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Abstract

We propose a new solution concept to address the problem of sharing a surplus among the

agents generating it. The sharing problem is formulated in the preferences-endowments

space. The solution is defined in a recursive manner incorporating notions of consistency

and fairness and relying on properties satisfied by the Shapley value for Transferable

Utility (TU) games. We show a solution exists, and refer to it as an Ordinal Shapley

value (OSV ). The OSV associates with each problem an allocation as well as a matrix

of concessions “measuring” the gains each agent foregoes in favor of the other agents. We

analyze the structure of the concessions, and show they are unique and symmetric. Next

we characterize the OSV using the notion of coalitional dividends, and furthermore show

it is monotone in an agent’s initial endowments and satisfies anonymity. Finally, similarly

to the weighted Shapley value for TU games, we construct a weighted OSV as well.

JEL Classification numbers: C72, D50, D63.

Keywords: Non-Transferable utility games, Shapley Value, Ordinal Shapley Value,

consistency, fairness.



1 Introduction

A feature common to most economic environments is that the interaction among agents,

be it through exchange, production or both, generates benefits shared among the partic-

ipating individuals. The question of what interactions would or should occur, and what

would be the resulting distribution of gains has been central to economic theory. It has

been approached both from the normative and the positive point of view.

The normative point of view led to the analysis of existence and properties of al-

locations satisfying “desirable” criteria such as efficiency (Pareto optimality), fairness

(envy-freeness and egalitarianism) and others. The positive point of view resulted in the

analysis of outcomes generated by the interaction of the agents within given institutional

structures, focusing first on competitive environments and later on the study of environ-

ments where agents possess varying degrees of market power. Game theory, cooperative

and non-cooperative, has provided several important insights with respect to the norma-

tive and positive points of view. In this paper, we focus on the normative approach. We

propose and analyze a new solution concept that satisfies appealing properties in economic

environments.

Cooperative game theory has been especially useful in one particular class of economic

environments, the one characterized by transferable utility (TU ), where there exists a

“numeraire” commodity that all agents value the same in terms of utility. For that class,

there exist several popular notions of the distribution of gains, referred to as surplus

sharing, the most well-known of which are the Core and the Shapley Value. These satisfy

several desirable normative properties such as efficiency and group stability in the case of

the core, and efficiency, fairness and consistency for the Shapley value.

Extending the notion of the Core to more general environments with non-transferable

utility (NTU ) is straightforward. However, the extension of the central concept of the

Shapley Value turns out to be a much more demanding task. All known extensions

describe the environment in the utility space, i.e., specifying feasible utility tuples, ab-

stracting from the physical environment generating the tuples. A surplus sharing method

is then a rule prescribing, for each environment, the utility profiles that the whole set (the

grand coalition) of agents should receive.
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The three known extensions of the Shapley value associate with each environment one

or more TU games, and use their Shapley value to generate a surplus sharing method.

To define such a method, Shapley (1969) associates with each environment a TU game,

by means of a weights vector, giving the “worth” of each utility tuple. This TU game has

a well-defined Shapley value. If this value is feasible for the original game, it is a utility

profile associated with this environment. Aumann (1985) provides an axiomatization of

this solution. Harsanyi (1959) suggests a different extension, by stressing the idea of

equity. His solution contains the notion of coalitional “dividends” and each agent must

end up with a payoff corresponding to the sum of his dividends. An axiomatization for

this solution is provided in Hart (1985). Finally, Maschler and Owen (1989) and (1992),

using a TU game associated with the grand coalition, provide an extension preserving

the consistency properties of the Shapley value. Hart and Mas-Collel (1996) present a

model of non-cooperative bargaining that yields the Maschler-Owen consistent value in

environments with non-transferable utility.

A major shortcoming of the extensions of the Shapley Value is that the solutions

are not invariant to order-preserving transformations of the agents’ utilities. The notion

of invariance has been addressed in the literature in two different ways. One approach

considers bargaining problems, where the environment is given by the utility possibilities

frontier for the whole set of agents and the disagreement point. A solution is then said to

be ordinal, if it is invariant with respect to strictly increasing monotonic transformations

of these entities. Shapley (1969) shows that there does not exist an ordinal, efficient

and anonymous solution for the case of two agents, and constructs one for the three-agent

case. Samet and Safra (2001), using constructions similar to O’Neill et al. (2001), provide

a family of ordinal, efficient and anonymous solutions for bargaining problems with any

number of agents greater than two. Safra and Samet (2001) provide yet another family

of such solutions.

The second approach towards the ordinality issue considers the underlying physical

environment generating the utility possibilities frontier. This approach better captures

the basic structure of the environment since identical economic environments may lead

to drastically different utility possibility frontiers (corresponding to different bargaining

problems), by appropriate choices of utility functions that represent the same preferences.
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In this approach the solution is defined in terms of the physical environment, i.e., in terms

of allocations of commodity bundles.

To clarify the difference between the two approaches towards the analysis of ordinality,

take the example of a two-agent exchange economy. Consider the representation of this

economy as an NTU game (or equivalently, a bargaining game). Following Shapley (1969)

there is no ordinal, efficient and anonymous solution concept for this game. However, it is

clear there are several ordinal, efficient and anonymous solution concepts for the exchange

economy such as the competitive equilibrium, the core and others. Therefore, an ordinal

solution for the economic environment need not be an ordinal solution for the NTU game.

Similarly, an ordinal NTU solution need not be ordinal if analyzed as a solution for the

economic environment.

Pazner and Schmeidler (1978) provide a family of ordinal solutions given by Pareto-

Efficient Egalitarian-Equivalent (PEEE) allocations for exchange economies. They con-

sider the problem of allocating a bundle of goods among a set of agents. In their envi-

ronment, each of the agents has the same a priori rights. An allocation is PEEE if it

is Pareto efficient and fair, in the sense that there exists a fixed commodity bundle (the

same for each agent) such that each agent is indifferent between this bundle and what he

gets in the allocation. Crawford (1979) and Demange (1984) propose procedures for im-

plementing PEEE allocations. McLean and Postlewaite (1989) consider pure exchange

economies as well, and define an ordinal solution given by nucleolus allocations, extending

the notion of a nucleolus defined for TU games in Schmeidler (1969). Nicolò and Perea

(2002) also start from the physical environment, and provide ordinal solutions for the case

of two agents that, under some conditions, also extend to environments with any number

of agents.

Our work continues this line of research by proposing an ordinal solution based on the

physical environment. This new solution incorporates several of the principles underlying

the Shapley value in TU environments, and will be referred to as an Ordinal Shapley Value

(OSV ). It generalizes the fairness notion (of PEEE) by considering possibly different

a priori rights (i.e., different initial endowments), and also the options agents have in

any possible subgroup, and not just their own initial endowments. It is consistent in

the sense that agents’ payoffs are based on what they would get according to this rule
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when applied to sub-environments. In addition to these important properties of equity

and consistency, the solution is efficient, monotonic, anonymous, and satisfies individual

rationality. Also, the OSV is characterized through the use of “coalitional dividends”

similar to the characterization of the Shapley value by the use of Harsanyi dividends

(Harsanyi, 1959).

In the next Section we start by reviewing the Shapley value in TU environments.

We characterize the Shapley value by the behavior of value differences (the change in a

player’s value when moving from a game with n − 1 agents to a game with n agents),
and recall the coalitional dividends approach as well. In Section 3 we describe the pure

exchange economy underlying the NTU environment and introduce the OSV , building on

the characterization of the Shapley value for TU environments provided in the previous

section. In Section 4 we analyze the OSV for two-agent economies, and compare it to

existing constructions. In Section 5, we prove that an OSV exists for any number of

agents and furthermore it is individually rational. In Section 6, we start by proving the

construction of the OSV satisfies a symmetry property. We then proceed to characterize

the OSV via coalitional dividends, and provide further properties of the solution. In

Section 7, we show how to generate a family of weighted OSV s, providing an ordinal

analogue to the weighted Shapley values for TU environments. In Section 8, we conclude

and discuss further directions of research.

