regression using series
expansions: with applications, Journal of Applied Econometrics, 12, 203-

23.

Cameron, A.C. and P. Johansson (1998), Bivariate count data
regression using series expansions: with applications, mimeo,

http://www.econ.ucdavis.edu/faculty /cameron /research /bv3a.pdf

Cragg, J.G. (1971), Some statistical models for limited dependent variables
with applications to the demand for durable goods, Econometrics, 39, 829-
44.

Deb, P. and P.K. Trivedi (1997), Demand for medical care by the elderly:

a finite mixture approach, Journal of Applied Econometrics, 12, 313-36.

Doornik, J.A. (1999), Object-oriented matrix programming using
Ox, 3rd ed. London: Timberlake Consultants Press and Oxford:

www.nuff.ox.ac.uk/Users/Doornik.

Geil, P. et. al. (1997), Economic incentives and hospitalization in Germany,

Journal of Applied Econometrics, 12, 295-311.

Gallant, A.R. and D.W. Nychka (1987), Seminonparametric maximum like-

lihood estimation, Fconometrica, 55, 363-90.

19



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gerdtham, U-G., Equity in health care utilisation: further evidence based

on hurdle models and Swedish macro data, Health Economics, 6, 303-19.

Gerdtham, U-G. and P.K. Trivedi (2000), Equity in Swedish health care
reconsidered: new results based on the finite mixture model, mimeo,

http://swopec.hhs.se/hastef/abs/hastef0365.htm

Grossman, M. (1972), On the concept of health capital and the demand for
health, Journal of Political Economy, 80, 223-55.

Gurmu, S. (1997), Semi-parametric estimation of hurdle regression models
with an application to medicaid utilization, Journal of Applied Economet-

rics, 12, 225-42.

Gurmu, S. and P.K. Trivedi (1996), Excess zeros in count models for recre-

ational trips, Journal of Business and Economic Statistics, 14, 469-77.

Gurmu, S. et. al. (1999), Semiparametric estimation of count regression

models, Journal of Econometrics, 88, 123-50.

Manning, W.G. et. al. (1987), Health insurance and the demand for medical
care: evidence from a randomized experiment, American Economic Review,

77, 251-77.

Mullahy, J. (1986), Specification and testing of some modified count data

models, Journal of Econometrics, 33, 341-65.

Pohlmeier, W. and V. Ulrich (1995), An econometric model of the two-part
decision-making process in the demand for medical care, Journal of Human

Resources, 30, 339-61.

Romeu, A. and A.M. Vera-Herndndez, A semi-nonparametric es-
timator for counts with an endogenous dummy variable, mimeo,

http://pareto.uab.es/wp/2000/45200.pdf

20



[20] Vera-Hernandez, A.M. (1999), Duplicate coverage and demand for health

care. The case of Catalonia, Health Economics, 8, 579-98.

[21] Windmeijer, F.A.G. and J.M.C. Santos Silva (1997), Endogeneity in count
data models: an application to demand for health care, Journal of Applied

Econometrics, 12, 281-94.

[22] Zweifel, P. (1981), Demande medicale induite par l'offre: chimere ou realite
(Supplier induced demand in a model of physician behaviour), Consomma-

tion 28, 39-62.

21



Table I: Descriptive Statistics

OBDV | OPV | ERV | IPV | DV | PRESCR
Observations 4562 | 4565 | 4566 | 4566 | 4566 4486
Mean 3.189 | 0.243 | 0.194 | 0.086 | 1.053 6.476
St. Dev. 5.343 | 1.589 | 0.637 | 0.389 | 1.875 11.010
Mean/Variance | 0.112 | 0.096 | 0.478 | 0.568 | 0.299 0.053
Maximum 68 50 17 5 32 75
% Zeros 34.6 904 | 8.1 | 939 | 57.1 33.8
Table II: Information Criteria and Fit, OBDV
Model Type/Order CAIC BIC AIC Type/Order | INSAMP | OUTSAMP
NB I 1.0034 | 1.0034 | 1.0086 I;I 1.007 1.005
HNB I 1.0030 | 1.0023 | 1.0032 ILI1 1.000 1.000
MNB I 1.0037 | 1.0028 | 1.0025 LI 1.005 1.010
CMNB I 1.0005 | 1.0002 | 1.0032 I.1 1.008 1.007
PSP 2;2;2 1.0025 | 1.0025 | 1.0063 1;1 1.007 1.011
HPSP || (1,2);(1,2);(1,2) | 1.0025 | 1.0014 | 1.0000 | (1,1);(1,1) | 1.000 1.000
PSNP 4;4:4 1.1928 | 1.1928 | 1.1979 2;2 1.002 1.003
NBSNP I, 2;2;2 1.0000 | 1.0000 | 1.0037 | (IL,1);(I1,4) 1.005 1.005
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Table III: Information Criteria and Fit, OPV

