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Chapter 1

About this document

1.1 Prerequisites

These notes have been prepared under the assumption that the reader

understands basic statistics, linear algebra, and mathematical opti-

mization. There are many sources for this material, one are the ap-

pendices to Introductory Econometrics: A Modern Approach by Jeffrey

Wooldridge. It is the student’s resposibility to get up to speed on this

20



material, it will not be covered in class

This document integrates lecture notes for a one year graduate

level course with computer programs that illustrate and apply the

methods that are studied. The immediate availability of executable

(and modifiable) example programs when using the PDF version of

the document is a distinguishing feature of these notes. If printed, the

document is a somewhat terse approximation to a textbook. These

notes are not intended to be a perfect substitute for a printed text-

book. If you are a student of mine, please note that last sentence

carefully. There are many good textbooks available. Students taking

my courses should read the appropriate sections from at least one of

the following books (or other textbooks with similar level and con-

tent)

• Cameron, A.C. and P.K. Trivedi, Microeconometrics - Methods and
Applications



• Davidson, R. and J.G. MacKinnon, Econometric Theory and Meth-
ods

• Gallant, A.R., An Introduction to Econometric Theory

• Hamilton, J.D., Time Series Analysis

• Hayashi, F., Econometrics

A more introductory-level reference is Introductory Econometrics: A
Modern Approach by Jeffrey Wooldridge.

1.2 Contents

With respect to contents, the emphasis is on estimation and inference

within the world of stationary data, with a bias toward microecono-

metrics. If you take a moment to read the licensing information in

the next section, you’ll see that you are free to copy and modify the



document. If anyone would like to contribute material that expands

the contents, it would be very welcome. Error corrections and other

additions are also welcome.

The integrated examples (they are on-line here and the support

files are here) are an important part of these notes. GNU Octave

(www.octave.org) has been used for most of the example programs,

which are scattered though the document. This choice is motivated by

several factors. The first is the high quality of the Octave environment

for doing applied econometrics. Octave is similar to the commer-

cial package Matlab R©, and will run scripts for that language without

modification1. The fundamental tools (manipulation of matrices, sta-

tistical functions, minimization, etc.) exist and are implemented in a

way that make extending them fairly easy. Second, an advantage of
1Matlab R©is a trademark of The Mathworks, Inc. Octave will run pure Matlab scripts. If a Matlab

script calls an extension, such as a toolbox function, then it is necessary to make a similar extension
available to Octave. The examples discussed in this document call a number of functions, such as a
BFGS minimizer, a program for ML estimation, etc. All of this code is provided with the examples,
as well as on the PelicanHPC live CD image.

http://pareto.uab.es/mcreel/Econometrics/Examples
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles
http://www.octave.org


free software is that you don’t have to pay for it. This can be an im-

portant consideration if you are at a university with a tight budget or

if need to run many copies, as can be the case if you do parallel com-

puting (discussed in Chapter 20). Third, Octave runs on GNU/Linux,

Windows and MacOS. Figure 1.1 shows a sample GNU/Linux work

environment, with an Octave script being edited, and the results are

visible in an embedded shell window. As of 2011, some examples

are being added using Gretl, the Gnu Regression, Econometrics, and

Time-Series Library. This is an easy to use program, available in a

number of languages, and it comes with a lot of data ready to use. It

runs on the major operating systems.

The main document was prepared using LYX (www.lyx.org). LYX

is a free2 “what you see is what you mean” word processor, basically

working as a graphical frontend to LATEX. It (with help from other

applications) can export your work in LATEX, HTML, PDF and several
2”Free” is used in the sense of ”freedom”, but LYX is also free of charge (free as in ”free beer”).

http://gretl.sourceforge.net
http://www.lyx.org


Figure 1.1: Octave



other forms. It will run on Linux, Windows, and MacOS systems.

Figure 1.2 shows LYX editing this document.

1.3 Licenses

All materials are copyrighted by Michael Creel with the date that ap-

pears above. They are provided under the terms of the GNU General

Public License, ver. 2, which forms Section 24.1 of the notes, or, at

your option, under the Creative Commons Attribution-Share Alike 2.5

license, which forms Section 24.2 of the notes. The main thing you

need to know is that you are free to modify and distribute these ma-

terials in any way you like, as long as you share your contributions in

the same way the materials are made available to you. In particular,

you must make available the source files, in editable form, for your

modified version of the materials.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Figure 1.2: LYX



1.4 Obtaining the materials

The materials are available on my web page. In addition to the final

product, which you’re probably looking at in some form now, you can

obtain the editable LYX sources, which will allow you to create your

own version, if you like, or send error corrections and contributions.

1.5 An easy way to use LYX and Octave today

The example programs are available as links to files on my web page

in the PDF version, and here. Support files needed to run these are

available here. The files won’t run properly from your browser, since

there are dependencies between files - they are only illustrative when

browsing. To see how to use these files (edit and run them), you

should go to the home page of this document, since you will proba-

bly want to download the pdf version together with all the support

http://pareto.uab.es/mcreel/Econometrics/
http://pareto.uab.es/mcreel/Econometrics/Examples
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles
http://pareto.uab.es/mcreel/Econometrics


files and examples. Then set the base URL of the PDF file to point

to wherever the Octave files are installed. Then you need to install

Octave and the support files. All of this may sound a bit complicated,

because it is. An easier solution is available:

The PelicanHPC distribution of Linux is an ISO image file that may

be burnt to CDROM. It contains a bootable-from-CD GNU/Linux sys-

tem. These notes, in source form and as a PDF, together with all

of the examples and the software needed to run them are available

on PelicanHPC. PelicanHPC is a ”live CD” image. You can burn the

PelicanHPC image to a CD and use it to boot your computer, if you

like. When you shut down and reboot, you will return to your normal

operating system. The need to reboot to use PelicanHPC can be some-

what inconvenient. It is also possible to use PelicanHPC while running

your normal operating system by using a virtualization platform such

as Virtualbox 3

3Virtualbox is free software (GPL v2). That, and the fact that it works very well, is the reason

http://pareto.uab.es/mcreel/PelicanHPC
http://www.virtualbox.org/


The reason why these notes are integrated into a Linux distribu-

tion for parallel computing will be apparent if you get to Chapter 20.

If you don’t get that far or you’re not interested in parallel computing,

please just ignore the stuff on the CD that’s not related to economet-

rics. If you happen to be interested in parallel computing but not

econometrics, just skip ahead to Chapter 20.

it is recommended here. There are a number of similar products available. It is possible to run
PelicanHPC as a virtual machine, and to communicate with the installed operating system using a
private network. Learning how to do this is not too difficult, and it is very convenient.



Chapter 2

Introduction: Economic

and econometric models
Here’s some data: 100 observations on 3 economic variables. Let’s do

some exploratory analysis using Gretl:

• histograms

• correlations
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• x-y scatterplots

So, what can we say? Correlations? Yes. Causality? Who knows? This

is economic data, generated by economic agents, following their own

beliefs, technologies and preferences. It is not experimental data gen-

erated under controlled conditions. How can we determine causality

if we don’t have experimental data?



Without a model, we can’t distinguish correlation from causality.

It turns out that the variables we’re looking at are QUANTITY (q),

PRICE (p), and INCOME (m). Economic theory tells us that the quan-

tity of a good that consumers will puchase (the demand function) is

something like:

q = f (p,m, z)

• q is the quantity demanded

• p is the price of the good

• m is income

• z is a vector of other variables that may affect demand

The supply of the good to the market is the aggregation of the firms’

supply functions. The market supply function is something like

q = g(p, z)



Suppose we have a sample consisting of a number of observations on

q p and m at different time periods t = 1, 2, ..., n. Supply and demand

in each period is

qt = f (pt,mt, zt)

qt = g(pt, zt)

(draw some graphs showing roles of m and z)

This is the basic economic model of supply and demand: q and p

are determined in the market equilibrium, given by the intersection

of the two curves. These two variables are determined jointly by the

model, and are the endogenous variables. Income (m) is not deter-

mined by this model, its value is determined independently of q and

p by some other process. m is an exogenous variable. So, m causes q,

though the demand function. Because q and p are jointly determined,

m also causes p. p and q do not cause m, according to this theoretical



model. q and p have a joint causal relationship.

• Economic theory can help us to determine the causality relation-

ships between correlated variables.

• If we had experimental data, we could control certain variables

and observe the outcomes for other variables. If we see that vari-

able x changes as the controlled value of variable y is changed,

then we know that y causes x. With economic data, we are un-

able to control the values of the variables: for example in supply

and demand, if price changes, then quantity changes, but quan-

tity also affect price. We can’t control the market price, because

the market price changes as quantity adjusts. This is the reason

we need a theoretical model to help us distinguish correlation

and causality.

The model is essentially a theoretical construct up to now:

• We don’t know the forms of the functions f and g.



• Some components of zt may not be observable. For example,

people don’t eat the same lunch every day, and you can’t tell

what they will order just by looking at them. There are unob-

servable components to supply and demand, and we can model

them as random variables. Suppose we can break zt into two

unobservable components εt1 and εt2.

An econometric model attempts to quantify the relationship more pre-

cisely. A step toward an estimable econometric model is to suppose

that the model may be written as

qt = α1 + α2pt + α3mt + εt1

qt = β1 + β2pt + εt1

We have imposed a number of restrictions on the theoretical model:

• The functions f and g have been specified to be linear functions

• The parameters (α1, β2, etc.) are constant over time.



• There is a single unobservable component in each equation, and

we assume it is additive.

If we assume nothing about the error terms εt1 and εt2, we can al-

ways write the last two equations, as the errors simply make up the

difference between the true demand and supply functions and the as-

sumed forms. But in order for the β coefficients to exist in a sense

that has economic meaning, and in order to be able to use sample

data to make reliable inferences about their values, we need to make

additional assumptions. Such assumptions might be something like:

• E(εtj) = 0, j = 1, 2

• E(ptεtj) = 0, j = 1, 2

• E(mtεtj) = 0, j = 1, 2

These are assertions that the errors are uncorrelated with the vari-

ables, and such assertions may or may not be reasonable. Later we



will see how such assumption may be used and/or tested.

All of the last six bulleted points have no theoretical basis, in that

the theory of supply and demand doesn’t imply these conditions. The

validity of any results we obtain using this model will be contingent

on these additional restrictions being at least approximately correct.

For this reason, specification testing will be needed, to check that the

model seems to be reasonable. Only when we are convinced that the

model is at least approximately correct should we use it for economic

analysis.

When testing a hypothesis using an econometric model, at least

three factors can cause a statistical test to reject the null hypothesis:

1. the hypothesis is false

2. a type I error has occured

3. the econometric model is not correctly specified, and thus the

test does not have the assumed distribution



To be able to make scientific progress, we would like to ensure that

the third reason is not contributing in a major way to rejections, so

that rejection will be most likely due to either the first or second rea-

sons. Hopefully the above example makes it clear that econometric

models are necessarily more detailed than what we can obtain from

economic theory, and that this additional detail introduces many pos-

sible sources of misspecification of econometric models. In the next

few sections we will obtain results supposing that the econometric

model is entirely correctly specified. Later we will examine the con-

sequences of misspecification and see some methods for determining

if a model is correctly specified. Later on, econometric methods that

seek to minimize maintained assumptions are introduced.



Chapter 3

Ordinary Least Squares

3.1 The Linear Model

Consider approximating a variable y using the variables x1, x2, ..., xk.

We can consider a model that is a linear approximation:

Linearity: the model is a linear function of the parameter vector
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β0 :

y = β0
1x1 + β0

2x2 + ... + β0
kxk + ε

or, using vector notation:

y = x′β0 + ε

The dependent variable y is a scalar random variable, x = ( x1 x2 · · · xk)
′

is a k-vector of explanatory variables, and β0 = ( β0
1 β0

2 · · · β0
k)
′
. The

superscript “0” in β0 means this is the ”true value” of the unknown

parameter. It will be defined more precisely later, and usually sup-

pressed when it’s not necessary for clarity.

Suppose that we want to use data to try to determine the best lin-

ear approximation to y using the variables x. The data {(yt,xt)} , t =

1, 2, ..., n are obtained by some form of sampling1. An individual ob-
1For example, cross-sectional data may be obtained by random sampling. Time series data accu-

mulate historically.



servation is

yt = x′tβ + εt

The n observations can be written in matrix form as

y = Xβ + ε, (3.1)

where y =
(
y1 y2 · · · yn

)′
is n× 1 and X =

(
x1 x2 · · · xn

)′
.

Linear models are more general than they might first appear, since

one can employ nonlinear transformations of the variables:

ϕ0(z) =
[
ϕ1(w) ϕ2(w) · · · ϕp(w)

]
β + ε

where the φi() are known functions. Defining y = ϕ0(z), x1 = ϕ1(w),

etc. leads to a model in the form of equation 3.4. For example, the

Cobb-Douglas model

z = Awβ2
2 w

β3
3 exp(ε)



can be transformed logarithmically to obtain

ln z = lnA + β2 lnw2 + β3 lnw3 + ε.

If we define y = ln z, β1 = lnA, etc., we can put the model in the

form needed. The approximation is linear in the parameters, but not

necessarily linear in the variables.

3.2 Estimation by least squares

Figure 3.1, obtained by running TypicalData.m shows some data that

follows the linear model yt = β1 + β2xt2 + εt. The green line is the

”true” regression line β1+β2xt2, and the red crosses are the data points

(xt2, yt), where εt is a random error that has mean zero and is indepen-

dent of xt2. Exactly how the green line is defined will become clear

later. In practice, we only have the data, and we don’t know where

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/TypicalData.m


Figure 3.1: Typical data, Classical Model
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the green line lies. We need to gain information about the straight

line that best fits the data points.

The ordinary least squares (OLS) estimator is defined as the value

that minimizes the sum of the squared errors:

β̂ = arg min s(β)



where

s(β) =

n∑
t=1

(yt − x′tβ)
2 (3.2)

= (y −Xβ)′ (y −Xβ)

= y′y − 2y′Xβ + β′X′Xβ

= ‖ y −Xβ ‖2

This last expression makes it clear how the OLS estimator is defined:

it minimizes the Euclidean distance between y and Xβ. The fitted

OLS coefficients are those that give the best linear approximation to

y using x as basis functions, where ”best” means minimum Euclidean

distance. One could think of other estimators based upon other met-

rics. For example, the minimum absolute distance (MAD) minimizes∑n
t=1 |yt − x′tβ|. Later, we will see that which estimator is best in terms

of their statistical properties, rather than in terms of the metrics that



define them, depends upon the properties of ε, about which we have

as yet made no assumptions.

• To minimize the criterion s(β), find the derivative with respect

to β:

Dβs(β) = −2X′y + 2X′Xβ

Then setting it to zeros gives

Dβs(β̂) = −2X′y + 2X′Xβ̂ ≡ 0

so

β̂ = (X′X)−1X′y.

• To verify that this is a minimum, check the second order suffi-

cient condition:

D2
βs(β̂) = 2X′X



Since ρ(X) = K, this matrix is positive definite, since it’s a

quadratic form in a p.d. matrix (identity matrix of order n),

so β̂ is in fact a minimizer.

• The fitted values are the vector ŷ = Xβ̂.

• The residuals are the vector ε̂ = y −Xβ̂

• Note that

y = Xβ + ε

= Xβ̂ + ε̂

• Also, the first order conditions can be written as

X′y −X′Xβ̂ = 0

X′
(
y −Xβ̂

)
= 0

X′ε̂ = 0



which is to say, the OLS residuals are orthogonal to X. Let’s look

at this more carefully.

3.3 Geometric interpretation of least squares
estimation

In X, Y Space

Figure 3.2 shows a typical fit to data, along with the true regression

line. Note that the true line and the estimated line are different. This

figure was created by running the Octave program OlsFit.m . You

can experiment with changing the parameter values to see how this

affects the fit, and to see how the fitted line will sometimes be close

to the true line, and sometimes rather far away.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/OlsFit.m


Figure 3.2: Example OLS Fit
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In Observation Space

If we want to plot in observation space, we’ll need to use only two or

three observations, or we’ll encounter some limitations of the black-

board. If we try to use 3, we’ll encounter the limits of my artistic

ability, so let’s use two. With only two observations, we can’t have

K > 1.

• We can decompose y into two components: the orthogonal pro-

jection onto the K−dimensional space spanned by X, Xβ̂, and

the component that is the orthogonal projection onto the n−K
subpace that is orthogonal to the span of X, ε̂.

• Since β̂ is chosen to make ε̂ as short as possible, ε̂ will be orthog-

onal to the space spanned byX. SinceX is in this space, X ′ε̂ = 0.

Note that the f.o.c. that define the least squares estimator imply

that this is so.



Figure 3.3: The fit in observation space
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Projection Matrices

Xβ̂ is the projection of y onto the span of X, or

Xβ̂ = X (X ′X)
−1
X ′y

Therefore, the matrix that projects y onto the span of X is

PX = X(X ′X)−1X ′

since

Xβ̂ = PXy.



ε̂ is the projection of y onto the N − K dimensional space that is

orthogonal to the span of X. We have that

ε̂ = y −Xβ̂
= y −X(X ′X)−1X ′y

=
[
In −X(X ′X)−1X ′

]
y.

So the matrix that projects y onto the space orthogonal to the span of

X is

MX = In −X(X ′X)−1X ′

= In − PX.

We have

ε̂ = MXy.



Therefore

y = PXy + MXy

= Xβ̂ + ε̂.

These two projection matrices decompose the n dimensional vector

y into two orthogonal components - the portion that lies in the K

dimensional space defined by X, and the portion that lies in the or-

thogonal n−K dimensional space.

• Note that both PX and MX are symmetric and idempotent.

– A symmetric matrix A is one such that A = A′.

– An idempotent matrix A is one such that A = AA.

– The only nonsingular idempotent matrix is the identity ma-

trix.



3.4 Influential observations and outliers

The OLS estimator of the ith element of the vector β0 is simply

β̂i =
[
(X ′X)−1X ′

]
i· y

= c′iy

This is how we define a linear estimator - it’s a linear function of

the dependent variable. Since it’s a linear combination of the obser-

vations on the dependent variable, where the weights are determined

by the observations on the regressors, some observations may have

more influence than others.

To investigate this, let et be an n vector of zeros with a 1 in the tth

position, i.e., it’s the tth column of the matrix In. Define

ht = (PX)tt

= e′tPXet



so ht is the tth element on the main diagonal of PX. Note that

ht = ‖ PXet ‖2

so

ht ≤‖ et ‖2= 1

So 0 < ht < 1. Also,

TrPX = K ⇒ h = K/n.

So the average of the ht is K/n. The value ht is referred to as the

leverage of the observation. If the leverage is much higher than aver-

age, the observation has the potential to affect the OLS fit importantly.

However, an observation may also be influential due to the value of

yt, rather than the weight it is multiplied by, which only depends on

the xt’s.

To account for this, consider estimation of β without using the



tth observation (designate this estimator as β̂(t)). One can show (see

Davidson and MacKinnon, pp. 32-5 for proof) that

β̂(t) = β̂ −
(

1

1− ht

)
(X ′X)−1X ′tε̂t

so the change in the tth observations fitted value is

x′tβ̂ − x′tβ̂
(t) =

(
ht

1− ht

)
ε̂t

While an observation may be influential if it doesn’t affect its own

fitted value, it certainly is influential if it does. A fast means of iden-

tifying influential observations is to plot
(

ht
1−ht

)
ε̂t (which I will refer

to as the own influence of the observation) as a function of t. Figure

3.4 gives an example plot of data, fit, leverage and influence. The

Octave program is InfluentialObservation.m. (note to self when lec-

turing: load the data ../OLS/influencedata into Gretl and repro-

duce this). If you re-run the program you will see that the leverage

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/InfluentialObservation.m


Figure 3.4: Detection of influential observations
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of the last observation (an outlying value of x) is always high, and the

influence is sometimes high.

After influential observations are detected, one needs to determine

why they are influential. Possible causes include:

• data entry error, which can easily be corrected once detected.



Data entry errors are very common.

• special economic factors that affect some observations. These

would need to be identified and incorporated in the model. This

is the idea behind structural change: the parameters may not be

constant across all observations.

• pure randomness may have caused us to sample a low-probability

observation.

There exist robust estimation methods that downweight outliers.

3.5 Goodness of fit

The fitted model is

y = Xβ̂ + ε̂

Take the inner product:



y′y = β̂′X ′Xβ̂ + 2β̂′X ′ε̂ + ε̂′ε̂

But the middle term of the RHS is zero since X ′ε̂ = 0, so

y′y = β̂′X ′Xβ̂ + ε̂′ε̂ (3.3)

The uncentered R2
u is defined as

R2
u = 1− ε̂′ε̂

y′y

=
β̂′X ′Xβ̂

y′y

=
‖ PXy ‖2

‖ y ‖2

= cos2(φ),

where φ is the angle between y and the span of X .

• The uncentered R2 changes if we add a constant to y, since this



changes φ (see Figure 3.5, the yellow vector is a constant, since

it’s on the 45 degree line in observation space). Another, more

Figure 3.5: Uncentered R2

common definition measures the contribution of the variables,

other than the constant term, to explaining the variation in y.

Thus it measures the ability of the model to explain the variation



of y about its unconditional sample mean.

Let ι = (1, 1, ..., 1)′, a n -vector. So

Mι = In − ι(ι′ι)−1ι′

= In − ιι′/n

Mιy just returns the vector of deviations from the mean. In terms of

deviations from the mean, equation 3.3 becomes

y′Mιy = β̂′X ′MιXβ̂ + ε̂′Mιε̂

The centered R2
c is defined as

R2
c = 1− ε̂′ε̂

y′Mιy
= 1− ESS

TSS

where ESS = ε̂′ε̂ and TSS = y′Mιy=
∑n

t=1(yt − ȳ)2.



Supposing that X contains a column of ones (i.e., there is a con-

stant term),

X ′ε̂ = 0⇒
∑
t

ε̂t = 0

so Mιε̂ = ε̂. In this case

y′Mιy = β̂′X ′MιXβ̂ + ε̂′ε̂

So

R2
c =

RSS

TSS

where RSS = β̂′X ′MιXβ̂

• Supposing that a column of ones is in the space spanned by X

(PXι = ι), then one can show that 0 ≤ R2
c ≤ 1.



3.6 The classical linear regression model

Up to this point the model is empty of content beyond the definition

of a best linear approximation to y and some geometrical properties.

There is no economic content to the model, and the regression pa-

rameters have no economic interpretation. For example, what is the

partial derivative of y with respect to xj? The linear approximation is

y = β1x1 + β2x2 + ... + βkxk + ε

The partial derivative is

∂y

∂xj
= βj +

∂ε

∂xj

Up to now, there’s no guarantee that ∂ε
∂xj

=0. For the β to have an

economic meaning, we need to make additional assumptions. The

assumptions that are appropriate to make depend on the data under



consideration. We’ll start with the classical linear regression model,

which incorporates some assumptions that are clearly not realistic for

economic data. This is to be able to explain some concepts with a

minimum of confusion and notational clutter. Later we’ll adapt the

results to what we can get with more realistic assumptions.

Linearity: the model is a linear function of the parameter vector

β0 :

y = β0
1x1 + β0

2x2 + ... + β0
kxk + ε (3.4)

or, using vector notation:

y = x′β0 + ε

Nonstochastic linearly independent regressors: X is a fixed ma-



trix of constants, it has rank K equal to its number of columns, and

lim
1

n
X′X = QX (3.5)

where QX is a finite positive definite matrix. This is needed to be able

to identify the individual effects of the explanatory variables.

Independently and identically distributed errors:

ε ∼ IID(0, σ2In) (3.6)

ε is jointly distributed IID. This implies the following two properties:

Homoscedastic errors:

V (εt) = σ2
0,∀t (3.7)

Nonautocorrelated errors:

E(εtεs) = 0,∀t 6= s (3.8)



Optionally, we will sometimes assume that the errors are normally

distributed.

Normally distributed errors:

ε ∼ N(0, σ2In) (3.9)

3.7 Small sample statistical properties of the
least squares estimator

Up to now, we have only examined numeric properties of the OLS es-

timator, that always hold. Now we will examine statistical properties.

The statistical properties depend upon the assumptions we make.



Unbiasedness

We have β̂ = (X ′X)−1X ′y. By linearity,

β̂ = (X ′X)−1X ′ (Xβ + ε)

= β + (X ′X)−1X ′ε

By 3.5 and 3.6

E(X ′X)−1X ′ε = E(X ′X)−1X ′ε

= (X ′X)−1X ′Eε

= 0

so the OLS estimator is unbiased under the assumptions of the classi-

cal model.

Figure 3.6 shows the results of a small Monte Carlo experiment

where the OLS estimator was calculated for 10000 samples from the



Figure 3.6: Unbiasedness of OLS under classical assumptions
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classical model with y = 1 + 2x + ε, where n = 20, σ2
ε = 9, and x is

fixed across samples. We can see that the β2 appears to be estimated

without bias. The program that generates the plot is Unbiased.m , if

you would like to experiment with this.

With time series data, the OLS estimator will often be biased. Fig-

ure 3.7 shows the results of a small Monte Carlo experiment where

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Unbiased.m


Figure 3.7: Biasedness of OLS when an assumption fails
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the OLS estimator was calculated for 1000 samples from the AR(1)

model with yt = 0 + 0.9yt−1 + εt, where n = 20 and σ2
ε = 1. In this case,

assumption 3.5 does not hold: the regressors are stochastic. We can

see that the bias in the estimation of β2 is about -0.2.

The program that generates the plot is Biased.m , if you would like

to experiment with this.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Biased.m


Normality

With the linearity assumption, we have β̂ = β + (X ′X)−1X ′ε. This is a

linear function of ε. Adding the assumption of normality (3.9, which

implies strong exogeneity), then

β̂ ∼ N
(
β, (X ′X)−1σ2

0

)
since a linear function of a normal random vector is also normally

distributed. In Figure 3.6 you can see that the estimator appears to

be normally distributed. It in fact is normally distributed, since the

DGP (see the Octave program) has normal errors. Even when the data

may be taken to be IID, the assumption of normality is often question-

able or simply untenable. For example, if the dependent variable is

the number of automobile trips per week, it is a count variable with

a discrete distribution, and is thus not normally distributed. Many

variables in economics can take on only nonnegative values, which,



strictly speaking, rules out normality.2

The variance of the OLS estimator and the Gauss-Markov

theorem

Now let’s make all the classical assumptions except the assumption of

normality. We have β̂ = β + (X ′X)−1X ′ε and we know that E(β̂) = β.

So

V ar(β̂) = E

{(
β̂ − β

)(
β̂ − β

)′}
= E

{
(X ′X)−1X ′εε′X(X ′X)−1

}
= (X ′X)−1σ2

0

The OLS estimator is a linear estimator, which means that it is a
2Normality may be a good model nonetheless, as long as the probability of a negative value

occuring is negligable under the model. This depends upon the mean being large enough in relation
to the variance.



linear function of the dependent variable, y.

β̂ =
[
(X ′X)−1X ′

]
y

= Cy

where C is a function of the explanatory variables only, not the de-

pendent variable. It is also unbiased under the present assumptions,

as we proved above. One could consider other weights W that are a

function of X that define some other linear estimator. We’ll still insist

upon unbiasedness. Consider β̃ = Wy, where W = W (X) is some

k × n matrix function of X. Note that since W is a function of X, it

is nonstochastic, too. If the estimator is unbiased, then we must have



WX = IK:

E(Wy) = E(WXβ0 + Wε)

= WXβ0

= β0

⇒
WX = IK

The variance of β̃ is

V (β̃) = WW ′σ2
0.

Define

D = W − (X ′X)−1X ′

so

W = D + (X ′X)−1X ′



Since WX = IK, DX = 0, so

V (β̃) =
(
D + (X ′X)−1X ′

) (
D + (X ′X)−1X ′

)′
σ2

0

=
(
DD′ + (X ′X)

−1
)
σ2

0

So

V (β̃) ≥ V (β̂)

The inequality is a shorthand means of expressing, more formally,

that V (β̃) − V (β̂) is a positive semi-definite matrix. This is a proof

of the Gauss-Markov Theorem. The OLS estimator is the ”best linear

unbiased estimator” (BLUE).

• It is worth emphasizing again that we have not used the normal-

ity assumption in any way to prove the Gauss-Markov theorem,

so it is valid if the errors are not normally distributed, as long as

the other assumptions hold.

To illustrate the Gauss-Markov result, consider the estimator that re-



sults from splitting the sample into p equally-sized parts, estimating

using each part of the data separately by OLS, then averaging the p

resulting estimators. You should be able to show that this estimator

is unbiased, but inefficient with respect to the OLS estimator. The

program Efficiency.m illustrates this using a small Monte Carlo exper-

iment, which compares the OLS estimator and a 3-way split sample

estimator. The data generating process follows the classical model,

with n = 21. The true parameter value is β = 2. In Figures 3.8 and

3.9 we can see that the OLS estimator is more efficient, since the tails

of its histogram are more narrow.

We have that E(β̂) = β and V ar(β̂) =
(
X
′
X
)−1

σ2
0, but we still

need to estimate the variance of ε, σ2
0, in order to have an idea of the

precision of the estimates of β. A commonly used estimator of σ2
0 is

σ̂2
0 =

1

n−K
ε̂′ε̂

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Efficiency.m


Figure 3.8: Gauss-Markov Result: The OLS estimator
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Figure 3.9: Gauss-Markov Resul: The split sample estimator
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This estimator is unbiased:

σ̂2
0 =

1

n−K
ε̂′ε̂

=
1

n−K
ε′Mε

E(σ̂2
0) =

1

n−K
E(Trε′Mε)

=
1

n−K
E(TrMεε′)

=
1

n−K
TrE(Mεε′)

=
1

n−K
σ2

0TrM

=
1

n−K
σ2

0 (n− k)

= σ2
0

where we use the fact that Tr(AB) = Tr(BA) when both products



are conformable. Thus, this estimator is also unbiased under these

assumptions.

3.8 Example: The Nerlove model

Theoretical background

For a firm that takes input prices w and the output level q as given,

the cost minimization problem is to choose the quantities of inputs x

to solve the problem

min
x
w′x

subject to the restriction

f (x) = q.



The solution is the vector of factor demands x(w, q). The cost func-
tion is obtained by substituting the factor demands into the criterion

function:

Cw, q) = w′x(w, q).

• Monotonicity Increasing factor prices cannot decrease cost, so

∂C(w, q)

∂w
≥ 0

Remember that these derivatives give the conditional factor de-

mands (Shephard’s Lemma).

• Homogeneity The cost function is homogeneous of degree 1 in

input prices: C(tw, q) = tC(w, q) where t is a scalar constant.

This is because the factor demands are homogeneous of degree

zero in factor prices - they only depend upon relative prices.

• Returns to scale The returns to scale parameter γ is defined as



the inverse of the elasticity of cost with respect to output:

γ =

(
∂C(w, q)

∂q

q

C(w, q)

)−1

Constant returns to scale is the case where increasing production

q implies that cost increases in the proportion 1:1. If this is the

case, then γ = 1.

Cobb-Douglas functional form

The Cobb-Douglas functional form is linear in the logarithms of the

regressors and the dependent variable. For a cost function, if there

are g factors, the Cobb-Douglas cost function has the form

C = Awβ1
1 ...w

βg
g q

βqeε



What is the elasticity of C with respect to wj?

eCwj =

(
∂C

∂WJ

)(wj
C

)
= βjAw

β1
1 .w

βj−1
j ..w

βg
g q

βqeε
wj

Awβ1
1 ...w

βg
g qβqeε

= βj

This is one of the reasons the Cobb-Douglas form is popular - the

coefficients are easy to interpret, since they are the elasticities of the

dependent variable with respect to the explanatory variable. Not that

in this case,

eCwj =

(
∂C

∂WJ

)(wj
C

)
= xj(w, q)

wj
C

≡ sj(w, q)



the cost share of the jth input. So with a Cobb-Douglas cost function,

βj = sj(w, q). The cost shares are constants.

Note that after a logarithmic transformation we obtain

lnC = α + β1 lnw1 + ... + βg lnwg + βq ln q + ε

where α = lnA . So we see that the transformed model is linear in

the logs of the data.

One can verify that the property of HOD1 implies that

g∑
i=1

βg = 1

In other words, the cost shares add up to 1.

The hypothesis that the technology exhibits CRTS implies that

γ =
1

βq
= 1



so βq = 1. Likewise, monotonicity implies that the coefficients βi ≥
0, i = 1, ..., g.

The Nerlove data and OLS

The file nerlove.data contains data on 145 electric utility companies’

cost of production, output and input prices. The data are for the

U.S., and were collected by M. Nerlove. The observations are by row,

and the columns are COMPANY, COST (C), OUTPUT (Q), PRICE OF

LABOR (PL), PRICE OF FUEL (PF ) and PRICE OF CAPITAL (PK).

Note that the data are sorted by output level (the third column).

We will estimate the Cobb-Douglas model

lnC = β1 + β2 lnQ + β3 lnPL + β4 lnPF + β5 lnPK + ε (3.10)

using OLS. To do this yourself, you need the data file mentioned

above, as well as Nerlove.m (the estimation program), and the li-

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/nerlove.data
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m


brary of Octave functions mentioned in the introduction to Octave

that forms section 22 of this document.3

The results are

*********************************************************

OLS estimation results

Observations 145

R-squared 0.925955

Sigma-squared 0.153943

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value

constant -3.527 1.774 -1.987 0.049

output 0.720 0.017 41.244 0.000

labor 0.436 0.291 1.499 0.136

fuel 0.427 0.100 4.249 0.000

3If you are running the bootable CD, you have all of this installed and ready to run.



capital -0.220 0.339 -0.648 0.518

*********************************************************

• Do the theoretical restrictions hold?

• Does the model fit well?

• What do you think about RTS?

While we will most often use Octave programs as examples in this

document, since following the programming statements is a useful

way of learning how theory is put into practice, you may be inter-

ested in a more ”user-friendly” environment for doing econometrics.