2 The Shapley Value in TU environments: A New

Characterization

Consider a Transferable Utility (TU ) game (N, v), where N = {1, ..., n} is the set of
players, and v : 2N → R is a characteristic function satisfying v(∅) = 0, where ∅ is the

empty set. For a coalition S ⊆ N, 1 v(S) represents the total payoff that the partners in
S can jointly obtain if this coalition is formed. We define a value as a mapping ξ which

associates with every game (N, v) a vector in Rn that satisfies i∈N ξi(N, v) = v(N).

1Throughout the paper, we use ⊆ to denote the weak inclusion and ⊂ to denote the strict inclusion.
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The Shapley value (Shapley, 1953a) of every agent i ∈ N in the TU game (N, v) is:

φi(N, v) =
S⊆N\{i}

|S|!(n− |S|− 1)!
n!

[v(S ∪ {i})− v(S)],

where |S| denotes the cardinality of the subset S. The Shapley value can be interpreted
as the expected marginal contribution made by a player to the value of a coalition, where

the distribution of coalitions is such that any ordering of players is equally likely.

The next theorem provides a new characterization of the Shapley value, the interpre-

tation of which follows the theorem.

Theorem 1 A value ξ is the Shapley value if and only if it satisfies:

i∈N\j
(ξi(N, v)− ξi(N\j, v)) =

i∈N\j
(ξj(N, v)− ξj(N\i, v)) (1)

for all j ∈ N and for all (N, v).

Proof. To prove that the Shapley value satisfies the equality note that (1) is equivalent

(rearranging terms and using i∈N ξi(N, v) = v(N)) to:

ξj(N, v) =
1

n
[v(N)− v(N\j)] + 1

n
i∈N\j

ξj(N\i, v). (2)

It is easy to check that the Shapley value satisfies (2). (This equality has been previously

used by Maschler and Owen (1989) and Hart and Mas-Colell (1989).)

Furthermore suppose that equality (1), equivalently (2), is satisfied by the value ξ, for

all j ∈ N and for all (N, v). Since (2) provides a unique recursive way of calculating ξ

starting with ξi({i}, v) = v({i}), it characterizes the Shapley value, which completes the
proof.

The expression φi(N, v)−φi(N\j, v) is usually referred to as the contribution of player
j to the Shapley value of player i. It corresponds to the amount that makes player i

indifferent between receiving the value suggested to him in the game (N, v), or receiving

this payment and reapplying the value concept to the game without player j. Theorem

1 states that a value is the Shapley value if and only if, for any player j, the sum of the

contributions of player j to the other players is equal to the sum of the contributions of

the other players to player j.
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We refer to the difference φi(N, v)−φi(N\j, v) as a concession, what player j concedes
to player i, and denote it by cji .

2 In fact, an immediate corollary of Theorem 1 is the

following:

Corollary 1 A value ξ is the Shapley value if and only if for each game (N, v) there

exists a matrix of concessions c(N, v) ≡ (cij(N, v))i,j∈N,i=j, with c
i
j(N, v) in R for all

i, j ∈ N, i = j, such that:
(1) ξi(N, v) = ξi(N\j, v) + cji (N, v) for all i, j ∈ N, i = j, and
(2)

i∈N\j
cji (N, v) =

i∈N\j
cij(N, v) for all j ∈ N.

We can view part ( 1) in Corollary 1 as a consistency property of the Shapley value.

When the n − 1 players other than j consider the value offered to them by the solution

concept, they contemplate what might happen if they decide to go on their own. However,

the resources at their disposal should incorporate rents they could conceivably achieve by

cooperating with j. We call these rents the concessions of j to the other players.

Since the value is efficient and due to the consistency property of the concessions,

the sum of concessions a player makes is a measure of the surplus left to others, once

he has been compensated according to the solution concept. Therefore, part ( 2) can be

interpreted as a fairness requirement: the concessions balance out, the sum of concessions

one player makes to the others equals the sum of concessions the others make to him.

We now briefly describe some characteristics of the concessions.

For a TU game (N, v), for any coalition S ⊆ N, let the game wS be the unanimity game
(i.e., wS(T ) = 1 if T ⊇ S,wS(T ) = 0 otherwise). It is well known that the characteristic
function v can be written as linear combination of unanimity games: v = S⊆N αSwS.

Denoting λS =
αS
|S| for all S ⊆ N, the Shapley value can be written (see Harsanyi, 1959)

as:

φi(N, v) =
S i
S⊆N

λS for all i ∈ N. (3)

2See also Pérez-Castrillo and Wettstein (2001), where concessions are interpreted as bids.
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It follows that:

cji (N, v) =
S i,j
S⊆N

λS for all i, j ∈ N, i = j.

An immediate implication of the previous equality is that, in TU games, the concessions

are symmetric in the sense that what player j concedes to i is the same as what player i

concedes to j. The symmetry of the concessions corresponds to the balanced contributions

property (see Myerson, 1980).

Another interesting property of the concessions is that, although they can in general

be positive of negative, they are always non-negative if the game is convex. The game

(N, v) is convex if, for all S, T ⊆ N with S ⊂ T and i /∈ T we have:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

Next proposition states the result.

Proposition 1 If the TU game (N, v) is convex, all the concessions cji (N, v) are non-

negative.

Proof. The concession cji (N, v) = φi(N, v)− φi(N\j, v) is the difference between the
Shapley value of agent i in the game with all the agents and agent i’s Shapley value in

the game without agent j. Sprumont (1990) showed that for convex games the Shapley

value is a population monotonic allocation scheme. Each agent’s Shapley value increases

as the coalition to which he belongs expands. Thus, φi(N, v)− φi(N\j, v) ≥ 0 and hence
the concessions are non-negative.

To complete the section, we point out that a value can be expressed in terms of the

“Harsanyi dividends” (they are also called coalitional dividends), given in equation (3) if

and only if it is the Shapley value. We return to this characterization when analyzing the

properties of our proposal.

Proposition 2 A value ξ is the Shapley value if and only if, for any game (N, v) there

exists µS ∈ R for all S ⊆ N such that,

ξi(T, v) =
S i
S⊆T

µS for all i ∈ T, for all T ⊆ N . (4)
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Proof. The fact that the Shapley value satisfies this property was shown by Harsanyi

(1959) and it is stated in (3). To show the sufficiency we note that (4) implies that ξ is

an egalitarian solution and hence must be the Shapley value (see Mas-Colell, Whinston

and Green (1995, pp. 680-681) for the definition of an egalitarian solution and the fact it

coincides with the Shapley value).

In the next section we describe the NTU environment, and define an ordinal solution

concept. As will be evident from the construction it generalizes the Shapley value notion,

and hence we call it an Ordinal Shapley value.

3 The Environment and the Solution

We consider a pure exchange economy with a set N = {1, 2, ..., n} of agents and k ≥ 2
commodities. Agent i ∈ N is described by { i, wi}, where wi ∈ Rk+ is the vector of initial
endowments and i is the preference relation defined over Rk. We denote by i and ∼i
the strict preference and indifference relationships associated with i. For each i ∈ N ,
the preference relation i is assumed to be continuous and strictly increasing on Rk. We

let ui be a utility function representing the preferences of agent i.
We let w ≡

i∈N
wi. The set of feasible utility profiles in Rn is denoted by A and defined

by:

A = u ∈ Rn|∃ xi
i=1,...,n

∈ Rkn, such that ui(xi) = ui, i = 1, ..., n and
i∈N

xi ≤ w .