Model Type/Order CAIC BIC AIC | Type/Order | INSAMP | OUTSAMP
NB II 1.0079 | 1.0091 | 1.0128 ILII 1.004 1.004
HNB II 1.0260 | 1.0227 | 1.0093 ILII 1.003 1.005
MNB I 1.0260 | 1.0227 | 1.0035 I.1 1.004 1.005
CMNB IT 1.0045 | 1.0034 | 1.0012 ILII 1.006 1.003
PSP 1:1;2 1.0000 | 1.0000 | 1.0000 1:3 1.004 1.000
HPSP || (1,2);(1,2);(1,2) | 1.0339 | 1.0295 | 1.0035 | (1,1);(1,1) | 1.005 1.006
PSNP 3;3;3 1.0959 | 1.0952 | 1.0957 4;1 1.000 1.004
NBSNP 1, 2:2:2 1.0034 | 1.0023 | 1.0023 | (IL,2);(IL,1) | 1.002 1.004
Table IV: Information Criteria and Fit, ERV
Model || Type/Order | CAIC BIC AIC | Type/Order | INSAMP | OUTSAMP
NB I 1.0000 | 1.0000 | 1.0020 LII 1.000 1.000
HNB I 1.0212 | 1.0183 | 1.0020 IT;11 1.001 1.000
MNB I 1.0327 | 1.0290 | 1.0089 I.1 1.000 1.000
CMNB I 1.0087 | 1.0068 | 1.0010 LII 1.000 1.000
PSP 1:1;2 1.0048 | 1.0039 | 1.0020 3;1 1.000 1.000
HPSP NC NC NC NC NC NC NC
PSNP 2;2:4 1.0067 | 1.0058 | 1.0030 1;1 1.000 1.000
NBSNP [,1;1;2 1.0038 | 1.0029 | 1.0000 L1I 1.000 1.000
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Table V: Information Criteria and Fit, IPV

Model Type/Order CAIC BIC AIC | Type/Order | INSAMP | OUTSAMP
NB II 1.0000 | 1.0000 | 1.0019 LI 1.000 1.000
HNB II 1.0426 | 1.0354 | 1.0058 ILII 1.002 1.010
MNB I 1.0519 | 1.0447 | 1.0058 I.1 1.025 1.033
CMNB I 1.0167 | 1.0130 | 1.0000 LII 1.002 1.007
PSP 1:1;1 1.0074 | 1.0056 | 1.0019 1:1 1.002 1.006
HPSP || (1,1);(1,1);(1,1) | 1.0611 | 1.0503 | 1.0078 | (1,1),(1,3) | 1.005 1.005
PSNP 2;2;2 1.0056 | 1.0037 | 1.0019 1:1 1.000 1.007
NBSNP 1, 1;1;3 1.0056 | 1.0056 | 1.0019 | (I,1);(L3) 1.000 1.000

Table VI: Information Criteria and Fit, DV

Model Type/Order CAIC BIC AIC | Type/Order | INSAMP | OUTSAMP
NB I 1.0019 | 1.0023 | 1.0065 ILII 1.003 1.004
HNB I 1.0045 | 1.0042 | 1.0019 I.1 1.000 1.001
MNB I 1.0117 | 1.0110 | 1.0065 I.1 1.000 1.007
CMNB I 1.0053 | 1.0053 | 1.0069 LI 1.004 1.007
PSP 2;2;3 1.0189 | 1.0193 | 1.0218 1:1 1.003 1.004
HPSP || (1,2);(1,2);(1,4) | 1.0076 | 1.0064 | 1.0000 | (1,4);(1,4) | 1.001 1.000
PSNP 2:4:4 1.0615 | 1.0310 | 1.0325 1;1 1.002 1.003
NBSNP I, 3;3;3 1.0000 | 1.0000 | 1.0015 | (II,1);(IL,1) 1.002 1.004
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Table VII: Information Criteria and Fit, PRESCR

Model Type/Order CAIC BIC AIC | Type/Order | INSAMP | OUTSAMP
NB I 1.0013 | 1.0021 | 1.0053 ILII 1.005 1.003
HNB II 1.0000 | 1.0000 | 1.0000 ILII 1.000 1.001
MNB I 1.0013 | 1.0011 | 1.0002 I.1 1.010 1.009
CMNB I 1.0011 | 1.0017 | 1.0034 ILII 1.009 1.006
PSP 1:1;2 1.0130 | 1.0136 | 1.0161 1:1 1.038 1.035
HPSP || (1,1);(1,1);(1,1) | 1.0068 | 1.0066 | 1.0051 1;1 1.024 1.023
PSNP 2;2;2 1.8564 | 1.8581 | 1.8670 1;2 1.004 1.000
NBSNP 1, 2:2:2 1.0006 | 1.0009 | 1.0034 | (IL,1);(IL,2) | 1.005 1.003
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Figure 3: Fitted Use Versus Income: ERV
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Figure 5: Fitted Use Versus Income: DV
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