I heartily recommend Gretl, the Gnu Regression, Econometrics, and

Time-Series Library. This is an easy to use program, available in En-

glish, French, and Spanish, and it comes with a lot of data ready to

use. It even has an option to save output as LATEX fragments, so that

http://gretl.sourceforge.net


I can just include the results into this document, no muss, no fuss.

Here the results of the Nerlove model from GRETL:

Model 2: OLS estimates using the 145 observations 1–145

Dependent variable: l_cost

Variable Coefficient Std. Error t-statistic p-value

const −3.5265 1.77437 −1.9875 0.0488

l_output 0.720394 0.0174664 41.2445 0.0000

l_labor 0.436341 0.291048 1.4992 0.1361

l_fuel 0.426517 0.100369 4.2495 0.0000

l_capita −0.219888 0.339429 −0.6478 0.5182



Mean of dependent variable 1.72466

S.D. of dependent variable 1.42172

Sum of squared residuals 21.5520

Standard error of residuals (σ̂) 0.392356

Unadjusted R2 0.925955

Adjusted R̄2 0.923840

F (4, 140) 437.686

Akaike information criterion 145.084

Schwarz Bayesian criterion 159.967

Fortunately, Gretl and my OLS program agree upon the results. Gretl

is included in the bootable CD mentioned in the introduction. I rec-

ommend using GRETL to repeat the examples that are done using

Octave.

The previous properties hold for finite sample sizes. Before con-

sidering the asymptotic properties of the OLS estimator it is useful

to review the MLE estimator, since under the assumption of normal



errors the two estimators coincide.

3.9 Exercises

1. Prove that the split sample estimator used to generate figure 3.9

is unbiased.

2. Calculate the OLS estimates of the Nerlove model using Octave

and GRETL, and provide printouts of the results. Interpret the

results.

3. Do an analysis of whether or not there are influential observa-

tions for OLS estimation of the Nerlove model. Discuss.

4. Using GRETL, examine the residuals after OLS estimation and

tell me whether or not you believe that the assumption of inde-

pendent identically distributed normal errors is warranted. No



need to do formal tests, just look at the plots. Print out any that

you think are relevant, and interpret them.

5. For a random vector X ∼ N(µx,Σ), what is the distribution of

AX + b, where A and b are conformable matrices of constants?

6. Using Octave, write a little program that verifies that Tr(AB) =

Tr(BA) for A and B 4x4 matrices of random numbers. Note:

there is an Octave function trace.

7. For the model with a constant and a single regressor, yt = β1 +

β2xt+εt, which satisfies the classical assumptions, prove that the

variance of the OLS estimator declines to zero as the sample size

increases.
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Chapter 4

Asymptotic properties of

the least squares

estimator
The OLS estimator under the classical assumptions is BLUE1, for all

sample sizes. Now let’s see what happens when the sample size tends
1BLUE ≡ best linear unbiased estimator if I haven’t defined it before



to infinity.

4.1 Consistency

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ + ε)

= β0 + (X ′X)−1X ′ε

= β0 +

(
X ′X

n

)−1
X ′ε

n

Consider the last two terms. By assumption limn→∞

(
X ′X
n

)
= QX ⇒

limn→∞

(
X ′X
n

)−1

= Q−1
X , since the inverse of a nonsingular matrix is a



continuous function of the elements of the matrix. Considering X ′ε
n ,

X ′ε

n
=

1

n

n∑
t=1

xtεt

Each xtεt has expectation zero, so

E

(
X ′ε

n

)
= 0

The variance of each term is

V (xtεt) = xtx
′
tσ

2.



As long as these are finite, and given a technical condition2, the Kol-

mogorov SLLN applies, so

1

n

n∑
t=1

xtεt
a.s.→ 0.

This implies that

β̂
a.s.→ β0.

This is the property of strong consistency: the estimator converges in

almost surely to the true value.

• The consistency proof does not use the normality assumption.

• Remember that almost sure convergence implies convergence in

probability.
2For application of LLN’s and CLT’s, of which there are very many to choose from, I’m going to

avoid the technicalities. Basically, as long as terms that make up an average have finite variances
and are not too strongly dependent, one will be able to find a LLN or CLT to apply. Which one it is
doesn’t matter, we only need the result.



4.2 Asymptotic normality

We’ve seen that the OLS estimator is normally distributed under the
assumption of normal errors. If the error distribution is unknown, we

of course don’t know the distribution of the estimator. However, we

can get asymptotic results. Assuming the distribution of ε is unknown,

but the the other classical assumptions hold:

β̂ = β0 + (X ′X)−1X ′ε

β̂ − β0 = (X ′X)−1X ′ε

√
n
(
β̂ − β0

)
=

(
X ′X

n

)−1
X ′ε√
n

• Now as before,
(
X ′X
n

)−1

→ Q−1
X .



• Considering X ′ε√
n
, the limit of the variance is

lim
n→∞

V

(
X ′ε√
n

)
= lim

n→∞
E

(
X ′εε′X

n

)
= σ2

0QX

The mean is of course zero. To get asymptotic normality, we

need to apply a CLT. We assume one (for instance, the Lindeberg-

Feller CLT) holds, so

X ′ε√
n

d→ N
(
0, σ2

0QX

)
Therefore,

√
n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)
(4.1)

• In summary, the OLS estimator is normally distributed in small

and large samples if ε is normally distributed. If ε is not normally

distributed, β̂ is asymptotically normally distributed when a CLT



can be applied.

4.3 Asymptotic efficiency

The least squares objective function is

s(β) =

n∑
t=1

(yt − x′tβ)
2

Supposing that ε is normally distributed, the model is

y = Xβ0 + ε,

ε ∼ N(0, σ2
0In), so

f (ε) =

n∏
t=1

1√
2πσ2

exp

(
− ε2

t

2σ2

)



The joint density for y can be constructed using a change of variables.

We have ε = y −Xβ, so ∂ε
∂y′ = In and | ∂ε∂y′| = 1, so

f (y) =

n∏
t=1

1√
2πσ2

exp

(
−(yt − x′tβ)2

2σ2

)
.

Taking logs,

lnL(β, σ) = −n ln
√

2π − n lnσ −
n∑
t=1

(yt − x′tβ)2

2σ2
.

Maximizing this function with respect to β and σ gives what is known

as the maximum likelihood (ML) estimator. It turns out that ML es-

timators are asymptotically efficient, a concept that will be explained

in detail later. It’s clear that the first order conditions for the MLE of

β0 are the same as the first order conditions that define the OLS esti-

mator (up to multiplication by a constant), so the OLS estimator of β

is also the ML estimator. The estimators are the same, under the present



assumptions. Therefore, their properties are the same. In particular,
under the classical assumptions with normality, the OLS estimator β̂ is
asymptotically efficient. Note that one needs to make an assumption

about the distribution of the errors to compute the ML estimator. If

the errors had a distribution other than the normal, then the OLS

estimator and the ML estimator would not coincide.

As we’ll see later, it will be possible to use (iterated) linear esti-

mation methods and still achieve asymptotic efficiency even if the as-

sumption that V ar(ε) 6= σ2In, as long as ε is still normally distributed.

This is not the case if ε is nonnormal. In general with nonnormal

errors it will be necessary to use nonlinear estimation methods to

achieve asymptotically efficient estimation.



4.4 Exercises

1. Write an Octave program that generates a histogram forRMonte

Carlo replications of
√
n
(
β̂j − βj

)
, where β̂ is the OLS estima-

tor and βj is one of the k slope parameters. R should be a large

number, at least 1000. The model used to generate data should

follow the classical assumptions, except that the errors should

not be normally distributed (try U(−a, a), t(p), χ2(p) − p, etc).

Generate histograms for n ∈ {20, 50, 100, 1000}. Do you observe

evidence of asymptotic normality? Comment.



Chapter 5

Restrictions and

hypothesis tests

5.1 Exact linear restrictions

In many cases, economic theory suggests restrictions on the param-

eters of a model. For example, a demand function is supposed to
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be homogeneous of degree zero in prices and income. If we have a

Cobb-Douglas (log-linear) model,

ln q = β0 + β1 ln p1 + β2 ln p2 + β3 lnm + ε,

then we need that

k0 ln q = β0 + β1 ln kp1 + β2 ln kp2 + β3 ln km + ε,

so

β1 ln p1 + β2 ln p2 + β3 lnm = β1 ln kp1 + β2 ln kp2 + β3 ln km

= (ln k) (β1 + β2 + β3) + β1 ln p1 + β2 ln p2 + β3 lnm.

The only way to guarantee this for arbitrary k is to set

β1 + β2 + β3 = 0,



which is a parameter restriction. In particular, this is a linear equality

restriction, which is probably the most commonly encountered case.

Imposition

The general formulation of linear equality restrictions is the model

y = Xβ + ε

Rβ = r

where R is a Q×K matrix, Q < K and r is a Q×1 vector of constants.

• We assume R is of rank Q, so that there are no redundant re-

strictions.

• We also assume that ∃β that satisfies the restrictions: they aren’t

infeasible.



Let’s consider how to estimate β subject to the restrictions Rβ = r.

The most obvious approach is to set up the Lagrangean

min
β
s(β) =

1

n
(y −Xβ)′ (y −Xβ) + 2λ′(Rβ − r).

The Lagrange multipliers are scaled by 2, which makes things less

messy. The fonc are

Dβs(β̂, λ̂) = −2X ′y + 2X ′Xβ̂R + 2R′λ̂ ≡ 0

Dλs(β̂, λ̂) = Rβ̂R − r ≡ 0,

which can be written as[
X ′X R′

R 0

][
β̂R

λ̂

]
=

[
X ′y

r

]
.



We get [
β̂R

λ̂

]
=

[
X ′X R′

R 0

]−1 [
X ′y

r

]
.

Maybe you’re curious about how to invert a partitioned matrix? I can

help you with that:

Note that[
(X ′X)−1 0

−R (X ′X)−1 IQ

][
X ′X R′

R 0

]
≡ AB

=

[
IK (X ′X)−1R′

0 −R (X ′X)−1R′

]

≡

[
IK (X ′X)−1R′

0 −P

]
≡ C,



and [
IK (X ′X)−1R′P−1

0 −P−1

][
IK (X ′X)−1R′

0 −P

]
≡ DC

= IK+Q,

so

DAB = IK+Q

DA = B−1

B−1 =

[
IK (X ′X)−1R′P−1

0 −P−1

][
(X ′X)−1 0

−R (X ′X)−1 IQ

]

=

[
(X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

]
,



If you weren’t curious about that, please start paying attention again.

Also, note that we have made the definition P = R (X ′X)−1R′)[
β̂R

λ̂

]
=

[
(X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

][
X ′y

r

]

=

 β̂ − (X ′X)−1R′P−1
(
Rβ̂ − r

)
P−1

(
Rβ̂ − r

) 
=

[ (
IK − (X ′X)−1R′P−1R

)
P−1R

]
β̂ +

[
(X ′X)−1R′P−1r

−P−1r

]

The fact that β̂R and λ̂ are linear functions of β̂ makes it easy to deter-

mine their distributions, since the distribution of β̂ is already known.

Recall that for x a random vector, and for A and b a matrix and vector

of constants, respectively, V ar (Ax + b) = AV ar(x)A′.

Though this is the obvious way to go about finding the restricted

estimator, an easier way, if the number of restrictions is small, is to



impose them by substitution. Write

y = X1β1 + X2β2 + ε[
R1 R2

] [ β1

β2

]
= r

where R1 is Q × Q nonsingular. Supposing the Q restrictions are

linearly independent, one can always make R1 nonsingular by reor-

ganizing the columns of X. Then

β1 = R−1
1 r −R−1

1 R2β2.

Substitute this into the model

y = X1R
−1
1 r −X1R

−1
1 R2β2 + X2β2 + ε

y −X1R
−1
1 r =

[
X2 −X1R

−1
1 R2

]
β2 + ε



or with the appropriate definitions,

yR = XRβ2 + ε.

This model satisfies the classical assumptions, supposing the restriction
is true. One can estimate by OLS. The variance of β̂2 is as before

V (β̂2) = (X ′RXR)
−1
σ2

0

and the estimator is

V̂ (β̂2) = (X ′RXR)
−1
σ̂2

where one estimates σ2
0 in the normal way, using the restricted model,

i.e.,

σ̂2
0 =

(
yR −XRβ̂2

)′ (
yR −XRβ̂2

)
n− (K −Q)



To recover β̂1, use the restriction. To find the variance of β̂1, use the

fact that it is a linear function of β̂2, so

V (β̂1) = R−1
1 R2V (β̂2)R′2

(
R−1

1

)′
= R−1

1 R2 (X ′2X2)
−1
R′2
(
R−1

1

)′
σ2

0

Properties of the restricted estimator

We have that

β̂R = β̂ − (X ′X)−1R′P−1
(
Rβ̂ − r

)
= β̂ + (X ′X)−1R′P−1r − (X ′X)−1R′P−1R(X ′X)−1X ′y

= β + (X ′X)−1X ′ε + (X ′X)−1R′P−1 [r −Rβ]− (X ′X)−1R′P−1R(X ′X)−1X ′ε

β̂R − β = (X ′X)−1X ′ε

+ (X ′X)−1R′P−1 [r −Rβ]

− (X ′X)−1R′P−1R(X ′X)−1X ′ε



Mean squared error is

MSE(β̂R) = E(β̂R − β)(β̂R − β)′

Noting that the crosses between the second term and the other terms

expect to zero, and that the cross of the first and third has a cancella-

tion with the square of the third, we obtain

MSE(β̂R) = (X ′X)−1σ2

+ (X ′X)−1R′P−1 [r −Rβ] [r −Rβ]′ P−1R(X ′X)−1

− (X ′X)−1R′P−1R(X ′X)−1σ2

So, the first term is the OLS covariance. The second term is PSD, and

the third term is NSD.

• If the restriction is true, the second term is 0, so we are better

off. True restrictions improve efficiency of estimation.



• If the restriction is false, we may be better or worse off, in terms

of MSE, depending on the magnitudes of r −Rβ and σ2.

5.2 Testing

In many cases, one wishes to test economic theories. If theory sug-

gests parameter restrictions, as in the above homogeneity example,

one can test theory by testing parameter restrictions. A number of

tests are available. The first two (t and F) have a known small sample

distributions, when the errors are normally distributed. The third and

fourth (Wald and score) do not require normality of the errors, but

their distributions are known only approximately, so that they are not

exactly valid with finite samples.



t-test

Suppose one has the model

y = Xβ + ε

and one wishes to test the single restriction H0 :Rβ = r vs. HA :Rβ 6= r

. Under H0, with normality of the errors,

Rβ̂ − r ∼ N
(
0, R(X ′X)−1R′σ2

0

)
so

Rβ̂ − r√
R(X ′X)−1R′σ2

0

=
Rβ̂ − r

σ0

√
R(X ′X)−1R′

∼ N (0, 1) .

The problem is that σ2
0 is unknown. One could use the consistent esti-

mator σ̂2
0 in place of σ2

0, but the test would only be valid asymptotically

in this case.



Proposition 1. N(0,1)√
χ2(q)
q

∼ t(q)

as long as the N(0, 1) and the χ2(q) are independent.

We need a few results on the χ2 distribution.

Proposition 2. If x ∼ N(µ, In) is a vector of n independent r.v.’s., then
x′x ∼ χ2(n, λ) where λ =

∑
i µ

2
i = µ′µ is the noncentrality parameter.

When a χ2 r.v. has the noncentrality parameter equal to zero, it is

referred to as a central χ2 r.v., and it’s distribution is written as χ2(n),

suppressing the noncentrality parameter.

Proposition 3. If the n dimensional random vector x ∼ N(0, V ), then
x′V −1x ∼ χ2(n).

We’ll prove this one as an indication of how the following un-

proven propositions could be proved.



Proof: Factor V −1 as P ′P (this is the Cholesky factorization, where

P is defined to be upper triangular). Then consider y = Px. We have

y ∼ N(0, PV P ′)

but

V P ′P = In

PV P ′P = P

so PV P ′ = In and thus y ∼ N(0, In). Thus y′y ∼ χ2(n) but

y′y = x′P ′Px = xV −1x

and we get the result we wanted.

A more general proposition which implies this result is

Proposition 4. If the n dimensional random vector x ∼ N(0, V ), then



x′Bx ∼ χ2(ρ(B)) if and only if BV is idempotent.

An immediate consequence is

Proposition 5. If the random vector (of dimension n) x ∼ N(0, I), and
B is idempotent with rank r, then x′Bx ∼ χ2(r).

Consider the random variable

ε̂′ε̂

σ2
0

=
ε′MXε

σ2
0

=

(
ε

σ0

)′
MX

(
ε

σ0

)
∼ χ2(n−K)

Proposition 6. If the random vector (of dimension n) x ∼ N(0, I), then
Ax and x′Bx are independent if AB = 0.

Now consider (remember that we have only one restriction in this

case)



Rβ̂−r
σ0

√
R(X ′X)−1R′√

ε̂′ε̂
(n−K)σ2

0

=
Rβ̂ − r

σ̂0

√
R(X ′X)−1R′

This will have the t(n−K) distribution if β̂ and ε̂′ε̂ are independent.

But β̂ = β + (X ′X)−1X ′ε and

(X ′X)−1X ′MX = 0,

so
Rβ̂ − r

σ̂0

√
R(X ′X)−1R′

=
Rβ̂ − r
σ̂Rβ̂

∼ t(n−K)

In particular, for the commonly encountered test of significance of an

individual coefficient, for which H0 : βi = 0 vs. H0 : βi 6= 0 , the test

statistic is
β̂i
σ̂β̂i
∼ t(n−K)



• Note: the t− test is strictly valid only if the errors are actually

normally distributed. If one has nonnormal errors, one could use

the above asymptotic result to justify taking critical values from

the N(0, 1) distribution, since t(n −K)
d→ N(0, 1) as n → ∞. In

practice, a conservative procedure is to take critical values from

the t distribution if nonnormality is suspected. This will reject

H0 less often since the t distribution is fatter-tailed than is the

normal.

F test

The F test allows testing multiple restrictions jointly.

Proposition 7. If x ∼ χ2(r) and y ∼ χ2(s), then x/r
y/s ∼ F (r, s), provided

that x and y are independent.



Proposition 8. If the random vector (of dimension n) x ∼ N(0, I), then
x′Ax

and x′Bx are independent if AB = 0.

Using these results, and previous results on the χ2 distribution, it

is simple to show that the following statistic has the F distribution:

F =

(
Rβ̂ − r

)′ (
R (X ′X)−1R′

)−1 (
Rβ̂ − r

)
qσ̂2

∼ F (q, n−K).

A numerically equivalent expression is

(ESSR − ESSU) /q

ESSU/(n−K)
∼ F (q, n−K).

• Note: The F test is strictly valid only if the errors are truly nor-

mally distributed. The following tests will be appropriate when

one cannot assume normally distributed errors.



Wald-type tests

The t and F tests require normality of the errors. The Wald test does

not, but it is an asymptotic test - it is only approximately valid in finite

samples.

The Wald principle is based on the idea that if a restriction is true,

the unrestricted model should “approximately” satisfy the restriction.

Given that the least squares estimator is asymptotically normally dis-

tributed:
√
n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)
then under H0 : Rβ0 = r, we have

√
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R

′)
so by Proposition [3]

n
(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R

′)−1
(
Rβ̂ − r

)
d→ χ2(q)



Note that Q−1
X or σ2

0 are not observable. The test statistic we use

substitutes the consistent estimators. Use (X ′X/n)−1 as the consistent

estimator of Q−1
X . With this, there is a cancellation of n′s, and the

statistic to use is(
Rβ̂ − r

)′ (
σ̂2

0R(X ′X)−1R′
)−1 (

Rβ̂ − r
)

d→ χ2(q)

• The Wald test is a simple way to test restrictions without having

to estimate the restricted model.

• Note that this formula is similar to one of the formulae provided

for the F test.

Score-type tests (Rao tests, Lagrange multiplier tests)

The score test is another asymptotically valid test that does not re-

quire normality of the errors.



In some cases, an unrestricted model may be nonlinear in the pa-

rameters, but the model is linear in the parameters under the null

hypothesis. For example, the model

y = (Xβ)γ + ε

is nonlinear in β and γ, but is linear in β under H0 : γ = 1. Estimation

of nonlinear models is a bit more complicated, so one might prefer to

have a test based upon the restricted, linear model. The score test is

useful in this situation.

• Score-type tests are based upon the general principle that the

gradient vector of the unrestricted model, evaluated at the re-

stricted estimate, should be asymptotically normally distributed

with mean zero, if the restrictions are true. The original devel-

opment was for ML estimation, but the principle is valid for a

wide variety of estimation methods.



We have seen that

λ̂ =
(
R(X ′X)−1R′

)−1
(
Rβ̂ − r

)
= P−1

(
Rβ̂ − r

)
so

√
nP̂λ =

√
n
(
Rβ̂ − r

)
Given that

√
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R

′)
under the null hypothesis, we obtain

√
nP̂λ

d→ N
(
0, σ2

0RQ
−1
X R

′)
So (√

nP̂λ
)′ (

σ2
0RQ

−1
X R

′)−1
(√

nP̂λ
)

d→ χ2(q)



Noting that limnP = RQ−1
X R

′, we obtain,

λ̂′
(
R(X ′X)−1R′

σ2
0

)
λ̂

d→ χ2(q)

since the powers of n cancel. To get a usable test statistic substitute a

consistent estimator of σ2
0.

• This makes it clear why the test is sometimes referred to as a

Lagrange multiplier test. It may seem that one needs the actual

Lagrange multipliers to calculate this. If we impose the restric-

tions by substitution, these are not available. Note that the test

can be written as (
R′λ̂
)′

(X ′X)−1R′λ̂

σ2
0

d→ χ2(q)



However, we can use the fonc for the restricted estimator:

−X ′y + X ′Xβ̂R + R′λ̂

to get that

R′λ̂ = X ′(y −Xβ̂R)

= X ′ε̂R

Substituting this into the above, we get

ε̂′RX(X ′X)−1X ′ε̂R
σ2

0

d→ χ2(q)

but this is simply

ε̂′R
PX
σ2

0

ε̂R
d→ χ2(q).

To see why the test is also known as a score test, note that the fonc



for restricted least squares

−X ′y + X ′Xβ̂R + R′λ̂

give us

R′λ̂ = X ′y −X ′Xβ̂R

and the rhs is simply the gradient (score) of the unrestricted model,

evaluated at the restricted estimator. The scores evaluated at the un-

restricted estimate are identically zero. The logic behind the score

test is that the scores evaluated at the restricted estimate should be

approximately zero, if the restriction is true. The test is also known

as a Rao test, since P. Rao first proposed it in 1948.



5.3 The asymptotic equivalence of the LR,
Wald and score tests

Note: the discussion of the LR test has been moved forward in these

notes. I no longer teach the material in this section, but I’m leaving it

here for reference.

We have seen that the three tests all converge to χ2 random vari-

ables. In fact, they all converge to the same χ2 rv, under the null

hypothesis. We’ll show that the Wald and LR tests are asymptotically

equivalent. We have seen that the Wald test is asymptotically equiva-

lent to

W
a
= n

(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R

′)−1
(
Rβ̂ − r

)
d→ χ2(q) (5.1)



Using

β̂ − β0 = (X ′X)−1X ′ε

and

Rβ̂ − r = R(β̂ − β0)

we get

√
nR(β̂ − β0) =

√
nR(X ′X)−1X ′ε

= R

(
X ′X

n

)−1

n−1/2X ′ε



Substitute this into [5.1] to get

W
a
= n−1ε′XQ−1

X R
′ (σ2

0RQ
−1
X R

′)−1
RQ−1

X X
′ε

a
= ε′X(X ′X)−1R′

(
σ2

0R(X ′X)−1R′
)−1

R(X ′X)−1X ′ε

a
=
ε′A(A′A)−1A′ε

σ2
0

a
=
ε′PRε

σ2
0

where PR is the projection matrix formed by the matrix X(X ′X)−1R′.

• Note that this matrix is idempotent and has q columns, so the

projection matrix has rank q.

Now consider the likelihood ratio statistic

LR
a
= n1/2g(θ0)′I(θ0)−1R′

(
RI(θ0)−1R′

)−1
RI(θ0)−1n1/2g(θ0) (5.2)



Under normality, we have seen that the likelihood function is

lnL(β, σ) = −n ln
√

2π − n lnσ − 1

2

(y −Xβ)′ (y −Xβ)

σ2
.

Using this,

g(β0) ≡ Dβ
1

n
lnL(β, σ)

=
X ′(y −Xβ0)

nσ2

=
X ′ε

nσ2



Also, by the information matrix equality:

I(θ0) = −H∞(θ0)

= lim−Dβ′g(β0)

= lim−Dβ′
X ′(y −Xβ0)

nσ2

= lim
X ′X

nσ2

=
QX

σ2

so

I(θ0)−1 = σ2Q−1
X



Substituting these last expressions into [5.2], we get

LR
a
= ε′X ′(X ′X)−1R′

(
σ2

0R(X ′X)−1R′
)−1

R(X ′X)−1X ′ε

a
=
ε′PRε

σ2
0

a
= W

This completes the proof that the Wald and LR tests are asymptotically

equivalent. Similarly, one can show that, under the null hypothesis,

qF
a
= W

a
= LM

a
= LR

• The proof for the statistics except for LR does not depend upon

normality of the errors, as can be verified by examining the ex-

pressions for the statistics.

• The LR statistic is based upon distributional assumptions, since

one can’t write the likelihood function without them.



• However, due to the close relationship between the statistics qF

and LR, supposing normality, the qF statistic can be thought

of as a pseudo-LR statistic, in that it’s like a LR statistic in that it

uses the value of the objective functions of the restricted and un-

restricted models, but it doesn’t require distributional assump-

tions.

• The presentation of the score and Wald tests has been done in

the context of the linear model. This is readily generalizable to

nonlinear models and/or other estimation methods.

Though the four statistics are asymptotically equivalent, they are nu-

merically different in small samples. The numeric values of the tests

also depend upon how σ2 is estimated, and we’ve already seen than

there are several ways to do this. For example all of the following are

consistent for σ2 under H0



ε̂′ε̂
n−k
ε̂′ε̂
n

ε̂′Rε̂R
n−k+q

ε̂′Rε̂R
n

and in general the denominator call be replaced with any quantity a

such that lim a/n = 1.

It can be shown, for linear regression models subject to linear re-

strictions, and if ε̂′ε̂
n is used to calculate the Wald test and ε̂′Rε̂R

n is used

for the score test, that

W > LR > LM.

For this reason, the Wald test will always reject if the LR test rejects,

and in turn the LR test rejects if the LM test rejects. This is a bit prob-



lematic: there is the possibility that by careful choice of the statistic

used, one can manipulate reported results to favor or disfavor a hy-

pothesis. A conservative/honest approach would be to report all three

test statistics when they are available. In the case of linear models

with normal errors the F test is to be preferred, since asymptotic ap-

proximations are not an issue.

The small sample behavior of the tests can be quite different. The

true size (probability of rejection of the null when the null is true)

of the Wald test is often dramatically higher than the nominal size

associated with the asymptotic distribution. Likewise, the true size of

the score test is often smaller than the nominal size.

5.4 Interpretation of test statistics

Now that we have a menu of test statistics, we need to know how to

use them.



5.5 Confidence intervals

Confidence intervals for single coefficients are generated in the nor-

mal manner. Given the t statistic

t(β) =
β̂ − β
σ̂β̂

a 100 (1− α) % confidence interval for β0 is defined by the bounds of

the set of β such that t(β) does not reject H0 : β0 = β, using a α

significance level:

C(α) = {β : −cα/2 <
β̂ − β
σ̂β̂

< cα/2}

The set of such β is the interval

β̂ ± σ̂β̂cα/2



A confidence ellipse for two coefficients jointly would be, analo-

gously, the set of {β1, β2} such that the F (or some other test statistic)

doesn’t reject at the specified critical value. This generates an ellipse,

if the estimators are correlated.

• The region is an ellipse, since the CI for an individual coefficient

defines a (infinitely long) rectangle with total prob. mass 1− α,
since the other coefficient is marginalized (e.g., can take on any

value). Since the ellipse is bounded in both dimensions but also

contains mass 1 − α, it must extend beyond the bounds of the

individual CI.

• From the pictue we can see that:

– Rejection of hypotheses individually does not imply that the

joint test will reject.

– Joint rejection does not imply individal tests will reject.



Figure 5.1: Joint and Individual Confidence Regions



5.6 Bootstrapping

When we rely on asymptotic theory to use the normal distribution-

based tests and confidence intervals, we’re often at serious risk of

making important errors. If the sample size is small and errors are

highly nonnormal, the small sample distribution of
√
n
(
β̂ − β0

)
may

be very different than its large sample distribution. Also, the distribu-

tions of test statistics may not resemble their limiting distributions at

all. A means of trying to gain information on the small sample distri-

bution of test statistics and estimators is the bootstrap. We’ll consider

a simple example, just to get the main idea.

Suppose that

y = Xβ0 + ε

ε ∼ IID(0, σ2
0)

X is nonstochastic



Given that the distribution of ε is unknown, the distribution of β̂ will

be unknown in small samples. However, since we have random sam-

pling, we could generate artificial data. The steps are:

1. Draw n observations from ε̂ with replacement. Call this vector

ε̃j (it’s a n× 1).

2. Then generate the data by ỹj = Xβ̂ + ε̃j

3. Now take this and estimate

β̃j = (X ′X)−1X ′ỹj.

4. Save β̃j

5. Repeat steps 1-4, until we have a large number, J, of β̃j.

With this, we can use the replications to calculate the empirical distri-
bution of β̃j. One way to form a 100(1-α)% confidence interval for β0



would be to order the β̃j from smallest to largest, and drop the first

and last Jα/2 of the replications, and use the remaining endpoints as

the limits of the CI. Note that this will not give the shortest CI if the

empirical distribution is skewed.

• Suppose one was interested in the distribution of some function

of β̂, for example a test statistic. Simple: just calculate the trans-

formation for each j, and work with the empirical distribution

of the transformation.

• If the assumption of iid errors is too strong (for example if there

is heteroscedasticity or autocorrelation, see below) one can work

with a bootstrap defined by sampling from (y, x) with replace-

ment.

• How to choose J: J should be large enough that the results

don’t change with repetition of the entire bootstrap. This is easy



to check. If you find the results change a lot, increase J and try

again.

• The bootstrap is based fundamentally on the idea that the em-

pirical distribution of the sample data converges to the actual

sampling distribution as n becomes large, so statistics based on

sampling from the empirical distribution should converge in dis-

tribution to statistics based on sampling from the actual sam-

pling distribution.

• In finite samples, this doesn’t hold. At a minimum, the bootstrap

is a good way to check if asymptotic theory results offer a decent

approximation to the small sample distribution.

• Bootstrapping can be used to test hypotheses. Basically, use the

bootstrap to get an approximation to the empirical distribution

of the test statistic under the alternative hypothesis, and use this

to get critical values. Compare the test statistic calculated using



the real data, under the null, to the bootstrap critical values.

There are many variations on this theme, which we won’t go

into here.

5.7 Wald test for nonlinear restrictions: the
delta method

Testing nonlinear restrictions of a linear model is not much more dif-

ficult, at least when the model is linear. Since estimation subject to

nonlinear restrictions requires nonlinear estimation methods, which

are beyond the score of this course, we’ll just consider the Wald test

for nonlinear restrictions on a linear model.

Consider the q nonlinear restrictions

r(β0) = 0.



where r(·) is a q-vector valued function. Write the derivative of the

restriction evaluated at β as

Dβ′r(β)
∣∣
β

= R(β)

We suppose that the restrictions are not redundant in a neighborhood

of β0, so that

ρ(R(β)) = q

in a neighborhood of β0. Take a first order Taylor’s series expansion of

r(β̂) about β0:

r(β̂) = r(β0) + R(β∗)(β̂ − β0)

where β∗ is a convex combination of β̂ and β0. Under the null hypoth-

esis we have

r(β̂) = R(β∗)(β̂ − β0)



Due to consistency of β̂ we can replace β∗ by β0, asymptotically, so

√
nr(β̂)

a
=
√
nR(β0)(β̂ − β0)

We’ve already seen the distribution of
√
n(β̂ − β0). Using this we get

√
nr(β̂)

d→ N
(
0, R(β0)Q−1

X R(β0)′σ2
0

)
.

Considering the quadratic form

nr(β̂)′
(
R(β0)Q−1

X R(β0)′
)−1

r(β̂)

σ2
0

d→ χ2(q)

under the null hypothesis. Substituting consistent estimators for β0,QX

and σ2
0, the resulting statistic is

r(β̂)′
(
R(β̂)(X ′X)−1R(β̂)′

)−1

r(β̂)

σ̂2

d→ χ2(q)



under the null hypothesis.

• This is known in the literature as the delta method, or as Klein’s
approximation.

• Since this is a Wald test, it will tend to over-reject in finite sam-

ples. The score and LR tests are also possibilities, but they re-

quire estimation methods for nonlinear models, which aren’t in

the scope of this course.

Note that this also gives a convenient way to estimate nonlinear func-

tions and associated asymptotic confidence intervals. If the nonlinear

function r(β0) is not hypothesized to be zero, we just have

√
n
(
r(β̂)− r(β0)

)
d→ N

(
0, R(β0)Q−1

X R(β0)′σ2
0

)
so an approximation to the distribution of the function of the estima-

tor is

r(β̂) ≈ N(r(β0), R(β0)(X ′X)−1R(β0)′σ2
0)



For example, the vector of elasticities of a function f (x) is

η(x) =
∂f (x)

∂x
� x

f (x)

where � means element-by-element multiplication. Suppose we esti-

mate a linear function

y = x′β + ε.

The elasticities of y w.r.t. x are

η(x) =
β

x′β
� x

(note that this is the entire vector of elasticities). The estimated elas-

ticities are

η̂(x) =
β̂

x′β̂
� x



To calculate the estimated standard errors of all five elasticites, use

R(β) =
∂η(x)

∂β′

=


x1 0 · · · 0

0 x2
...

