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Abstract

We study the properties of the well known Replicator Dynamics when applied
to a finitely repeated version of the Prisoners’ Dilemma game. We characterize
the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3
strategies are available) and show that the basin of attraction of defection shrinks
as the number of repetitions increases. After discussing the difficulties involved
in trying to relax the “strongly simplifying assumptions” above, we approach the
same model by means of simulations based on genetic algorithms. The resulting
simulations describe a behavior of the system very close to the one predicted by
the replicator dynamics without imposing any of the assumptions of the analyti-
cal model. Our main conclusion is that analytical and computational models are
good complements for research in social sciences. Indeed, while on the one hand
computational models are extremely useful to extend the scope of the analysis to
complex scenarios hard to analyze mathematically, on the other hand formal mod-
els can be extremely useful to verify and to explain the outcomes of computational
models.
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ory, Replicator Dynamics, Model-to-Model Analysis, Repeated Prisoners’ Dilemma.

JEL Classification: C63, C72, D82.

1 Introduction

In the growing field of Agent-Based computer simulations applied to social sciences,
model replication is considered a key issue. Indeed, asserting whether the observed
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results of a particular simulation of a model are correct or generalizable is a difficult
task when no formal (i.e. mathematical) proof is provided. Only replication, compar-
ison, alignment, and other related techniques can shed somelight on the validity of
simulations. This work contains one such comparison. We putside-by-side two dif-
ferent analysis (mathematical and computational) of the same model: the evolution of
strategies in the repeated prisoners’ dilemma.

First, we consider the case in which the evolutionary systemcan be described by
a deterministic dynamic system that uses expected values. Using strong simplifying
assumptions we are able to solve this case and to produce a complete description of
how the process behaves. We also discuss the problems involved when we try to relax
some of the assumptions made.

The second approach is a computational simulation in which finite automata are
used to represent the strategies played and a decentralizedadaptive process based on
the models of genetic algorithms to simulate the stochasticevolutionary process. With
this technique we can relax some of the strong assumptions used in the first approach
and still obtain the same basic results.

We like to think that the limitations of the first approach (analytical) provide a good
motivation for the second approach (Agent-Based simulations). Indeed, although both
approaches address the same problem, we show that the use of Agent-Based compu-
tational techniques allows us to relax hypothesis and overcome the limitations of the
analytical approach. On the other hand, it is shown that the analytical model is ex-
tremely useful in order to explain the behavior and the results of the computational
model.

The choice of the repeated prisoners’ dilemma to conduct theexperiment described
above is not arbitrary. It is a well know and largely studied game, and many things
about it have been learned thanks to the tools of formal game theory. But when the
game is studied from an evolutionary perspective, the results are not always clear. The
works by Boyd and Lorberbaum (1987) and Binmore and Samuelson (1992), for in-
stance, show that evolutionary stable solutions may fail toexists in many versions of
the game. Experiments and simulations, on the other hand, like the ones conducted
by Axelord (1984), Nowak and Sigmund (1992), or Miller (1996), seem to suggest
that Tit-for-tat (and other similar strategies) prevail inmost of the situations. Thus, the
interest of our resarch is putting these two approaches, analytical and computational,
side-by-side to achieve a better understanding of the evolutionary behavior of players
in the repeated prisoners’ dilemma

2 The Analytical Model

The basic stage game (Prisoners’ Dilemma) that players willplay repeatedly is given
by

C D
C 3,3 0,5
D 5,0 1,1
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We now consider the repeated version of the game played a finite number of rounds
R. In order to keep things simple, we only consider three possible strategies (as in
Nowak et al. (2004)):

• D: Always defect

• C: Always cooperate

• T : Tit-for-Tat

as they are the three strategies that have deserved a higher attention in almost all the
literature dealing with the Repeated Prisoner’s Dilemma from an evolutionary point of
view. Given the above, the repeated game can be represented as follows

C D T
C 3R,3R 0,5R 3R,3R
D 5R,0 R,R 5+(R−1),(R−1)
T 3R,3R (R−1),5+(R−1) 3R,3R

Thus, for instance, when aD-type strategy meets aT -type strategy, the former gets
5 in the first round and then 1in each subsequent round (5+(R−1) in total), while the
later gets 0 first and then 1in each subsequent round (R−1 in total).

