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Abstract

We study the properties of the well known Replicator Dynawitien applied
to a finitely repeated version of the Prisoners’ Dilemma gaMé& characterize
the behavior of such dynamics under strongly simplifyinguasptions (i.e. only 3
strategies are available) and show that the basin of atiracf defection shrinks
as the number of repetitions increases. After discussiadlifficulties involved
in trying to relax the “strongly simplifying assumptionsbave, we approach the
same model by means of simulations based on genetic algitrhe resulting
simulations describe a behavior of the system very closkd@mhe predicted by
the replicator dynamics without imposing any of the assimngtof the analyti-
cal model. Our main conclusion is that analytical and comfpahal models are
good complements for research in social sciences. Indegte an the one hand
computational models are extremely useful to extend thpesod the analysis to
complex scenarios hard to analyze mathematically, on ther dtand formal mod-
els can be extremely useful to verify and to explain the aue®of computational
models.
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1 Introduction

In the growing field of Agent-Based computer simulationsligpto social sciences,
model replication is considered a key issue. Indeed, asgasthether the observed
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results of a particular simulation of a model are correctemeagalizable is a difficult
task when no formal (i.e. mathematical) proof is providedlyQeplication, compar-
ison, alignment, and other related techniques can shed Bghteon the validity of

simulations. This work contains one such comparison. Wesp#-by-side two dif-
ferent analysis (mathematical and computational) of tineesanodel: the evolution of
strategies in the repeated prisoners’ dilemma.

First, we consider the case in which the evolutionary systambe described by
a deterministic dynamic system that uses expected valusggtrong simplifying
assumptions we are able to solve this case and to produce pleterdescription of
how the process behaves. We also discuss the problemséavatven we try to relax
some of the assumptions made.

The second approach is a computational simulation in whigtefautomata are
used to represent the strategies played and a decentralizgdive process based on
the models of genetic algorithms to simulate the stochastiutionary process. With
this technique we can relax some of the strong assumpti@tsinghe first approach
and still obtain the same basic results.

We like to think that the limitations of the first approachdaytical) provide a good
motivation for the second approach (Agent-Based simuiajiondeed, although both
approaches address the same problem, we show that the uggiof-Based compu-
tational techniques allows us to relax hypothesis and @veecthe limitations of the
analytical approach. On the other hand, it is shown that tiaytical model is ex-
tremely useful in order to explain the behavior and the tesoil the computational
model.

The choice of the repeated prisoners’ dilemma to conduabtperiment described
above is not arbitrary. It is a well know and largely studiedrg, and many things
about it have been learned thanks to the tools of formal géwmery. But when the
game is studied from an evolutionary perspective, the teaué not always clear. The
works by Boyd and Lorberbaum (1987) and Binmore and Samné€k892), for in-
stance, show that evolutionary stable solutions may faéxigts in many versions of
the game. Experiments and simulations, on the other hakelthie ones conducted
by Axelord (1984), Nowak and Sigmund (1992), or Miller (1996eem to suggest
that Tit-for-tat (and other similar strategies) prevaihmost of the situations. Thus, the
interest of our resarch is putting these two approachedytized and computational,
side-by-side to achieve a better understanding of the ggalry behavior of players
in the repeated prisoners’ dilemma

2 TheAnalytical Modd

The basic stage game (Prisoners’ Dilemma) that playersplall repeatedly is given
by
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We now consider the repeated version of the game playedafinihber of rounds
R. In order to keep things simple, we only consider three ptsstrategies (as in
Nowak et al. (2004)):

e D: Always defect
e C: Always cooperate
e T: Tit-for-Tat

as they are the three strategies that have deserved a hitgrgica in almost all the
literature dealing with the Repeated Prisoner’s Dilemroaifan evolutionary point of
view. Given the above, the repeated game can be represenfaitbavs

C D T
Cc [3R3R 0,5R 3R 3R
D [ 5R0 RR 5+(R—1),(R—1)
T[3R3R| (R-1),5+(R-1) 3R, 3R

Thus, for instance, whenx-type strategy meetse-type strategy, the former gets
5 in the first round and then 1in each subsequent rourd B 1) in total), while the
later gets O first and then lin each subsequent roBrd](in total).

2.1 TheReplicator Dynamics analysis

Let pt(C) be the probability that, at timg a player in this population is an “always
cooperate” type, and the same f@(D) andp,(T). We thus have thak (C) + p;(D) +
p(T) = 1 V.

The replicator dynamics states that the rate of change df puababilities is a
function of the relative performance of each strategy withpect to the average per-
formance of the population. In this sense, givi(C), p:(D), p:(T), the expected
payoff for each strategy is:

E71(C) = 3Rp(C) +0pt(D) +3Rpr(T) = 3R(R(C) + pt(T))
Em(D) = 5Rpt(C) + Rpt (D) + (5+ (R—1))pi(T)

Em(T) = 3Rt (C) + (R—1)pt(D) + 3Rpy(T) = 3R(R(C) + pt(T)) + (R— 1) p(D)
and the average payoff will be:
Ect= Em(C)pi(C) + E(D) pi (D) + Ec7a(T) pi (T)

Notice that sincgx (C) + pt(D) + pt(T) = 1 Vt only two dimensions matter.
Hence, the replicator dynamics in this case is given by:

ap(C)
ot

= p(C)(&m(C) — E)



api(D)
ot

and the corresponding vector field showing the trajectarfale system is given
in Figure 1

= p(D)(E1(D) — Er 1)
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Figure 1: Vector Field