... . . . 0

0 · · · 0 xk

x′β −

β1x

2
1 0 · · · 0

0 β2x
2
2

...
... . . . 0

0 · · · 0 βkx
2
k


(x′β)2

.

To get a consistent estimator just substitute in β̂. Note that the elas-

ticity and the standard error are functions of x. The program Exam-

pleDeltaMethod.m shows how this can be done.

In many cases, nonlinear restrictions can also involve the data, not

just the parameters. For example, consider a model of expenditure

shares. Let x(p,m) be a demand funcion, where p is prices and m is

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ExampleDeltaMethod.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ExampleDeltaMethod.m


income. An expenditure share system for G goods is

si(p,m) =
pixi(p,m)

m
, i = 1, 2, ..., G.

Now demand must be positive, and we assume that expenditures sum

to income, so we have the restrictions

0 ≤ si(p,m) ≤ 1, ∀i
G∑
i=1

si(p,m) = 1

Suppose we postulate a linear model for the expenditure shares:

si(p,m) = βi1 + p′βip + mβim + εi

It is fairly easy to write restrictions such that the shares sum to one,

but the restriction that the shares lie in the [0, 1] interval depends

on both parameters and the values of p and m. It is impossible to



impose the restriction that 0 ≤ si(p,m) ≤ 1 for all possible p and m.

In such cases, one might consider whether or not a linear model is a

reasonable specification.

5.8 Example: the Nerlove data

Remember that we in a previous example (section 3.8) that the OLS

results for the Nerlove model are

*********************************************************

OLS estimation results

Observations 145

R-squared 0.925955

Sigma-squared 0.153943

Results (Ordinary var-cov estimator)



estimate st.err. t-stat. p-value

constant -3.527 1.774 -1.987 0.049

output 0.720 0.017 41.244 0.000

labor 0.436 0.291 1.499 0.136

fuel 0.427 0.100 4.249 0.000

capital -0.220 0.339 -0.648 0.518

*********************************************************

Note that sK = βK < 0, and that βL + βF + βK 6= 1.

Remember that if we have constant returns to scale, then βQ = 1,

and if there is homogeneity of degree 1 then βL + βF + βK = 1. We

can test these hypotheses either separately or jointly. NerloveRestric-

tions.m imposes and tests CRTS and then HOD1. From it we obtain

the results that follow:

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/NerloveRestrictions.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/NerloveRestrictions.m


Imposing and testing HOD1

*******************************************************

Restricted LS estimation results

Observations 145

R-squared 0.925652

Sigma-squared 0.155686

estimate st.err. t-stat. p-value

constant -4.691 0.891 -5.263 0.000

output 0.721 0.018 41.040 0.000

labor 0.593 0.206 2.878 0.005

fuel 0.414 0.100 4.159 0.000

capital -0.007 0.192 -0.038 0.969

*******************************************************



Value p-value

F 0.574 0.450

Wald 0.594 0.441

LR 0.593 0.441

Score 0.592 0.442

Imposing and testing CRTS

*******************************************************

Restricted LS estimation results

Observations 145

R-squared 0.790420

Sigma-squared 0.438861

estimate st.err. t-stat. p-value

constant -7.530 2.966 -2.539 0.012



output 1.000 0.000 Inf 0.000

labor 0.020 0.489 0.040 0.968

fuel 0.715 0.167 4.289 0.000

capital 0.076 0.572 0.132 0.895

*******************************************************

Value p-value

F 256.262 0.000

Wald 265.414 0.000

LR 150.863 0.000

Score 93.771 0.000

Notice that the input price coefficients in fact sum to 1 when HOD1

is imposed. HOD1 is not rejected at usual significance levels (e.g.,
α = 0.10). Also, R2 does not drop much when the restriction is im-

posed, compared to the unrestricted results. For CRTS, you should



note that βQ = 1, so the restriction is satisfied. Also note that the

hypothesis that βQ = 1 is rejected by the test statistics at all reason-

able significance levels. Note that R2 drops quite a bit when imposing

CRTS. If you look at the unrestricted estimation results, you can see

that a t-test for βQ = 1 also rejects, and that a confidence interval for

βQ does not overlap 1.

From the point of view of neoclassical economic theory, these re-

sults are not anomalous: HOD1 is an implication of the theory, but

CRTS is not.

Exercise 9. Modify the NerloveRestrictions.m program to impose and

test the restrictions jointly.

The Chow test Since CRTS is rejected, let’s examine the possibilities

more carefully. Recall that the data is sorted by output (the third

column). Define 5 subsamples of firms, with the first group being the

29 firms with the lowest output levels, then the next 29 firms, etc.



The five subsamples can be indexed by j = 1, 2, ..., 5, where j = 1 for

t = 1, 2, ...29, j = 2 for t = 30, 31, ...58, etc. Define dummy variables
D1, D2, ..., D5 where

D1 =

1 t ∈ {1, 2, ...29}

0 t /∈ {1, 2, ...29}

D2 =

1 t ∈ {30, 31, ...58}

0 t /∈ {30, 31, ...58}
...

D5 =

1 t ∈ {117, 118, ..., 145}

0 t /∈ {117, 118, ..., 145}



Define the model

lnCt =

5∑
j=1

α1Dj+

5∑
j=1

γjDj lnQt+

5∑
j=1

βLjDj lnPLt+

5∑
j=1

βFjDj lnPFt+

5∑
j=1

βKjDj lnPKt+εt

(5.3)

Note that the first column of nerlove.data indicates this way of break-

ing up the sample, and provides and easy way of defining the dummy

variables. The new model may be written as

y1

y2

...

y5


=



X1 0 · · · 0

0 X2

... X3

X4 0

0 X5





β1

β2

β5


+



ε1

ε2

...

ε5


(5.4)

where y1 is 29×1, X1 is 29×5, βj is the 5× 1 vector of coefficients for

the jth subsample (e.g., β1 = (α1, γ1, βL1, βF1, βK1)′), and εj is the 29×1



vector of errors for the jth subsample.

The Octave program Restrictions/ChowTest.m estimates the above

model. It also tests the hypothesis that the five subsamples share the

same parameter vector, or in other words, that there is coefficient sta-

bility across the five subsamples. The null to test is that the parameter

vectors for the separate groups are all the same, that is,

β1 = β2 = β3 = β4 = β5

This type of test, that parameters are constant across different sets of

data, is sometimes referred to as a Chow test.

• There are 20 restrictions. If that’s not clear to you, look at the

Octave program.

• The restrictions are rejected at all conventional significance lev-

els.

Since the restrictions are rejected, we should probably use the unre-

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ChowTest.m


Figure 5.2: RTS as a function of firm size
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stricted model for analysis. What is the pattern of RTS as a function

of the output group (small to large)? Figure 5.2 plots RTS. We can

see that there is increasing RTS for small firms, but that RTS is ap-

proximately constant for large firms.



5.9 Exercises

1. Using the Chow test on the Nerlove model, we reject that there

is coefficient stability across the 5 groups. But perhaps we could

restrict the input price coefficients to be the same but let the

constant and output coefficients vary by group size. This new

model is

lnC =

5∑
j=1

αjDj +

5∑
j=1

γjDj lnQ+βL lnPL+βF lnPF +βK lnPK + ε

(5.5)

(a) estimate this model by OLS, giving R2, estimated standard

errors for coefficients, t-statistics for tests of significance,

and the associated p-values. Interpret the results in detail.

(b) Test the restrictions implied by this model (relative to the

model that lets all coefficients vary across groups) using the



F, qF, Wald, score and likelihood ratio tests. Comment on

the results.

(c) Estimate this model but imposing the HOD1 restriction, us-
ing an OLS estimation program. Don’t use mc_olsr or any

other restricted OLS estimation program. Give estimated

standard errors for all coefficients.

(d) Plot the estimated RTS parameters as a function of firm size.

Compare the plot to that given in the notes for the unre-

stricted model. Comment on the results.

2. For the model of the above question, compute 95% confidence

intervals for RTS for each of the 5 groups of firms, using the delta

method to compute standard errors. Comment on the results.

3. Perform a Monte Carlo study that generates data from the model

y = −2 + 1x2 + 1x3 + ε



where the sample size is 30, x2 and x3 are independently uni-

formly distributed on [0, 1] and ε ∼ IIN(0, 1)

(a) Compare the means and standard errors of the estimated

coefficients using OLS and restricted OLS, imposing the re-

striction that β2 + β3 = 2.

(b) Compare the means and standard errors of the estimated

coefficients using OLS and restricted OLS, imposing the re-

striction that β2 + β3 = 1.

(c) Discuss the results.



Chapter 6

Stochastic regressors
Up to now we have treated the regressors as fixed, which is clearly

unrealistic. Now we will assume they are random. There are several

ways to think of the problem. First, if we are interested in an analysis

conditional on the explanatory variables, then it is irrelevant if they

are stochastic or not, since conditional on the values of they regressors

take on, they are nonstochastic, which is the case already considered.

• In cross-sectional analysis it is usually reasonable to make the
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analysis conditional on the regressors.

• In dynamic models, where yt may depend on yt−1, a conditional

analysis is not sufficiently general, since we may want to predict

into the future many periods out, so we need to consider the

behavior of β̂ and the relevant test statistics unconditional on

X.

The model we’ll deal will involve a combination of the following as-

sumptions

Assumption 10. Linearity: the model is a linear function of the pa-
rameter vector β0 :

yt = x′tβ0 + εt,

or in matrix form,
y = Xβ0 + ε,

where y is n× 1, X =
(
x1 x2 · · · xn

)′
, where xt is K × 1, and β0 and



ε are conformable.

Assumption 11. Stochastic, linearly independent regressors
X has rank K with probability 1
X is stochastic
limn→∞ Pr

(
1
nX
′X = QX

)
= 1, where QX is a finite positive definite

matrix.

Assumption 12. Central limit theorem
n−1/2X ′ε

d→ N(0, QXσ
2
0)

Assumption 13. Normality (Optional): ε|X ∼ N(0, σ2In): ε is nor-
mally distributed



Assumption 14. Strongly exogenous regressors. The regressors X are
strongly exogenous if

E(εt|X) = 0,∀t (6.1)

Assumption 15. Weakly exogenous regressors: The regressors are
weakly exogenous if

E(εt|xt) = 0,∀t

In both cases, x′tβ is the conditional mean of yt given xt: E(yt|xt) =

x′tβ



6.1 Case 1

Normality of ε, strongly exogenous regressors

In this case,

β̂ = β0 + (X ′X)−1X ′ε

E(β̂|X) = β0 + (X ′X)−1X ′E(ε|X)

= β0

and since this holds for allX, E(β̂) = β, unconditional onX. Likewise,

β̂|X ∼ N
(
β, (X ′X)−1σ2

0

)
• If the density ofX is dµ(X), the marginal density of β̂ is obtained

by multiplying the conditional density by dµ(X) and integrating

over X. Doing this leads to a nonnormal density for β̂, in small



samples.

• However, conditional on X, the usual test statistics have the t,

F and χ2 distributions. Importantly, these distributions don’t de-

pend on X, so when marginalizing to obtain the unconditional

distribution, nothing changes. The tests are valid in small sam-

ples.

• Summary: When X is stochastic but strongly exogenous and ε

is normally distributed:

1. β̂ is unbiased

2. β̂ is nonnormally distributed

3. The usual test statistics have the same distribution as with

nonstochastic X.

4. The Gauss-Markov theorem still holds, since it holds condi-

tionally on X, and this is true for all X.



5. Asymptotic properties are treated in the next section.

6.2 Case 2

ε nonnormally distributed, strongly exogenous regressors
The unbiasedness of β̂ carries through as before. However, the

argument regarding test statistics doesn’t hold, due to nonnormality

of ε. Still, we have

β̂ = β0 + (X ′X)−1X ′ε

= β0 +

(
X ′X

n

)−1
X ′ε

n

Now (
X ′X

n

)−1
p→ Q−1

X



by assumption, and
X ′ε

n
=
n−1/2X ′ε√

n

p→ 0

since the numerator converges to a N(0, QXσ
2) r.v. and the denom-

inator still goes to infinity. We have unbiasedness and the variance

disappearing, so, the estimator is consistent:

β̂
p→ β0.

Considering the asymptotic distribution

√
n
(
β̂ − β0

)
=
√
n

(
X ′X

n

)−1
X ′ε

n

=

(
X ′X

n

)−1

n−1/2X ′ε

so
√
n
(
β̂ − β0

)
d→ N(0, Q−1

X σ
2
0)



directly following the assumptions. Asymptotic normality of the esti-
mator still holds. Since the asymptotic results on all test statistics only

require this, all the previous asymptotic results on test statistics are

also valid in this case.

• Summary: Under strongly exogenous regressors, with ε normal

or nonnormal, β̂ has the properties:

1. Unbiasedness

2. Consistency

3. Gauss-Markov theorem holds, since it holds in the previous

case and doesn’t depend on normality.

4. Asymptotic normality

5. Tests are asymptotically valid

6. Tests are not valid in small samples if the error is normally

distributed



6.3 Case 3

Weakly exogenous regressors
An important class of models are dynamic models, where lagged

dependent variables have an impact on the current value. A simple

version of these models that captures the important points is

yt = z′tα +

p∑
s=1

γsyt−s + εt

= x′tβ + εt

where now xt contains lagged dependent variables. Clearly, even with

E(εt|xt) = 0, X and ε are not uncorrelated, so one can’t show unbi-

asedness. For example,

E(εt−1xt) 6= 0

since xt contains yt−1 (which is a function of εt−1) as an element.



• This fact implies that all of the small sample properties such as

unbiasedness, Gauss-Markov theorem, and small sample validity

of test statistics do not hold in this case. Recall Figure 3.7. This

is a case of weakly exogenous regressors, and we see that the

OLS estimator is biased in this case.

• Nevertheless, under the above assumptions, all asymptotic prop-

erties continue to hold, using the same arguments as before.

6.4 When are the assumptions reasonable?

The two assumptions we’ve added are

1. limn→∞ Pr
(

1
nX
′X = QX

)
= 1, aQX finite positive definite matrix.

2. n−1/2X ′ε
d→ N(0, QXσ

2
0)



The most complicated case is that of dynamic models, since the other

cases can be treated as nested in this case. There exist a number of

central limit theorems for dependent processes, many of which are

fairly technical. We won’t enter into details (see Hamilton, Chapter 7

if you’re interested). A main requirement for use of standard asymp-

totics for a dependent sequence

{st} = {1

n

n∑
t=1

zt}

to converge in probability to a finite limit is that zt be stationary, in

some sense.

• Strong stationarity requires that the joint distribution of the set

{zt, zt+s, zt−q, ...}

not depend on t.



• Covariance (weak) stationarity requires that the first and second

moments of this set not depend on t.

• An example of a sequence that doesn’t satisfy this is an AR(1)

process with a unit root (a random walk):

xt = xt−1 + εt

εt ∼ IIN(0, σ2)

One can show that the variance of xt depends upon t in this case,

so it’s not weakly stationary.

• The series sin t + εt has a first moment that depends upon t, so

it’s not weakly stationary either.

Stationarity prevents the process from trending off to plus or minus

infinity, and prevents cyclical behavior which would allow correla-

tions between far removed zt znd zs to be high. Draw a picture here.



• In summary, the assumptions are reasonable when the stochas-

tic conditioning variables have variances that are finite, and are

not too strongly dependent. The AR(1) model with unit root is

an example of a case where the dependence is too strong for

standard asymptotics to apply.

• The study of nonstationary processes is an important part of

econometrics, but it isn’t in the scope of this course.

6.5 Exercises

1. Show that for two random variables A and B, if E(A|B) = 0,

then E (Af (B)) = 0. How is this used in the proof of the Gauss-

Markov theorem?

2. Is it possible for an AR(1) model for time series data, e.g., yt =

0 + 0.9yt−1 + εt satisfy weak exogeneity? Strong exogeneity? Dis-



cuss.



Chapter 7

Data problems
In this section we’ll consider problems associated with the regressor

matrix: collinearity, missing observations and measurement error.
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7.1 Collinearity

Motivation: Data on Mortality and Related Factors

The data set mortality.data contains annual data from 1947 - 1980 on

death rates in the U.S., along with data on factors like smoking and

consumption of alcohol. The data description is:

DATA4-7: Death rates in the U.S. due to coronary heart disease

and their

determinants. Data compiled by Jennifer Whisenand

• chd = death rate per 100,000 population (Range 321.2 - 375.4)

• cal = Per capita consumption of calcium per day in grams (Range

0.9 - 1.06)

• unemp = Percent of civilian labor force unemployed in 1,000 of

persons 16 years and older (Range 2.9 - 8.5)

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/mortality.data


• cig = Per capita consumption of cigarettes in pounds of tobacco

by persons 18 years and older–approx. 339 cigarettes per pound

of tobacco (Range 6.75 - 10.46)

• edfat = Per capita intake of edible fats and oil in pounds–includes

lard, margarine and butter (Range 42 - 56.5)

• meat = Per capita intake of meat in pounds–includes beef, veal,

pork, lamb and mutton (Range 138 - 194.8)

• spirits = Per capita consumption of distilled spirits in taxed gal-

lons for individuals 18 and older (Range 1 - 2.9)

• beer = Per capita consumption of malted liquor in taxed gallons

for individuals 18 and older (Range 15.04 - 34.9)

• wine = Per capita consumption of wine measured in taxed gal-

lons for individuals 18 and older (Range 0.77 - 2.65)



Consider estimation results for several models:

ĉhd = 334.914
(58.939)

+ 5.41216
(5.156)

cig + 36.8783
(7.373)

spirits− 5.10365
(1.2513)

beer

+ 13.9764
(12.735)

wine

T = 34 R̄2 = 0.5528 F (4, 29) = 11.2 σ̂ = 9.9945

(standard errors in parentheses)

ĉhd = 353.581
(56.624)

+ 3.17560
(4.7523)

cig + 38.3481
(7.275)

spirits− 4.28816
(1.0102)

beer

T = 34 R̄2 = 0.5498 F (3, 30) = 14.433 σ̂ = 10.028

(standard errors in parentheses)



ĉhd = 243.310
(67.21)

+ 10.7535
(6.1508)

cig + 22.8012
(8.0359)

spirits− 16.8689
(12.638)

wine

T = 34 R̄2 = 0.3198 F (3, 30) = 6.1709 σ̂ = 12.327

(standard errors in parentheses)

ĉhd = 181.219
(49.119)

+ 16.5146
(4.4371)

cig + 15.8672
(6.2079)

spirits

T = 34 R̄2 = 0.3026 F (2, 31) = 8.1598 σ̂ = 12.481

(standard errors in parentheses)

Note how the signs of the coefficients change depending on the

model, and that the magnitudes of the parameter estimates vary a

lot, too. The parameter estimates are highly sensitive to the particular

model we estimate. Why? We’ll see that the problem is that the data



exhibit collinearity.

Collinearity: definition

Collinearity is the existence of linear relationships amongst the re-

gressors. We can always write

λ1x1 + λ2x2 + · · · + λKxK + v = 0

where xi is the ith column of the regressor matrix X, and v is an n× 1

vector. In the case that there exists collinearity, the variation in v is

relatively small, so that there is an approximately exact linear relation

between the regressors.

• “relative” and “approximate” are imprecise, so it’s difficult to

define when collinearilty exists.



In the extreme, if there are exact linear relationships (every element

of v equal) then ρ(X) < K, so ρ(X ′X) < K, so X ′X is not invertible

and the OLS estimator is not uniquely defined. For example, if the

model is

yt = β1 + β2x2t + β3x3t + εt

x2t = α1 + α2x3t

then we can write

yt = β1 + β2 (α1 + α2x3t) + β3x3t + εt

= β1 + β2α1 + β2α2x3t + β3x3t + εt

= (β1 + β2α1) + (β2α2 + β3)x3t

= γ1 + γ2x3t + εt

• The γ′s can be consistently estimated, but since the γ′s define

two equations in three β′s, the β′s can’t be consistently estimated



(there are multiple values of β that solve the first order condi-

tions). The β′s are unidentified in the case of perfect collinearity.

• Perfect collinearity is unusual, except in the case of an error in

construction of the regressor matrix, such as including the same

regressor twice.

Another case where perfect collinearity may be encountered is with

models with dummy variables, if one is not careful. Consider a model

of rental price (yi) of an apartment. This could depend factors such

as size, quality etc., collected in xi, as well as on the location of the

apartment. Let Bi = 1 if the ith apartment is in Barcelona, Bi = 0

otherwise. Similarly, define Gi, Ti and Li for Girona, Tarragona and

Lleida. One could use a model such as

yi = β1 + β2Bi + β3Gi + β4Ti + β5Li + x′iγ + εi



In this model, Bi+Gi+Ti+Li = 1, ∀i, so there is an exact relationship

between these variables and the column of ones corresponding to the

constant. One must either drop the constant, or one of the qualitative

variables.

A brief aside on dummy variables

Dummy variable: A dummy variable is a binary-valued variable that

indicates whether or not some condition is true. It is customary to

assign the value 1 if the condition is true, and 0 if the condition is

false.

Dummy variables are used essentially like any other regressor. Use

d to indicate that a variable is a dummy, so that variables like dt and

dt2 are understood to be dummy variables. Variables like xt and xt3

are ordinary continuous regressors. You know how to interpret the

following models:



yt = β1 + β2dt + εt

yt = β1dt + β2(1− dt) + εt

yt = β1 + β2dt + β3xt + εt

Interaction terms: an interaction term is the product of two vari-

ables, so that the effect of one variable on the dependent variable

depends on the value of the other. The following model has an inter-

action term. Note that ∂E(y|x)
∂x = β3 + β4dt. The slope depends on the

value of dt.

yt = β1 + β2dt + β3xt + β4dtxt + εt

Multiple dummy variables: we can use more than one dummy vari-



able in a model. We will study models of the form

yt = β1 + β2dt1 + β3dt2 + β4xt + εt

yt = β1 + β2dt1 + β3dt2 + β4dt1dt2 + β5xt + εt

Incorrect usage: You should understand why the following models

are not correct usages of dummy variables:

1. overparameterization:

yt = β1 + β2dt + β3(1− dt) + εt

2. multiple values assigned to multiple categories. Suppose that we

a condition that defines 4 possible categories, and we create a

variable d = 1 if the observation is in the first category, d = 2 if in

the second, etc. (This is not strictly speaking a dummy variable,



according to our definition). Why is the following model not a

good one?

yt = β1 + β2d + ε

What is the correct way to deal with this situation?

Multiple parameterizations. To formulate a model that conditions

on a given set of categorical information, there are multiple ways to

use dummy variables. For example, the two models

yt = β1dt + β2(1− dt) + β3xt + β4dtxt + εt

and

yt = α1 + α2dt + α3xtdt + α4xt(1− dt) + εt

are equivalent. You should know what are the 4 equations that relate

the βj parameters to the αj parameters, j = 1, 2, 3, 4. You should know



how to interpret the parameters of both models.

Back to collinearity

The more common case, if one doesn’t make mistakes such as these,

is the existence of inexact linear relationships, i.e., correlations be-

tween the regressors that are less than one in absolute value, but not

zero. The basic problem is that when two (or more) variables move

together, it is difficult to determine their separate influences.

Example 16. Two children are in a room, along with a broken lamp.

Both say ”I didn’t do it!”. How can we tell who broke the lamp?

Lack of knowledge about the separate influences of variables is

reflected in imprecise estimates, i.e., estimates with high variances.

With economic data, collinearity is commonly encountered, and is often
a severe problem.



Figure 7.1: s(β) when there is no collinearity

-6 -4 -2  0  2  4  6

-6

-4

-2

 0

 2

 4

 6

      60

      55

      50

      45

      40

      35

      30

      25

      20

      15

When there is collinearity, the minimizing point of the objective

function that defines the OLS estimator (s(β), the sum of squared

errors) is relatively poorly defined. This is seen in Figures 7.1 and

7.2.

To see the effect of collinearity on variances, partition the regressor



Figure 7.2: s(β) when there is collinearity
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matrix as

X =
[
x W

]
where x is the first column ofX (note: we can interchange the columns

of X isf we like, so there’s no loss of generality in considering the first

column). Now, the variance of β̂, under the classical assumptions, is

V (β̂) = (X ′X)
−1
σ2

Using the partition,

X ′X =

[
x′x x′W

W ′x W ′W

]



and following a rule for partitioned inversion,

(X ′X)
−1
1,1 =

(
x′x− x′W (W ′W )−1W ′x

)−1

=
(
x′
(
In −W (W ′W )

′1W ′
)
x
)−1

=
(
ESSx|W

)−1

where by ESSx|W we mean the error sum of squares obtained from

the regression

x = Wλ + v.

Since

R2 = 1− ESS/TSS,

we have

ESS = TSS(1−R2)



so the variance of the coefficient corresponding to x is

V (β̂x) =
σ2

TSSx(1−R2
x|W )

(7.1)

We see three factors influence the variance of this coefficient. It will

be high if

1. σ2 is large

2. There is little variation in x. Draw a picture here.

3. There is a strong linear relationship between x and the other

regressors, so that W can explain the movement in x well. In

this case, R2
x|W will be close to 1. As R2

x|W → 1, V (β̂x)→∞.

The last of these cases is collinearity.

Intuitively, when there are strong linear relations between the re-

gressors, it is difficult to determine the separate influence of the re-

gressors on the dependent variable. This can be seen by comparing



the OLS objective function in the case of no correlation between re-

gressors with the objective function with correlation between the re-

gressors. See the figures nocollin.ps (no correlation) and collin.ps

(correlation), available on the web site.

Example 17. The Octave script DataProblems/collinearity.m performs

a Monte Carlo study with correlated regressors. The model is y =

1 + x2 + x3 + ε, where the correlation between x2 and x3can be set.

Three estimators are used: OLS, OLS dropping x3 (a false restriction),

and restricted LS using β2 = β3 (a true restriction). The output when

the correlation between the two regressors is 0.9 is

octave:1> collinearity

Contribution received from node 0. Received so far: 500

Contribution received from node 0. Received so far: 1000

http://pareto.uab.es/mcreel/Econometrics/Examples/DataProblems/collinearity.m


correlation between x2 and x3: 0.900000

descriptive statistics for 1000 OLS replications

mean st. dev. min max

0.996 0.182 0.395 1.574

0.996 0.444 -0.463 2.517

1.008 0.436 -0.342 2.301

descriptive statistics for 1000 OLS replications, dropping x3

mean st. dev. min max

0.999 0.198 0.330 1.696

1.905 0.207 1.202 2.651

descriptive statistics for 1000 Restricted OLS replications, b2=b3

mean st. dev. min max

0.998 0.179 0.433 1.574

1.002 0.096 0.663 1.339



1.002 0.096 0.663 1.339

octave:2>

Figure 7.3 shows histograms for the estimated β2, for each of the

three estimators.

• repeat the experiment with a lower value of rho, and note how

the standard errors of the OLS estimator change.

Detection of collinearity

The best way is simply to regress each explanatory variable in turn on

the remaining regressors. If any of these auxiliary regressions has a

high R2, there is a problem of collinearity. Furthermore, this proce-

dure identifies which parameters are affected.



Figure 7.3: Collinearity: Monte Carlo results

(a) OLS,β̂2 (b) OLS,β̂2, dropping x3

(c) Restricted LS,β̂2, with true restrictionβ2 =
β3



• Sometimes, we’re only interested in certain parameters. Collinear-

ity isn’t a problem if it doesn’t affect what we’re interested in

estimating.

An alternative is to examine the matrix of correlations between the re-

gressors. High correlations are sufficient but not necessary for severe

collinearity.

Also indicative of collinearity is that the model fits well (high R2),

but none of the variables is significantly different from zero (e.g., their

separate influences aren’t well determined).

In summary, the artificial regressions are the best approach if one

wants to be careful.

Example 18. Nerlove data and collinearity. The simple Nerlove model

is

lnC = β1 + β2 lnQ + β3 lnPL + β4 lnPF + β5 lnPK + ε

When this model is estimated by OLS, some coefficients are not signif-



icant (see subsection 3.8). This may be due to collinearity.The Octave

script DataProblems/NerloveCollinearity.m checks the regressors for

collinearity. If you run this, you will see that collinearity is not a

problem with this data. Why is the coefficient of lnPK not signifi-

cantly different from zero?

Dealing with collinearity

More information

Collinearity is a problem of an uninformative sample. The first ques-

tion is: is all the available information being used? Is more data avail-

able? Are there coefficient restrictions that have been neglected? Pic-
ture illustrating how a restriction can solve problem of perfect collinear-
ity.

http://pareto.uab.es/mcreel/Econometrics/Examples/DataProblems/NerloveCollinearity.m


Stochastic restrictions and ridge regression

Supposing that there is no more data or neglected restrictions, one

possibility is to change perspectives, to Bayesian econometrics. One

can express prior beliefs regarding the coefficients using stochastic

restrictions. A stochastic linear restriction would be something of the

form

Rβ = r + v

where R and r are as in the case of exact linear restrictions, but v is a

random vector. For example, the model could be

y = Xβ + ε

Rβ = r + v(
ε

v

)
∼ N

(
0

0

)
,

(
σ2
εIn 0n×q

0q×n σ2
vIq

)



This sort of model isn’t in line with the classical interpretation of pa-

rameters as constants: according to this interpretation the left hand

side of Rβ = r + v is constant but the right is random. This model

does fit the Bayesian perspective: we combine information coming

from the model and the data, summarized in

y = Xβ + ε

ε ∼ N(0, σ2
εIn)

with prior beliefs regarding the distribution of the parameter, summa-

rized in

Rβ ∼ N(r, σ2
vIq)

Since the sample is random it is reasonable to suppose that E(εv′) = 0,

which is the last piece of information in the specification. How can

you estimate using this model? The solution is to treat the restrictions



as artificial data. Write[
y

r

]
=

[
X

R

]
β +

[
ε

v

]

This model is heteroscedastic, since σ2
ε 6= σ2

v. Define the prior precision
k = σε/σv. This expresses the degree of belief in the restriction relative

to the variability of the data. Supposing that we specify k, then the

model [
y

kr

]
=

[
X

kR

]
β +

[
ε

kv

]
is homoscedastic and can be estimated by OLS. Note that this estima-

tor is biased. It is consistent, however, given that k is a fixed constant,

even if the restriction is false (this is in contrast to the case of false

exact restrictions). To see this, note that there are Q restrictions,

where Q is the number of rows of R. As n→∞, these Q artificial ob-

servations have no weight in the objective function, so the estimator



has the same limiting objective function as the OLS estimator, and is

therefore consistent.

To motivate the use of stochastic restrictions, consider the expec-

tation of the squared length of β̂:

E(β̂′β̂) = E
{(

β + (X ′X)
−1
X ′ε
)′ (

β + (X ′X)
−1
X ′ε
)}

= β′β + E
(
ε′X(X ′X)−1(X ′X)−1X ′ε

)
= β′β + Tr (X ′X)

−1
σ2

= β′β + σ2
K∑
i=1

λi(the trace is the sum of eigenvalues)

> β′β + λmax(X ′X−1)σ
2(the eigenvalues are all positive, sinceX ′X is p.d.

so

E(β̂′β̂) > β′β +
σ2

λmin(X ′X)

where λmin(X ′X) is the minimum eigenvalue of X ′X (which is the



inverse of the maximum eigenvalue of (X ′X)−1). As collinearity be-

comes worse and worse,X ′X becomes more nearly singular, so λmin(X ′X)

tends to zero (recall that the determinant is the product of the eigen-

values) and E(β̂′β̂) tends to infinite. On the other hand, β′β is finite.

Now considering the restriction IKβ = 0 + v. With this restriction

the model becomes [
y

0

]
=

[
X

kIK

]
β +

[
ε

kv

]

and the estimator is

β̂ridge =

([
X ′ kIK

] [ X

kIK

])−1 [
X ′ IK

] [ y
0

]
=
(
X ′X + k2IK

)−1
X ′y

This is the ordinary ridge regression estimator. The ridge regression es-

timator can be seen to add k2IK, which is nonsingular, to X ′X, which



is more and more nearly singular as collinearity becomes worse and

worse. As k → ∞, the restrictions tend to β = 0, that is, the coeffi-

cients are shrunken toward zero. Also, the estimator tends to

β̂ridge =
(
X ′X + k2IK

)−1
X ′y →

(
k2IK

)−1
X ′y =

X ′y

k2
→ 0

so β̂′ridgeβ̂ridge → 0. This is clearly a false restriction in the limit, if our

original model is at all sensible.

There should be some amount of shrinkage that is in fact a true

restriction. The problem is to determine the k such that the restriction

is correct. The interest in ridge regression centers on the fact that it

can be shown that there exists a k such that MSE(β̂ridge) < β̂OLS. The

problem is that this k depends on β and σ2, which are unknown.

The ridge trace method plots β̂′ridgeβ̂ridge as a function of k, and

chooses the value of k that “artistically” seems appropriate (e.g., where

the effect of increasing k dies off). Draw picture here. This means of



choosing k is obviously subjective. This is not a problem from the

Bayesian perspective: the choice of k reflects prior beliefs about the

length of β.

In summary, the ridge estimator offers some hope, but it is impossi-

ble to guarantee that it will outperform the OLS estimator. Collinear-

ity is a fact of life in econometrics, and there is no clear solution to

the problem.

7.2 Measurement error

Measurement error is exactly what it says, either the dependent vari-

able or the regressors are measured with error. Thinking about the

way economic data are reported, measurement error is probably quite

prevalent. For example, estimates of growth of GDP, inflation, etc. are

commonly revised several times. Why should the last revision neces-

sarily be correct?