2.1 The Replicator Dynamics analysis

Let pt(C) be the probability that, at timet, a player in this population is an “always
cooperate” type, and the same forpt(D) andpt(T ). We thus have thatpt(C)+ pt(D)+
pt(T ) = 1 ∀t.

The replicator dynamics states that the rate of change of such probabilities is a
function of the relative performance of each strategy with respect to the average per-
formance of the population. In this sense, givenpt(C), pt(D), pt(T ), the expected
payoff for each strategy is:

Etπ(C) = 3Rpt(C)+0pt(D)+3Rpt(T ) = 3R(Pt(C)+ pt(T ))

Etπ(D) = 5Rpt(C)+ Rpt(D)+ (5+(R−1))pt(T )

Etπ(T ) = 3Rpt(C)+ (R−1)pt(D)+3Rpt(T ) = 3R(Pt(C)+ pt(T ))+ (R−1)pt(D)

and the average payoff will be:

Et π̄ = Etπ(C)pt(C)+ Etπ(D)pt(D)+ Etπ(T )pt(T )

Notice that sincept(C)+ pt(D)+ pt(T ) = 1 ∀t only two dimensions matter.
Hence, the replicator dynamics in this case is given by:

∂ pt(C)

∂ t
= pt(C)(Etπ(C)−Et π̄)

3



∂ pt(D)

∂ t
= pt(D)(Etπ(D)−Et π̄)

and the corresponding vector field showing the trajectoriesof the system is given
in Figure 1

Figure 1: Vector Field

The horizontal and vertical axis in Figure 1 correspond topt(C) andpt(D) respec-
tively. Thus, the three vertexes of the triangle ((1,0), (0,1), and(0.0)), correspond to
the statespt(C) = 1, pt(D) = 1, andpt(T ) = 1 respectively. The trajectories that rep-
resent the evolution of the system are divided in two areas orbasins of attraction, one
for Defection and another for Cooperation. Stationary points of the system are marked
red: (0,1) corresponding to everybody playingalways defect pt(D) = 1, (0,

2R−4
2R−3), and

all the points in the line that goes from(0,0) to (1,0) that corresponds to points with
no defectants, that is,pt(D) = 0 andpt(C)+ pt(T ) = 1. Only the point(0,1) corre-
sponding topt(D) = 1is asymptotically stable in the sense that if the system is slightly
perturbed away from(0,1), any trajectory will bring it back to the same point. The
singular point(0,

2R−4
2R−3) can only be reached if the system starts somewhere in the line

that goes from(0,

2R−4
2R−3) to (R−2

R−1,0), which occurs with zero probability.
An important result is that the relative size of these basinsof attraction depends on

the number of repetitionR. That is, if the system starts at random, the probability of
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reaching the point(0,1) (everybody defecting) or the line(0,0) → (1,0) (everybody
cooperating) depends onR. Thus, we can compute what is theexpected per-round
payoff a priori depending onR.

Eπ̄ = (
2R−4
2R−3

)(
R−2
R−1

) ·3+(1− (
2R−4
2R−3

)(
R−2
R−1

)) ·1

Figure 2 shows the behavior of theexpected per-round payoff as a function ofR.
We observe that it grows rapidly as the number of repetitions(R) increases. In fact,
Eπ̄ → 3 asR → ∞

Figure 2: Expected payoff as a function ofR

3 The Computational Model

Given the analysis above, the dynamics seem to suggest that there is room for coop-
eration. At least for a broad range of initial conditions, the trajectories lead to some
point in the horizontal axis corresponding to a population consisting ofonly C andT
strategies.

Nevertheless, such analysis is extremely partial since we are only considering 3
strategies at a time, namelyC,D, andT . One can easily see that extending this approach
to a more general case (with more strategies considered) is adifficult task.

To overcome this limitation, we develop a computer simulation in which the strate-
gies are represented by finite automata of size four and a Genetic Algorithm routine is
used to simulate the evolutionary process as in Miller (1996). In most of the cases, the
results of such simulations produce the outcome in Figure 3,in which the evolution of
the (per round) average payoff is displayed.
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Figure 3: Evolution of the average per-round payoff when Cooperation is the result

Because the final average payoff is 3 we can conclude that all players follow a
cooperative strategy.

In other cases, though, cooperation is not the final result asthe evolution of the
average payoff results as in Figure 4.