Agents can conceivably be better off by reallocating their initial endowments. However, it

should not be possible for the utility of one agent to grow arbitrarily large if the utilities

of the other agents are bounded from below. To capture this idea, we assume that, for

any u ∈ A and i ∈ N, the set Ai(u) ≡ {u ∈ A|u−i = u−i} is bounded from above.3 In this
paper, any pure exchange economy that satisfies the previous requirements is referred to

as an economic environment.

3For a vector x ∈ Rn and i ∈ N , x−i ≡ (x1,...,xi−1,xi+1,...,xn}.
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3.1 An Ordinal Solution

We propose a solution concept, called the Ordinal Shapley Value (OSV ), for pure ex-

change economies, the construction of which relies on the notion of concessions. However,

since these economies constitute NTU environments, which are described in terms of the

underlying physical structure, concessions cannot be in the form of utility transfers. Con-

cessions are expressed in terms of commodities. We measure them in terms of a “base

bundle” which we take to be e = (1, ..., 1) ∈ Rk. The main characteristic of the concept
proposed is that it is ordinal. That is, the solution associates with each economy a set of

allocations that does not depend on the numerical representation of the underlying prefer-

ences of the agents. Moreover, the solution proposed is efficient and satisfies consistency

and fairness requirements.

Any (efficient) allocation can be viewed as a sharing of the surplus generated by the

possibility of exchange among the agents. What is a “fair” and “consistent” sharing? Let

us first discuss the rationale of our proposal in the case of two agents. According to our

proposal, a sharing is fair if the gains from cooperation are equally distributed among the

two agents. A crucial question is how to measure these gains. In our proposal, the benefits

from cooperation are measured in terms of e. The gain of each agent is the amount of e

units that when added to his initial endowment, yields a bundle indifferent to the bundle

received by the sharing. This amount of e assumes the role of the difference in values (in

the TU case).

A sharing is consistent if each agent is indifferent between the sharing outcome and

what he could get if he were to walk away and keep what remains of the aggregate

endowment, after compensating the other agent according to the solution concept. How

should the other agent be compensated or what part of the surplus can the agent who

walks away, keep? We measure the surplus he can keep by the maximal amount of e units

for which, when he receives a bundle indifferent to his initial endowment augmented by

that amount of e units, the other agent is left with a bundle equivalent to the bundle

he received in the sharing. To state these properties more succinctly we use the notion

of a concession just as in the TU case. An efficient sharing is fair and consistent if

there exists a pair of concessions such that the concession made by agent i to agent j
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equals the concession made by agent j to agent i, and each agent is indifferent between

keeping this allocation or taking the concession proposed by the other (to add to his initial

endowment).

Extending this notion to the n-person case, a solution is an efficient allocation for which

there exists a matrix of concessions, one from each agent to any other agent, satisfying

consistency and fairness. The consistency property now requires that any set of (n − 1)
agents should be indifferent between keeping their allocation or taking the concessions

made by the remaining agent and reapplying the solution concept to the (n − 1)-agent
economy. The sum of concessions an agent makes is a measure of the surplus left to

others in terms of the commodity bundle e, once he has been compensated according to

the solution concept. Similar to the Hart and Mas-Collel (1989) definition of consistency,

any (n − 1) agents are indifferent between what the solution offers them, in the n-agent
economy, and what the solution prescribes if they walk away with the surplus generated

in the n-agent economy, after the remaining agent receives what the original solution gave

him. The recursive nature of the definition implies that this consistency property extends

to coalitions of any size.

Moreover, to ensure that the allocation reached is “fair”, we require the concessions to

balance out, in the sense that the sum of concessions one player makes to the others equals

the sum of concessions the others make to him. In other words, the surplus generated

for any set of n − 1 agents is the same as the surplus they are willing to concede to the
remaining agent.

The formal definition of this solution concept, the OSV , is as follows:

Definition 1 The Ordinal Shapley Value is defined recursively.

(n = 1) In the case of an economy with one agent with preferences 1 and initial

endowments a1 ∈ Rk, the OSV is given by the initial endowment: OSV ( 1, a1) = {a1} .
Suppose that the solution has been defined for any economy with (n−1) or less agents.
(n) In the case of an economy ( i, ai)i∈N with a set N of n agents, the OSV (( i, ai)i∈N)

is the set of efficient allocations (xi)i∈N for which there exists an n−tuple of concession
vectors (ci)i∈N that satisfy

n.1) for all j ∈ N, there exists y(j) ∈ OSV ( i, ai + cjie)i∈N\j such that xi ∼i y(j)i
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for all i ∈ N\j, and
n.2)

i∈N\j
cji =

i∈N\j
cij for all j ∈ N.

It is not clear a priori whether or not the requirements of the definition of an OSV

are mutually compatible. Before proving the existence of an OSV for any economic

environment, we consider in the next section the existence and properties of the OSV for

economies with two agents.

It should be noted that the choice of the bundle e to measure the surplus that accrues

to each agent is arbitrary. An OSV could be constructed by using any other vector in

Rk+. The following analysis is valid regardless of the particular reference bundle chosen.

Note also that this solution concept reduces to the Shapley value in economic envi-

ronments that can be described as a TU environment. In such environments there is

a common unit of account which can be thought of as money, and agents’ preferences

are (normalized) quasi linear of the form m + ui(x) where m is “money”, ui is a utility

function, and x is a commodity vector. If we measure concessions in terms of money (m),

our solution yields the Shapley value.

4 The solution in the two-agent economy

For a two-agent economy, an OSV is an efficient allocation for which there exists an

identical concession for each agent, such that any agent is indifferent between the bundle

offered to him in the allocation or taking the concession and staying on his own.

In order to characterize a solution (xi)i=1,2 in the two-agent economy, notice first

that, by efficiency, the bundle of player 1, x1, must be the best for him among all the

allocations that leave agent 2 indifferent or better off than the bundle x2.Moreover, agent

2 is indifferent between x2 and w2 + c1e, and similarly, agent 1 is indifferent between x1

and w1+ c2e. Given that the concessions are the same, c ≡ c1 = c2, they must satisfy the
following equality:

u1(w1 + ce) = max(z1,z2) u
1(z1)

s.t. u2(z2) ≥ u2(w2 + ce)
z1 + z2 ≤ w1 + w2.
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The solution to this equation is given by the maximal real number c (which is non-

negative) that satisfies:

(u1(w1 + ce), u2(w2 + ce)) ∈ A.

Since preferences are strictly increasing and the sets Ai(u) are bounded, the previous

c exists and is unique. Note that the concession in the OSV depends on the initial

endowments. The OSV for the two-agent economy consists of the efficient allocations

(x1, x2) such that u1(x1) = u1(w1 + ce) and u2(x2) = u2(w2 + ce). When preferences are

strictly quasiconcave, the OSV allocation is unique.

For the two-agent economy the OSV has a very natural graphical representation.

Figure 1 depicts the OSV when n = 2 and there are two commodities.

[Insert Figure 1]

For two-agent economies, our proposal bears many similarities to two previous solu-

tion concepts. First, it is similar to the Pareto-Efficient Egalitarian-Equivalent (PEEE)

allocation proposed by Pazner and Schmeidler (1978), when addressing the issue of al-

locating a bundle of goods among a set of agents. The OSV allocation when the two

agents have the same initial endowments is a PEEE allocation as well. Note that by

choosing different commodity bundles to concede with, we can generate a family of OSV

allocations, all of which are PEEE.