Error of measurement of the dependent variable

Measurement errors in the dependent variable and the regressors

have important differences. First consider error in measurement of

the dependent variable. The data generating process is presumed to

be

y∗ = Xβ + ε

y = y∗ + v

vt ∼ iid(0, σ2
v)

where y∗ = y + v is the unobservable true dependent variable, and y

is what is observed. We assume that ε and v are independent and that

y∗ = Xβ + ε satisfies the classical assumptions. Given this, we have

y + v = Xβ + ε



so

y = Xβ + ε− v
= Xβ + ω

ωt ∼ iid(0, σ2
ε + σ2

v)

• As long as v is uncorrelated with X, this model satisfies the clas-

sical assumptions and can be estimated by OLS. This type of

measurement error isn’t a problem, then, except in that the in-

creased variability of the error term causes an increase in the

variance of the OLS estimator (see equation 7.1).



Error of measurement of the regressors

The situation isn’t so good in this case. The DGP is

yt = x∗′t β + εt

xt = x∗t + vt

vt ∼ iid(0,Σv)

where Σv is a K ×K matrix. Now X∗ contains the true, unobserved

regressors, and X is what is observed. Again assume that v is inde-

pendent of ε, and that the model y = X∗β + ε satisfies the classical

assumptions. Now we have

yt = (xt − vt)′ β + εt

= x′tβ − v′tβ + εt

= x′tβ + ωt



The problem is that now there is a correlation between xt and ωt,

since

E(xtωt) = E ((x∗t + vt) (−v′tβ + εt))

= −Σvβ

where

Σv = E (vtv
′
t) .

Because of this correlation, the OLS estimator is biased and inconsis-

tent, just as in the case of autocorrelated errors with lagged depen-

dent variables. In matrix notation, write the estimated model as

y = Xβ + ω

We have that

β̂ =

(
X ′X

n

)−1(
X ′y

n

)



and

plim

(
X ′X

n

)−1

= plim
(X∗′ + V ′) (X∗ + V )

n

= (QX∗ + Σv)
−1

since X∗ and V are independent, and

plim
V ′V

n
= lim E 1

n

n∑
t=1

vtv
′
t

= Σv

Likewise,

plim

(
X ′y

n

)
= plim

(X∗′ + V ′) (X∗β + ε)

n
= QX∗β



so

plimβ̂ = (QX∗ + Σv)
−1QX∗β

So we see that the least squares estimator is inconsistent when the

regressors are measured with error.

• A potential solution to this problem is the instrumental variables

(IV) estimator, which we’ll discuss shortly.

Example 19. Measurement error in a dynamic model. Consider the

model

y∗t = α + ρy∗t−1 + βxt + εt

yt = y∗t + υt

where εt and υt are independent Gaussian white noise errors. Suppose

that y∗t is not observed, and instead we observe yt. What are the



properties of the OLS regression on the equation

yt = α + ρyt−1 + βxt + νt

? The Octave script DataProblems/MeasurementError.m does a Monte

Carlo study. The sample size is n = 100. Figure 7.4 gives the results.

The first panel shows a histogram for 1000 replications of ρ̂−ρ, when

σν = 1, so that there is significant measurement error. The second

panel repeats this with σν = 0, so that there is not measurement error.

Note that there is much more bias with measurement error. There is

also bias without measurement error. This is due to the same reason

that we saw bias in Figure 3.7: one of the classical assumptions (non-

stochastic regressors) that guarantees unbiasedness of OLS does not

hold for this model. Without measurement error, the OLS estimator is
consistent. By re-running the script with larger n, you can verify that

the bias disappears when σν = 0, but not when σν > 0.

http://pareto.uab.es/mcreel/Econometrics/Examples/DataProblems/MeasurementErrror.m


Figure 7.4: ρ̂− ρ with and without measurement error
(a) with measurement error: σν = 1 (b) without measurement error: σν = 0

7.3 Missing observations

Missing observations occur quite frequently: time series data may not

be gathered in a certain year, or respondents to a survey may not

answer all questions. We’ll consider two cases: missing observations

on the dependent variable and missing observations on the regressors.



Missing observations on the dependent variable

In this case, we have

y = Xβ + ε

or [
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]
where y2 is not observed. Otherwise, we assume the classical assump-

tions hold.

• A clear alternative is to simply estimate using the compete ob-

servations

y1 = X1β + ε1

Since these observations satisfy the classical assumptions, one

could estimate by OLS.

• The question remains whether or not one could somehow re-



place the unobserved y2 by a predictor, and improve over OLS in

some sense. Let ŷ2 be the predictor of y2. Now

β̂ =


[
X1

X2

]′ [
X1

X2

]
−1 [

X1

X2

]′ [
y1

ŷ2

]
= [X ′1X1 + X ′2X2]

−1
[X ′1y1 + X ′2ŷ2]

Recall that the OLS fonc are

X ′Xβ̂ = X ′y

so if we regressed using only the first (complete) observations, we

would have

X ′1X1β̂1 = X ′1y1.



Likewise, an OLS regression using only the second (filled in) observa-

tions would give

X ′2X2β̂2 = X ′2ŷ2.

Substituting these into the equation for the overall combined estima-

tor gives

β̂ = [X ′1X1 + X ′2X2]
−1
[
X ′1X1β̂1 + X ′2X2β̂2

]
= [X ′1X1 + X ′2X2]

−1
X ′1X1β̂1 + [X ′1X1 + X ′2X2]

−1
X ′2X2β̂2

≡ Aβ̂1 + (IK − A)β̂2

where

A ≡ [X ′1X1 + X ′2X2]
−1
X ′1X1



and we use

[X ′1X1 + X ′2X2]
−1
X ′2X2 = [X ′1X1 + X ′2X2]

−1
[(X ′1X1 + X ′2X2)−X ′1X1]

= IK − [X ′1X1 + X ′2X2]
−1
X ′1X1

= IK − A.

Now,

E(β̂) = Aβ + (IK − A)E
(
β̂2

)
and this will be unbiased only if E

(
β̂2

)
= β.

• The conclusion is that the filled in observations alone would

need to define an unbiased estimator. This will be the case only

if

ŷ2 = X2β + ε̂2

where ε̂2 has mean zero. Clearly, it is difficult to satisfy this

condition without knowledge of β.



• Note that putting ŷ2 = ȳ1 does not satisfy the condition and

therefore leads to a biased estimator.

Exercise 20. Formally prove this last statement.

The sample selection problem

In the above discussion we assumed that the missing observations are

random. The sample selection problem is a case where the missing

observations are not random. Consider the model

y∗t = x′tβ + εt

which is assumed to satisfy the classical assumptions. However, y∗t is

not always observed. What is observed is yt defined as

yt = y∗t if y∗t ≥ 0



Or, in other words, y∗t is missing when it is less than zero.

The difference in this case is that the missing values are not ran-

dom: they are correlated with the xt. Consider the case

y∗ = x + ε

with V (ε) = 25, but using only the observations for which y∗ > 0

to estimate. Figure 7.5 illustrates the bias. The Octave program is

sampsel.m

There are means of dealing with sample selection bias, but we will

not go into it here. One should at least be aware that nonrandom

selection of the sample will normally lead to bias and inconsistency if

the problem is not taken into account.

http://pareto.uab.es/mcreel/Econometrics/Examples/Figures/sampsel.m


Figure 7.5: Sample selection bias
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Missing observations on the regressors

Again the model is [
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]

but we assume now that each row of X2 has an unobserved compo-

nent(s). Again, one could just estimate using the complete observa-

tions, but it may seem frustrating to have to drop observations simply

because of a single missing variable. In general, if the unobserved X2

is replaced by some prediction, X∗2 , then we are in the case of errors

of observation. As before, this means that the OLS estimator is biased

when X∗2 is used instead of X2. Consistency is salvaged, however, as

long as the number of missing observations doesn’t increase with n.

• Including observations that have missing values replaced by ad
hoc values can be interpreted as introducing false stochastic re-



strictions. In general, this introduces bias. It is difficult to deter-

mine whether MSE increases or decreases. Monte Carlo studies

suggest that it is dangerous to simply substitute the mean, for

example.

• In the case that there is only one regressor other than the con-

stant, subtitution of x̄ for the missing xt does not lead to bias.
This is a special case that doesn’t hold for K > 2.

Exercise 21. Prove this last statement.

• In summary, if one is strongly concerned with bias, it is best to

drop observations that have missing components. There is po-

tential for reduction of MSE through filling in missing elements

with intelligent guesses, but this could also increase MSE.



7.4 Exercises

1. Consider the simple Nerlove model

lnC = β1 + β2 lnQ + β3 lnPL + β4 lnPF + β5 lnPK + ε

When this model is estimated by OLS, some coefficients are not

significant. We have seen that collinearity is not an important

problem. Why is β5 not significantly different from zero? Give

an economic explanation.

2. For the model y = β1x1 + β2x2 + ε,

(a) verify that the level sets of the OLS criterion function (de-

fined in equation 3.2) are straight lines when there is per-

fect collinearity

(b) For this model with perfect collinearity, the OLS estimator

does not exist. Depict what this statement means using a



drawing.

(c) Show how a restriction R1β1+R2β2 = r causes the restricted

least squares estimator to exist, using a drawing.



Chapter 8

Functional form and

nonnested tests
Though theory often suggests which conditioning variables should be

included, and suggests the signs of certain derivatives, it is usually

silent regarding the functional form of the relationship between the

dependent variable and the regressors. For example, considering a

230



cost function, one could have a Cobb-Douglas model

c = Awβ1
1 w

β2
2 q

βqeε

This model, after taking logarithms, gives

ln c = β0 + β1 lnw1 + β2 lnw2 + βq ln q + ε

where β0 = lnA. Theory suggests that A > 0, β1 > 0, β2 > 0, β3 > 0.

This model isn’t compatible with a fixed cost of production since c = 0

when q = 0. Homogeneity of degree one in input prices suggests that

β1 + β2 = 1, while constant returns to scale implies βq = 1.

While this model may be reasonable in some cases, an alternative

√
c = β0 + β1

√
w1 + β2

√
w2 + βq

√
q + ε

may be just as plausible. Note that
√
x and ln(x) look quite alike, for

certain values of the regressors, and up to a linear transformation, so



it may be difficult to choose between these models.

The basic point is that many functional forms are compatible with

the linear-in-parameters model, since this model can incorporate a

wide variety of nonlinear transformations of the dependent variable

and the regressors. For example, suppose that g(·) is a real valued

function and that x(·) is a K− vector-valued function. The following

model is linear in the parameters but nonlinear in the variables:

xt = x(zt)

yt = x′tβ + εt

There may be P fundamental conditioning variables zt, but there may

be K regressors, where K may be smaller than, equal to or larger

than P. For example, xt could include squares and cross products of

the conditioning variables in zt.



8.1 Flexible functional forms

Given that the functional form of the relationship between the depen-

dent variable and the regressors is in general unknown, one might

wonder if there exist parametric models that can closely approximate

a wide variety of functional relationships. A “Diewert-Flexible” func-

tional form is defined as one such that the function, the vector of first

derivatives and the matrix of second derivatives can take on an ar-

bitrary value at a single data point. Flexibility in this sense clearly

requires that there be at least

K = 1 + P +
(
P 2 − P

)
/2 + P

free parameters: one for each independent effect that we wish to

model.



Suppose that the model is

y = g(x) + ε

A second-order Taylor’s series expansion (with remainder term) of the

function g(x) about the point x = 0 is

g(x) = g(0) + x′Dxg(0) +
x′D2

xg(0)x

2
+ R

Use the approximation, which simply drops the remainder term, as

an approximation to g(x) :

g(x) ' gK(x) = g(0) + x′Dxg(0) +
x′D2

xg(0)x

2

As x → 0, the approximation becomes more and more exact, in the

sense that gK(x) → g(x), DxgK(x) → Dxg(x) and D2
xgK(x) → D2

xg(x).

For x = 0, the approximation is exact, up to the second order. The idea



behind many flexible functional forms is to note that g(0), Dxg(0) and

D2
xg(0) are all constants. If we treat them as parameters, the approxi-

mation will have exactly enough free parameters to approximate the

function g(x), which is of unknown form, exactly, up to second order,

at the point x = 0. The model is

gK(x) = α + x′β + 1/2x′Γx

so the regression model to fit is

y = α + x′β + 1/2x′Γx + ε

• While the regression model has enough free parameters to be

Diewert-flexible, the question remains: is plimα̂ = g(0)? Is plimβ̂ =

Dxg(0)? Is plimΓ̂ = D2
xg(0)?

• The answer is no, in general. The reason is that if we treat

the true values of the parameters as these derivatives, then ε is



forced to play the part of the remainder term, which is a function

of x, so that x and ε are correlated in this case. As before, the

estimator is biased in this case.

• A simpler example would be to consider a first-order T.S. ap-

proximation to a quadratic function. Draw picture.

• The conclusion is that “flexible functional forms” aren’t really

flexible in a useful statistical sense, in that neither the function

itself nor its derivatives are consistently estimated, unless the

function belongs to the parametric family of the specified func-

tional form. In order to lead to consistent inferences, the regres-

sion model must be correctly specified.



The translog form

In spite of the fact that FFF’s aren’t really flexible for the purposes of

econometric estimation and inference, they are useful, and they are

certainly subject to less bias due to misspecification of the functional

form than are many popular forms, such as the Cobb-Douglas or the

simple linear in the variables model. The translog model is proba-

bly the most widely used FFF. This model is as above, except that

the variables are subjected to a logarithmic tranformation. Also, the

expansion point is usually taken to be the sample mean of the data,

after the logarithmic transformation. The model is defined by

y = ln(c)

x = ln
(z
z̄

)
= ln(z)− ln(z̄)

y = α + x′β + 1/2x′Γx + ε



In this presentation, the t subscript that distinguishes observations is

suppressed for simplicity. Note that

∂y

∂x
= β + Γx

=
∂ ln(c)

∂ ln(z)
(the other part of x is constant)

=
∂c

∂z

z

c

which is the elasticity of c with respect to z. This is a convenient fea-

ture of the translog model. Note that at the means of the conditioning

variables, z̄, x = 0, so
∂y

∂x

∣∣∣∣
z=z̄

= β

so the β are the first-order elasticities, at the means of the data.

To illustrate, consider that y is cost of production:

y = c(w, q)



where w is a vector of input prices and q is output. We could add other

variables by extending q in the obvious manner, but this is supressed

for simplicity. By Shephard’s lemma, the conditional factor demands

are

x =
∂c(w, q)

∂w

and the cost shares of the factors are therefore

s =
wx

c
=
∂c(w, q)

∂w

w

c

which is simply the vector of elasticities of cost with respect to input

prices. If the cost function is modeled using a translog function, we

have

ln(c) = α + x′β + z′δ + 1/2
[
x′ z

] [ Γ11 Γ12

Γ′12 Γ22

][
x

z

]
= α + x′β + z′δ + 1/2x′Γ11x + x′Γ12z + 1/2z2γ22



where x = ln(w/w̄) (element-by-element division) and z = ln(q/q̄),

and

Γ11 =

[
γ11 γ12

γ12 γ22

]

Γ12 =

[
γ13

γ23

]
Γ22 = γ33.

Note that symmetry of the second derivatives has been imposed.

Then the share equations are just

s = β +
[

Γ11 Γ12

] [ x
z

]

Therefore, the share equations and the cost equation have parame-

ters in common. By pooling the equations together and imposing the

(true) restriction that the parameters of the equations be the same,



we can gain efficiency.

To illustrate in more detail, consider the case of two inputs, so

x =

[
x1

x2

]
.

In this case the translog model of the logarithmic cost function is

ln c = α+β1x1+β2x2+δz+
γ11

2
x2

1+
γ22

2
x2

2+
γ33

2
z2+γ12x1x2+γ13x1z+γ23x2z

The two cost shares of the inputs are the derivatives of ln c with re-

spect to x1 and x2:

s1 = β1 + γ11x1 + γ12x2 + γ13z

s2 = β2 + γ12x1 + γ22x2 + γ13z

Note that the share equations and the cost equation have param-

eters in common. One can do a pooled estimation of the three equa-



tions at once, imposing that the parameters are the same. In this way

we’re using more observations and therefore more information, which

will lead to imporved efficiency. Note that this does assume that the

cost equation is correctly specified (i.e., not an approximation), since

otherwise the derivatives would not be the true derivatives of the log

cost function, and would then be misspecified for the shares. To pool



the equations, write the model in matrix form (adding in error terms)

 ln c

s1

s2

 =

 1 x1 x2 z
x2

1
2

x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

0 0 1 0 0 x2 0 x1 0 z





α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23



+

 ε1

ε2

ε3



This is one observation on the three equations. With the appropri-

ate notation, a single observation can be written as

yt = Xtθ + εt



The overall model would stack n observations on the three equations

for a total of 3n observations:
y1

y2

...

yn

 =


X1

X2

...

Xn

 θ +


ε1

ε2

...

εn


Next we need to consider the errors. For observation t the errors can

be placed in a vector

εt =

 ε1t

ε2t

ε3t


First consider the covariance matrix of this vector: the shares are

certainly correlated since they must sum to one. (In fact, with 2 shares

the variances are equal and the covariance is -1 times the variance.

General notation is used to allow easy extension to the case of more



than 2 inputs). Also, it’s likely that the shares and the cost equation

have different variances. Supposing that the model is covariance sta-

tionary, the variance of εt won′t depend upon t:

V arεt = Σ0 =

 σ11 σ12 σ13

· σ22 σ23

· · σ33


Note that this matrix is singular, since the shares sum to 1. Assuming

that there is no autocorrelation, the overall covariance matrix has the



seemingly unrelated regressions (SUR) structure.

V ar


ε1

ε2

...

εn

 = Σ

=


Σ0 0 · · · 0

0 Σ0
. . . ...

... . . . 0

0 · · · 0 Σ0


= In ⊗ Σ0

where the symbol ⊗ indicates the Kronecker product. The Kronecker



product of two matrices A and B is

A⊗B =


a11B a12B · · · a1qB

a21B . . . ...
...

apqB · · · apqB

 .

FGLS estimation of a translog model

So, this model has heteroscedasticity and autocorrelation, so OLS

won’t be efficient. The next question is: how do we estimate effi-

ciently using FGLS? FGLS is based upon inverting the estimated error

covariance Σ̂. So we need to estimate Σ.

An asymptotically efficient procedure is (supposing normality of

the errors)

1. Estimate each equation by OLS



2. Estimate Σ0 using

Σ̂0 =
1

n

n∑
t=1

ε̂tε̂
′
t

3. Next we need to account for the singularity of Σ0. It can be

shown that Σ̂0 will be singular when the shares sum to one,

so FGLS won’t work. The solution is to drop one of the share



equations, for example the second. The model becomes

[
ln c

s1

]
=

[
1 x1 x2 z

x2
1

2

x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

]



α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23



+

[
ε1

ε2

]

or in matrix notation for the observation:

y∗t = X∗t θ + ε∗t



and in stacked notation for all observations we have the 2n ob-

servations: 
y∗1

y∗2
...

y∗n

 =


X∗1

X∗2
...

X∗n

 θ +


ε∗1

ε∗2
...

ε∗n


or, finally in matrix notation for all observations:

y∗ = X∗θ + ε∗

Considering the error covariance, we can define

Σ∗0 = V ar

[
ε1

ε2

]
Σ∗ = In ⊗ Σ∗0



Define Σ̂∗0 as the leading 2× 2 block of Σ̂0 , and form

Σ̂∗ = In ⊗ Σ̂∗0.

This is a consistent estimator, following the consistency of OLS

and applying a LLN.

4. Next compute the Cholesky factorization

P̂0 = Chol
(

Σ̂∗0

)−1

(I am assuming this is defined as an upper triangular matrix,

which is consistent with the way Octave does it) and the Cholesky

factorization of the overall covariance matrix of the 2 equation

model, which can be calculated as

P̂ = CholΣ̂∗ = In ⊗ P̂0



5. Finally the FGLS estimator can be calculated by applying OLS to

the transformed model

P̂ ′y∗ = P̂ ′X∗θ +
ˆ̂ ′
Pε∗

or by directly using the GLS formula

θ̂FGLS =

(
X∗′

(
Σ̂∗0

)−1

X∗
)−1

X∗′
(

Σ̂∗0

)−1

y∗

It is equivalent to transform each observation individually:

P̂ ′0y
∗
y = P̂ ′0X

∗
t θ + P̂ ′0ε

∗

and then apply OLS. This is probably the simplest approach.

A few last comments.

1. We have assumed no autocorrelation across time. This is clearly

restrictive. It is relatively simple to relax this, but we won’t go



into it here.

2. Also, we have only imposed symmetry of the second derivatives.

Another restriction that the model should satisfy is that the es-

timated shares should sum to 1. This can be accomplished by

imposing

β1 + β2 = 1
3∑
i=1

γij = 0, j = 1, 2, 3.

These are linear parameter restrictions, so they are easy to im-

pose and will improve efficiency if they are true.

3. The estimation procedure outlined above can be iterated. That

is, estimate θ̂FGLS as above, then re-estimate Σ∗0 using errors cal-

culated as

ε̂ = y −Xθ̂FGLS



These might be expected to lead to a better estimate than the

estimator based on θ̂OLS, since FGLS is asymptotically more effi-

cient. Then re-estimate θ using the new estimated error covari-

ance. It can be shown that if this is repeated until the estimates

don’t change (i.e., iterated to convergence) then the resulting

estimator is the MLE. At any rate, the asymptotic properties of

the iterated and uniterated estimators are the same, since both

are based upon a consistent estimator of the error covariance.

8.2 Testing nonnested hypotheses

Given that the choice of functional form isn’t perfectly clear, in that

many possibilities exist, how can one choose between forms? When

one form is a parametric restriction of another, the previously studied

tests such as Wald, LR, score or qF are all possibilities. For example,

the Cobb-Douglas model is a parametric restriction of the translog:



The translog is

yt = α + x′tβ + 1/2x′tΓxt + ε

where the variables are in logarithms, while the Cobb-Douglas is

yt = α + x′tβ + ε

so a test of the Cobb-Douglas versus the translog is simply a test that

Γ = 0.

The situation is more complicated when we want to test non-nested
hypotheses. If the two functional forms are linear in the parameters,

and use the same transformation of the dependent variable, then they



may be written as

M1 : y = Xβ + ε

εt ∼ iid(0, σ2
ε)

M2 : y = Zγ + η

η ∼ iid(0, σ2
η)

We wish to test hypotheses of the form: H0 : Mi is correctly specified
versus HA : Mi is misspecified, for i = 1, 2.

• One could account for non-iid errors, but we’ll suppress this for

simplicity.

• There are a number of ways to proceed. We’ll consider the J test,

proposed by Davidson and MacKinnon, Econometrica (1981).

The idea is to artificially nest the two models, e.g.,

y = (1− α)Xβ + α(Zγ) + ω



If the first model is correctly specified, then the true value of

α is zero. On the other hand, if the second model is correctly

specified then α = 1.

– The problem is that this model is not identified in general.

For example, if the models share some regressors, as in

M1 : yt = β1 + β2x2t + β3x3t + εt

M2 : yt = γ1 + γ2x2t + γ3x4t + ηt

then the composite model is

yt = (1−α)β1 + (1−α)β2x2t + (1−α)β3x3t +αγ1 +αγ2x2t +αγ3x4t +ωt



Combining terms we get

yt = ((1− α)β1 + αγ1) + ((1− α)β2 + αγ2)x2t + (1− α)β3x3t + αγ3x4t + ωt

= δ1 + δ2x2t + δ3x3t + δ4x4t + ωt

The four δ′s are consistently estimable, but α is not, since we have

four equations in 7 unknowns, so one can’t test the hypothesis that

α = 0.

The idea of the J test is to substitute γ̂ in place of γ. This is a consis-

tent estimator supposing that the second model is correctly specified.

It will tend to a finite probability limit even if the second model is

misspecified. Then estimate the model

y = (1− α)Xβ + α(Zγ̂) + ω

= Xθ + αŷ + ω

where ŷ = Z(Z ′Z)−1Z ′y = PZy. In this model, α is consistently es-



timable, and one can show that, under the hypothesis that the first

model is correct, α
p→ 0 and that the ordinary t -statistic for α = 0 is

asymptotically normal:

t =
α̂

σ̂α̂

a∼ N(0, 1)

• If the second model is correctly specified, then t
p→ ∞, since

α̂ tends in probability to 1, while it’s estimated standard error

tends to zero. Thus the test will always reject the false null

model, asymptotically, since the statistic will eventually exceed

any critical value with probability one.

• We can reverse the roles of the models, testing the second against

the first.

• It may be the case that neither model is correctly specified. In

this case, the test will still reject the null hypothesis, asymptoti-

cally, if we use critical values from the N(0, 1) distribution, since



as long as α̂ tends to something different from zero, |t| p→ ∞.
Of course, when we switch the roles of the models the other will

also be rejected asymptotically.

• In summary, there are 4 possible outcomes when we test two

models, each against the other. Both may be rejected, neither

may be rejected, or one of the two may be rejected.

• There are other tests available for non-nested models. The J−
test is simple to apply when both models are linear in the pa-

rameters. The P -test is similar, but easier to apply when M1 is

nonlinear.

• The above presentation assumes that the same transformation

of the dependent variable is used by both models. MacKinnon,

White and Davidson, Journal of Econometrics, (1983) shows how

to deal with the case of different transformations.



• Monte-Carlo evidence shows that these tests often over-reject a

correctly specified model. Can use bootstrap critical values to

get better-performing tests.



Chapter 9

Generalized least squares
Recall the assumptions of the classical linear regression model, in Sec-

tion 3.6. One of the assumptions we’ve made up to now is that

εt ∼ IID(0, σ2)

or occasionally

εt ∼ IIN(0, σ2).
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Now we’ll investigate the consequences of nonidentically and/or de-

pendently distributed errors. We’ll assume fixed regressors for now, to

keep the presentation simple, and later we’ll look at the consequences

of relaxing this admittedly unrealistic assumption. The model is

y = Xβ + ε

E(ε) = 0

V (ε) = Σ

where Σ is a general symmetric positive definite matrix (we’ll write β

in place of β0 to simplify the typing of these notes).

• The case where Σ is a diagonal matrix gives uncorrelated, non-

identically distributed errors. This is known as heteroscedasticity:

∃i, j s.t. V (εi) 6= V (εj)

• The case where Σ has the same number on the main diagonal

but nonzero elements off the main diagonal gives identically



(assuming higher moments are also the same) dependently dis-

tributed errors. This is known as autocorrelation: ∃i 6= j s.t. E(εiεj) 6=
0)

• The general case combines heteroscedasticity and autocorrela-

tion. This is known as “nonspherical” disturbances, though why

this term is used, I have no idea. Perhaps it’s because under the

classical assumptions, a joint confidence region for ε would be

an n− dimensional hypersphere.



9.1 Effects of nonspherical disturbances on
the OLS estimator

The least square estimator is

β̂ = (X ′X)−1X ′y

= β + (X ′X)−1X ′ε

• We have unbiasedness, as before.

• The variance of β̂ is

E
[
(β̂ − β)(β̂ − β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1

]
= (X ′X)−1X ′ΣX(X ′X)−1 (9.1)

Due to this, any test statistic that is based upon an estimator of

σ2 is invalid, since there isn’t any σ2, it doesn’t exist as a fea-

ture of the true d.g.p. In particular, the formulas for the t, F, χ2



based tests given above do not lead to statistics with these dis-

tributions.

• β̂ is still consistent, following exactly the same argument given

before.

• If ε is normally distributed, then

β̂ ∼ N
(
β, (X ′X)−1X ′ΣX(X ′X)−1

)
The problem is that Σ is unknown in general, so this distribution

won’t be useful for testing hypotheses.

• Without normality, and with stochastic X (e.g., weakly exoge-

nous regressors) we still have

√
n
(
β̂ − β

)
=
√
n(X ′X)−1X ′ε

=

(
X ′X

n

)−1

n−1/2X ′ε



Define the limiting variance of n−1/2X ′ε (supposing a CLT ap-

plies) as

lim
n→∞
E
(
X ′εε′X

n

)
= Ω, a.s.

so we obtain
√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
. Note that the true

asymptotic distribution of the OLS has changed with respect to

the results under the classical assumptions. If we neglect to take

this into account, the Wald and score tests will not be asymptot-

ically valid. So we need to figure out how to take it into account.

To see the invalidity of test procedures that are correct under the

classical assumptions, when we have nonspherical errors, consider

the Octave script GLS/EffectsOLS.m. This script does a Monte Carlo

study, generating data that are either heteroscedastic or homoscedas-

tic, and then computes the empirical rejection frequency of a nomi-

nally 10% t-test. When the data are heteroscedastic, we obtain some-

thing like what we see in Figure 9.1. This sort of heteroscedasticity

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/EffectsOLS.m


causes us to reject a true null hypothesis regarding the slope parame-

ter much too often. You can experiment with the script to look at the

effects of other sorts of HET, and to vary the sample size.



Figure 9.1: Rejection frequency of 10% t-test, H0 is true.



Summary: OLS with heteroscedasticity and/or autocorrelation is:

• unbiased with fixed or strongly exogenous regressors

• biased with weakly exogenous regressors

• has a different variance than before, so the previous test statis-

tics aren’t valid

• is consistent

• is asymptotically normally distributed, but with a different limit-

ing covariance matrix. Previous test statistics aren’t valid in this

case for this reason.

• is inefficient, as is shown below.



9.2 The GLS estimator

Suppose Σ were known. Then one could form the Cholesky decom-

position

P ′P = Σ−1

Here, P is an upper triangular matrix. We have

P ′PΣ = In

so

P ′PΣP ′ = P ′,

which implies that

PΣP ′ = In

Let’s take some time to play with the Cholesky decomposition. Try

out the GLS/cholesky.m Octave script to see that the above claims

are true, and also to see how one can generate data from a N(0, V )

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/cholesky.m


distribition.

Consider the model

Py = PXβ + Pε,

or, making the obvious definitions,

y∗ = X∗β + ε∗.

This variance of ε∗ = Pε is

E(Pεε′P ′) = PΣP ′

= In



Therefore, the model

y∗ = X∗β + ε∗

E(ε∗) = 0

V (ε∗) = In

satisfies the classical assumptions. The GLS estimator is simply OLS

applied to the transformed model:

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′P ′PX)−1X ′P ′Py

= (X ′Σ−1X)−1X ′Σ−1y

The GLS estimator is unbiased in the same circumstances under

which the OLS estimator is unbiased. For example, assuming X is



nonstochastic

E(β̂GLS) = E
{

(X ′Σ−1X)−1X ′Σ−1y
}

= E
{

(X ′Σ−1X)−1X ′Σ−1(Xβ + ε
}

= β.

To get the variance of the estimator, we have

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β + ε∗)

= β + (X∗′X∗)−1X∗′ε∗



so

E
{(

β̂GLS − β
)(

β̂GLS − β
)′}

= E
{

(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1
}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1

Either of these last formulas can be used.

• All the previous results regarding the desirable properties of the

least squares estimator hold, when dealing with the transformed

model, since the transformed model satisfies the classical as-

sumptions..

• Tests are valid, using the previous formulas, as long as we sub-

stitute X∗ in place of X. Furthermore, any test that involves σ2

can set it to 1. This is preferable to re-deriving the appropriate



formulas.

• The GLS estimator is more efficient than the OLS estimator. This

is a consequence of the Gauss-Markov theorem, since the GLS

estimator is based on a model that satisfies the classical assump-

tions but the OLS estimator is not. To see this directly, note that

V ar(β̂)− V ar(β̂GLS) = (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

= AΣA
′

where A =
[
(X ′X)−1X ′ − (X ′Σ−1X)−1X ′Σ−1

]
. This may not

seem obvious, but it is true, as you can verify for yourself. Then

noting that AΣA
′
is a quadratic form in a positive definite ma-

trix, we conclude that AΣA
′

is positive semi-definite, and that

GLS is efficient relative to OLS.

• As one can verify by calculating first order conditions, the GLS



estimator is the solution to the minimization problem

β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)

so the metric Σ−1 is used to weight the residuals.

9.3 Feasible GLS

The problem is that Σ ordinarily isn’t known, so this estimator isn’t

available.

• Consider the dimension of Σ : it’s an n×nmatrix with
(
n2 − n

)
/2+

n =
(
n2 + n

)
/2 unique elements (remember - it is symmetric,

because it’s a covariance matrix).

• The number of parameters to estimate is larger than n and in-

creases faster than n. There’s no way to devise an estimator that

satisfies a LLN without adding restrictions.



• The feasible GLS estimator is based upon making sufficient as-

sumptions regarding the form of Σ so that a consistent estimator

can be devised.

Suppose that we parameterize Σ as a function of X and θ, where θ

may include β as well as other parameters, so that

Σ = Σ(X, θ)

where θ is of fixed dimension. If we can consistently estimate θ, we

can consistently estimate Σ, as long as the elements of Σ(X, θ) are

continuous functions of θ (by the Slutsky theorem). In this case,

Σ̂ = Σ(X, θ̂)
p→ Σ(X, θ)

If we replace Σ in the formulas for the GLS estimator with Σ̂, we

obtain the FGLS estimator. The FGLS estimator shares the same

asymptotic properties as GLS. These are



1. Consistency

2. Asymptotic normality

3. Asymptotic efficiency if the errors are normally distributed. (Cramer-

Rao).

4. Test procedures are asymptotically valid.

In practice, the usual way to proceed is

1. Define a consistent estimator of θ. This is a case-by-case propo-

sition, depending on the parameterization Σ(θ). We’ll see exam-

ples below.

2. Form Σ̂ = Σ(X, θ̂)

3. Calculate the Cholesky factorization P̂ = Chol(Σ̂−1).



4. Transform the model using

P̂ y = P̂Xβ + P̂ ε

5. Estimate using OLS on the transformed model.

9.4 Heteroscedasticity

Heteroscedasticity is the case where

E(εε′) = Σ

is a diagonal matrix, so that the errors are uncorrelated, but have

different variances. Heteroscedasticity is usually thought of as asso-

ciated with cross sectional data, though there is absolutely no reason

why time series data cannot also be heteroscedastic. Actually, the

popular ARCH (autoregressive conditionally heteroscedastic) models



explicitly assume that a time series is heteroscedastic.