Figure 4: Evolution of the average per-round payoff when Defection is the result

In both cases, though, the resemblance between the vector field in Figure 1 and
the evolution of payoffs in Figures 3 and 4 is very appealing.When the final result is
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cooperation (as in Figure 3), both in the replicator dynamic analysis andin the simu-
lations, the evolutionary process seems to favor the growthof Defectant strategies at
first, and then these disappear and Cooperative strategies start to replicate to end up
with the payoff corresponding to the cooperative behavior.On the contrary, when the
final result isdefection, the evolution goes “monotonically” towards that point.

How often each of these two results occurs ? Given that in the analytical model we
have found out that the answer to this question depends upon the number of repetitions
R, we check whetherR also has an effect in the computational model. In this sense,
Figure 5 complements Figure 2 by showing how the final observed average payoff of
the simulations1 (the payoff of generation 5000) depends onR. For robustness, we do
such exercise with two different crossover rules and with nocrossover

Figure 5: Expected and observed payoffs as a function ofR

Figure 5 shows how the behavior of the simulations also resembles what we ob-
tained theoretically in the previous section. That is, as the number of repetitionsR
grows, the higher is the probability of reaching cooperation as the final result and hence,
the higher is the average payoff (both theoretical and empirically).

In this sense, it seems that the use of Genetic Algorithms to simulate the evolution-
ary process closely matches the behavior predicted by the replicator dynamics while
avoiding the strong limitation of considering only 3 possible strategies.

4 Conclusions

We have studied the evolution of strategies in the well knownRepeated Prisoner’s
Dilemma using two different approaches: one analytical based on the replicator dy-

1For each value ofR we run 100 simulations and compute the average payoff of the last generation (5000)
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namics and one computational based on genetic algorithms. We show that the results
obtained from the two approaches coincide almost completely in the sense that,

1. The two approaches produce the same two possible outcomes: evolution towards
defection or evolution towards cooperation.

2. In the two approaches, the path towards the equilibrium are similar: monotonic
when going towards defection, non-monotonic when going towards cooperation

3. In the two approaches, the proportion of times each of the two possible results
occurs is also similar and depends on the number of repetitions of the game.

The scope of these conclusions, though, might be somehow limited. The reason is that,
while in the analytical model only three strategies are considered (Always cooperate,
Always defect, and Tit-for-tat), the computational model deals with finite automata of
size 4, which can represent a very large number of different strategies. Nevertheless,
one generally observes that from a starting random population of strategies (represented
by finite automata), the genetic algorithm rapidly reduces the number of “working”
strategies and, at the end, only strategies similar to the three used in the analytical
model appear. Also, in Vilà (2008) we discuss other genetic algorithm operators that
can deal with this issue, and the results are not different from the ones presented here.

The results of this research seem to suggest that, in our opinion, analytical and com-
putational models are good complements for resarch in social sciences. Indeed, while
on the one hand computational models are extremely useful toextend the scope of the
analysis to complex scenarios hard to analyze mathematically, on the other hand formal
models can be extremely useful to verify and to explain the outcomes of computational
models.

References

[1] Axelrod, R. and Hamilton, W.: The Evolution of Cooperation. Science211 (1981)
1390-1396

[2] Axelrod, R.: The Evolution of Cooperation. New York: Basic Books (1984)

[3] Miller, J. H.: The coevolution of automata in the repeated Prisoner’s Dilemma.
Journal of Economic Behavior and Organization29 (1996) 87–112

[4] Binmore, K. and Samuelson, L: Evolutionary Stability inRepeated Games Played
by Finite Automata. Journal of Economic Theory57 (1992) 278-305

[5] Boyd, R. and Lorberbaum J.: No Pure Strategy is Evolutionarily Stable in the
repeated Prisoner’s Dilemma Game. Nature327 (1987) 58-59

[6] Nowak, M. A., Sasaki, A., Taylor, C., and Fudenberg, D.: Emergence of coop-
eration and evolutionary stability in finite populations. Nature428 (2004) 646 –
650

8



[7] Nowak, M. and Sigmund, K: Tit for Tat in Heterogeneous Populations. Nature355
(1992) 250-253

[8] Vilà, X.: A Model-To-Model Analysis of Bertrand Competition.
Journal of Artificial Societies and Social Simulation11(2) (2008)
<http://jasss.soc.surrey.ac.uk/11/2/11.html>.

9