Nicolò and Perea (2002) also propose an ordinal solution concept for two-person bar-

gaining situations. Their construction yields the OSV for the class of exchange economies

where aggregate endowments of all the commodities are equal and are shared equally

among the two agents. Furthermore, while we require indifference with respect to adding

to the two agents initial endowments, multiples of e, they require indifference with re-

spect to adding to each agent’s initial endowment a multiple of the other agent’s initial

endowment.

5 Existence of the OSV in the general case

As noted before, it is not obvious there exists an efficient allocation for which one can find

concessions satisfying the requirements imposed by the definition of an OSV . To show
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such allocations exist, we invoke in Theorem 2 a fixed point argument. Furthermore we

show that allocations in the OSV satisfy the desirable property of individual rationality,

that is, if x ∈ OSV (( i, wi)i∈N) , then xi wi, for all i ∈ N.
We first prove the following lemma which plays an important role in the proof of

Theorem 2 and is used in several propositions and comments throughout the paper.

Lemma 1 For any u ∈ Rn in the range of the utility functions, there exists a unique
vector a ∈ Rn such that an OSV for the n−agent economy ( i, wi + aie)i∈N yields the

utility tuple u.

Proof. Lemma 1 is true for n = 1 by monotonicity and continuity of the preferences.

We assume it holds for n − 1 and show it also holds for n. For each j ∈ N, let (aji )i∈N\j
be the unique vector such that the economy with (n− 1) agents with initial endowments
(wi + ajie)i∈N\j has an OSV yielding the (n− 1)−utility tuple u−j.
To prove the existence of such a vector a ∈ Rn, we propose concessions cji i,j∈N,i=j

and prove that they support an OSV yielding the utility vector u. The proposal involves

the unknowns ai, for i ∈ N, as follows:

cji = −ai + aji for i, j ∈ N, i = j.

The proposed concessions, in order to support an OSV , must satisfy the “fairness” con-

dition n.2) :

i∈N\j
cji =

i∈N\j
cij for j ∈ N,

yielding a system of linear equations given by:

i∈N\j
−ai + aji = −(n− 1)aj +

i∈N\j
aij for j ∈ N,

that is,

(n− 1)aj −
i∈N\j

ai =
i∈N\j

aij −
i∈N\j

aji ≡ θj for j ∈ N.
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Notice that
j∈N

θj = 0. It is then easy to check that the solutions for this system are

all given by:

ai =
1

n
θi − θn + an for i ∈ N,

where an ∈ R.
Denote by a the only real number such that u is efficient for an economy where the

initial endowments are wi + 1
n

θi − θn e+ ae
i∈N . The existence and unicity of such

an a is implied by the continuity and monotonicity of preferences. Let us denote by

x ∈ Rnk a Pareto efficient allocation in the economy where initial endowments are given
by wi + 1

n
θi − θn e+ ae

i∈N yielding the utility profile u.

We now prove that the allocation x, is inOSV (( i, wi+aie)i∈N), with ai = 1
n

θi − θn +

a, and the concessions cji = −ai + aji for i, j ∈ N, i = j supporting it.
First, take any set of (n − 1) agents, say N\j. An economy where these agents have

initial endowments (wi + aie)i∈N\j and receive concessions cji i∈N\j is identical, by con-

struction, to an economy where agents’ initial endowments are wi + ajie i∈N\j. Hence,

there is an OSV value for this (n − 1)−agent economy where agent i’s utility is ui, for
all i ∈ N\j. This corresponds to the n.1) requirement in the definition of an OSV for

the n−agent economy. Furthermore, by construction, requirement n.2) is satisfied for the
concessions cji i,j∈N,i=j . Finally, note that x is efficient for the n−agent economy with
initial endowments (wi + aie)i∈N,i=j and that it generates utility levels given by u.

To complete the proof of Lemma 1, we show that if an OSV for the economy ( i

, wi+aie)i∈N yields the utility tuple u, then a = a. Denote by (c
j
i )i,j∈N,i=j the concessions

associated with this OSV . For any j ∈ N, define now the vector aj ∈ Rn−1 by:

a
j

i ≡ ai + cji , for i ∈ N\j.

The economy where agents’ initial endowments are (wi + a
j

ie)i∈N\j is identical, by con-

struction, to the economy with initial endowments (wi + aie)i∈N\j when the concessions

are (cji )i∈N\j . Therefore, an OSV for the (n − 1)−agent economy (wi + ajie)i∈N\j yields
the utility tuple u−j . The induction argument then implies that a

j

i = a
j
i for all i ∈ N\j.

Moreover, this argument applies to all j ∈ N. Therefore,

ai + c
j
i = ai + c

j
i for all i, j ∈ N, i = j.
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By summing, we obtain:

j∈N\i
(ai + c

j
i )−

j∈N\i
(aj + c

i
j) =

j∈N\i
(ai + c

j
i )−

j∈N\i
(aj + c

i
j) for all i ∈ N.

By the fairness condition of both matrixes c and c,

(n− 1)ai −
j∈N\i

aj = (n− 1)ai −
j∈N\i

aj for all i ∈ N,

hence,

n(ai − ai) =
j∈N

aj −
j∈N

aj for all i ∈ N.

Therefore, the sign of the difference ai − ai is independent of i. Assume, without loss of
generality, that ai > ai for all i ∈ N . In this case, the n agents have more resources in
the economy (wi+ aie)i∈N than in the economy (wi+ aie)i∈N , in contradiction to u being

efficient for both economies.

In the following theorem we use Lemma 1 to construct a mapping, the fixed points of

which, constitute the set of utilities achieved in OSV allocations.

Theorem 2 If agents’ preferences are strictly quasiconcave, the Ordinal Shapley Value

is non empty and satisfies individual rationality in economic environments.

Proof. The proof proceeds by induction. The results hold for n = 1 (they also hold

for n = 2, as was shown in the previous section). We assume the results hold for any

economy with up to (n − 1) agents and prove that they hold for any economy with n
agents.

We consider the economy ( i, wi)i∈N . We proceed to construct a continuous mapping

from a suitably set of bounded utility profiles for this economy into itself. The induction

assumption plays a role in showing the set of fixed points of this mapping is non empty,

and the OSV (( i, wi)i∈N) will correspond to the set of fixed points of this mapping. We

also prove that all OSV allocations are individually rational.

The set of utility profiles that constitute the domain (as well as range) of the mapping

is denoted by H, and defined by:

H ≡ u ∈ Rn/u is Pareto efficient given w, and ui ≥ ui(0) for i = 1, ..., n .
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In economic environments, H is a bounded set (if n− 1 players obtain at least the utility
level ui(0), there is a maximum for the utility that the remaining player can reach in any

feasible allocation). Moreover, the set H is homeomorphic to the (n − 1)−unit simplex
(see, for example, Proposition 4.6.1 in Mas-Colell (1985) for a similar result). For future

reference we denote by Hb the “border” of H, the set of all the utility vectors for which

the ith component equals ui(0) for some i. Formally,

Hb ≡ {u ∈ H/ ui = ui(0) for some i ∈ N} .
For any vector u ∈ A, we look at u−j ∈ Rn−1 for all j ∈ N. Lemma 1 provides for

each u−j a unique vector aj ∈ Rn−1 such that an OSV for the (n − 1)−agent economy
( i, wi+ajie)i∈N/j yields the utility tuple u−j .We let c

j
i (u) ≡ aji . These are the concessions

that agent j “needs” to make in order for the other n − 1 agents to achieve the utility
level u−j.