The horizontal and vertical axis in Figure 1 correspong{€) andp; (D) respec-
tively. Thus, the three vertexes of the triang(&,0), (0,1), and(0.0)), correspond to
the stateqx(C) = 1, pt(D) = 1, andp: (T ) = 1 respectively. The trajectories that rep-
resent the evolution of the system are divided in two aredmsins of attraction, one
for Defection and another for Cooperation. Stationary fsoar the system are marked
red: (0,1) corresponding to everybody playsiways defect p;(D) =1, (0, %), and
all the points in the line that goes fro(0,0) to (1,0) that corresponds to points with
no defectants, that is, p;(D) = 0 andp;(C) + pt(T) = 1. Only the point(0,1) corre-
sponding top; (D) = lis asymptotically stable in the sense that if the systerightly
perturbed away front0, 1), any trajectory will bring it back to the same point. The

singular point(0, %) can only be reached if the system starts somewhere in the line

that goes fron{0, 22=2) to (E=2,0), which occurs with zero probability.
An important result is that the relative size of these basfragtraction depends on

the number of repetitioR. That is, if the system starts at random, the probability of



reaching the poinf0,1) (everybody defecting) or the lin@®,0) — (1,0) (everybody
cooperating) depends dd Thus, we can compute what is tlkeepected per-round
payoff a priori depending oR.
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Figure 2 shows the behavior of tleepected per-round payoff as a function oR.

We observe that it grows rapidly as the number of repetitigf)dncreases. In fact,
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Figure 2: Expected payoff as a function®f

3 The Computational Mode

Given the analysis above, the dynamics seem to suggeshtatis room for coop-
eration. At least for a broad range of initial conditionsg thajectories lead to some
point in the horizontal axis corresponding to a populationsisting ofonly C andT
strategies.

Nevertheless, such analysis is extremely partial since eonly considering 3
strategies at a time, namélyD, andT. One can easily see that extending this approach
to a more general case (with more strategies consideredifcalt task.

To overcome this limitation, we develop a computer simolath which the strate-
gies are represented by finite automata of size four and ati@e&xigorithm routine is
used to simulate the evolutionary process as in Miller (J986most of the cases, the
results of such simulations produce the outcome in Figuire 8hich the evolution of
the (per round) average payoffis displayed.
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Figure 3: Evolution of the average per-round payoff wheng&wation is the result

Because the final average payoff is 3 we can conclude thatalers follow a
cooperative strategy.

In other cases, though, cooperation is not the final resuth@®volution of the
average payoff results as in Figure 4.
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Figure 4: Evolution of the average per-round payoff whenda#bn is the result

In both cases, though, the resemblance between the vedtbirfi€igure 1 and
the evolution of payoffs in Figures 3 and 4 is very appealMthen the final result is



cooperation (as in Figure 3), both in the replicator dynamic analysis ianthe simu-
lations, the evolutionary process seems to favor the grofibefectant strategies at
first, and then these disappear and Cooperative strategigscreplicate to end up
with the payoff corresponding to the cooperative behavr.the contrary, when the
final result isdefection, the evolution goes “monotonically” towards that point.

How often each of these two results occurs ? Given that inrtlag/ical model we
have found out that the answer to this question depends hparuimber of repetitions
R, we check whetheR also has an effect in the computational model. In this sense,
Figure 5 complements Figure 2 by showing how the final obskaverage payoff of
the simulation’ (the payoff of generation 5000) dependsRirFor robustness, we do
such exercise with two different crossover rules and witlerossover
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Figure 5: Expected and observed payoffs as a functidd of

Figure 5 shows how the behavior of the simulations also retestwhat we ob-
tained theoretically in the previous section. That is, asribmber of repetitionR
grows, the higher is the probability of reaching cooperatisthe final result and hence,
the higher is the average payoff (both theoretical and eogly).

In this sense, it seems that the use of Genetic Algorithmisrtalate the evolution-
ary process closely matches the behavior predicted by iieagor dynamics while
avoiding the strong limitation of considering only 3 possistrategies.

4 Conclusions

We have studied the evolution of strategies in the well kné¥apeated Prisoner’s
Dilemma using two different approaches: one analyticabtamn the replicator dy-

1For each value dRwe run 100 simulations and compute the average payoff obttgbneration (5000)



namics and one computational based on genetic algorithrasshdv that the results
obtained from the two approaches coincide almost completeéhe sense that,

1. The two approaches produce the same two possible outcexdstion towards
defection or evolution towards cooperation.

2. In the two approaches, the path towards the equilibrievsamilar: monotonic
when going towards defection, non-monotonic when goingto& cooperation

3. In the two approaches, the proportion of times each ofwlepossible results
occurs is also similar and depends on the number of repetitbthe game.

The scope of these conclusions, though, might be somehadtedinThe reason is that,
while in the analytical model only three strategies are m@red (Always cooperate,
Always defect, and Tit-for-tat), the computational modehts with finite automata of
size 4, which can represent a very large number of differeategjies. Nevertheless,
one generally observes that from a starting random populafistrategies (represented
by finite automata), the genetic algorithm rapidly redudesnumber of “working”
strategies and, at the end, only strategies similar to theethsed in the analytical
model appear. Also, in Vila (2008) we discuss other gendgiorethm operators that
can deal with this issue, and the results are not differemt fhe ones presented here.

The results of this research seem to suggest that, in ouioopemnalytical and com-
putational models are good complements for resarch in lssdiences. Indeed, while
on the one hand computational models are extremely use&xitemd the scope of the
analysis to complex scenarios hard to analyze mathemgticalthe other hand formal
models can be extremely useful to verify and to explain theaues of computational
models.
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