Consider a supply function

qi = β1 + βpPi + βsSi + εi

where Pi is price and Si is some measure of size of the ith firm. One

might suppose that unobservable factors (e.g., talent of managers,

degree of coordination between production units, etc.) account for

the error term εi. If there is more variability in these factors for large

firms than for small firms, then εi may have a higher variance when

Si is high than when it is low.

Another example, individual demand.

qi = β1 + βpPi + βmMi + εi

where P is price and M is income. In this case, εi can reflect vari-

ations in preferences. There are more possibilities for expression of



preferences when one is rich, so it is possible that the variance of εi
could be higher when M is high.

Add example of group means.

OLS with heteroscedastic consistent varcov estimation

Eicker (1967) and White (1980) showed how to modify test statistics

to account for heteroscedasticity of unknown form. The OLS estima-

tor has asymptotic distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
as we’ve already seen. Recall that we defined

lim
n→∞
E
(
X ′εε′X

n

)
= Ω



This matrix has dimension K ×K and can be consistently estimated,

even if we can’t estimate Σ consistently. The consistent estimator,

under heteroscedasticity but no autocorrelation is

Ω̂ =
1

n

n∑
t=1

xtx
′
tε̂

2
t

One can then modify the previous test statistics to obtain tests that are

valid when there is heteroscedasticity of unknown form. For example,

the Wald test for H0 : Rβ − r = 0 would be

n
(
Rβ̂ − r

)′(
R

(
X ′X

n

)−1

Ω̂

(
X ′X

n

)−1

R′

)−1 (
Rβ̂ − r

)
a∼ χ2(q)

To see the effects of ignoring HET when doing OLS, and the good

effect of using a HET consistent covariance estimator, consider the

script bootstrap_example1.m. This script generates data from a linear

model with HET, then computes standard errors using the ordinary

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/bootstrap/bootstrap_example1.m


OLS formula, the Eicker-White formula, and also bootstrap standard

errors. Note that Eicker-White and bootstrap pretty much agree, while

the OLS formula gives standard errors that are quite different. Typical

output of this script follows:



octave:1> bootstrap_example1

Bootstrap standard errors

0.083376 0.090719 0.143284

*********************************************************

OLS estimation results

Observations 100

R-squared 0.014674

Sigma-squared 0.695267

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value

1 -0.115 0.084 -1.369 0.174

2 -0.016 0.083 -0.197 0.845

3 -0.105 0.088 -1.189 0.237

*********************************************************

OLS estimation results

Observations 100



R-squared 0.014674

Sigma-squared 0.695267

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

1 -0.115 0.084 -1.381 0.170

2 -0.016 0.090 -0.182 0.856

3 -0.105 0.140 -0.751 0.454

• If you run this several times, you will notice that the OLS stan-

dard error for the last parameter appears to be biased down-

ward, at least comparing to the other two methods, which are

asymptotically valid.

• The true coefficients are zero. With a standard error biased

downward, the t-test for lack of significance will reject more

often than it should (the variables really are not significant, but

we will find that they seem to be more often than is due to Type-I



error.

• For example, you should see that the p-value for the last coeffi-

cient is smaller than 0.10 more than 10% of the time. Run the

script 20 times and you’ll see.

Detection

There exist many tests for the presence of heteroscedasticity. We’ll

discuss three methods.

Goldfeld-Quandt The sample is divided in to three parts, with n1, n2

and n3 observations, where n1 + n2 + n3 = n. The model is estimated

using the first and third parts of the sample, separately, so that β̂1 and

β̂3 will be independent. Then we have

ε̂1′ε̂1

σ2
=
ε1′M 1ε1

σ2

d→ χ2(n1 −K)



and

ε̂3′ε̂3

σ2
=
ε3′M 3ε3

σ2

d→ χ2(n3 −K)

so
ε̂1′ε̂1/(n1 −K)

ε̂3′ε̂3/(n3 −K)

d→ F (n1 −K,n3 −K).

The distributional result is exact if the errors are normally distributed.

This test is a two-tailed test. Alternatively, and probably more con-

ventionally, if one has prior ideas about the possible magnitudes of

the variances of the observations, one could order the observations

accordingly, from largest to smallest. In this case, one would use a

conventional one-tailed F-test. Draw picture.

• Ordering the observations is an important step if the test is to

have any power.

• The motive for dropping the middle observations is to increase



the difference between the average variance in the subsamples,

supposing that there exists heteroscedasticity. This can increase

the power of the test. On the other hand, dropping too many ob-

servations will substantially increase the variance of the statistics

ε̂1′ε̂1 and ε̂3′ε̂3. A rule of thumb, based on Monte Carlo experi-

ments is to drop around 25% of the observations.

• If one doesn’t have any ideas about the form of the het. the test

will probably have low power since a sensible data ordering isn’t

available.

White’s test When one has little idea if there exists heteroscedas-

ticity, and no idea of its potential form, the White test is a possibility.

The idea is that if there is homoscedasticity, then

E(ε2
t |xt) = σ2,∀t



so that xt or functions of xt shouldn’t help to explain E(ε2
t ). The test

works as follows:

1. Since εt isn’t available, use the consistent estimator ε̂t instead.

2. Regress

ε̂2
t = σ2 + z′tγ + vt

where zt is a P -vector. zt may include some or all of the variables

in xt, as well as other variables. White’s original suggestion was

to use xt, plus the set of all unique squares and cross products of

variables in xt.

3. Test the hypothesis that γ = 0. The qF statistic in this case is

qF =
P (ESSR − ESSU) /P

ESSU/ (n− P − 1)

Note that ESSR = TSSU , so dividing both numerator and de-



nominator by this we get

qF = (n− P − 1)
R2

1−R2

Note that this is the R2 of the artificial regression used to test for

heteroscedasticity, not the R2 of the original model.

An asymptotically equivalent statistic, under the null of no heteroscedas-

ticity (so that R2 should tend to zero), is

nR2 a∼ χ2(P ).

This doesn’t require normality of the errors, though it does assume

that the fourth moment of εt is constant, under the null. Question:

why is this necessary?

• The White test has the disadvantage that it may not be very

powerful unless the zt vector is chosen well, and this is hard to



do without knowledge of the form of heteroscedasticity.

• It also has the problem that specification errors other than het-

eroscedasticity may lead to rejection.

• Note: the null hypothesis of this test may be interpreted as θ =

0 for the variance model V (ε2
t ) = h(α + z′tθ), where h(·) is an

arbitrary function of unknown form. The test is more general

than is may appear from the regression that is used.

Plotting the residuals A very simple method is to simply plot the

residuals (or their squares). Draw pictures here. Like the Goldfeld-

Quandt test, this will be more informative if the observations are or-

dered according to the suspected form of the heteroscedasticity.



Correction

Correcting for heteroscedasticity requires that a parametric form for

Σ(θ) be supplied, and that a means for estimating θ consistently be

determined. The estimation method will be specific to the for sup-

plied for Σ(θ). We’ll consider two examples. Before this, let’s consider

the general nature of GLS when there is heteroscedasticity.

When we have HET but no AUT, Σ is a diagonal matrix:

Σ =


σ2

1 0 . . . 0
... σ2

2
...

. . . 0

0 · · · 0 σ2
n





Likewise, Σ−1 is diagonal

Σ−1 =


1
σ2

1
0 . . . 0

... 1
σ2

2

...
. . . 0

0 · · · 0 1
σ2
n


and so is the Cholesky decomposition P = chol(Σ−1)

P =


1
σ1

0 . . . 0
... 1

σ2

...
. . . 0

0 · · · 0 1
σn


We need to transform the model, just as before, in the general case:

Py = PXβ + Pε,



or, making the obvious definitions,

y∗ = X∗β + ε∗.

Note that multiplying by P just divides the data for each observation

(yi, xi) by the corresponding standard error of the error term, σi. That

is, y∗i = yi/σi and x∗i = xi/σi (note that xi is a K-vector: we divided

each element, including the 1 corresponding to the constant).

This makes sense. Consider Figure 9.2, which shows a true re-

gression line with heteroscedastic errors. Which sample is more in-

formative about the location of the line? The ones with observations

with smaller variances. So, the GLS solution is equivalent to OLS on

the transformed data. By the transformed data is the original data,

weighted by the inverse of the standard error of the observation’s er-

ror term. When the standard error is small, the weight is high, and

vice versa. The GLS correction for the case of HET is also known as

weighted least squares, for this reason.



Figure 9.2: Motivation for GLS correction when there is HET



Multiplicative heteroscedasticity

Suppose the model is

yt = x′tβ + εt

σ2
t = E(ε2

t ) = (z′tγ)
δ

but the other classical assumptions hold. In this case

ε2
t = (z′tγ)

δ
+ vt

and vt has mean zero. Nonlinear least squares could be used to esti-

mate γ and δ consistently, were εt observable. The solution is to sub-

stitute the squared OLS residuals ε̂2
t in place of ε2

t , since it is consistent

by the Slutsky theorem. Once we have γ̂ and δ̂, we can estimate σ2
t

consistently using

σ̂2
t = (z′tγ̂)

δ̂
p

→ σ2
t .



In the second step, we transform the model by dividing by the stan-

dard deviation:
yt
σ̂t

=
x′tβ

σ̂t
+
εt
σ̂t

or

y∗t = x∗′t β + ε∗t .

Asymptotically, this model satisfies the classical assumptions.

• This model is a bit complex in that NLS is required to estimate

the model of the variance. A simpler version would be

yt = x′tβ + εt

σ2
t = E(ε2

t ) = σ2zδt

where zt is a single variable. There are still two parameters to

be estimated, and the model of the variance is still nonlinear in

the parameters. However, the search method can be used in this



case to reduce the estimation problem to repeated applications

of OLS.

• First, we define an interval of reasonable values for δ, e.g., δ ∈
[0, 3].

• Partition this interval intoM equally spaced values, e.g., {0, .1, .2, ..., 2.9, 3}.

• For each of these values, calculate the variable zδmt .

• The regression

ε̂2
t = σ2zδmt + vt

is linear in the parameters, conditional on δm, so one can esti-

mate σ2 by OLS.

• Save the pairs (σ2
m, δm), and the corresponding ESSm. Choose

the pair with the minimum ESSm as the estimate.

• Next, divide the model by the estimated standard deviations.



• Can refine. Draw picture.

• Works well when the parameter to be searched over is low di-

mensional, as in this case.

Groupwise heteroscedasticity

A common case is where we have repeated observations on each of a

number of economic agents: e.g., 10 years of macroeconomic data on

each of a set of countries or regions, or daily observations of transac-

tions of 200 banks. This sort of data is a pooled cross-section time-series
model. It may be reasonable to presume that the variance is constant

over time within the cross-sectional units, but that it differs across

them (e.g., firms or countries of different sizes...). The model is

yit = x′itβ + εit

E(ε2
it) = σ2

i ,∀t



where i = 1, 2, ..., G are the agents, and t = 1, 2, ..., n are the observa-

tions on each agent.

• The other classical assumptions are presumed to hold.

• In this case, the variance σ2
i is specific to each agent, but constant

over the n observations for that agent.

• In this model, we assume that E(εitεis) = 0. This is a strong

assumption that we’ll relax later.

To correct for heteroscedasticity, just estimate each σ2
i using the natu-

ral estimator:

σ̂2
i =

1

n

n∑
t=1

ε̂2
it

• Note that we use 1/n here since it’s possible that there are more

than n regressors, so n − K could be negative. Asymptotically

the difference is unimportant.



• With each of these, transform the model as usual:

yit
σ̂i

=
x′itβ

σ̂i
+
εit
σ̂i

Do this for each cross-sectional group. This transformed model

satisfies the classical assumptions, asymptotically.

Example: the Nerlove model (again!)

Remember the Nerlove data - see sections 3.8 and 5.8. Let’s check

the Nerlove data for evidence of heteroscedasticity. In what follows,

we’re going to use the model with the constant and output coefficient

varying across 5 groups, but with the input price coefficients fixed

(see Equation 5.5 for the rationale behind this). Figure 9.3, which is

generated by the Octave program GLS/NerloveResiduals.m plots the

residuals. We can see pretty clearly that the error variance is larger

for small firms than for larger firms.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m


Figure 9.3: Residuals, Nerlove model, sorted by firm size
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Now let’s try out some tests to formally check for heteroscedas-

ticity. The Octave program GLS/HetTests.m performs the White and

Goldfeld-Quandt tests, using the above model. The results are

Value p-value

White's test 61.903 0.000

Value p-value

GQ test 10.886 0.000

All in all, it is very clear that the data are heteroscedastic. That

means that OLS estimation is not efficient, and tests of restrictions

that ignore heteroscedasticity are not valid. The previous tests (CRTS,

HOD1 and the Chow test) were calculated assuming homoscedas-

ticity. The Octave program GLS/NerloveRestrictions-Het.m uses the

Wald test to check for CRTS and HOD1, but using a heteroscedastic-

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictionsHet.m


consistent covariance estimator.1 The results are

Testing HOD1

Value p-value

Wald test 6.161 0.013

Testing CRTS

Value p-value

Wald test 20.169 0.001

We see that the previous conclusions are altered - both CRTS is and

HOD1 are rejected at the 5% level. Maybe the rejection of HOD1 is

due to to Wald test’s tendency to over-reject?
1By the way, notice that GLS/NerloveResiduals.m and GLS/HetTests.m use the restricted LS esti-

mator directly to restrict the fully general model with all coefficients varying to the model with only
the constant and the output coefficient varying. But GLS/NerloveRestrictions-Het.m estimates the
model by substituting the restrictions into the model. The methods are equivalent, but the second is
more convenient and easier to understand.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m


From the previous plot, it seems that the variance of ε is a decreas-

ing function of output. Suppose that the 5 size groups have different

error variances (heteroscedasticity by groups):

V ar(εi) = σ2
j ,

where j = 1 if i = 1, 2, ..., 29, etc., as before. The Octave script GLS/N-

erloveGLS.m estimates the model using GLS (through a transforma-

tion of the model so that OLS can be applied). The estimation results

are i

*********************************************************

OLS estimation results

Observations 145

R-squared 0.958822

Sigma-squared 0.090800

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveGLS.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveGLS.m


Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

constant1 -1.046 1.276 -0.820 0.414

constant2 -1.977 1.364 -1.450 0.149

constant3 -3.616 1.656 -2.184 0.031

constant4 -4.052 1.462 -2.771 0.006

constant5 -5.308 1.586 -3.346 0.001

output1 0.391 0.090 4.363 0.000

output2 0.649 0.090 7.184 0.000

output3 0.897 0.134 6.688 0.000

output4 0.962 0.112 8.612 0.000

output5 1.101 0.090 12.237 0.000

labor 0.007 0.208 0.032 0.975

fuel 0.498 0.081 6.149 0.000

capital -0.460 0.253 -1.818 0.071



*********************************************************

*********************************************************

OLS estimation results

Observations 145

R-squared 0.987429

Sigma-squared 1.092393

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

constant1 -1.580 0.917 -1.723 0.087

constant2 -2.497 0.988 -2.528 0.013

constant3 -4.108 1.327 -3.097 0.002

constant4 -4.494 1.180 -3.808 0.000



constant5 -5.765 1.274 -4.525 0.000

output1 0.392 0.090 4.346 0.000

output2 0.648 0.094 6.917 0.000

output3 0.892 0.138 6.474 0.000

output4 0.951 0.109 8.755 0.000

output5 1.093 0.086 12.684 0.000

labor 0.103 0.141 0.733 0.465

fuel 0.492 0.044 11.294 0.000

capital -0.366 0.165 -2.217 0.028

*********************************************************

Testing HOD1

Value p-value

Wald test 9.312 0.002



The first panel of output are the OLS estimation results, which are

used to consistently estimate the σ2
j . The second panel of results are

the GLS estimation results. Some comments:

• The R2 measures are not comparable - the dependent variables

are not the same. The measure for the GLS results uses the trans-

formed dependent variable. One could calculate a comparable

R2 measure, but I have not done so.

• The differences in estimated standard errors (smaller in general

for GLS) can be interpreted as evidence of improved efficiency

of GLS, since the OLS standard errors are calculated using the

Huber-White estimator. They would not be comparable if the

ordinary (inconsistent) estimator had been used.

• Note that the previously noted pattern in the output coefficients

persists. The nonconstant CRTS result is robust.



• The coefficient on capital is now negative and significant at the

3% level. That seems to indicate some kind of problem with the

model or the data, or economic theory.

• Note that HOD1 is now rejected. Problem of Wald test over-

rejecting? Specification error in model?

9.5 Autocorrelation

Autocorrelation, which is the serial correlation of the error term, is

a problem that is usually associated with time series data, but also

can affect cross-sectional data. For example, a shock to oil prices will

simultaneously affect all countries, so one could expect contempora-

neous correlation of macroeconomic variables across countries.



Example

Consider the Keeling-Whorf data on atmospheric CO2 concentrations

an Mauna Loa, Hawaii (see http://en.wikipedia.org/wiki/Keeling_

Curve and http://cdiac.ornl.gov/ftp/ndp001/maunaloa.txt).

From the file maunaloa.txt: ”THE DATA FILE PRESENTED IN THIS

SUBDIRECTORY CONTAINS MONTHLY AND ANNUAL ATMOSPHERIC

CO2 CONCENTRATIONS DERIVED FROM THE SCRIPPS INSTITU-

TION OF OCEANOGRAPHY’S (SIO’s) CONTINUOUS MONITORING

PROGRAM AT MAUNA LOA OBSERVATORY, HAWAII. THIS RECORD

CONSTITUTES THE LONGEST CONTINUOUS RECORD OF ATMO-

SPHERIC CO2 CONCENTRATIONS AVAILABLE IN THE WORLD. MONTHLY

AND ANNUAL AVERAGE MOLE FRACTIONS OF CO2 IN WATER-VAPOR-

FREE AIR ARE GIVEN FROM MARCH 1958 THROUGH DECEMBER

2003, EXCEPT FOR A FEW INTERRUPTIONS.”

http://en.wikipedia.org/wiki/Keeling_Curve
http://en.wikipedia.org/wiki/Keeling_Curve
http://cdiac.ornl.gov/ftp/ndp001/maunaloa.txt


The data is available in Octave format at CO2.data .

If we fit the model CO2t = β1 + β2t + εt, we get the results

octave:8> CO2Example

warning: load: file found in load path

*********************************************************

OLS estimation results

Observations 468

R-squared 0.979239

Sigma-squared 5.696791

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

1 316.918 0.227 1394.406 0.000

2 0.121 0.001 141.521 0.000

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/CO2.data


*********************************************************

It seems pretty clear that CO2 concentrations have been going up in

the last 50 years, surprise, surprise. Let’s look at a residual plot for

the last 3 years of the data, see Figure 9.4. Note that there is a very

predictable pattern. This is pretty strong evidence that the errors of

the model are not independent of one another, which means there

seems to be autocorrelation.

Causes

Autocorrelation is the existence of correlation across the error term:

E(εtεs) 6= 0, t 6= s.

Why might this occur? Plausible explanations include



Figure 9.4: Residuals from time trend for CO2 data



1. Lags in adjustment to shocks. In a model such as

yt = x′tβ + εt,

one could interpret x′tβ as the equilibrium value. Suppose xt

is constant over a number of observations. One can interpret

εt as a shock that moves the system away from equilibrium. If

the time needed to return to equilibrium is long with respect to

the observation frequency, one could expect εt+1 to be positive,

conditional on εt positive, which induces a correlation.

2. Unobserved factors that are correlated over time. The error term

is often assumed to correspond to unobservable factors. If these

factors are correlated, there will be autocorrelation.

3. Misspecification of the model. Suppose that the DGP is

yt = β0 + β1xt + β2x
2
t + εt



but we estimate

yt = β0 + β1xt + εt

The effects are illustrated in Figure 9.5.

Effects on the OLS estimator

The variance of the OLS estimator is the same as in the case of het-

eroscedasticity - the standard formula does not apply. The correct

formula is given in equation 9.1. Next we discuss two GLS correc-

tions for OLS. These will potentially induce inconsistency when the

regressors are nonstochastic (see Chapter 6) and should either not be

used in that case (which is usually the relevant case) or used with

caution. The more recommended procedure is discussed in section

9.5.



Figure 9.5: Autocorrelation induced by misspecification



AR(1)

There are many types of autocorrelation. We’ll consider two exam-

ples. The first is the most commonly encountered case: autoregres-

sive order 1 (AR(1) errors. The model is

yt = x′tβ + εt

εt = ρεt−1 + ut

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < s

We assume that the model satisfies the other classical assumptions.

• We need a stationarity assumption: |ρ| < 1. Otherwise the vari-

ance of εt explodes as t increases, so standard asymptotics will

not apply.



• By recursive substitution we obtain

εt = ρεt−1 + ut

= ρ (ρεt−2 + ut−1) + ut

= ρ2εt−2 + ρut−1 + ut

= ρ2 (ρεt−3 + ut−2) + ρut−1 + ut

In the limit the lagged ε drops out, since ρm → 0 as m → ∞, so

we obtain

εt =

∞∑
m=0

ρmut−m

With this, the variance of εt is found as

E(ε2
t ) = σ2

u

∞∑
m=0

ρ2m

=
σ2
u

1− ρ2



• If we had directly assumed that εt were covariance stationary,

we could obtain this using

V (εt) = ρ2E(ε2
t−1) + 2ρE(εt−1ut) + E(u2

t )

= ρ2V (εt) + σ2
u,

so

V (εt) =
σ2
u

1− ρ2

• The variance is the 0th order autocovariance: γ0 = V (εt)

• Note that the variance does not depend on t

Likewise, the first order autocovariance γ1 is

Cov(εt, εt−1) = γs = E((ρεt−1 + ut) εt−1)

= ρV (εt)

=
ρσ2

u

1− ρ2



• Using the same method, we find that for s < t

Cov(εt, εt−s) = γs =
ρsσ2

u

1− ρ2

• The autocovariances don’t depend on t: the process {εt} is co-
variance stationary

The correlation (in general, for r.v.’s x and y) is defined as

corr(x, y) =
cov(x, y)

se(x)se(y)

but in this case, the two standard errors are the same, so the s-order

autocorrelation ρs is

ρs = ρs



• All this means that the overall matrix Σ has the form

Σ =
σ2
u

1− ρ2︸ ︷︷ ︸
this is the variance



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

... . . . ...
. . . ρ

ρn−1 · · · 1


︸ ︷︷ ︸

this is the correlation matrix

So we have homoscedasticity, but elements off the main diago-

nal are not zero. All of this depends only on two parameters, ρ

and σ2
u. If we can estimate these consistently, we can apply FGLS.

It turns out that it’s easy to estimate these consistently. The steps are

1. Estimate the model yt = x′tβ + εt by OLS.



2. Take the residuals, and estimate the model

ε̂t = ρε̂t−1 + u∗t

Since ε̂t
p→ εt, this regression is asymptotically equivalent to the

regression

εt = ρεt−1 + ut

which satisfies the classical assumptions. Therefore, ρ̂ obtained

by applying OLS to ε̂t = ρε̂t−1 + u∗t is consistent. Also, since

u∗t
p→ ut, the estimator

σ̂2
u =

1

n

n∑
t=2

(û∗t )
2 p→ σ2

u

3. With the consistent estimators σ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using

the previous structure of Σ, and estimate by FGLS. Actually, one



can omit the factor σ̂2
u/(1−ρ2), since it cancels out in the formula

β̂FGLS =
(
X ′Σ̂−1X

)−1

(X ′Σ̂−1y).

• One can iterate the process, by taking the first FGLS estimator

of β, re-estimating ρ and σ2
u, etc. If one iterates to convergences

it’s equivalent to MLE (supposing normal errors).

• An asymptotically equivalent approach is to simply estimate the

transformed model

yt − ρ̂yt−1 = (xt − ρ̂xt−1)′β + u∗t

using n − 1 observations (since y0 and x0 aren’t available). This

is the method of Cochrane and Orcutt. Dropping the first obser-

vation is asymptotically irrelevant, but it can be very important
in small samples. One can recuperate the first observation by



putting

y∗1 = y1

√
1− ρ̂2

x∗1 = x1

√
1− ρ̂2

This somewhat odd-looking result is related to the Cholesky fac-

torization of Σ−1. See Davidson and MacKinnon, pg. 348-49 for

more discussion. Note that the variance of y∗1 is σ2
u, asymptoti-

cally, so we see that the transformed model will be homoscedas-

tic (and nonautocorrelated, since the u′s are uncorrelated with

the y′s, in different time periods.



MA(1)

The linear regression model with moving average order 1 errors is

yt = x′tβ + εt

εt = ut + φut−1

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < s

In this case,

V (εt) = γ0 = E
[
(ut + φut−1)2

]
= σ2

u + φ2σ2
u

= σ2
u(1 + φ2)



Similarly

γ1 = E [(ut + φut−1) (ut−1 + φut−2)]

= φσ2
u

and

γ2 = [(ut + φut−1) (ut−2 + φut−3)]

= 0

so in this case

Σ = σ2
u



1 + φ2 φ 0 · · · 0

φ 1 + φ2 φ

0 φ . . . ...
... . . . φ

0 · · · φ 1 + φ2





Note that the first order autocorrelation is

ρ1 = φσ2
u

σ2
u(1+φ2)

=
γ1

γ0

=
φ

(1 + φ2)

• This achieves a maximum at φ = 1 and a minimum at φ = −1,

and the maximal and minimal autocorrelations are 1/2 and -

1/2. Therefore, series that are more strongly autocorrelated

can’t be MA(1) processes.

Again the covariance matrix has a simple structure that depends on

only two parameters. The problem in this case is that one can’t esti-

mate φ using OLS on

ε̂t = ut + φut−1

because the ut are unobservable and they can’t be estimated consis-

tently. However, there is a simple way to estimate the parameters.



• Since the model is homoscedastic, we can estimate

V (εt) = σ2
ε = σ2

u(1 + φ2)

using the typical estimator:

σ̂2
ε = ̂σ2

u(1 + φ2) =
1

n

n∑
t=1

ε̂2
t

• By the Slutsky theorem, we can interpret this as defining an

(unidentified) estimator of both σ2
u and φ, e.g., use this as

σ̂2
u(1 + φ̂2) =

1

n

n∑
t=1

ε̂2
t

However, this isn’t sufficient to define consistent estimators of

the parameters, since it’s unidentified - two unknowns, one equa-

tion.



• To solve this problem, estimate the covariance of εt and εt−1 us-

ing

Ĉov(εt, εt−1) = φ̂σ2
u =

1

n

n∑
t=2

ε̂tε̂t−1

This is a consistent estimator, following a LLN (and given that

the epsilon hats are consistent for the epsilons). As above, this

can be interpreted as defining an unidentified estimator of the

two parameters:

φ̂σ̂2
u =

1

n

n∑
t=2

ε̂tε̂t−1

• Now solve these two equations to obtain identified (and there-

fore consistent) estimators of both φ and σ2
u. Define the consis-

tent estimator

Σ̂ = Σ(φ̂, σ̂2
u)

following the form we’ve seen above, and transform the model



using the Cholesky decomposition. The transformed model sat-

isfies the classical assumptions asymptotically.

• Note: there is no guarantee that Σ estimated using the above

method will be positive definite, which may pose a problem.

Another method would be to use ML estimation, if one is willing

to make distributional assumptions regarding the white noise

errors.

Monte Carlo example: AR1

Let’s look at a Monte Carlo study that compares OLS and GLS when

we have AR1 errors. The model is

yt = 1 + xt + εt

εt = ρεt−1 + ut



Figure 9.6: Efficiency of OLS and FGLS, AR1 errors
(a) OLS (b) GLS

with ρ = 0.9. The sample size is n = 30, and 1000 Monte Carlo

replications are done. The Octave script is GLS/AR1Errors.m. Figure

9.6 shows histograms of the estimated coefficient of x minus the true

value. We can see that the GLS histogram is much more concentrated

about 0, which is indicative of the efficiency of GLS relative to OLS.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/AR1Errors.m


Asymptotically valid inferences with autocorrelation

of unknown form

See Hamilton Ch. 10, pp. 261-2 and 280-84.

When the form of autocorrelation is unknown, one may decide

to use the OLS estimator, without correction. We’ve seen that this

estimator has the limiting distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
where, as before, Ω is

Ω = lim
n→∞
E
(
X ′εε′X

n

)
We need a consistent estimate of Ω. Define mt = xtεt (recall that xt is



defined as a K × 1 vector). Note that

X ′ε =
[
x1 x2 · · · xn

]

ε1

ε2

...

εn


=

n∑
t=1

xtεt

=

n∑
t=1

mt

so that

Ω = lim
n→∞

1

n
E

[(
n∑
t=1

mt

)(
n∑
t=1

m′t

)]
We assume that mt is covariance stationary (so that the covariance

between mt and mt−s does not depend on t).



Define the v − th autocovariance of mt as

Γv = E(mtm
′
t−v).

Note that E(mtm
′
t+v) = Γ′v. (show this with an example). In general,

we expect that:

• mt will be autocorrelated, since εt is potentially autocorrelated:

Γv = E(mtm
′
t−v) 6= 0

Note that this autocovariance does not depend on t, due to co-

variance stationarity.

• contemporaneously correlated ( E(mitmjt) 6= 0 ), since the re-

gressors in xt will in general be correlated (more on this later).

• and heteroscedastic (E(m2
it) = σ2

i , which depends upon i ), again

since the regressors will have different variances.



While one could estimate Ω parametrically, we in general have little

information upon which to base a parametric specification. Recent

research has focused on consistent nonparametric estimators of Ω.

Now define

Ωn = E 1

n

[(
n∑
t=1

mt

)(
n∑
t=1

m′t

)]

We have (show that the following is true, by expanding sum and shifting
rows to left)

Ωn = Γ0 +
n− 1

n
(Γ1 + Γ′1) +

n− 2

n
(Γ2 + Γ′2) · · · + 1

n

(
Γn−1 + Γ′n−1

)
The natural, consistent estimator of Γv is

Γ̂v =
1

n

n∑
t=v+1

m̂tm̂
′
t−v.



where

m̂t = xtε̂t

(note: one could put 1/(n− v) instead of 1/n here). So, a natural, but

inconsistent, estimator of Ωn would be

Ω̂n = Γ̂0 +
n− 1

n

(
Γ̂1 + Γ̂′1

)
+
n− 2

n

(
Γ̂2 + Γ̂′2

)
+ · · · + 1

n

(
Γ̂n−1 + Γ̂′n−1

)
= Γ̂0 +

n−1∑
v=1

n− v
n

(
Γ̂v + Γ̂′v

)
.

This estimator is inconsistent in general, since the number of pa-

rameters to estimate is more than the number of observations, and

increases more rapidly than n, so information does not build up as

n→∞.
On the other hand, supposing that Γv tends to zero sufficiently



rapidly as v tends to∞, a modified estimator

Ω̂n = Γ̂0 +

q(n)∑
v=1

(
Γ̂v + Γ̂′v

)
,

where q(n)
p→ ∞ as n → ∞ will be consistent, provided q(n) grows

sufficiently slowly.

• The assumption that autocorrelations die off is reasonable in

many cases. For example, the AR(1) model with |ρ| < 1 has

autocorrelations that die off.

• The term n−v
n can be dropped because it tends to one for v <

q(n), given that q(n) increases slowly relative to n.

• A disadvantage of this estimator is that is may not be positive

definite. This could cause one to calculate a negative χ2 statistic,

for example!



• Newey and West proposed and estimator (Econometrica, 1987)

that solves the problem of possible nonpositive definiteness of

the above estimator. Their estimator is

Ω̂n = Γ̂0 +

q(n)∑
v=1

[
1− v

q + 1

](
Γ̂v + Γ̂′v

)
.

This estimator is p.d. by construction. The condition for consis-

tency is that n−1/4q(n) → 0. Note that this is a very slow rate of

growth for q. This estimator is nonparametric - we’ve placed no

parametric restrictions on the form of Ω. It is an example of a

kernel estimator.

Finally, since Ωn has Ω as its limit, Ω̂n
p→ Ω. We can now use Ω̂n and

Q̂X = 1
nX
′X to consistently estimate the limiting distribution of the

OLS estimator under heteroscedasticity and autocorrelation of un-

known form. With this, asymptotically valid tests are constructed in

the usual way.



Testing for autocorrelation

Durbin-Watson test

The Durbin-Watson test is not strictly valid in most situations where

we would like to use it. Nevertheless, it is encountered often enough

so that one should know something about it. The Durbin-Watson test

statistic is

DW =

∑n
t=2 (ε̂t − ε̂t−1)2∑n

t=1 ε̂
2
t

=

∑n
t=2

(
ε̂2
t − 2ε̂tε̂t−1 + ε̂2

t−1

)∑n
t=1 ε̂

2
t

• The null hypothesis is that the first order autocorrelation of the

errors is zero: H0 : ρ1 = 0. The alternative is of course HA :

ρ1 6= 0. Note that the alternative is not that the errors are AR(1),

since many general patterns of autocorrelation will have the first

order autocorrelation different than zero. For this reason the



test is useful for detecting autocorrelation in general. For the

same reason, one shouldn’t just assume that an AR(1) model is

appropriate when the DW test rejects the null.

• Under the null, the middle term tends to zero, and the other two

tend to one, so DW
p→ 2.

• Supposing that we had an AR(1) error process with ρ = 1. In

this case the middle term tends to −2, so DW
p→ 0

• Supposing that we had an AR(1) error process with ρ = −1. In

this case the middle term tends to 2, so DW
p→ 4

• These are the extremes: DW always lies between 0 and 4.

• The distribution of the test statistic depends on the matrix of

regressors, X, so tables can’t give exact critical values. The give

upper and lower bounds, which correspond to the extremes that



are possible. See Figure 9.7. There are means of determining

exact critical values conditional on X.

• Note that DW can be used to test for nonlinearity (add discus-

sion).

• The DW test is based upon the assumption that the matrix X

is fixed in repeated samples. This is often unreasonable in the

context of economic time series, which is precisely the context

where the test would have application. It is possible to relate

the DW test to other test statistics which are valid without strict

exogeneity.