Using the concessions cji (u) j,i∈N,j=i we construct n “net concessions” corresponding

to u by:

Ci(u) ≡
j∈N\i

cij(u)−
j∈N\i

cji (u), for all i ∈ N.

Notice that
i∈N
Ci(u) = 0.

We now define a mapping from H into H. Each utility profile u in H is mapped to a

utility profile u ∈ H by increasing (decreasing) the components associated with positive

(negative) Ci(u)s, making necessary adjustments to preserve feasibility and efficiency.

More precisely, we let

D(u) ≡ min
i∈N, Ci(u)<0

{ui − ui(0)} if C(u) = 0 ∈ Rn.
D(u) ≡ 0 otherwise.

Note that, if u is not in Hb (that is, if u is at the “interior” of H) then D(u) > 0 if

C(u) = 0.

Consider the following vector:

u(u) ≡ u+ D(u)

max
i∈N

{|Ci(u)|}+ 1C(u) =


u1

...

un

+ D(u)

max
i∈N

{|Ci(u)|}+ 1


C1(u)
...

Cn(u)

 .
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Denote by C(u)+ ∈ Rn the vector defined as follows: Ci(u)+ = Ci(u) if Ci(u) > 0, and
Ci(u)+ = 0 if C

i(u) ≤ 0. Similarly, denote by C(u)− ∈ Rn the vector that is defined by
Ci(u)− = Ci(u) if Ci(u) < 0, and Ci(u)− = 0 if Ci(u) ≥ 0.
If u(u) is feasible and efficient, take u(u) = u(u).

If u(u) is feasible but not efficient, take

u(u) = u+
D(u)

max
i∈N

{|Ci(u)|}+ 1(C(u)− δC(u)−),

where δ ∈ (0, 1) is the unique real number such that u(u) previously defined is feasible
and efficient. (The efficiency requirement implies δ > 0, whereas feasibility implies δ < 1.)

If u(u) is not feasible, take

u(u) = u+
D(u)

max
i∈N

{|Ci(u)|}+ 1(C(u)− δC(u)+),

where δ ∈ (0, 1) is the unique real number such that u(u) previously defined is feasible
and efficient. (Here, feasibility implies δ > 0, whereas efficiency implies δ < 1.)

To prove that u(u) ∈ H, we only need to show that ui(u) ≥ ui(0) for all i. If D(u) = 0,
this property is trivially satisfied. If D(u) > 0 then C(u) = 0. By the definition of D(u)

and u(u), it is easy to check that for i s for which Ci(u) < 0 the decrease in coordinate i

is small enough so that u(u)i ≥ ui(0). Second, if u(u)i ≥ ui(0), then the construction of
u(u) makes sure that also u(u)i ≥ ui(0).
Claim a: The mapping u(u) has a interior fixed point.

To prove the claim, notice first that the mapping u(u) is continuous. Indeed, the

function D(u) is clearly continuous. Also, C(u) is continuous as soon as the “concessions”

cij(u) are a continuous function of u. By looking at the proof of Lemma 1, we see that (by

construction) the cij(u)s are a continuous function of u. Since H is homeomorphic to an

n-unit simplex, the mapping u(u) must have a fixed point. It now remains to show that

the fixed point cannot occur on the boundary. We prove it by the way of contradiction.

Suppose by way of contradiction that the fixed point u is on the boundary, that is,

u(u)i = ui = ui(0) for some i ∈ N. Assume, without loss of generality that u1 = u1(0).We
claim that C1(u) > 0. First, we prove that i∈N\1 c

1
i (u) > 0. Indeed, if i∈N\1 c

1
i (u) ≤ 0,

then after the concessions are made, player 1 obtains at least the utility u1(w1) > u1(0)
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since the aggregate endowment at the disposal of the others is lower or equal to i∈N\1w
i

and the final allocation is efficient.

Second, for u1 to equal u1(0) it is necessarily the case that ci1(u) < 0 for all i = 2, ..., n.

Otherwise, the initial endowment of player 1 when i concedes is at least w1 and hence,

because the OSV is individually rational for any environment with (n − 1) agents, his
final utility can not be u1(0). Therefore, C1(u) > 0 if u1 = u1(0).

Third, since the previous reasoning holds for every i with ui = ui(0), we also know

that D(u) > 0 since ui − ui(0) > 0 as soon as Ci(u) < 0 and Ci(u) < 0 for at least one
i ∈ N given that C1(u) > 0.

Therefore, by the construction of our mapping, the utility tuple u is mapped to a point

with a strictly larger utility level for agent 1 and cannot constitute a fixed point. This

proves Claim a.

Claim b: A utility tuple u is a fixed point of the function u if and only if there exists

an allocation x ∈ OSV (( i, wi)i∈N) such that u(x) = u.

To prove the claim, let u be a fixed point of the previous mapping, x the feasible

allocation that yields the utility level u, and c the matrix constructed using Lemma 1 (for

simplicity, we write c, C, and D instead of c(u), C(u), and D(u)). We claim that c is the

matrix of concessions that support x as an OSV. Given the way we constructed c, each

agent is indifferent with respect to the identity of the conceding agent. Requirement n.1)

of the definition of an OSV is then immediately seen to hold. Also requirement n.2) holds

since, by interiority of the fixed point, D > 0 if Cj < 0 for some j ∈ N. In an interior
fixed point, Cj = 0 for all j ∈ N. Therefore, the concessions satisfy i∈N\j c

j
i = i∈N\j c

i
j

for all j ∈ N .
Notice also that the utility corresponding to any OSV is a fixed point of our mapping

by construction. Therefore, the set of utilities generated by the OSV s coincides with the

set of fixed points of the mapping u(u).

To complete the proof of the theorem we show that every OSV allocation is individ-

ually rational for the economy ( i, wi)i∈N . Assume by way of contradiction that agent

i receives a bundle strictly worse than wi in an element of OSV (( i, wi)i∈N ). It must

then be that i∈N\j c
i
j > 0, hence i∈N\j c

j
i > 0 as well. This however means that there

exist a j = i for which cji > 0. Hence if agent j concedes, agent i is in an environment
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with n − 1 agents and initial endowment wi + cjie which is strictly larger than wi. By
the induction assumption, the OSV for this environment would be preferred to wi + cjie,

hence strictly preferred to wi. This is in contradiction to the original OSV yielding an

outcome worse than wi for agent i.

This concludes the proof that the OSV exists and is individually rational.

Theorem 2 shows the OSV exists for any economic environment where agents’ prefer-

ences are strictly quasiconcave. As we have already mentioned, the proof of the theorem

uses a fixed point argument, hence it is not constructive. The proof does not provide

an algorithm to calculate the OSV in a particular economy, and yields no information

regarding the possible unicity of the solution in particular environments.

There is, however, much more information regarding the concessions associated with

OSV allocations. First, Lemma 1 implies that the matrix associated with any OSV

allocation is unique. Indeed, let x ∈ OSV (( i, wi)i∈N ) and ui ≡ ui(xi) for all i ∈ N.
For every j ∈ N, Lemma 1 says that there exists a unique vector cj ∈ Rn−1 such that an
allocation in OSV ( i, wi + cjie)i∈N\j yields the utility tuple u−j. That is, there exists a

unique matrix of concessions supporting x as an OSV. Second, if we identify an allocation

in the OSV, then the proof of Lemma 1 indicates how to construct the unique matrix of

concessions associated with this allocation.

Finally we observe that the conditions of Theorem 2 while sufficient for existence are by

no means necessary. This is evident in the following example which has also been analyzed

in Hart (1985, example 5.7). Consider the economic environment with three agents (1, 2, 3)

and three commodities (x1, x2, x3) where preferences for non-negative consumptions and

initial endowments are given by:4

u1(x11, x
1
2, x

1
3) = x

1
1 + x

1
2 w1 = (2, 2, 0)

4The utility functions, as given in Hart (1985) are defined just over the non-negative orthant. Note

that in our set up the utility functions need to be defined over all of Rk. This can be accomplished in

several ways without affecting the OSV outcome. One option is to let the utility function equal −∞
for all points outside the non-negative orthant. Alternately (to preserve continuity) the ui’s could be

redefined by:

u1(x11,x
1
2,x

1
3) = min{x11,2x11}+min{x12,2x12}+min{0,2x13}

and similarly for the other two agents.
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u2(x21, x
2
2, x

2
3) = 0.5x

2
1 + x

2
3 w2 = (2, 0, 2)

u3(x31, x
3
2, x

3
3) = x

3
2 + x

3
3 w3 = (0, 2, 2)

The OSV outcome for this environment (it also happens to be unique) is the allocation:

x1 = (4, 0.3791, 0); x2 = (0, 0, 3.2745);x3 = (0, 1.6209, 2.725)

and the concessions supporting the outcome are:

c12 = c
2
1 = 0.129 09; c

1
3 = c

3
1 = 0.119 28; c

2
3 = c

3
2 = 0.112 74.

The associated utility profile is (u1, u2, u3) = (4.3791, 3.2745, 4.3464). Note the Shapley

value yields the utility profile (4.5, 3.5, 4) whereas the Harsanyi value yields the utility

profile (13/3, 10/3, 13/3).

6 Characteristics of the OSV

By definition, the OSV allocations satisfy some fairness and consistency properties. Also,

Theorem 2 shows that they are individually rational. The OSV allocations however sat-

isfy several additional appealing properties.5 The main result of this section provides a

characterization of the OSV in terms of coalitional dividends similar to the characteriza-

tion obtained for the Shapley value. The first step towards this result is to show that the

fact that concessions in the previous example are symmetric is not a coincidence. The

concessions supporting OSV allocations are always symmetric as stated in Proposition 3.

Proposition 3 If the concession matrix c supports an OSV allocation, then cij = c
j
i for

all i, j ∈ N, i = j.

Proof. The proof proceeds by induction. It is true for any economy with n = 2 agents

by definition (the fairness condition). We assume the property is satisfied for every econ-

omy with n− 1 agents and show it also holds for ( i, wi)i∈N . Let x ∈ OSV (( i, wi)i∈N),

5We stress the fact that the following properties hold independently of the agents’ preferences being

strictly quasiconcave or not. Strict quasiconcavity is a sufficient condition for existence of the OSV , the

properties hold for every OSV allocation.
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and let (cij)i,j∈N,i=j and u ∈ Rn be the concessions supporting x and the utility tu-

ple associated with it. For any agent i ∈ N , there must exist some OSV (denoted by

y(i)) for the (n − 1)−agent economy ( j, wj + cije)j∈N\i yielding the utility profile u−i.

Similarly, for any agent k ∈ N\i there must exist an OSV (denoted by y(ki)) for the

(n − 2)−agent economy ( j, wj + (cij + c
ki
j )e)j∈N\{i,k} yielding the utility profile u−{i,k},

where (ckij )k,j∈N\i,k=j ∈ R(n−1)(n−2) is the concession matrix supporting the OSV alloca-

tion y(i). By Lemma 1 there exists a unique vector a ∈ Rn−2 such that an OSV for the
(n − 2)−agent economy ( j , wj + aje)j∈N\{i,k} yields the utility tuple u−{i,k}. Hence we

have wj + aje = wj + (cij + c
ki
j )e for any three distinct agents i, j, k ∈ N. By permuting

the roles of i and k we obtain:

cij + c
ki
j = c

k
j + c

ik
j for any three distinct agents i, j, k ∈ N. (5)

We will now show that c12 = c
2
1.

By (5) we have:

c12 + c
31
2 = c

3
2 + c

13
2 ,

c31 + c
23
1 = c

2
1 + c

32
1 ,

c23 + c
12
3 = c

1
3 + c

21
3 .

By the induction assumption, concessions are symmetric for any economy with (n − 1)
agents, hence c312 = c213 , c

13
2 = c231 , and c

32
1 = c123 . Using this property and summing the

three previous equations, we obtain:

(c31 − c13) + (c12 − c21) + (c23 − c32) = 0.

We now repeat the same argument with agent 3 replaced by agents 4, ..., n and get the

following system of equations that the concessions must satisfy:

(c31 − c13) + (c12 − c21) + (c23 − c32) = 0,

...
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(cn1 − c1n) + (c12 − c21) + (c2n − cn2 ) = 0.

Summing it up we get:

{(c31 − c13) + ...+ (cn1 − c1n)}+ (n− 2)(c12 − c21) + {(c23 − c32) + ...+ (c2n − cn2 )} = 0.

Using the fairness requirement n.2) we get:

(c12 − c21) + (n− 2)(c12 − c21) + (c12 − c21) = 0.

Hence, c12 = c
2
1.

Similarly it can be shown that cij = c
j
i for any i, j ∈ N, i = j.

The following two propositions provide a characterization of the OSV analogous to

the characterization of the Shapley value in terms of coalitional dividends.

Proposition 4 Let x ∈ OSV (( i, wi)i∈N) and denote ui ≡ ui(xi) for all i ∈ N. Then,
there exists a unique vector (λS)S⊆N ∈ R2

n
such that

ui

wi + di(T )e+
S i
S⊆T

λSe

 = ui for all T ⊆ N, for all i ∈ T, (6)

where d(T ) ∈ R|T | is the unique vector such that an element of the set OSV (( j , wj +

dj(T )e)j∈T ) yields the utility tuple uT .

Proof. The proof proceeds by induction. If N = {i}, then λ{i} exists and is unique:

λ{i} = 0.

Suppose the result holds for any economy with at most n−1 agents. Let x ∈ OSV (( i

, wi)i∈N ) and ui ≡ ui(xi) for all i ∈ N. Denote by cij i,j∈N,i=j the concessions supporting

x as an OSV and, for all j ∈ N, let y(j) be such that y(j) ∈ OSV (( i, wi + cjie)i∈N\j)

and y(j)i ∼i xi for all i ∈ N\j.
Applying the induction argument, for all j ∈ N, there exists a unique (λS(j))S⊆N\j ∈

R2
n−1

such that:

ui

wi + cjie+ di(T ; j)e+
S i
S⊆T

λS(j)e

 = ui for all T ⊆ N\j, for all i ∈ T,
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where d(T ; j) ∈ R|T | is the unique vector such that an element of the set OSV (( j

, wj + cjie + di(T ; j)e)j∈T ) yields the utility tuple uT . We first claim that λS(j) = λS(k)

for all S ⊆ N\{j, k}. Indeed, consider the economy ( i, wi)i∈S and the unique vector

d(S) ∈ R|S| such that an element of OSV (( i, wi + di(S)e)i∈S) yields the utility tuple

uS. By the induction argument, there is a unique vector (λB)B⊆S ∈ R2
|S|
such that

ui

wi + di(T )e+
B i
B⊆T

λBe

 = ui for all T ⊆ S, for all i ∈ T.

Since the vector d(T ) is unique, it is immediate that di(T ) = c
j
i + di(T ; j) = c

k
i + di(T ; k)

for all T ⊆ S, i ∈ T. And since the vector (λB)B⊆S is unique, it is also immediate that
λS = λS(j) = λS(k).