Breusch-Godfrey test

This test uses an auxiliary regression, as does the White test for

heteroscedasticity. The regression is

ε̂t = x′tδ + γ1ε̂t−1 + γ2ε̂t−2 + · · · + γP ε̂t−P + vt



Figure 9.7: Durbin-Watson critical values



and the test statistic is the nR2 statistic, just as in the White test. There

are P restrictions, so the test statistic is asymptotically distributed as

a χ2(P ).

• The intuition is that the lagged errors shouldn’t contribute to

explaining the current error if there is no autocorrelation.

• xt is included as a regressor to account for the fact that the ε̂t
are not independent even if the εt are. This is a technicality that

we won’t go into here.

• This test is valid even if the regressors are stochastic and contain

lagged dependent variables, so it is considerably more useful

than the DW test for typical time series data.

• The alternative is not that the model is an AR(P), following the

argument above. The alternative is simply that some or all of



the first P autocorrelations are different from zero. This is com-

patible with many specific forms of autocorrelation.

Lagged dependent variables and autocorrelation

We’ve seen that the OLS estimator is consistent under autocorrela-

tion, as long as plimX ′ε
n = 0. This will be the case when E(X ′ε) = 0,

following a LLN. An important exception is the case where X contains

lagged y′s and the errors are autocorrelated.

Example 22. Dynamic model with MA1 errors. Consider the model

yt = α + ρyt−1 + βxt + εt

εt = υt + φυt−1



We can easily see that a regressor is not weakly exogenous:

E(yt−1εt) = E {(α + ρyt−2 + βxt−1 + υt−1 + φυt−2)(υt + φυt−1)}
6= 0

since one of the terms is E(φυ2
t−1) which is clearly nonzero. In this

case E(xtεt) 6= 0, and therefore plimX ′ε
n 6= 0. Since

plimβ̂ = β + plim
X ′ε

n

the OLS estimator is inconsistent in this case. One needs to estimate

by instrumental variables (IV), which we’ll get to later

The Octave script GLS/DynamicMA.m does a Monte Carlo study.

The sample size is n = 100. The true coefficients are α = 1 ρ = 0.9 and

β = 1. The MA parameter is φ = −0.95. Figure 9.8 gives the results.

You can see that the constant and the autoregressive parameter have

a lot of bias. By re-running the script with φ = 0, you will see that

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/DynamicMA.m


much of the bias disappears (not all - why?).



Examples

Nerlove model, yet again The Nerlove model uses cross-sectional

data, so one may not think of performing tests for autocorrelation.

However, specification error can induce autocorrelated errors. Con-

sider the simple Nerlove model

lnC = β1 + β2 lnQ + β3 lnPL + β4 lnPF + β5 lnPK + ε

and the extended Nerlove model

lnC =

5∑
j=1

αjDj +

5∑
j=1

γjDj lnQ + βL lnPL + βF lnPF + βK lnPK + ε

discussed around equation 5.5. If you have done the exercises, you

have seen evidence that the extended model is preferred. So if it is in

fact the proper model, the simple model is misspecified. Let’s check if

this misspecification might induce autocorrelated errors.



Figure 9.8: Dynamic model with MA(1) errors
(a) α̂− α

(b) ρ̂− ρ

(c) β̂ − β



The Octave program GLS/NerloveAR.m estimates the simple Nerlove

model, and plots the residuals as a function of lnQ, and it calculates a

Breusch-Godfrey test statistic. The residual plot is in Figure 9.9 , and

the test results are:

Value p-value

Breusch-Godfrey test 34.930 0.000

Clearly, there is a problem of autocorrelated residuals.

Repeat the autocorrelation tests using the extended Nerlove model

(Equation 5.5) to see the problem is solved.

Klein model Klein’s Model I is a simple macroeconometric model.

One of the equations in the model explains consumption (C) as a

function of profits (P ), both current and lagged, as well as the sum of

wages in the private sector (W p) and wages in the government sector

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveAR.m


Figure 9.9: Residuals of simple Nerlove model
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(W g). Have a look at the README file for this data set. This gives the

variable names and other information.

Consider the model

Ct = α0 + α1Pt + α2Pt−1 + α3(W p
t + W g

t ) + ε1t

The Octave program GLS/Klein.m estimates this model by OLS, plots

the residuals, and performs the Breusch-Godfrey test, using 1 lag of

the residuals. The estimation and test results are:

*********************************************************

OLS estimation results

Observations 21

R-squared 0.981008

Sigma-squared 1.051732

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/klein_readme.txt
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/Klein.m


Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value

Constant 16.237 1.303 12.464 0.000

Profits 0.193 0.091 2.115 0.049

Lagged Profits 0.090 0.091 0.992 0.335

Wages 0.796 0.040 19.933 0.000

*********************************************************

Value p-value

Breusch-Godfrey test 1.539 0.215

and the residual plot is in Figure 9.10. The test does not reject the

null of nonautocorrelatetd errors, but we should remember that we

have only 21 observations, so power is likely to be fairly low. The

residual plot leads me to suspect that there may be autocorrelation



- there are some significant runs below and above the x-axis. Your

opinion may differ.

Since it seems that there may be autocorrelation, lets’s try an

AR(1) correction. The Octave program GLS/KleinAR1.m estimates

the Klein consumption equation assuming that the errors follow the

AR(1) pattern. The results, with the Breusch-Godfrey test for remain-

ing autocorrelation are:

*********************************************************

OLS estimation results

Observations 21

R-squared 0.967090

Sigma-squared 0.983171

Results (Ordinary var-cov estimator)

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/KleinAR1.m


Figure 9.10: OLS residuals, Klein consumption equation
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estimate st.err. t-stat. p-value

Constant 16.992 1.492 11.388 0.000

Profits 0.215 0.096 2.232 0.039

Lagged Profits 0.076 0.094 0.806 0.431

Wages 0.774 0.048 16.234 0.000

*********************************************************

Value p-value

Breusch-Godfrey test 2.129 0.345

• The test is farther away from the rejection region than before,

and the residual plot is a bit more favorable for the hypothesis

of nonautocorrelated residuals, IMHO. For this reason, it seems

that the AR(1) correction might have improved the estimation.

• Nevertheless, there has not been much of an effect on the esti-



mated coefficients nor on their estimated standard errors. This

is probably because the estimated AR(1) coefficient is not very

large (around 0.2)

• The existence or not of autocorrelation in this model will be

important later, in the section on simultaneous equations.

9.6 Exercises

1. Comparing the variances of the OLS and GLS estimators, I claimed

that the following holds:

V ar(β̂)− V ar(β̂GLS) = AΣA
′

Verify that this is true.



2. Show that the GLS estimator can be defined as

β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)

3. The limiting distribution of the OLS estimator with heteroscedas-

ticity of unknown form is

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
,

where

lim
n→∞
E
(
X ′εε′X

n

)
= Ω

Explain why

Ω̂ =
1

n

n∑
t=1

xtx
′
tε̂

2
t

is a consistent estimator of this matrix.

4. Define the v − th autocovariance of a covariance stationary pro-



cess mt, where E(mt) = 0 as

Γv = E(mtm
′
t−v).

Show that E(mtm
′
t+v) = Γ′v.

5. For the Nerlove model with dummies and interactions discussed

above (see Section 9.4 and equation 5.5)

lnC =

5∑
j=1

αjDj +

5∑
j=1

γjDj lnQ+βL lnPL+βF lnPF +βK lnPK + ε

above, we did a GLS correction based on the assumption that

there is HET by groups (V (εt|xt) = σ2
j). Let’s assume that this

model is correctly specified, except that there may or may not

be HET, and if it is present it may be of the form assumed, or

perhaps of some other form. What happens if the assumed form

of HET is incorrect?



(a) Is the ”FGLS” based on the assumed form of HET consis-

tent?

(b) Is it efficient? Is it likely to be efficient with respect to OLS?

(c) Are hypothesis tests using the ”FGLS” estimator valid? If

not, can they be made valid following some procedure? Ex-

plain.

(d) Are the t-statistics reported in Section 9.4 valid?

(e) Which estimator do you prefer, the OLS estimator or the

FGLS estimator? Discuss.

6. Consider the model

yt = C + A1yt−1 + εt

E(εtε
′
t) = Σ

E(εtε
′
s) = 0, t 6= s



where yt and εt are G× 1 vectors, C is a G× 1 of constants, and

A1andA2 areG×Gmatrices of parameters. The matrix Σ is aG×
G covariance matrix. Assume that we have n observations. This

is a vector autoregressive model, of order 1 - commonly referred

to as a VAR(1) model.

(a) Show how the model can be written in the form Y = Xβ+ν,

where Y is a Gn × 1 vector, β is a (G + G2)×1 parameter

vector, and the other items are conformable. What is the

structure of X? What is the structure of the covariance ma-

trix of ν?

(b) This model has HET and AUT. Verify this statement.

(c) Simulate data from this model, then estimate the model

using OLS and feasible GLS. You should find that the two

estimators are identical, which might seem surprising, given

that there is HET and AUT.



(d) (advanced). Prove analytically that the OLS and GLS es-

timators are identical. Hint: this model is of the form of

seemingly unrelated regressions.

7. Consider the model

yt = α + ρ1yt−1 + ρ2yt−2 + εt

where εt is a N(0, 1) white noise error. This is an autogressive

model of order 2 (AR2) model. Suppose that data is generated

from the AR2 model, but the econometrician mistakenly decides

to estimate an AR1 model (yt = α + ρ1yt−1 + εt).

(a) simulate data from the AR2 model, setting ρ1 = 0.5 and

ρ2 = 0.4, using a sample size of n = 30.

(b) Estimate the AR1 model by OLS, using the simulated data

(c) test the hypothesis that ρ1 = 0.5



(d) test for autocorrelation using the test of your choice

(e) repeat the above steps 10000 times.

i. What percentage of the time does a t-test reject the hy-

pothesis that ρ1 = 0.5?

ii. What percentage of the time is the hypothesis of no au-

tocorrelation rejected?

(f) discuss your findings. Include a residual plot for a represen-

tative sample.

8. Modify the script given in Subsection 9.5 so that the first ob-

servation is dropped, rather than given special treatment. This

corresponds to using the Cochrane-Orcutt method, whereas the

script as provided implements the Prais-Winsten method. Check

if there is an efficiency loss when the first observation is dropped.



Chapter 10

Endogeneity and

simultaneity
Several times we’ve encountered cases where correlation between re-

gressors and the error term lead to biasedness and inconsistency of

the OLS estimator. Cases include autocorrelation with lagged depen-

dent variables (Exampe 22) and measurement error in the regressors

365



(Example 19). Another important case is that of simultaneous equa-

tions. The cause is different, but the effect is the same.

10.1 Simultaneous equations

Up until now our model is

y = Xβ + ε

where we assume weak exogeneity of the regressors, so that E(xtεt) =

0. With weak exogeneity, the OLS estimator has desirable large sam-

ple properties (consistency, asymptotic normality).

Simultaneous equations is a different prospect. An example of a



simultaneous equation system is a simple supply-demand system:

Demand: qt = α1 + α2pt + α3yt + ε1t

Supply: qt = β1 + β2pt + ε2t

E

([
ε1t

ε2t

] [
ε1t ε2t

])
=

[
σ11 σ12

· σ22

]
≡ Σ,∀t

The presumption is that qt and pt are jointly determined at the same

time by the intersection of these equations. We’ll assume that yt is

determined by some unrelated process. It’s easy to see that we have

correlation between regressors and errors. Solving for pt :

α1 + α2pt + α3yt + ε1t = β1 + β2pt + ε2t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt =
α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t

β2 − α2



Now consider whether pt is uncorrelated with ε1t :

E(ptε1t) = E
{(

α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t

β2 − α2

)
ε1t

}
=
σ11 − σ12

β2 − α2

Because of this correlation, weak exogeneity does not hold, and OLS

estimation of the demand equation will be biased and inconsistent.

The same applies to the supply equation, for the same reason.

In this model, qt and pt are the endogenous varibles (endogs), that

are determined within the system. yt is an exogenous variable (exogs).

These concepts are a bit tricky, and we’ll return to it in a minute.

First, some notation. Suppose we group together current endogs in

the vector Yt. If there are G endogs, Yt is G × 1. Group current and

lagged exogs, as well as lagged endogs in the vector Xt , which is

K × 1. Stack the errors of the G equations into the error vector Et.



The model, with additional assumtions, can be written as

Y ′t Γ = X ′tB + E ′t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= s

There are G equations here, and the parameters that enter into each

equation are contained in the columns of the matrices Γ and B. We

can stack all n observations and write the model as

Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)



where

Y =


Y ′1

Y ′2
...

Y ′n

 , X =


X ′1

X ′2
...

X ′n

 , E =


E ′1

E ′2
...

E ′n


Y is n×G, X is n×K, and E is n×G.

• This system is complete, in that there are as many equations as

endogs.

• There is a normality assumption. This isn’t necessary, but allows

us to consider the relationship between least squares and ML

estimators.

• Since there is no autocorrelation of the Et ’s, and since the



columns of E are individually homoscedastic, then

Ψ =


σ11In σ12In · · · σ1GIn

σ22In
...

. . . ...

· σGGIn


= In ⊗ Σ

• X may contain lagged endogenous and exogenous variables.

These variables are predetermined.

• We need to define what is meant by “endogenous” and “exoge-

nous” when classifying the current period variables. Remember

the definition of weak exogeneity Assumption 15, the regres-

sors are weakly exogenous if E(Et|Xt) = 0. Endogenous regres-

sors are those for which this assumption does not hold. As long

as there is no autocorrelation, lagged endogenous variables are



weakly exogenous.

10.2 Reduced form

Recall that the model is

Y ′t Γ = X ′tB + E ′t

V (Et) = Σ

This is the model in structural form.

Definition 23. [Structural form] An equation is in structural form

when more than one current period endogenous variable is included.



The solution for the current period endogs is easy to find. It is

Y ′t = X ′tBΓ−1 + E ′tΓ
−1

= X ′tΠ + V ′t

Now only one current period endog appears in each equation. This is

the reduced form.

Definition 24. [Reduced form] An equation is in reduced form if only

one current period endog is included.

An example is our supply/demand system. The reduced form for

quantity is obtained by solving the supply equation for price and sub-

stituting into demand:



qt = α1 + α2

(
qt − β1 − ε2t

β2

)
+ α3yt + ε1t

β2qt − α2qt = β2α1 − α2 (β1 + ε2t) + β2α3yt + β2ε1t

qt =
β2α1 − α2β1

β2 − α2
+
β2α3yt
β2 − α2

+
β2ε1t − α2ε2t

β2 − α2

= π11 + π21yt + V1t

Similarly, the rf for price is

β1 + β2pt + ε2t = α1 + α2pt + α3yt + ε1t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt =
α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t

β2 − α2

= π12 + π22yt + V2t

The interesting thing about the rf is that the equations individually

satisfy the classical assumptions, since yt is uncorrelated with ε1t and



ε2t by assumption, and therefore E(ytVit) = 0, i=1,2, ∀t. The errors of

the rf are [
V1t

V2t

]
=

[
β2ε1t−α2ε2t
β2−α2

ε1t−ε2t
β2−α2

]
The variance of V1t is

V (V1t) = E
[(

β2ε1t − α2ε2t

β2 − α2

)(
β2ε1t − α2ε2t

β2 − α2

)]
=
β2

2σ11 − 2β2α2σ12 + α2σ22

(β2 − α2)2

• This is constant over time, so the first rf equation is homoscedas-

tic.

• Likewise, since the εt are independent over time, so are the Vt.



The variance of the second rf error is

V (V2t) = E
[(

ε1t − ε2t

β2 − α2

)(
ε1t − ε2t

β2 − α2

)]
=
σ11 − 2σ12 + σ22

(β2 − α2)2

and the contemporaneous covariance of the errors across equations is

E(V1tV2t) = E
[(

β2ε1t − α2ε2t

β2 − α2

)(
ε1t − ε2t

β2 − α2

)]
=
β2σ11 − (β2 + α2)σ12 + σ22

(β2 − α2)2

• In summary the rf equations individually satisfy the classical as-

sumptions, under the assumtions we’ve made, but they are con-

temporaneously correlated.



The general form of the rf is

Y ′t = X ′tBΓ−1 + E ′tΓ
−1

= X ′tΠ + V ′t

so we have that

Vt =
(
Γ−1
)′
Et ∼ N

(
0,
(
Γ−1
)′

ΣΓ−1
)
,∀t

and that the Vt are timewise independent (note that this wouldn’t be

the case if the Et were autocorrelated).

From the reduced form, we can easily see that the endogenous

variables are correlated with the structural errors:

E(EtY
′
t ) = E

(
Et

(
X ′tBΓ−1 + E ′tΓ

−1
))

= E
(
EtX

′
tBΓ−1 + EtE

′
tΓ
−1
)

= ΣΓ−1 (10.1)



10.3 Bias and inconsistency of OLS estima-
tion of a structural equation

Considering the first equation (this is without loss of generality, since

we can always reorder the equations) we can partition the Y matrix

as

Y =
[
y Y1 Y2

]
• y is the first column

• Y1 are the other endogenous variables that enter the first equa-

tion

• Y2 are endogs that are excluded from this equation

Similarly, partition X as

X =
[
X1 X2

]



• X1 are the included exogs, and X2 are the excluded exogs.

Finally, partition the error matrix as

E =
[
ε E12

]
Assume that Γ has ones on the main diagonal. These are nor-

malization restrictions that simply scale the remaining coefficients on

each equation, and which scale the variances of the error terms.

Given this scaling and our partitioning, the coefficient matrices can

be written as

Γ =

 1 Γ12

−γ1 Γ22

0 Γ32


B =

[
β1 B12

0 B22

]



With this, the first equation can be written as

y = Y1γ1 + X1β1 + ε (10.2)

= Zδ + ε

The problem, as we’ve seen, is that the columns of Z corresponding

to Y1 are correlated with ε, because these are endogenous variables,

and as we saw in equation 10.1, the endogenous variables are corre-

lated with the structural errors, so they don’t satisfy weak exogeneity.

So, E(Z ′ε) 6=0. What are the properties of the OLS estimator in this

situation?

δ̂ = (Z ′Z)
−1
Z ′y

= (Z ′Z)
−1
Z ′
(
Zδ0 + ε

)
= δ0 + (Z ′Z)

−1
Z ′ε



It’s clear that the OLS estimator is biased in general. Also,

δ̂ − δ0 =

(
Z ′Z

n

)−1
Z ′ε

n

Say that lim Z ′ε
n = A,a.s., and lim Z ′Z

n = QZ, a.s. Then

lim
(
δ̂ − δ0

)
= Q−1

Z A 6= 0, a.s.

So the OLS estimator of a structural equation is inconsistent. In gen-

eral, correlation between regressors and errors leads to this problem,

whether due to measurement error, simultaneity, or omitted regres-

sors.



10.4 Note about the rest of this chaper

In class, I will not teach the material in the rest of this chapter at this

time. You need study GMM before reading the rest of this chapter. I’m

leaving this here for possible future reference.

10.5 Identification by exclusion restrictions

The identification problem in simultaneous equations is in fact of the

same nature as the identification problem in any estimation setting:

does the limiting objective function have the proper curvature so that

there is a unique global minimum or maximum at the true parameter

value? In the context of IV estimation, this is the case if the limiting

covariance of the IV estimator is positive definite and plim1
nW

′ε = 0.

This matrix is

V∞(β̂IV ) = (QXWQ
−1
WWQ

′
XW )−1σ2



• The necessary and sufficient condition for identification is simply

that this matrix be positive definite, and that the instruments be

(asymptotically) uncorrelated with ε.

• For this matrix to be positive definite, we need that the condi-

tions noted above hold: QWW must be positive definite and QXW

must be of full rank ( K ).

• These identification conditions are not that intuitive nor is it very

obvious how to check them.

Necessary conditions

If we use IV estimation for a single equation of the system, the equa-

tion can be written as

y = Zδ + ε



where

Z =
[
Y1 X1

]
Notation:

• Let K be the total numer of weakly exogenous variables.

• Let K∗ = cols(X1) be the number of included exogs, and let

K∗∗ = K − K∗ be the number of excluded exogs (in this equa-

tion).

• Let G∗ = cols(Y1) + 1 be the total number of included endogs,

and let G∗∗ = G−G∗ be the number of excluded endogs.

Using this notation, consider the selection of instruments.

• Now the X1 are weakly exogenous and can serve as their own

instruments.

• It turns out that X exhausts the set of possible instruments, in

that if the variables in X don’t lead to an identified model then



no other instruments will identify the model either. Assuming

this is true (we’ll prove it in a moment), then a necessary condi-

tion for identification is that cols(X2) ≥ cols(Y1) since if not then

at least one instrument must be used twice, so W will not have

full column rank:

ρ(W ) < K∗ + G∗ − 1⇒ ρ(QZW ) < K∗ + G∗ − 1

This is the order condition for identification in a set of simulta-

neous equations. When the only identifying information is ex-

clusion restrictions on the variables that enter an equation, then

the number of excluded exogs must be greater than or equal to

the number of included endogs, minus 1 (the normalized lhs

endog), e.g.,

K∗∗ ≥ G∗ − 1

• To show that this is in fact a necessary condition consider some



arbitrary set of instruments W. A necessary condition for identi-

fication is that

ρ

(
plim

1

n
W ′Z

)
= K∗ + G∗ − 1

where

Z =
[
Y1 X1

]
Recall that we’ve partitioned the model

Y Γ = XB + E

as

Y =
[
y Y1 Y2

]
X =

[
X1 X2

]



Given the reduced form

Y = XΠ + V

we can write the reduced form using the same partition

[
y Y1 Y2

]
=
[
X1 X2

] [ π11 Π12 Π13

π21 Π22 Π23

]
+
[
v V1 V2

]
so we have

Y1 = X1Π12 + X2Π22 + V1

so
1

n
W ′Z =

1

n
W ′
[
X1Π12 + X2Π22 + V1 X1

]
Because the W ’s are uncorrelated with the V1 ’s, by assumption, the

cross between W and V1 converges in probability to zero, so

plim
1

n
W ′Z = plim

1

n
W ′
[
X1Π12 + X2Π22 X1

]



Since the far rhs term is formed only of linear combinations of columns

of X, the rank of this matrix can never be greater than K, regardless

of the choice of instruments. If Z has more than K columns, then it is

not of full column rank. When Z has more than K columns we have

G∗ − 1 + K∗ > K

or noting that K∗∗ = K −K∗,

G∗ − 1 > K∗∗

In this case, the limiting matrix is not of full column rank, and the

identification condition fails.



Sufficient conditions

Identification essentially requires that the structural parameters be re-

coverable from the data. This won’t be the case, in general, unless the

structural model is subject to some restrictions. We’ve already iden-

tified necessary conditions. Turning to sufficient conditions (again,

we’re only considering identification through zero restricitions on the

parameters, for the moment).

The model is

Y ′t Γ = X ′tB + Et

V (Et) = Σ



This leads to the reduced form

Y ′t = X ′tBΓ−1 + EtΓ
−1

= X ′tΠ + Vt

V (Vt) =
(
Γ−1
)′

ΣΓ−1

= Ω

The reduced form parameters are consistently estimable, but none

of them are known a priori, and there are no restrictions on their

values. The problem is that more than one structural form has the

same reduced form, so knowledge of the reduced form parameters

alone isn’t enough to determine the structural parameters. To see

this, consider the model

Y ′t ΓF = X ′tBF + EtF

V (EtF ) = F ′ΣF



where F is some arbirary nonsingular G × G matrix. The rf of this

new model is

Y ′t = X ′tBF (ΓF )−1 + EtF (ΓF )−1

= X ′tBFF
−1Γ−1 + EtFF

−1Γ−1

= X ′tBΓ−1 + EtΓ
−1

= X ′tΠ + Vt

Likewise, the covariance of the rf of the transformed model is

V (EtF (ΓF )−1) = V (EtΓ
−1)

= Ω

Since the two structural forms lead to the same rf, and the rf is all that

is directly estimable, the models are said to be observationally equiva-
lent. What we need for identification are restrictions on Γ and B such

that the only admissible F is an identity matrix (if all of the equa-



tions are to be identified). Take the coefficient matrices as partitioned

before:

[
Γ

B

]
=



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22


The coefficients of the first equation of the transformed model are

simply these coefficients multiplied by the first column of F . This

gives

[
Γ

B

][
f11

F2

]
=



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22


[
f11

F2

]



For identification of the first equation we need that there be enough

restrictions so that the only admissible[
f11

F2

]

be the leading column of an identity matrix, so that

1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22


[
f11

F2

]
=



1

−γ1

0

β1

0


Note that the third and fifth rows are[

Γ32

B22

]
F2 =

[
0

0

]



Supposing that the leading matrix is of full column rank, e.g.,

ρ

([
Γ32

B22

])
= cols

([
Γ32

B22

])
= G− 1

then the only way this can hold, without additional restrictions on

the model’s parameters, is if F2 is a vector of zeros. Given that F2 is a

vector of zeros, then the first equation

[
1 Γ12

] [ f11

F2

]
= 1⇒ f11 = 1

Therefore, as long as

ρ

([
Γ32

B22

])
= G− 1



then [
f11

F2

]
=

[
1

0G−1

]
The first equation is identified in this case, so the condition is suffi-

cient for identification. It is also necessary, since the condition implies

that this submatrix must have at least G − 1 rows. Since this matrix

has

G∗∗ + K∗∗ = G−G∗ + K∗∗

rows, we obtain

G−G∗ + K∗∗ ≥ G− 1

or

K∗∗ ≥ G∗ − 1

which is the previously derived necessary condition.

The above result is fairly intuitive (draw picture here). The nec-

essary condition ensures that there are enough variables not in the



equation of interest to potentially move the other equations, so as to

trace out the equation of interest. The sufficient condition ensures

that those other equations in fact do move around as the variables

change their values. Some points:

• When an equation has K∗∗ = G∗ − 1, is is exactly identified, in

that omission of an identifiying restriction is not possible with-

out loosing consistency.

• When K∗∗ > G∗ − 1, the equation is overidentified, since one

could drop a restriction and still retain consistency. Overiden-

tifying restrictions are therefore testable. When an equation is

overidentified we have more instruments than are strictly neces-

sary for consistent estimation. Since estimation by IV with more

instruments is more efficient asymptotically, one should employ

overidentifying restrictions if one is confident that they’re true.

• We can repeat this partition for each equation in the system, to



see which equations are identified and which aren’t.

• These results are valid assuming that the only identifying infor-

mation comes from knowing which variables appear in which

equations, e.g., by exclusion restrictions, and through the use of

a normalization. There are other sorts of identifying information

that can be used. These include

1. Cross equation restrictions

2. Additional restrictions on parameters within equations (as

in the Klein model discussed below)

3. Restrictions on the covariance matrix of the errors

4. Nonlinearities in variables

• When these sorts of information are available, the above con-

ditions aren’t necessary for identification, though they are of

course still sufficient.



To give an example of how other information can be used, consider

the model

Y Γ = XB + E

where Γ is an upper triangular matrix with 1’s on the main diagonal.

This is a triangular system of equations. In this case, the first equation

is

y1 = XB·1 + E·1

Since only exogs appear on the rhs, this equation is identified.

The second equation is

y2 = −γ21y1 + XB·2 + E·2

This equation has K∗∗ = 0 excluded exogs, and G∗ = 2 included

endogs, so it fails the order (necessary) condition for identification.

• However, suppose that we have the restriction Σ21 = 0, so that



the first and second structural errors are uncorrelated. In this

case

E(y1tε2t) = E {(X ′tB·1 + ε1t)ε2t} = 0

so there’s no problem of simultaneity. If the entire Σ matrix is

diagonal, then following the same logic, all of the equations are

identified. This is known as a fully recursive model.



Example: Klein’s Model 1

To give an example of determining identification status, consider the

following macro model (this is the widely known Klein’s Model 1)

Consumption: Ct = α0 + α1Pt + α2Pt−1 + α3(W p
t + W g

t ) + ε1t

Investment: It = β0 + β1Pt + β2Pt−1 + β3Kt−1 + ε2t

Private Wages: W p
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3t

Output: Xt = Ct + It + Gt

Profits: Pt = Xt − Tt −W p
t

Capital Stock: Kt = Kt−1 + It ε1t

ε2t

ε3t

 ∼ IID


 0

0

0

 ,

 σ11 σ12 σ13

σ22 σ23

σ33




The other variables are the government wage bill, W g
t , taxes, Tt, gov-

ernment nonwage spending, Gt,and a time trend, At. The endogenous



variables are the lhs variables,

Y ′t =
[
Ct It W

p
t Xt Pt Kt

]
and the predetermined variables are all others:

X ′t =
[

1 W g
t Gt Tt At Pt−1 Kt−1 Xt−1

]
.

The model assumes that the errors of the equations are contempo-

raneously correlated, by nonautocorrelated. The model written as

Y Γ = XB + E gives

Γ =



1 0 0 −1 0 0

0 1 0 −1 0 −1

−α3 0 1 0 1 0

0 0 −γ1 1 −1 0

−α1 −β1 0 0 1 0

0 0 0 0 0 1





B =



α0 β0 γ0 0 0 0

α3 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 γ3 0 0 0

α2 β2 0 0 0 0

0 β3 0 0 0 1

0 0 γ2 0 0 0


To check this identification of the consumption equation, we need

to extract Γ32 and B22, the submatrices of coefficients of endogs and

exogs that don’t appear in this equation. These are the rows that have

zeros in the first column, and we need to drop the first column. We



get

[
Γ32

B22

]
=



1 0 −1 0 −1

0 −γ1 1 −1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1

0 γ2 0 0 0


We need to find a set of 5 rows of this matrix gives a full-rank 5×5

matrix. For example, selecting rows 3,4,5,6, and 7 we obtain the



matrix

A =



0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1


This matrix is of full rank, so the sufficient condition for identification

is met. Counting included endogs, G∗ = 3, and counting excluded

exogs, K∗∗ = 5, so

K∗∗ − L = G∗ − 1

5− L = 3− 1

L = 3

• The equation is over-identified by three restrictions, according

to the counting rules, which are correct when the only identify-

ing information are the exclusion restrictions. However, there is



additional information in this case. Both W p
t and W g

t enter the

consumption equation, and their coefficients are restricted to be

the same. For this reason the consumption equation is in fact

overidentified by four restrictions.

10.6 2SLS

When we have no information regarding cross-equation restrictions

or the structure of the error covariance matrix, one can estimate the

parameters of a single equation of the system without regard to the

other equations.

• This isn’t always efficient, as we’ll see, but it has the advantage

that misspecifications in other equations will not affect the con-

sistency of the estimator of the parameters of the equation of

interest.



• Also, estimation of the equation won’t be affected by identifica-

tion problems in other equations.

The 2SLS estimator is very simple: it is the GIV estimator, using all

of the weakly exogenous variables as instruments. In the first stage,

each column of Y1 is regressed on all the weakly exogenous variables

in the system, e.g., the entire X matrix. The fitted values are

Ŷ1 = X(X ′X)−1X ′Y1

= PXY1

= XΠ̂1

Since these fitted values are the projection of Y1 on the space spanned

by X, and since any vector in this space is uncorrelated with ε by

assumption, Ŷ1 is uncorrelated with ε. Since Ŷ1 is simply the reduced-

form prediction, it is correlated with Y1, The only other requirement is

that the instruments be linearly independent. This should be the case



when the order condition is satisfied, since there are more columns in

X2 than in Y1 in this case.

The second stage substitutes Ŷ1 in place of Y1, and estimates by

OLS. This original model is

y = Y1γ1 + X1β1 + ε

= Zδ + ε

and the second stage model is

y = Ŷ1γ1 + X1β1 + ε.

Since X1 is in the space spanned by X, PXX1 = X1, so we can write

the second stage model as

y = PXY1γ1 + PXX1β1 + ε

≡ PXZδ + ε



The OLS estimator applied to this model is

δ̂ = (Z ′PXZ)−1Z ′PXy

which is exactly what we get if we estimate using IV, with the reduced

form predictions of the endogs used as instruments. Note that if we

define

Ẑ = PXZ

=
[
Ŷ1 X1

]
so that Ẑ are the instruments for Z, then we can write

δ̂ = (Ẑ ′Z)−1Ẑ ′y

• Important note: OLS on the transformed model can be used to

calculate the 2SLS estimate of δ, since we see that it’s equivalent

to IV using a particular set of instruments. However the OLS co-



variance formula is not valid. We need to apply the IV covariance

formula already seen above.

Actually, there is also a simplification of the general IV variance for-

mula. Define

Ẑ = PXZ

=
[
Ŷ X

]
The IV covariance estimator would ordinarily be

V̂ (δ̂) =
(
Z ′Ẑ

)−1 (
Ẑ ′Ẑ

)(
Ẑ ′Z

)−1

σ̂2
IV

However, looking at the last term in brackets

Ẑ ′Z =
[
Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y ′1(PX)Y1 Y ′1(PX)X1

X ′1Y1 X ′1X1

]



but since PX is idempotent and since PXX = X, we can write

[
Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y ′1PXPXY1 Y ′1PXX1

X ′1PXY1 X ′1X1

]
=
[
Ŷ1 X1

]′ [
Ŷ1 X1

]
= Ẑ ′Ẑ

Therefore, the second and last term in the variance formula cancel,

so the 2SLS varcov estimator simplifies to

V̂ (δ̂) =
(
Z ′Ẑ

)−1

σ̂2
IV

which, following some algebra similar to the above, can also be writ-

ten as

V̂ (δ̂) =
(
Ẑ ′Ẑ

)−1

σ̂2
IV (10.3)



Finally, recall that though this is presented in terms of the first equa-

tion, it is general since any equation can be placed first.

Properties of 2SLS:

1. Consistent

2. Asymptotically normal

3. Biased when the mean esists (the existence of moments is a tech-

nical issue we won’t go into here).

4. Asymptotically inefficient, except in special circumstances (more

on this later).