According to the previous claim, we can propose λS (= λS(j) for any j /∈ S) for any
S ⊂ N. With the vector (λS)S⊂N , the equality ui wi + di(T )e+ S i

S⊆T
λSe = ui holds

for all T ⊂ N and for all i ∈ T. Moreover, the vector for which the equality happens is
unique. The unique value still to be found is λN .

For any i ∈ N, consider the value λN(i) implicitly (and uniquely) defined by:

ui

wi +
S i
S⊂N

λSe+ λN(i)e

 = ui.

We complete the proof of the Proposition if we show that λN(i) = λN(j) for any i, j ∈ N.
By induction, for any i, j ∈ N :

ui

wi + cjie+
S i

S⊆N\j

λSe

 = ui = ui

wi +
S i
S⊂N

λSe+ λN (i)e

 ,
hence,

λN(i) = c
j
i +

S i
S⊆N\j

λS −
S i
S⊂N

λS = c
j
i −

S⊇{i,j}
S⊂N

λS.

Similarly,

λN(j) = c
i
j −

S⊇{i,j}
S⊂N

λS.
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Given the symmetry of the concessions, cji = cij , λN(i) = λN (j) for all i, j ∈ N, which
completes the proof.

Borrowing the terminology used in TU environments, we refer to the vector (λS)S⊆N as

the coalitional dividends. Although the coalitional dividends are somewhat more complex

to define in our economic environment than they are in TU environments, they reflect

the same idea: if i ∈ S, then λS is the dividend agent i obtains because he belongs to

coalition S. Indeed, given that d(N) = 0, the final utility agent i obtains in the OSV is:

ui = ui

wi +
S i
S⊆N

λSe

 .
The added difficulty in our framework is how to measure the value of a coalition, since

the additional utility (in terms of e) that agents in a certain coalition S obtain depends

upon the level of their initial endowment. Proposition 4 shows that the proper reference

to measure the increase in utility is given by the level of utility at the OSV. In TU

environments, the reference point is not important since the value of the coalition does

not depend on the initial endowment.

It is interesting to point out that the relationship between the coalitional dividends that

exists for every OSV allocation and the concessions matrix that supports this allocation,

is the same as the one that exists for the Shapley value in TU environments (that was

proved in Section 2). Indeed, it is easy to see that d(N\j) = (cji )i∈N\j for any j ∈ N.
Therefore, applying (6) to the sets N and N\j, we obtain:

ui

wi +
S i
S⊆N

λSe

 = ui = ui

wi + cjie+
S i

S⊆N\j

λSe

 for any i ∈ N\j,

hence,

cji =
S i,j
S⊆N

λS for all i, j ∈ N, i = j.

Finally, in TU environments, it is also the case that if (6) holds for all T ⊆ N, then the
value is necessarily the Shapley value. That is, the decomposition described in the previous
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proposition characterizes the Shapley value. Given that, in economic environments, the

OSV can in principle be non unique, the result cannot be directly extended. However,

we can state a very similar result:

Proposition 5 Let Φ be a correspondence that associates a set of efficient allocations to

every economic environment ( i, wi)i∈N . Suppose that it satisfies property (Q):

(Q) For all x ∈ Φ(( i, wi)i∈N) and ui ≡ ui(xi) for all i ∈ N, there exists a vector
(µS)S⊆N ∈ R2

n
such that

ui

wi + bi(T )e+
S i
S⊆T

µSe

 = ui for all T ⊆ N , for all i ∈ T,

where b(T ) ∈ R|T | is a vector such that an element of the set Φ(( j, wj + bje)j∈T ) yields

the utility tuple uT .

Then, Φ is a sub-correspondence of the OSV correspondence.

Proof. The proof proceeds by induction. We prove that any correspondence Φ that

satisfies property (Q) for economies with at most n agents is such that Φ(( j, aj)j∈S) ⊆
OSV (( j, aj)j∈S), for every economic environment ( j , aj)j∈S where |S| ≤ n.
When n = 1, the proof is trivial: the efficiency of Φ implies that x = ai for all

x ∈ Φ(( i, ai)). We assume now that the result holds for up to n− 1 agents and show it
holds for n agents.

Take x ∈ Φ(( i, wi)i∈N) and let (µS)S⊆N ∈ R2
n
be the vector associated with x.

Consider the matrix c ∈ RnxRn−1 defined by:

cji =
S i,j
S⊆N

µS.

We claim that the matrix c supports x as an OSV. First, given that cji = cij for all

i, j ∈ N, i = j, condition n.2) of Definition 1 is satisfied. Second, to prove condition n.1),
take any j ∈ N and consider the economy ( i, wi + cjie)i∈N\j . Notice that since

ui

wi +
S i
S⊆N

µSe

 = ui = ui

wi + bi(N\j)e+
S i

S⊆N\j

µSe

 for all i ∈ N\j,
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it happens that

bi(N\j) =
S i,j
S⊆N

µS = c
j
i for all i ∈ N\j.

Therefore, the utility tuple u−j is attainable (and efficient) in the economy ( i, wi +

cjie)i∈N\j since it is attainable (and efficient) in (
i, wi + bi(N\j)e)i∈N\j. Denote by y(j)

the efficient allocation that yields u−j . Since for all T ⊆ N\j, bi(T )− cji i∈T is a vector

such that an element of the set Φ(( j, wj + cjie+ [bj(T )− cji ]e)j∈T ) yields the utility tuple
u−j , the induction hypothesis ensures that y(j) ∈ OSV (( i, wi + cjie)i∈N\j). This proves

condition n.1) and concludes the proof of the proposition.

Therefore, the OSV correspondence is characterized as the union of the correspon-

dences (or as the largest correspondence) that satisfy property (Q).

We conclude this section by proving further properties of the OSV . The next proposi-

tion shows that the OSV is monotonic in initial endowments. That is, if two agents have

identical preferences and furthermore, one agent has the same or more of every commodity

in his initial endowment, then that agent is better off in any OSV allocation.

Proposition 6 Consider an economic environment ( i, wi)i∈N where j≡ k and wj ≥
(>)wk for some j = k. Then, xj j ( j)xk for any x ∈ OSV (( i, wi)i∈N).

Proof. The proof proceeds by induction. Consider first the case of two agents (n = 2)

and assume 1≡ 2 . Let u represent the preferences of both agents. The unique level of

utility that they achieve in the OSV allocations for this economy is:

Max
c∈R+

u(w1 + ce), u(w2 + ce) u(w1 + ce), u(w2 + ce) ∈ A .

It is then immediate that w1 ≥ w2 implies x1 1 x2, for x = OSV (( i, wi)i=1,2).Moreover,

x1 is strictly preferred to x2 if w1 is strictly greater than w2.

We assume now that the property holds for economies with up to n − 1 agents. We
prove, by contradiction, that it also holds for economies with n agents.

Without loss of generality, suppose 1≡ 2, w1 ≥ w2, and x1 ≺1 x2 for some x ∈
OSV (( i, wi)i∈N ). (For notational convenience, we do the proof for the case w1 ≥ w2;
the proof is similar when w1 > w2.) Using property n.1) in the definition of an OSV,
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let y(1) ∈ OSV (( i, wi + c1i e)i∈N\1) be such that u
i(y(1)i) = ui(xi) for all i ∈ N\1, and

y(2) ∈ OSV (( i, wi + c2i e)i∈N\2) be such that u
i(y(2)i) = ui(xi) for all i ∈ N\2.

Given that ui(y(1)i) = ui(y(2)i) for all i ∈ N\{1, 2}, u1(y(2)1) < u2(y(1)2), 1≡ 2,

and the efficiency of the allocations y(1) and y(2), it must be the case that the total

initial resources in the economy ( i, wi + c1i e)i∈N\1 are larger than in the economy (
i

, wi + c2i e)i∈N\2. That is,

i∈N\1
c1i >

i∈N\2
c2i .