10.7 Testing the overidentifying restrictions

The selection of which variables are endogs and which are exogs is
part of the specification of the model. As such, there is room for error



here: one might erroneously classify a variable as exog when it is in

fact correlated with the error term. A general test for the specification

on the model can be formulated as follows:

The IV estimator can be calculated by applying OLS to the trans-

formed model, so the IV objective function at the minimized value

is

s(β̂IV ) =
(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)
,

but

ε̂IV = y −Xβ̂IV
= y −X(X ′PWX)−1X ′PWy

=
(
I −X(X ′PWX)−1X ′PW

)
y

=
(
I −X(X ′PWX)−1X ′PW

)
(Xβ + ε)

= A (Xβ + ε)



where

A ≡ I −X(X ′PWX)−1X ′PW

so

s(β̂IV ) = (ε′ + β′X ′)A′PWA (Xβ + ε)

Moreover, A′PWA is idempotent, as can be verified by multiplication:

A′PWA =
(
I − PWX(X ′PWX)−1X ′

)
PW
(
I −X(X ′PWX)−1X ′PW

)
=
(
PW − PWX(X ′PWX)−1X ′PW

) (
PW − PWX(X ′PWX)−1X ′PW

)
=
(
I − PWX(X ′PWX)−1X ′

)
PW .

Furthermore, A is orthogonal to X

AX =
(
I −X(X ′PWX)−1X ′PW

)
X

= X −X
= 0



so

s(β̂IV ) = ε′A′PWAε

Supposing the ε are normally distributed, with variance σ2, then the

random variable
s(β̂IV )

σ2
=
ε′A′PWAε

σ2

is a quadratic form of a N(0, 1) random variable with an idempotent

matrix in the middle, so

s(β̂IV )

σ2
∼ χ2(ρ(A′PWA))

This isn’t available, since we need to estimate σ2. Substituting a con-

sistent estimator,
s(β̂IV )

σ̂2

a∼ χ2(ρ(A′PWA))

• Even if the ε aren’t normally distributed, the asymptotic result

still holds. The last thing we need to determine is the rank of



the idempotent matrix. We have

A′PWA =
(
PW − PWX(X ′PWX)−1X ′PW

)
so

ρ(A′PWA) = Tr
(
PW − PWX(X ′PWX)−1X ′PW

)
= TrPW − TrX ′PWPWX(X ′PWX)−1

= TrW (W ′W )−1W ′ −KX

= TrW ′W (W ′W )−1 −KX

= KW −KX

where KW is the number of columns of W and KX is the num-

ber of columns of X. The degrees of freedom of the test is simply

the number of overidentifying restrictions: the number of instru-

ments we have beyond the number that is strictly necessary for

consistent estimation.



• This test is an overall specification test: the joint null hypothesis

is that the model is correctly specified and that the W form valid

instruments (e.g., that the variables classified as exogs really are

uncorrelated with ε. Rejection can mean that either the model

y = Zδ + ε is misspecified, or that there is correlation between

X and ε.

• This is a particular case of the GMM criterion test, which is cov-

ered in the second half of the course. See Section 14.9.

• Note that since

ε̂IV = Aε

and

s(β̂IV ) = ε′A′PWAε



we can write

s(β̂IV )

σ̂2
=

(
ε̂′W (W ′W )−1W ′) (W (W ′W )−1W ′ε̂

)
ε̂′ε̂/n

= n(RSSε̂IV |W/TSSε̂IV )

= nR2
u

where R2
u is the uncentered R2 from a regression of the IV resid-

uals on all of the instruments W . This is a convenient way to

calculate the test statistic.

On an aside, consider IV estimation of a just-identified model, using

the standard notation

y = Xβ + ε

and W is the matrix of instruments. If we have exact identification

then cols(W ) = cols(X), so W
′
X is a square matrix. The transformed



model is

PWy = PWXβ + PWε

and the fonc are

X ′PW (y −Xβ̂IV ) = 0

The IV estimator is

β̂IV = (X ′PWX)
−1
X ′PWy

Considering the inverse here

(X ′PWX)
−1

=
(
X ′W (W ′W )−1W ′X

)−1

= (W ′X)−1
(
X ′W (W ′W )−1

)−1

= (W ′X)−1(W ′W ) (X ′W )
−1



Now multiplying this by X ′PWy, we obtain

β̂IV = (W ′X)−1(W ′W ) (X ′W )
−1
X ′PWy

= (W ′X)−1(W ′W ) (X ′W )
−1
X ′W (W ′W )−1W ′y

= (W ′X)−1W ′y

The objective function for the generalized IV estimator is

s(β̂IV ) =
(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)
= y′PW

(
y −Xβ̂IV

)
− β̂′IVX ′PW

(
y −Xβ̂IV

)
= y′PW

(
y −Xβ̂IV

)
− β̂′IVX ′PWy + β̂′IVX

′PWXβ̂IV

= y′PW

(
y −Xβ̂IV

)
− β̂′IV

(
X ′PWy + X ′PWXβ̂IV

)
= y′PW

(
y −Xβ̂IV

)
by the fonc for generalized IV. However, when we’re in the just inden-



tified case, this is

s(β̂IV ) = y′PW
(
y −X(W ′X)−1W ′y

)
= y′PW

(
I −X(W ′X)−1W ′) y

= y′
(
W (W ′W )−1W ′ −W (W ′W )−1W ′X(W ′X)−1W ′) y

= 0

The value of the objective function of the IV estimator is zero in the just
identified case. This makes sense, since we’ve already shown that the

objective function after dividing by σ2 is asymptotically χ2 with de-

grees of freedom equal to the number of overidentifying restrictions.

In the present case, there are no overidentifying restrictions, so we

have a χ2(0) rv, which has mean 0 and variance 0, e.g., it’s simply 0.

This means we’re not able to test the identifying restrictions in the

case of exact identification.



10.8 System methods of estimation

2SLS is a single equation method of estimation, as noted above. The

advantage of a single equation method is that it’s unaffected by the

other equations of the system, so they don’t need to be specified (ex-

cept for defining what are the exogs, so 2SLS can use the complete

set of instruments). The disadvantage of 2SLS is that it’s inefficient,

in general.

• Recall that overidentification improves efficiency of estimation,

since an overidentified equation can use more instruments than

are necessary for consistent estimation.

• Secondly, the assumption is that



Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

• Since there is no autocorrelation of the Et ’s, and since the

columns of E are individually homoscedastic, then

Ψ =


σ11In σ12In · · · σ1GIn

σ22In
...

. . . ...

· σGGIn


= Σ⊗ In

This means that the structural equations are heteroscedastic and

correlated with one another

• In general, ignoring this will lead to inefficient estimation, fol-

lowing the section on GLS. When equations are correlated with



one another estimation should account for the correlation in or-

der to obtain efficiency.

• Also, since the equations are correlated, information about one

equation is implicitly information about all equations. There-

fore, overidentification restrictions in any equation improve ef-

ficiency for all equations, even the just identified equations.

• Single equation methods can’t use these types of information,

and are therefore inefficient (in general).

3SLS

Note: It is easier and more practical to treat the 3SLS estimator as

a generalized method of moments estimator (see Chapter 14). I no

longer teach the following section, but it is retained for its possible

historical interest. Another alternative is to use FIML (Subsection



10.8), if you are willing to make distributional assumptions on the

errors. This is computationally feasible with modern computers.

Following our above notation, each structural equation can be

written as

yi = Yiγ1 + Xiβ1 + εi

= Ziδi + εi

Grouping the G equations together we get
y1

y2

...

yG

 =


Z1 0 · · · 0

0 Z2
...

... . . . 0

0 · · · 0 ZG



δ1

δ2

...

δG

 +


ε1

ε2

...

εG


or

y = Zδ + ε



where we already have that

E(εε′) = Ψ

= Σ⊗ In

The 3SLS estimator is just 2SLS combined with a GLS correction that

takes advantage of the structure of Ψ. Define Ẑ as

Ẑ =


X(X ′X)−1X ′Z1 0 · · · 0

0 X(X ′X)−1X ′Z2
...

... . . . 0

0 · · · 0 X(X ′X)−1X ′ZG



=


Ŷ1 X1 0 · · · 0

0 Ŷ2 X2
...

... . . . 0

0 · · · 0 ŶG XG





These instruments are simply the unrestricted rf predicitions of the

endogs, combined with the exogs. The distinction is that if the model

is overidentified, then

Π = BΓ−1

may be subject to some zero restrictions, depending on the restric-

tions on Γ and B, and Π̂ does not impose these restrictions. Also,

note that Π̂ is calculated using OLS equation by equation. More on

this later.

The 2SLS estimator would be

δ̂ = (Ẑ ′Z)−1Ẑ ′y

as can be verified by simple multiplication, and noting that the in-

verse of a block-diagonal matrix is just the matrix with the inverses

of the blocks on the main diagonal. This IV estimator still ignores

the covariance information. The natural extension is to add the GLS



transformation, putting the inverse of the error covariance into the

formula, which gives the 3SLS estimator

δ̂3SLS =
(
Ẑ ′ (Σ⊗ In)−1Z

)−1

Ẑ ′ (Σ⊗ In)−1 y

=
(
Ẑ ′
(
Σ−1 ⊗ In

)
Z
)−1

Ẑ ′
(
Σ−1 ⊗ In

)
y

This estimator requires knowledge of Σ. The solution is to define a

feasible estimator using a consistent estimator of Σ. The obvious so-

lution is to use an estimator based on the 2SLS residuals:

ε̂i = yi − Ziδ̂i,2SLS

(IMPORTANT NOTE: this is calculated using Zi, not Ẑi). Then the

element i, j of Σ is estimated by

σ̂ij =
ε̂′iε̂j
n



Substitute Σ̂ into the formula above to get the feasible 3SLS estimator.

Analogously to what we did in the case of 2SLS, the asymptotic

distribution of the 3SLS estimator can be shown to be

√
n
(
δ̂3SLS − δ

)
a∼ N

0, lim
n→∞
E


(
Ẑ ′ (Σ⊗ In)−1 Ẑ

n

)−1



A formula for estimating the variance of the 3SLS estimator in finite

samples (cancelling out the powers of n) is

V̂
(
δ̂3SLS

)
=
(
Ẑ ′
(

Σ̂−1 ⊗ In
)
Ẑ
)−1

• This is analogous to the 2SLS formula in equation (10.3), com-

bined with the GLS correction.

• In the case that all equations are just identified, 3SLS is numeri-

cally equivalent to 2SLS. Proving this is easiest if we use a GMM

interpretation of 2SLS and 3SLS. GMM is presented in the next



econometrics course. For now, take it on faith.

The 3SLS estimator is based upon the rf parameter estimator Π̂, cal-

culated equation by equation using OLS:

Π̂ = (X ′X)−1X ′Y

which is simply

Π̂ = (X ′X)−1X ′
[
y1 y2 · · · yG

]
that is, OLS equation by equation using all the exogs in the estimation

of each column of Π.

It may seem odd that we use OLS on the reduced form, since the

rf equations are correlated:

Y ′t = X ′tBΓ−1 + E ′tΓ
−1

= X ′tΠ + V ′t



and

Vt =
(
Γ−1
)′
Et ∼ N

(
0,
(
Γ−1
)′

ΣΓ−1
)
,∀t

Let this var-cov matrix be indicated by

Ξ =
(
Γ−1
)′

ΣΓ−1

OLS equation by equation to get the rf is equivalent to
y1

y2

...

yG

 =


X 0 · · · 0

0 X ...
... . . . 0

0 · · · 0 X



π1

π2

...

πG

 +


v1

v2

...

vG


where yi is the n× 1 vector of observations of the ith endog, X is the

entire n×K matrix of exogs, πi is the ith column of Π, and vi is the ith



column of V. Use the notation

y = Xπ + v

to indicate the pooled model. Following this notation, the error co-

variance matrix is

V (v) = Ξ⊗ In

• This is a special case of a type of model known as a set of seem-
ingly unrelated equations (SUR) since the parameter vector of

each equation is different. The equations are contemporanously

correlated, however. The general case would have a different Xi

for each equation.

• Note that each equation of the system individually satisfies the

classical assumptions.

• However, pooled estimation using the GLS correction is more



efficient, since equation-by-equation estimation is equivalent to

pooled estimation, since X is block diagonal, but ignoring the

covariance information.

• The model is estimated by GLS, where Ξ is estimated using the

OLS residuals from equation-by-equation estimation, which are

consistent.

• In the special case that all the Xi are the same, which is true in

the present case of estimation of the rf parameters, SUR ≡OLS.

To show this note that in this case X = In ⊗X. Using the rules

1. (A⊗B)−1 = (A−1 ⊗B−1)

2. (A⊗B)′ = (A′ ⊗B′) and



3. (A⊗B)(C ⊗D) = (AC ⊗BD), we get

π̂SUR =
(

(In ⊗X)′ (Ξ⊗ In)−1 (In ⊗X)
)−1

(In ⊗X)′ (Ξ⊗ In)−1 y

=
((

Ξ−1 ⊗X ′
)

(In ⊗X)
)−1 (

Ξ−1 ⊗X ′
)
y

=
(
Ξ⊗ (X ′X)−1

) (
Ξ−1 ⊗X ′

)
y

=
[
IG ⊗ (X ′X)−1X ′

]
y

=


π̂1

π̂2

...

π̂G


• Note that this provides the answer to the exercise 6d in the chap-

ter on GLS.

• So the unrestricted rf coefficients can be estimated efficiently

(assuming normality) by OLS, even if the equations are corre-

lated.



• We have ignored any potential zeros in the matrix Π, which if

they exist could potentially increase the efficiency of estimation

of the rf.

• Another example where SUR≡OLS is in estimation of vector au-

toregressions. See two sections ahead.

FIML

Full information maximum likelihood is an alternative estimation method.

FIML will be asymptotically efficient, since ML estimators based on a

given information set are asymptotically efficient w.r.t. all other es-

timators that use the same information set, and in the case of the

full-information ML estimator we use the entire information set. The

2SLS and 3SLS estimators don’t require distributional assumptions,



while FIML of course does. Our model is, recall

Y ′t Γ = X ′tB + E ′t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= s

The joint normality of Et means that the density for Et is the multi-

variate normal, which is

(2π)−g/2
(
det Σ−1

)−1/2
exp

(
−1

2
E ′tΣ

−1Et

)
The transformation from Et to Yt requires the Jacobian

| det
dEt

dY ′t
| = | det Γ|



so the density for Yt is

(2π)−G/2| det Γ|
(
det Σ−1

)−1/2
exp

(
−1

2
(Y ′t Γ−X ′tB) Σ−1 (Y ′t Γ−X ′tB)

′
)

Given the assumption of independence over time, the joint log-likelihood

function is

lnL(B,Γ,Σ) = −nG
2

ln(2π)+n ln(| det Γ|)−n
2

ln det Σ−1−1

2

n∑
t=1

(Y ′t Γ−X ′tB) Σ−1 (Y ′t Γ−X ′tB)
′

• This is a nonlinear in the parameters objective function. Max-

imixation of this can be done using iterative numeric methods.

We’ll see how to do this in the next section.

• It turns out that the asymptotic distribution of 3SLS and FIML

are the same, assuming normality of the errors.

• One can calculate the FIML estimator by iterating the 3SLS esti-

mator, thus avoiding the use of a nonlinear optimizer. The steps



are

1. Calculate Γ̂3SLS and B̂3SLS as normal.

2. Calculate Π̂ = B̂3SLSΓ̂−1
3SLS. This is new, we didn’t estimate Π

in this way before. This estimator may have some zeros in

it. When Greene says iterated 3SLS doesn’t lead to FIML, he

means this for a procedure that doesn’t update Π̂, but only

updates Σ̂ and B̂ and Γ̂. If you update Π̂ you do converge to

FIML.

3. Calculate the instruments Ŷ = XΠ̂ and calculate Σ̂ using Γ̂

and B̂ to get the estimated errors, applying the usual esti-

mator.

4. Apply 3SLS using these new instruments and the estimate

of Σ.

5. Repeat steps 2-4 until there is no change in the parameters.



• FIML is fully efficient, since it’s an ML estimator that uses all

information. This implies that 3SLS is fully efficient when the er-
rors are normally distributed. Also, if each equation is just iden-

tified and the errors are normal, then 2SLS will be fully efficient,

since in this case 2SLS≡3SLS.

• When the errors aren’t normally distributed, the likelihood func-

tion is of course different than what’s written above.

10.9 Example: 2SLS and Klein’s Model 1

The Octave program Simeq/Klein.m performs 2SLS estimation for the

3 equations of Klein’s model 1, assuming nonautocorrelated errors,

so that lagged endogenous variables can be used as instruments. The

results are:

CONSUMPTION EQUATION

http://pareto.uab.es/mcreel/Econometrics/Examples/Simeq/Klein.m


*******************************************************

2SLS estimation results

Observations 21

R-squared 0.976711

Sigma-squared 1.044059

estimate st.err. t-stat. p-value

Constant 16.555 1.321 12.534 0.000

Profits 0.017 0.118 0.147 0.885

Lagged Profits 0.216 0.107 2.016 0.060

Wages 0.810 0.040 20.129 0.000

*******************************************************

INVESTMENT EQUATION



*******************************************************

2SLS estimation results

Observations 21

R-squared 0.884884

Sigma-squared 1.383184

estimate st.err. t-stat. p-value

Constant 20.278 7.543 2.688 0.016

Profits 0.150 0.173 0.867 0.398

Lagged Profits 0.616 0.163 3.784 0.001

Lagged Capital -0.158 0.036 -4.368 0.000

*******************************************************

WAGES EQUATION

*******************************************************



2SLS estimation results

Observations 21

R-squared 0.987414

Sigma-squared 0.476427

estimate st.err. t-stat. p-value

Constant 1.500 1.148 1.307 0.209

Output 0.439 0.036 12.316 0.000

Lagged Output 0.147 0.039 3.777 0.002

Trend 0.130 0.029 4.475 0.000

*******************************************************

The above results are not valid (specifically, they are inconsis-

tent) if the errors are autocorrelated, since lagged endogenous vari-

ables will not be valid instruments in that case. You might consider



eliminating the lagged endogenous variables as instruments, and re-

estimating by 2SLS, to obtain consistent parameter estimates in this

more complex case. Standard errors will still be estimated inconsis-

tently, unless use a Newey-West type covariance estimator. Food for

thought...



Chapter 11

Numeric optimization

methods
Readings: Hamilton, ch. 5, section 7 (pp. 133-139)∗; Gourieroux

and Monfort, Vol. 1, ch. 13, pp. 443-60∗; Goffe, et. al. (1994).

If we’re going to be applying extremum estimators, we’ll need to

know how to find an extremum. This section gives a very brief intro-
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duction to what is a large literature on numeric optimization meth-

ods. We’ll consider a few well-known techniques, and one fairly new

technique that may allow one to solve difficult problems. The main

objective is to become familiar with the issues, and to learn how to

use the BFGS algorithm at the practical level.

The general problem we consider is how to find the maximizing

element θ̂ (a K -vector) of a function s(θ). This function may not

be continuous, and it may not be differentiable. Even if it is twice

continuously differentiable, it may not be globally concave, so local

maxima, minima and saddlepoints may all exist. Supposing s(θ) were

a quadratic function of θ, e.g.,

s(θ) = a + b′θ +
1

2
θ′Cθ,

the first order conditions would be linear:



Dθs(θ) = b + Cθ

so the maximizing (minimizing) element would be θ̂ = −C−1b. This

is the sort of problem we have with linear models estimated by OLS.

It’s also the case for feasible GLS, since conditional on the estimate

of the varcov matrix, we have a quadratic objective function in the

remaining parameters.

More general problems will not have linear f.o.c., and we will not

be able to solve for the maximizer analytically. This is when we need

a numeric optimization method.

11.1 Search

The idea is to create a grid over the parameter space and evaluate the

function at each point on the grid. Select the best point. Then refine



Figure 11.1: Search method

the grid in the neighborhood of the best point, and continue until the

accuracy is ”good enough”. See Figure 11.1. One has to be careful

that the grid is fine enough in relationship to the irregularity of the

function to ensure that sharp peaks are not missed entirely.



To check q values in each dimension of a K dimensional parameter

space, we need to check qK points. For example, if q = 100 and

K = 10, there would be 10010 points to check. If 1000 points can

be checked in a second, it would take 3. 171 × 109 years to perform

the calculations, which is approximately the age of the earth. The

search method is a very reasonable choice if K is small, but it quickly

becomes infeasible if K is moderate or large.

11.2 Derivative-based methods

Introduction

Derivative-based methods are defined by

1. the method for choosing the initial value, θ1

2. the iteration method for choosing θk+1 given θk (based upon



derivatives)

3. the stopping criterion.

The iteration method can be broken into two problems: choosing the

stepsize ak (a scalar) and choosing the direction of movement, dk,

which is of the same dimension of θ, so that

θ(k+1) = θ(k) + akdk.

A locally increasing direction of search d is a direction such that

∃a :
∂s(θ + ad)

∂a
> 0

for a positive but small. That is, if we go in direction d, we will

improve on the objective function, at least if we don’t go too far in

that direction.

• As long as the gradient at θ is not zero there exist increasing



directions, and they can all be represented as Qkg(θk) where Qk

is a symmetric pd matrix and g (θ) = Dθs(θ) is the gradient at θ.

To see this, take a T.S. expansion around a0 = 0

s(θ + ad) = s(θ + 0d) + (a− 0) g(θ + 0d)′d + o(1)

= s(θ) + ag(θ)′d + o(1)

For small enough a the o(1) term can be ignored. If d is to be

an increasing direction, we need g(θ)′d > 0. Defining d = Qg(θ),

where Q is positive definite, we guarantee that

g(θ)′d = g(θ)′Qg(θ) > 0

unless g(θ) = 0. Every increasing direction can be represented in

this way (p.d. matrices are those such that the angle between g

and Qg(θ) is less that 90 degrees). See Figure 11.2.



Figure 11.2: Increasing directions of search



• With this, the iteration rule becomes

θ(k+1) = θ(k) + akQkg(θk)

and we keep going until the gradient becomes zero, so that there is

no increasing direction. The problem is how to choose a and Q.

• Conditional on Q, choosing a is fairly straightforward. A simple

line search is an attractive possibility, since a is a scalar.

• The remaining problem is how to choose Q.

• Note also that this gives no guarantees to find a global maxi-

mum.

Steepest descent

Steepest descent (ascent if we’re maximizing) just sets Q to and iden-

tity matrix, since the gradient provides the direction of maximum rate



of change of the objective function.

• Advantages: fast - doesn’t require anything more than first deriva-

tives.

• Disadvantages: This doesn’t always work too well however (draw

picture of banana function).

Newton-Raphson

The Newton-Raphson method uses information about the slope and

curvature of the objective function to determine which direction and

how far to move from an initial point. Supposing we’re trying to

maximize sn(θ). Take a second order Taylor’s series approximation of

sn(θ) about θk (an initial guess).

sn(θ) ≈ sn(θk) + g(θk)′
(
θ − θk

)
+ 1/2

(
θ − θk

)′
H(θk)

(
θ − θk

)



To attempt to maximize sn(θ), we can maximize the portion of the

right-hand side that depends on θ, i.e., we can maximize

s̃(θ) = g(θk)′θ + 1/2
(
θ − θk

)′
H(θk)

(
θ − θk

)
with respect to θ. This is a much easier problem, since it is a quadratic

function in θ, so it has linear first order conditions. These are

Dθs̃(θ) = g(θk) + H(θk)
(
θ − θk

)
So the solution for the next round estimate is

θk+1 = θk −H(θk)−1g(θk)

This is illustrated in Figure 11.3.

However, it’s good to include a stepsize, since the approximation

to sn(θ) may be bad far away from the maximizer θ̂, so the actual



Figure 11.3: Newton iteration



iteration formula is

θk+1 = θk − akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative def-

inite when we’re far from the maximizing point. So −H(θk)−1

may not be positive definite, and −H(θk)−1g(θk) may not define

an increasing direction of search. This can happen when the

objective function has flat regions, in which case the Hessian

matrix is very ill-conditioned (e.g., is nearly singular), or when

we’re in the vicinity of a local minimum, H(θk) is positive defi-

nite, and our direction is a decreasing direction of search. Matrix

inverses by computers are subject to large errors when the ma-

trix is ill-conditioned. Also, we certainly don’t want to go in the

direction of a minimum when we’re maximizing. To solve this

problem, Quasi-Newton methods simply add a positive definite

component to H(θ) to ensure that the resulting matrix is positive



definite, e.g., Q = −H(θ) + bI, where b is chosen large enough

so that Q is well-conditioned and positive definite. This has the

benefit that improvement in the objective function is guaran-

teed.

• Another variation of quasi-Newton methods is to approximate

the Hessian by using successive gradient evaluations. This avoids

actual calculation of the Hessian, which is an order of magnitude

(in the dimension of the parameter vector) more costly than cal-

culation of the gradient. They can be done to ensure that the

approximation is p.d. DFP and BFGS are two well-known exam-

ples.

Stopping criteria

The last thing we need is to decide when to stop. A digital com-

puter is subject to limited machine precision and round-off errors. For

these reasons, it is unreasonable to hope that a program can exactly



find the point that maximizes a function. We need to define accept-

able tolerances. Some stopping criteria are:

• Negligable change in parameters:

|θkj − θk−1
j | < ε1,∀j

• Negligable relative change:

|
θkj − θk−1

j

θk−1
j

| < ε2,∀j

• Negligable change of function:

|s(θk)− s(θk−1)| < ε3

• Gradient negligibly different from zero:

|gj(θk)| < ε4,∀j



• Or, even better, check all of these.

• Also, if we’re maximizing, it’s good to check that the last round

(real, not approximate) Hessian is negative definite.

Starting values

The Newton-Raphson and related algorithms work well if the ob-

jective function is concave (when maximizing), but not so well if there

are convex regions and local minima or multiple local maxima. The

algorithm may converge to a local minimum or to a local maximum

that is not optimal. The algorithm may also have difficulties converg-

ing at all.

• The usual way to “ensure” that a global maximum has been

found is to use many different starting values, and choose the

solution that returns the highest objective function value. THIS

IS IMPORTANT in practice. More on this later.

Calculating derivatives



The Newton-Raphson algorithm requires first and second deriva-

tives. It is often difficult to calculate derivatives (especially the Hes-

sian) analytically if the function sn(·) is complicated. Possible solu-

tions are to calculate derivatives numerically, or to use programs such

as MuPAD or Mathematica to calculate analytic derivatives. For ex-

ample, Figure 11.4 shows Sage 1 calculating a couple of derivatives.

• Numeric derivatives are less accurate than analytic derivatives,

and are usually more costly to evaluate. Both factors usually

cause optimization programs to be less successful when numeric

derivatives are used.

• One advantage of numeric derivatives is that you don’t have to

worry about having made an error in calculating the analytic
1Sage is free software that has both symbolic and numeric computational capabilities. See http:

//www.sagemath.org/

http://www.sagemath.org/
http://www.sagemath.org/


Figure 11.4: Using Sage to get analytic derivatives



derivative. When programming analytic derivatives it’s a good

idea to check that they are correct by using numeric derivatives.

This is a lesson I learned the hard way when writing my thesis.

• Numeric second derivatives are much more accurate if the data

are scaled so that the elements of the gradient are of the same

order of magnitude. Example: if the model is yt = h(αxt+βzt) +

εt, and estimation is by NLS, suppose that Dαsn(·) = 1000 and

Dβsn(·) = 0.001. One could define α∗ = α/1000; x∗t = 1000xt;β∗ =

1000β; z∗t = zt/1000. In this case, the gradientsDα∗sn(·) andDβsn(·)
will both be 1.

In general, estimation programs always work better if data is

scaled in this way, since roundoff errors are less likely to become

important. This is important in practice.

• There are algorithms (such as BFGS and DFP) that use the se-

quential gradient evaluations to build up an approximation to



the Hessian. The iterations are faster for this reason since the

actual Hessian isn’t calculated, but more iterations usually are

required for convergence.

• Switching between algorithms during iterations is sometimes

useful.

11.3 Simulated Annealing

Simulated annealing is an algorithm which can find an optimum in

the presence of nonconcavities, discontinuities and multiple local min-

ima/maxima. Basically, the algorithm randomly selects evaluation

points, accepts all points that yield an increase in the objective func-

tion, but also accepts some points that decrease the objective function.

This allows the algorithm to escape from local minima. As more and

more points are tried, periodically the algorithm focuses on the best



point so far, and reduces the range over which random points are gen-

erated. Also, the probability that a negative move is accepted reduces.

The algorithm relies on many evaluations, as in the search method,

but focuses in on promising areas, which reduces function evaluations

with respect to the search method. It does not require derivatives to

be evaluated. I have a program to do this if you’re interested.

11.4 Examples of nonlinear optimization

This section gives a few examples of how some nonlinear models may

be estimated using maximum likelihood.

Discrete Choice: The logit model

In this section we will consider maximum likelihood estimation of the

logit model for binary 0/1 dependent variables. We will use the BFGS



algotithm to find the MLE.

A binary response is a variable that takes on only two values, cus-

tomarily 0 and 1, which can be thought of as codes for whether or

not a condisiton is satisfied. For example, 0=drive to work, 1=take

the bus. Often the observed binary variable, say y, is related to an un-

observed (latent) continuous varable, say y∗. We would like to know

the effect of covariates, x, on y. The model can be represented as

y∗ = g(x)− ε
y = 1(y∗ > 0)

Pr(y = 1) = Fε[g(x)]

≡ p(x, θ)

The log-likelihood function is

sn(θ) =
1

n

n∑
i=1

(yi ln p(xi, θ) + (1− yi) ln [1− p(xi, θ)])



For the logit model, the probability has the specific form

p(x, θ) =
1

1 + exp(−x′θ)

You should download and examine LogitDGP.m , which generates

data according to the logit model, logit.m , which calculates the log-

likelihood, and EstimateLogit.m , which sets things up and calls the

estimation routine, which uses the BFGS algorithm.

Here are some estimation results with n = 100, and the true θ =
(0, 1)′.

***********************************************

Trial of MLE estimation of Logit model

MLE Estimation Results

BFGS convergence: Normal convergence

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/LogitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


Average Log-L: 0.607063

Observations: 100

estimate st. err t-stat p-value

constant 0.5400 0.2229 2.4224 0.0154

slope 0.7566 0.2374 3.1863 0.0014

Information Criteria

CAIC : 132.6230

BIC : 130.6230

AIC : 125.4127

***********************************************

The estimation program is calling mle_results(), which in turn

calls a number of other routines.



Count Data: The MEPS data and the Poisson model

Demand for health care is usually thought of a a derived demand:

health care is an input to a home production function that produces

health, and health is an argument of the utility function. Grossman

(1972), for example, models health as a capital stock that is subject

to depreciation (e.g., the effects of ageing). Health care visits restore

the stock. Under the home production framework, individuals decide

when to make health care visits to maintain their health stock, or

to deal with negative shocks to the stock in the form of accidents

or illnesses. As such, individual demand will be a function of the

parameters of the individuals’ utility functions.

The MEPS health data file , meps1996.data, contains 4564 obser-

vations on six measures of health care usage. The data is from the

1996 Medical Expenditure Panel Survey (MEPS). You can get more

information at http://www.meps.ahrq.gov/. The six measures of use

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/meps1996.data
http://www.meps.ahrq.gov/


are are office-based visits (OBDV), outpatient visits (OPV), inpatient

visits (IPV), emergency room visits (ERV), dental visits (VDV), and

number of prescription drugs taken (PRESCR). These form columns 1

- 6 of meps1996.data. The conditioning variables are public insurance

(PUBLIC), private insurance (PRIV), sex (SEX), age (AGE), years of

education (EDUC), and income (INCOME). These form columns 7 -

12 of the file, in the order given here. PRIV and PUBLIC are 0/1

binary variables, where a 1 indicates that the person has access to

public or private insurance coverage. SEX is also 0/1, where 1 indi-

cates that the person is female. This data will be used in examples

fairly extensively in what follows.

The program ExploreMEPS.m shows how the data may be read

in, and gives some descriptive information about variables, which fol-

lows:

All of the measures of use are count data, which means that they

take on the values 0, 1, 2, .... It might be reasonable to try to use this

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/ExploreMEPS.m


information by specifying the density as a count data density. One of

the simplest count data densities is the Poisson density, which is

fY (y) =
exp(−λ)λy

y!
.

The Poisson average log-likelihood function is

sn(θ) =
1

n

n∑
i=1

(−λi + yi lnλi − ln yi!)

We will parameterize the model as

λi = exp(x′iβ)

xi = [1 PUBLIC PRIV SEX AGE EDUC INC]′ (11.1)

This ensures that the mean is positive, as is required for the Poisson



model. Note that for this parameterization

βj =
∂λ/∂βj
λ

so

βjxj = ηλxj,

the elasticity of the conditional mean of y with respect to the jth con-

ditioning variable.

The program EstimatePoisson.m estimates a Poisson model using

the full data set. The results of the estimation, using OBDV as the

dependent variable are here:

MPITB extensions found

OBDV

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m


******************************************************

Poisson model, MEPS 1996 full data set

MLE Estimation Results

BFGS convergence: Normal convergence

Average Log-L: -3.671090

Observations: 4564

estimate st. err t-stat p-value

constant -0.791 0.149 -5.290 0.000

pub. ins. 0.848 0.076 11.093 0.000

priv. ins. 0.294 0.071 4.137 0.000

sex 0.487 0.055 8.797 0.000

age 0.024 0.002 11.471 0.000



edu 0.029 0.010 3.061 0.002

inc -0.000 0.000 -0.978 0.328

Information Criteria

CAIC : 33575.6881 Avg. CAIC: 7.3566

BIC : 33568.6881 Avg. BIC: 7.3551

AIC : 33523.7064 Avg. AIC: 7.3452

******************************************************

Duration data and the Weibull model

In some cases the dependent variable may be the time that passes

between the occurence of two events. For example, it may be the

duration of a strike, or the time needed to find a job once one is

unemployed. Such variables take on values on the positive real line,



and are referred to as duration data.