By the symmetry of the concessions, c12 = c21, c
1
i = ci1 and c

2
i = ci2 for all i ∈ N\{1, 2}.

Therefore,

i∈N\{1,2}
ci1 >

i∈N\{1,2}
ci2.

Let k ∈ N\{1, 2} be such that ck1 > ck2, and y(k) ∈ OSV (( i, wi+ cki e)i∈N\k) be such that

ui(y(k)i) = ui(xi) for all i ∈ N\k. In the (n− 1)−agent economy (( i, wi + cki e)i∈N\k), it

happens that 1≡ 2 and w1 + ck1e > w
2 + ck2e. By the induction hypothesis, u

1(y(k)1) ≥
u2(y(k)2), that is, u1(x1) ≥ u2(x2). This is in contradiction to our original hypothesis.
The next property, anonymity of the OSV is an immediate corollary of the previous

proposition.

Corollary 2 Consider an economic environment ( i, wi)i∈N where j≡ k and wj =

wk for some j = k. Then, xj j xk for any x ∈ OSV (( i, wi)i∈N). Moreover, if the

preferences of agents j and k are strictly quasiconcave, then xj = xk for any x ∈ OSV (( i

, wi)i∈N ).

Proof. The first part of the Corollary is immediate after Proposition 6. The efficiency

of x and the strict quasiconcavity of the common preference relation j , imply that

xj = xk as soon as uj(xj) = uk(xk).

Note that the nucleolus, an ordinal solution concept for exchange economies (McLean

and Postlewaite (1989)), does not satisfy the previous anonymity property. It does satisfy

however the following symmetry property: If agents j and k are identical and the allocation

x is in the nucleolus, then the allocation y is also in the nucleolus, where yj = xk, yk = xj,

and yi = xi otherwise.
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7 The weighted OSV

Shapley (1953b) extends the Shapley TU value by considering nonsymmetric divisions

of the surplus. He defines the (now called) weighted Shapley value by stipulating an

exogenously given system of weights q ∈ Rn++, assigning each agent i the share qi/ j∈N qj

of the unit in each unanimity game, and defining the value as the linear extension of this

operator to the set of TU games. There exist several characterizations of the weighted

Shapley value. The next proposition states, without a proof, a new characterization,

similar to the one provided in Corollary 1.6

Proposition 7 A value ξ is the q−weighted Shapley value if and only if for each game
(N, v) there exists a matrix of concessions c(N, v) ≡ (cij(N, v))i,j∈N,i=j, with cij(N, v) in
R for all i, j ∈ N, i = j, such that:
(1) ξi(N, v) = ξi(N\j, v) + cji (N, v) for all i, j ∈ N, i = j, and
(2)

i∈N\j
qjcji (N, v) =

i∈N\j
qicij(N, v) for all j ∈ N.

Following the same route we took in defining the OSV , we can define a weighted value

for economic environments where the weights of the agents are taken into account. We

now describe an extension of the OSV which yields the q− weighted OSV (q − wOSV )
solution, which reduces to the q− weighted Shapley value in economic environments that
can be described as a TU environment. The only difference with respect to the definition

of the OSV lies in the “fairness” condition n.2) :

Definition 2 We define the q− weighted Ordinal Shapley Value recursively.
(n = 1) In the case of an economy with one agent with preferences 1 and initial

endowments a1 ∈ Rk, the q − wOSV is given by the initial endowment: q − wOSV ( 1

, a1) = {a1} .
Suppose that the solution has been defined for any economy with (n−1) or less agents.
(n) In the case of an economy ( i, ai)i∈N with a set N of n agents, the q−wOSV (( i, ai)i∈N)

is the set of efficient allocations (xi)i∈N for which there exists an n−tuple of concession
vectors (ci)i∈N that satisfy

6For interpretation, see also Section 4 in Pérez-Castrillo and Wettstein (2001).
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n.1) for all j ∈ N, there exists y(j) ∈ q − wOSV ( i, ai + cjie)i∈N\j such that xi ∼i
y(j)i for all i ∈ N\j, and
n.2)

i∈N\j
qjcji =

i∈N\j
qicij for all j ∈ N.

It is worthwhile to notice that the “weighted fairness” condition n.2), together with the

“consistency” requirement n.1) also imply in this case that the concessions that support

the q−wOSV are “weighted” symmetric, in that we have qjcji = qicij for all i, j ∈ N, i = j.
Moreover, very small changes in the proof of Theorem 2 are needed, to establish existence

and individual rationality of this value, for any economic environment where agents’

preferences are strictly quasiconcave, which we state as:

Theorem 3 If agents’s preferences are strictly quasiconcave, the q−weighted Ordinal
Shapley Value is non empty and satisfies individual rationality in economic environments,

for any q ∈ Rn++.

8 Conclusion

This paper addressed the problem of sharing a joint surplus among the agents creating it.

We looked for a method associating with each economic environment (agents described by

preferences and endowments) a set of outcomes (allocations of the aggregate endowment

across the agents). We showed there exists such an (ordinal) sharing method that satisfies

efficiency and suitably defined notions of consistency and fairness. These notions reduce

to the usual notions of consistency and fairness satisfied by the Shapley value for TU

games, hence the first reason for calling this solution concept an Ordinal Shapley Value.

The OSV provided not just an allocation but also a matrix of concessions “measuring”

the gains each agent foregoes in favor of the other agents. Further analysis showed these

concessions were symmetric, what agent i concedes to agent j coincides with the conces-

sion of agent j to agent i. This symmetry property reduces to the balanced contributions

property of the Shapley Value for TU games. The next stage of the analysis character-

ized the OSV providing a fixed system of coalitional dividends, which when augmented

by coalition specific transfers yields allocations equivalent to the OSV outcome for all

possible coalitions. Furthermore, when it is possible to find such a system for a given
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allocation rule, then this allocation rule is a subset of the OSV outcome. This again has

its counterpart for the Shapley value in TU games. We further showed that the OSV

satisfies monotonicity in initial endowments and anonymity. Finally, we constructed a

family of q−weighted OSV ’s, which are the ordinal counterparts (in our setting) to the
family of q−weighted Shapley values for TU games.
The OSV is a natural extension of the Shapley value to general environments (NTU

games). The main advantage of this extension compared to previous attempts to extend

the value is the fact it is ordinal, depending only on the underlying preferences and not

on their numerical representation. It is also defined in the commodity space rather in the

“utility” space, whereas several previous ordinal values were defined solely on the utility

space (Samet and Safra, 2001). It naturally shares most of the attractive properties of

the Shapley Value, and thus offers important insights augmenting those derived from

another ordinal solution concept, the ordinal nucleolus (McLean and Postlewaite, 1989).

The connections between the OSV and another well-known ordinal solution concept, the

competitive equilibrium outcome, remain the topic of further research.

The sharing method proposed in this paper provides a solution concept for a large

class of environments. It can be used to address a variety of distributional issues in more

realistic environments dispensing of the need to assume quasi-linear preferences. Problems

of allocating joint costs can be handled as well without restricting the environment through

the quasi-linearity in “money” assumption.

Our approach has been normative and it would be interesting to construct game forms

that implement it. Pérez-Castrillo and Wettstein (2001) provide a deterministic mecha-

nism that implements the Shapley value in pure strategy Subgame Perfect Equilibrium.

The analysis throughout the paper proceeded under the assumption of complete in-

formation. Allowing for asymmetric information and examining solution concepts in such

settings remains another interesting avenue of research.
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Figure 1:

The solution in the two-agent economy
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