A spell is the period of time between the occurence of initial event

and the concluding event. For example, the initial event could be the

loss of a job, and the final event is the finding of a new job. The spell

is the period of unemployment.

Let t0 be the time the initial event occurs, and t1 be the time the

concluding event occurs. For simplicity, assume that time is measured

in years. The random variable D is the duration of the spell, D = t1−
t0. Define the density function of D, fD(t), with distribution function

FD(t) = Pr(D < t).

Several questions may be of interest. For example, one might wish

to know the expected time one has to wait to find a job given that

one has already waited s years. The probability that a spell lasts more

than s years is

Pr(D > s) = 1− Pr(D ≤ s) = 1− FD(s).



The density of D conditional on the spell being longer than s years is

fD(t|D > s) =
fD(t)

1− FD(s)
.

The expectanced additional time required for the spell to end given

that is has already lasted s years is the expectation of D with respect

to this density, minus s.

E = E(D|D > s)− s =

(∫ ∞
t

z
fD(z)

1− FD(s)
dz

)
− s

To estimate this function, one needs to specify the density fD(t)

as a parametric density, then estimate by maximum likelihood. There

are a number of possibilities including the exponential density, the

lognormal, etc. A reasonably flexible model that is a generalization of

the exponential density is the Weibull density

fD(t|θ) = e−(λt)γλγ(λt)γ−1.



According to this model, E(D) = λ−γ. The log-likelihood is just the

product of the log densities.

To illustrate application of this model, 402 observations on the

lifespan of dwarf mongooses (see Figure 11.5) in Serengeti National

Park (Tanzania) were used to fit a Weibull model. The ”spell” in this

case is the lifetime of an individual mongoose. The parameter esti-

mates and standard errors are λ̂ = 0.559 (0.034) and γ̂ = 0.867 (0.033)

and the log-likelihood value is -659.3. Figure 11.6 presents fitted life

expectancy (expected additional years of life) as a function of age,

with 95% confidence bands. The plot is accompanied by a nonpara-

metric Kaplan-Meier estimate of life-expectancy. This nonparametric

estimator simply averages all spell lengths greater than age, and then

subtracts age. This is consistent by the LLN.

In the figure one can see that the model doesn’t fit the data well,

in that it predicts life expectancy quite differently than does the non-

parametric model. For ages 4-6, the nonparametric estimate is outside



Figure 11.5: Dwarf mongooses



Figure 11.6: Life expectancy of mongooses, Weibull model



the confidence interval that results from the parametric model, which

casts doubt upon the parametric model. Mongooses that are between

2-6 years old seem to have a lower life expectancy than is predicted

by the Weibull model, whereas young mongooses that survive beyond

infancy have a higher life expectancy, up to a bit beyond 2 years. Due

to the dramatic change in the death rate as a function of t, one might

specify fD(t) as a mixture of two Weibull densities,

fD(t|θ) = δ
(
e−(λ1t)

γ1
λ1γ1(λ1t)

γ1−1
)

+ (1− δ)
(
e−(λ2t)

γ2
λ2γ2(λ2t)

γ2−1
)
.

The parameters γi and λi, i = 1, 2 are the parameters of the two

Weibull densities, and δ is the parameter that mixes the two.

With the same data, θ can be estimated using the mixed model.

The results are a log-likelihood = -623.17. Note that a standard like-

lihood ratio test cannot be used to chose between the two models,

since under the null that δ = 1 (single density), the two parameters

λ2 and γ2 are not identified. It is possible to take this into account,



but this topic is out of the scope of this course. Nevertheless, the im-

provement in the likelihood function is considerable. The parameter

estimates are

Parameter Estimate St. Error

λ1 0.233 0.016

γ1 1.722 0.166

λ2 1.731 0.101

γ2 1.522 0.096

δ 0.428 0.035

Note that the mixture parameter is highly significant. This model

leads to the fit in Figure 11.7. Note that the parametric and nonpara-

metric fits are quite close to one another, up to around 6 years. The

disagreement after this point is not too important, since less than 5%

of mongooses live more than 6 years, which implies that the Kaplan-

Meier nonparametric estimate has a high variance (since it’s an aver-

age of a small number of observations).



Figure 11.7: Life expectancy of mongooses, mixed Weibull model



Mixture models are often an effective way to model complex re-

sponses, though they can suffer from overparameterization. Alterna-

tives will be discussed later.

11.5 Numeric optimization: pitfalls

In this section we’ll examine two common problems that can be en-

countered when doing numeric optimization of nonlinear models,

and some solutions.

Poor scaling of the data

When the data is scaled so that the magnitudes of the first and second

derivatives are of different orders, problems can easily result. If we

uncomment the appropriate line in EstimatePoisson.m, the data will

not be scaled, and the estimation program will have difficulty con-

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m


verging (it seems to take an infinite amount of time). With unscaled

data, the elements of the score vector have very different magnitudes

at the initial value of θ (all zeros). To see this run CheckScore.m.

With unscaled data, one element of the gradient is very large, and the

maximum and minimum elements are 5 orders of magnitude apart.

This causes convergence problems due to serious numerical inaccu-

racy when doing inversions to calculate the BFGS direction of search.

With scaled data, none of the elements of the gradient are very large,

and the maximum difference in orders of magnitude is 3. Conver-

gence is quick.

Multiple optima

Multiple optima (one global, others local) can complicate life, since

we have limited means of determining if there is a higher maximum

the the one we’re at. Think of climbing a mountain in an unknown

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/CheckScore.m


range, in a very foggy place (Figure 11.8). You can go up until there’s

nowhere else to go up, but since you’re in the fog you don’t know if

the true summit is across the gap that’s at your feet. Do you claim

victory and go home, or do you trudge down the gap and explore the

other side?

The best way to avoid stopping at a local maximum is to use many

starting values, for example on a grid, or randomly generated. Or per-

haps one might have priors about possible values for the parameters

(e.g., from previous studies of similar data).

Let’s try to find the true minimizer of minus 1 times the foggy

mountain function (since the algorithms are set up to minimize).

From the picture, you can see it’s close to (0, 0), but let’s pretend there

is fog, and that we don’t know that. The program FoggyMountain.m

shows that poor start values can lead to problems. It uses SA, which

finds the true global minimum, and it shows that BFGS using a bat-

tery of random start values can also find the global minimum help.

http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/FoggyMountain.m


Figure 11.8: A foggy mountain



The output of one run is here:

MPITB extensions found

======================================================

BFGSMIN final results

Used numeric gradient

------------------------------------------------------

STRONG CONVERGENCE

Function conv 1 Param conv 1 Gradient conv 1

------------------------------------------------------

Objective function value -0.0130329

Stepsize 0.102833

43 iterations

------------------------------------------------------



param gradient change

15.9999 -0.0000 0.0000

-28.8119 0.0000 0.0000

The result with poor start values

ans =

16.000 -28.812

================================================

SAMIN final results

NORMAL CONVERGENCE

Func. tol. 1.000000e-10 Param. tol. 1.000000e-03

Obj. fn. value -0.100023



parameter search width

0.037419 0.000018

-0.000000 0.000051

================================================

Now try a battery of random start values and

a short BFGS on each, then iterate to convergence

The result using 20 randoms start values

ans =

3.7417e-02 2.7628e-07

The true maximizer is near (0.037,0)

In that run, the single BFGS run with bad start values converged to

a point far from the true minimizer, which simulated annealing and



BFGS using a battery of random start values both found the true max-

imizer. Using a battery of random start values, we managed to find

the global max. The moral of the story is to be cautious and don’t

publish your results too quickly.



11.6 Exercises

1. In octave, type ”help bfgsmin_example”, to find out the location

of the file. Edit the file to examine it and learn how to call

bfgsmin. Run it, and examine the output.

2. In octave, type ”help samin_example”, to find out the location of

the file. Edit the file to examine it and learn how to call samin.

Run it, and examine the output.

3. Using logit.m and EstimateLogit.m as templates, write a function

to calculate the probit log likelihood, and a script to estimate a

probit model. Run it using data that actually follows a logit

model (you can generate it in the same way that is done in the

logit example).

4. Study mle_results.m to see what it does. Examine the functions

that mle_results.m calls, and in turn the functions that those

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


functions call. Write a complete description of how the whole

chain works.

5. Look at the Poisson estimation results for the OBDV measure of

health care use and give an economic interpretation. Estimate

Poisson models for the other 5 measures of health care usage.



Chapter 12

Asymptotic properties of

extremum estimators
Readings: Hayashi (2000), Ch. 7; Gourieroux and Monfort (1995),

Vol. 2, Ch. 24; Amemiya, Ch. 4 section 4.1; Davidson and MacK-

innon, pp. 591-96; Gallant, Ch. 3; Newey and McFadden (1994),

“Large Sample Estimation and Hypothesis Testing,” in Handbook of

491

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX7-4FPWV09-5&_user=1517286&_coverDate=12%2F31%2F1994&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%2320479%231994%23999959999%23583590%23FLP%23display%23Volume)&_cdi=20479&_sort=d&_docanchor=&_ct=21&_acct=C000053449&_version=1&_urlVersion=0&_userid=1517286&md5=5a540eb9d22288a9f25f3914db38aa1b
http://www.sciencedirect.com/science/handbooks/15734412
http://www.sciencedirect.com/science/handbooks/15734412


Econometrics, Vol. 4, Ch. 36.

12.1 Extremum estimators

We’ll begin with study of extremum estimators in general. Let Zn =

{z1, z2, ..., zn} be the available data, arranged in a n× p matrix, based

on a sample of size n (there are p variables). Our paradigm is that

data are generated as a draw from the joint density fZn(z). This den-

sity may not be known, but it exists in principle. The draw from the

density may be thought of as the outcome of a random experiment

that is characterized by the probability space {Ω,F , P}. When the ex-

periment is performed, ω ∈ Ω is the result, and Zn(ω) = {Z1(ω), Z2(ω), ..., Zn(ω)} =

{z1, z2, ..., zn} is the realized data. The probability space is rich enough

to allow us to consider events defined in terms of an infinite sequence

of data Z = {z1, z2, ..., }.

http://www.sciencedirect.com/science/handbooks/15734412
http://www.sciencedirect.com/science/handbooks/15734412


Definition 25. [Extremum estimator] An extremum estimator θ̂ is the

optimizing element of an objective function sn(Zn, θ) over a set Θ.

Because the data Zn(ω) depends on ω, we can emphasize this by

writing sn(ω, θ). I’ll be loose with notation and interchange when

convenient.

Example 26. OLS. Let the d.g.p. be yt = x′tθ
0 + εt, t = 1, 2, ..., n, θ0 ∈

Θ. Stacking observations vertically, yn = Xnθ
0 + εn, where Xn =(

x1 x2 · · · xn
)′
. Let Zn = [ynXn]. The least squares estimator is

defined as

θ̂ ≡ arg min
Θ
sn(Zn, θ)

where

sn(Zn, θ) = 1/n

n∑
t=1

(yt − x′tθ)
2

As you already know, θ̂ = (X′X)−1X′y.

.



Example 27. Maximum likelihood. Suppose that the continuous ran-

dom variables Yt ∼ IIN(θ0, 1), t = 1, 2, ..., n The density of a single

observation is

fY (yt) = (2π)−1/2 exp

(
−(yt − θ)2

2

)
.

The maximum likelihood estimator is maximizes the joint density of

the sample. Because the data are i.i.d., the joint density is the product

of the densities of each observation, an the ML estimator is

θ̂ ≡ arg max
Θ
Ln(θ) =

n∏
t=1

(2π)−1/2 exp

(
−(yt − θ)2

2

)

Because the natural logarithm is strictly increasing on (0,∞), max-

imization of the average logarithmic likelihood function is achieved

at the same θ̂ as for the likelihood function. So, the ML estimator



θ̂ ≡ arg maxΘ sn(θ) where

sn(θ) = (1/n) lnLn(θ) = −1/2 ln 2π − (1/n)

n∑
t=1

(yt − θ)2

2

Solution of the f.o.c. leads to the familiar result that θ̂ = ȳ. We’ll come

back to this in more detail later.

Note that the objective function sn(Zn, θ) is a random function, be-

cause it depends on Zn(ω) = {Z1(ω), Z2(ω), ..., Zn(ω)} = {z1, z2, ..., zn}.
We need to consider what happens as different outcomes ω ∈ Ω occur.

These different outcomes lead to different data being generated, and

the different data causes the objective function to change. Note, how-

ever, that for a fixed ω ∈ Ω, the data Zn(ω) = {Z1(ω), Z2(ω), ..., Zn(ω)} =

{z1, z2, ..., zn} are a fixed realization, and the objective function sn(Zn, θ)

becomes a non-random function of θ. When actually computing an

extremum estimator, we treat the data as fixed, and employ algo-



rithms for optimization of nonstochastic functions. When analyzing

the properties of an extremum estimator, we need to investigate what

happens throughout Ω: we do not focus only on the ω that generated

the observed data. This is because we would like to find estimators

that work well on average for any data set that can result from ω ∈ Ω.

We’ll often write the objective function suppressing the depen-

dence on Zn, as sn(ω, θ) or simply sn(θ), depending on context. The

first of these emphasizes the fact that the objective function is ran-

dom, and the second is more compact. However, the data is still in

there, and because the data is randomly sampled, the objective func-

tion is random, too.

12.2 Existence

If sn(θ) is continuous in θ and Θ is compact, then a maximizer exists,

by the Weierstrass maximum theorem (Debreu, 1959). In some cases



of interest, sn(θ) may not be continuous. Nevertheless, it may still

converge to a continous function, in which case existence will not

be a problem, at least asymptotically. Henceforth in this course, we

assume that sn(θ) is continuous.

12.3 Consistency

The following theorem is patterned on a proof in Gallant (1987)

(the article, ref. later), which we’ll see in its original form later

in the course. It is interesting to compare the following proof with

Amemiya’s Theorem 4.1.1, which is done in terms of convergence in

probability.

Theorem 28. [Consistency of e.e.] Suppose that θ̂n is obtained by max-
imizing sn(θ) over Θ.

Assume



(a) Compactness: The parameter space Θ is an open bounded subset
of Euclidean space <K. So the closure of Θ, Θ, is compact.

(b) Uniform Convergence: There is a nonstochastic function s∞(θ)

that is continuous in θ on Θ such that

lim
n→∞

sup
θ∈Θ

|sn(ω, θ)− s∞(θ)| = 0, a.s.

(c) Identification: s∞(·) has a unique global maximum at θ0 ∈ Θ,

i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0, θ ∈ Θ

Then θ̂n
a.s.→ θ0.

Proof: Select a ω ∈ Ω and hold it fixed. Then {sn(ω, θ)} is a fixed

sequence of functions. Suppose that ω is such that sn(ω, θ) converges

to s∞(θ). This happens with probability one by assumption (b). The

sequence {θ̂n} lies in the compact set Θ, by assumption (a) and the

fact that maximixation is over Θ. Since every sequence from a com-

pact set has at least one limit point (Bolzano-Weierstrass), say that θ̂



is a limit point of {θ̂n}. There is a subsequence {θ̂nm} ({nm} is simply

a sequence of increasing integers) with limm→∞ θ̂nm = θ̂. By uniform

convergence and continuity,

lim
m→∞

snm(θ̂nm) = s∞(θ̂).

To see this, first of all, select an element θ̂t from the sequence
{
θ̂nm

}
.

Then uniform convergence implies

lim
m→∞

snm(θ̂t) = s∞(θ̂t)

Continuity of s∞ (·) implies that

lim
t→∞

s∞(θ̂t) = s∞(θ̂)

since the limit as t→∞ of
{
θ̂t

}
is θ̂. So the above claim is true.



Next, by maximization

snm(θ̂nm) ≥ snm(θ0)

which holds in the limit, so

lim
m→∞

snm(θ̂nm) ≥ lim
m→∞

snm(θ0).

However,

lim
m→∞

snm(θ̂nm) = s∞(θ̂),

as seen above, and

lim
m→∞

snm(θ0) = s∞(θ0)

by uniform convergence, so

s∞(θ̂) ≥ s∞(θ0).

But by assumption (3), there is a unique global maximum of s∞(θ) at



θ0, so we must have s∞(θ̂) = s∞(θ0), and θ̂ = θ0 in the limit. Finally,

all of the above limits hold almost surely, since so far we have held ω

fixed, but now we need to consider all ω ∈ Ω. Therefore {θ̂n} has only

one limit point, θ0, except on a set C ⊂ Ω with P (C) = 0.

Discussion of the proof:

• This proof relies on the identification assumption of a unique

global maximum at θ0. An equivalent way to state this is

(c) Identification: Any point θ in Θ with s∞(θ) ≥ s∞(θ0) must be such

that ‖ θ − θ0 ‖= 0, which matches the way we will write the assump-

tion in the section on nonparametric inference.

• We assume that θ̂n is in fact a global maximum of sn (θ) . It is

not required to be unique for n finite, though the identification

assumption requires that the limiting objective function have a

unique maximizing argument. The previous section on numeric



optimization methods showed that actually finding the global

maximum of sn (θ) may be a non-trivial problem.

• See Amemiya’s Example 4.1.4 for a case where discontinuity

leads to breakdown of consistency.

• The assumption that θ0 is in the interior of Θ (part of the identi-

fication assumption) has not been used to prove consistency, so

we could directly assume that θ0 is simply an element of a com-

pact set Θ. The reason that we assume it’s in the interior here is

that this is necessary for subsequent proof of asymptotic normal-

ity, and I’d like to maintain a minimal set of simple assumptions,

for clarity. Parameters on the boundary of the parameter set

cause theoretical difficulties that we will not deal with in this

course. Just note that conventional hypothesis testing methods

do not apply in this case.

• Note that sn (θ) is not required to be continuous, though s∞(θ)



is.

• The following figures illustrate why uniform convergence is im-

portant. In the second figure, if the function is not converging

around the lower of the two maxima, there is no guarantee that

the maximizer will be in the neighborhood of the global maxi-

mizer.

With uniform convergence, the maximum of the sample

objective function eventually must be in the neighborhood

of the maximum of the limiting objective function



With pointwise convergence, the sample objective function

may have its maximum far away from that of the limiting

objective function

Sufficient conditions for assumption (b)

We need a uniform strong law of large numbers in order to verify

assumption (2) of Theorem 28. To verify the uniform convergence

assumption, it is often feasible to employ the following set of stronger

assumptions:



• the parameter space is compact, which is given by assumption

(b)

• the objective function sn(θ) is continuous and bounded with prob-

ability one on the entire parameter space

• a standard SLLN can be shown to apply to some point θ in the

parameter space. That is, we can show that sn(θ)
a.s.→ s∞(θ) for

some θ. Note that in most cases, the objective function will be

an average of terms, such as

sn(θ) =
1

n

n∑
t=1

st(θ)

As long as the st(θ) are not too strongly dependent, and have

finite variances, we can usually find a SLLN that will apply.

With these assumptions, it can be shown that pointwise convergence

holds throughout the parameter space, so we obtain the needed uni-



form convergence.

These are reasonable conditions in many cases, and henceforth

when dealing with specific estimators we’ll simply assume that point-

wise almost sure convergence can be extended to uniform almost sure

convergence in this way.

More on the limiting objective function

The limiting objective function in assumption (b) is s∞(θ). What is

the nature of this function and where does it come from?

• Remember our paradigm - data is presumed to be generated as

a draw from fZn(z), and the objective function is sn(Zn, θ).

• Usually, sn(Zn, θ) is an average of terms.

• The limiting objective function is found by applying a strong

(weak) law of large numbers to sn(Zn, θ).



• A strong (weak) LLN says that an average of terms converges

almost surely (in probability) to the limit of the expectation of

the average.

Supposing one holds,

s∞(θ) = lim
n→∞
Esn(Zn, θ) = lim

n→∞

∫
Zn
sn(z, θ)fZn(z)dz

Now suppose that the density fZn(z) that characterizes the DGP is

parametric: fZn(z; ρ), ρ ∈ %, and the data is generated by ρ0 ∈ %. Now

we have two parameters to worry about, θ and ρ. We are probably

interested in learning about the true DGP, which means that ρ0 is the

item of interest. When the DGP is parametric, the limiting objective

function is

s∞(θ) = lim
n→∞
Esn(Zn, θ) = lim

n→∞

∫
Zn
sn(z, θ)fZn(z; ρ0)dz



and we can write the limiting objective function as s∞(θ, ρ0) to empha-

size the dependence on the parameter of the DGP. From the theorem,

we know that θ̂n
a.s.→ θ0 What is the relationship between θ0 and ρ0?

• ρ and θ may have different dimensions. Often, the statistical

model (with parameter θ) only partially describes the DGP. For

example, the case of OLS with errors of unknown distribution.

In some cases, the dimension of θ may be greater than that of

ρ. For example, fitting a polynomial to an unknown nonlinear

function.

• If knowledge of θ0 is sufficient for knowledge of ρ0, we have a

correctly and fully specified model. θ0 is referred to as the true
parameter value.

• If knowledge of θ0 is sufficient for knowledge of some but not

all elements of ρ0, we have a correctly specified semiparametric



model. θ0 is referred to as the true parameter value, understand-

ing that not all parameters of the DGP are estimated.

• If knowledge of θ0 is not sufficient for knowledge of any ele-

ments of ρ0, or if it causes us to draw false conclusions regarding

at least some of the elements of ρ0, our model is misspecified. θ0

is referred to as the pseudo-true parameter value.

Summary

The theorem for consistency is really quite intuitive. It says that with

probability one, an extremum estimator converges to the value that

maximizes the limit of the expectation of the objective function. Be-

cause the objective function may or may not make sense, depending

on how good or poor is the model, we may or may not be estimating

parameters of the DGP.



12.4 Example: Consistency of Least Squares

We suppose that data is generated by random sampling of (Y,X),

where yt = β0xt +εt. (X, ε) has the common distribution function

FZ = µxµε (x and ε are independent) with support Z = X × E . Sup-

pose that the variances σ2
X and σ2

ε are finite. The sample objective

function for a sample size n is

sn(θ) = 1/n

n∑
t=1

(yt − βxt)2 = 1/n

n∑
i=1

(β0xt + εt − βxt)2

= 1/n

n∑
t=1

(xt (β0 − β))2 + 2/n

n∑
t=1

xt (β0 − β) εt + 1/n

n∑
t=1

ε2
t

• Considering the last term, by the SLLN,

1/n

n∑
t=1

ε2
t
a.s.→
∫
X

∫
E
ε2dµXdµE = σ2

ε .



• Considering the second term, since E(ε) = 0 and X and ε are

independent, the SLLN implies that it converges to zero.

• Finally, for the first term, for a given β, we assume that a SLLN

applies so that

1/n

n∑
t=1

(xt (β0 − β))2 a.s.→
∫
X

(x (β0 − β))2 dµX (12.1)

=
(
β0 − β

)2
∫
X
x2dµX

=
(
β0 − β

)2
E
(
X2
)

Finally, the objective function is clearly continuous, and the parameter

space is assumed to be compact, so the convergence is also uniform.

Thus,

s∞(β) =
(
β0 − β

)2
E
(
X2
)

+ σ2
ε

A minimizer of this is clearly β = β0.



Exercise 29. Show that in order for the above solution to be unique

it is necessary that E(X2) 6= 0. Interpret this condition.

This example shows that Theorem 28 can be used to prove strong

consistency of the OLS estimator. There are easier ways to show this,

of course - this is only an example of application of the theorem.

12.5 Example: Inconsistency of Misspecified
Least Squares

You already know that the OLS estimator is inconsistent when rele-

vant variables are omitted. Let’s verify this result in the context of

extremum estimators. We suppose that data is generated by random

sampling of (Y,X), where yt = β0xt +εt. (X, ε) has the common dis-

tribution function FZ = µxµε (x and ε are independent) with support

Z = X ×E . Suppose that the variances σ2
X and σ2

ε are finite. However,



the econometrician is unaware of the true DGP, and instead proposes

the misspecified model yt = γ0wt +ηt. Suppose that E(Wε) = 0 but

that E(WX) 6= 0.

The sample objective function for a sample size n is

sn(γ) = 1/n

n∑
t=1

(yt − γwt)2 = 1/n

n∑
i=1

(β0xt + εt − γwt)2

= 1/n

n∑
t=1

(β0xt)
2 + 1/n

n∑
t=1

(γwt)
2 + 1/n

n∑
t=1

ε2
t + 2/n

n∑
t=1

β0xtεt − 2/n

n∑
t=1

β0γxtwt − 2/n

n∑
t=1

εtxtwt

Using arguments similar to above,

s∞(γ) = γ2E
(
W 2
)
− 2β0γE(WX) + C

So, γ0 = β0E(WX)
E(W 2)

, which is the true parameter of the DGP, multiplied

by the pseudo-true value of a regression of X on W. The OLS estima-

tor is not consistent for the true parameter, β0



12.6 Example: Linearization of a nonlinear
model

Ref. Gourieroux and Monfort, section 8.3.4. White, Intn’l Econ. Rev.
1980 is an earlier reference.

Suppose we have a nonlinear model

yi = h(xi, θ
0) + εi

where

εi ∼ iid(0, σ2)

The nonlinear least squares estimator solves

θ̂n = arg min
1

n

n∑
i=1

(yi − h(xi, θ))2

We’ll study this more later, but for now it is clear that the foc for mini-



mization will require solving a set of nonlinear equations. A common

approach to the problem seeks to avoid this difficulty by linearizing
the model. A first order Taylor’s series expansion about the point x0

with remainder gives

yi = h(x0, θ0) + (xi − x0)′
∂h(x0, θ

0)

∂x
+ νi

where νi encompasses both εi and the Taylor’s series remainder. Note

that νi is no longer a classical error - its mean is not zero. We should

expect problems.

Define

α∗ = h(x0, θ
0)− x′0

∂h(x0, θ0)

∂x

β∗ =
∂h(x0, θ

0)

∂x



Given this, one might try to estimate α∗ and β∗ by applying OLS to

yi = α + βxi + νi

• Question, will α̂ and β̂ be consistent for α∗ and β∗?

• The answer is no, as one can see by interpreting α̂ and β̂ as

extremum estimators. Let γ = (α, β′)′.

γ̂ = arg min sn(γ) =
1

n

n∑
i=1

(yi − α− βxi)2

The objective function converges to its expectation

sn(γ)
u.a.s.→ s∞(γ) = EXEY |X (y − α− βx)2

and γ̂ converges a.s. to the γ0 that minimizes s∞(γ):

γ0 = arg min EXEY |X (y − α− βx)2



Noting that

EXEY |X (y − α− x′β)
2

= EXEY |X
(
h(x, θ0) + ε− α− βx

)2

= σ2 + EX
(
h(x, θ0)− α− βx

)2

since cross products involving ε drop out. α0 and β0 correspond to the

hyperplane that is closest to the true regression function h(x, θ0) ac-

cording to the mean squared error criterion. This depends on both the

shape of h(·) and the density function of the conditioning variables.



x_0

α

β

x

x

x

x

x
x x

x

x

x

Tangent line

Fitted line

Inconsistency of the linear approximation, even at 

the approximation point

h(x,θ)

• It is clear that the tangent line does not minimize MSE, since,

for example, if h(x, θ0) is concave, all errors between the tangent

line and the true function are negative.

• Note that the true underlying parameter θ0 is not estimated con-

sistently, either (it may be of a different dimension than the di-

mension of the parameter of the approximating model, which is

2 in this example).



• Second order and higher-order approximations suffer from ex-

actly the same problem, though to a less severe degree, of course.

For this reason, translog, Generalized Leontiev and other “flexi-

ble functional forms” based upon second-order approximations

in general suffer from bias and inconsistency. The bias may not

be too important for analysis of conditional means, but it can

be very important for analyzing first and second derivatives. In

production and consumer analysis, first and second derivatives

(e.g., elasticities of substitution) are often of interest, so in this

case, one should be cautious of unthinking application of models

that impose stong restrictions on second derivatives.

• This sort of linearization about a long run equilibrium is a com-

mon practice in dynamic macroeconomic models. It is justi-

fied for the purposes of theoretical analysis of a model given
the model’s parameters, but it is not justifiable for the estima-



tion of the parameters of the model using data. The section on

simulation-based methods offers a means of obtaining consistent

estimators of the parameters of dynamic macro models that are

too complex for standard methods of analysis.

12.7 Asymptotic Normality

A consistent estimator is oftentimes not very useful unless we know

how fast it is likely to be converging to the true value, and the proba-

bility that it is far away from the true value. Establishment of asymp-

totic normality with a known scaling factor solves these two prob-

lems. The following theorem is similar to Amemiya’s Theorem 4.1.3

(pg. 111).

Theorem 30. [Asymptotic normality of e.e.] In addition to the as-
sumptions of Theorem 28, assume



(a) Jn(θ) ≡ D2
θsn(θ) exists and is continuous in an open, convex

neighborhood of θ0.

(b) {Jn(θn)} a.s.→ J∞(θ0), a finite negative definite matrix, for any
sequence {θn} that converges almost surely to θ0.

(c)
√
nDθsn(θ0)

d→ N
[
0, I∞(θ0)

]
,where I∞(θ0) = limn→∞ V ar

√
nDθsn(θ0)

Then
√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
Proof: By Taylor expansion:

Dθsn(θ̂n) = Dθsn(θ0) + D2
θsn(θ∗)

(
θ̂ − θ0

)
where θ∗ = λθ̂ + (1− λ)θ0, 0 ≤ λ ≤ 1.

• Note that θ̂ will be in the neighborhood where D2
θsn(θ) exists

with probability one as n becomes large, by consistency.

• Now the l.h.s. of this equation is zero, at least asymptotically,

since θ̂n is a maximizer and the f.o.c. must hold exactly since the



limiting objective function is strictly concave in a neighborhood

of θ0.

• Also, since θ∗ is between θ̂n and θ0, and since θ̂n
a.s.→ θ0 , assump-

tion (b) gives

D2
θsn(θ∗)

a.s.→ J∞(θ0)

So

0 = Dθsn(θ0) +
[
J∞(θ0) + os(1)

] (
θ̂ − θ0

)
And

0 =
√
nDθsn(θ0) +

[
J∞(θ0) + os(1)

]√
n
(
θ̂ − θ0

)
Now

√
nDθsn(θ0)

d→ N
[
0, I∞(θ0)

]
by assumption c, so

−
[
J∞(θ0) + os(1)

]√
n
(
θ̂ − θ0

)
d→ N

[
0, I∞(θ0)

]



Also,
[
J∞(θ0) + os(1)

] a.s.→ J (θ0), so

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
by the Slutsky Theorem (see Gallant, Theorem 4.6).

• Skip this in lecture. A note on the order of these matrices:

Supposing that sn(θ) is representable as an average of n terms,

which is the case for all estimators we consider, D2
θsn(θ) is also

an average of n matrices, the elements of which are not centered

(they do not have zero expectation). Supposing a SLLN applies,

the almost sure limit of D2
θsn(θ0), J∞(θ0) = O(1), as we saw in

Example 74. On the other hand, assumption (c):
√
nDθsn(θ0)

d→
N
[
0, I∞(θ0)

]
means that

√
nDθsn(θ0) = Op()

where we use the result of Example 72. If we were to omit the



√
n, we’d have

Dθsn(θ0) = n−
1
2Op(1)

= Op

(
n−

1
2

)
where we use the fact that Op(n

r)Op(n
q) = Op(n

r+q). The se-

quence Dθsn(θ0) is centered, so we need to scale by
√
n to avoid

convergence to zero.

12.8 Example: Classical linear model

Let’s use the results to get the asymptotic distribution of the OLS es-

timator applied to the classical model, to verify that we obtain the

results seen before. The OLS criterion is



sn(β) =
1

n
(y −Xβ)′ (y −Xβ)

=
(
Xβ0 + ε−Xβ

)′ (
Xβ0 + ε−Xβ

)
=

1

n

[(
β0 − β

)′
X ′X

(
β0 − β

)
− 2ε′Xβ + ε′ε

]
The first derivative is

Dβsn(β) =
1

n

[
−2X ′X

(
β0 − β

)
− 2X ′ε

]
so, evaluating at β0,

Dβsn(β0) = −2
X ′ε

n



This has expectation 0, so the variance is the expectation of the outer

product:

V ar
√
nDβsn(β0) = E

[(
−
√
n2
X ′ε

n

)(
−
√
n2
X ′ε

n

)′]
= E4

X ′εε′X

n

= 4σ2
ε

X ′X

n

Therefore

I∞(β0) = lim
n→∞

V ar
√
nDβsn(β0)

= 4σ2
εQX

The second derivative is

Jn(β) = D2
βsn(β0) =

1

n
[−2X ′X ] .



A SLLN tells us that this converges almost surely to the limit of its

expectation:

J∞(β0) = −2QX

There’s no parameter in that last expression, so uniformity is not an

issue.

The asymptotic normality theorem (30) tells us that

√
n
(
β̂ − β0

)
d→ N

[
0,J∞(β0)−1I∞(β0)J∞(β0)−1

]
which is, given the above,

√
n
(
β̂ − β0

)
d→ N

[
0,

(
−Q

−1
X

2

)(
4σ2

εQX

)(
−Q

−1
X

2

)]
or

√
n
(
β̂ − β0

)
d→ N

[
0, Q−1

X σ
2
ε

]
.

This is the same thing we saw in equation 4.1, of course. So, the



theory seems to work :-)



12.9 Exercises

1. Suppose that xi ∼ uniform(0,1), and yi = 1 − x2
i + εi, where εi

is iid(0,σ2). Suppose we estimate the misspecified model yi =

α + βxi + ηi by OLS. Find the numeric values of α0 and β0 that

are the probability limits of α̂ and β̂

2. Verify your results using Octave by generating data that follows

the above model, and calculating the OLS estimator. When the

sample size is very large the estimator should be very close to

the analytical results you obtained in question 1.

3. Use the asymptotic normality theorem to find the asymptotic

distribution of the ML estimator of β0 for the model y = xβ0 + ε,

where ε ∼ N(0, 1) and is independent of x. This means finding
∂2

∂β∂β′sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and I(β0). The expressions may involve

the unspecified density of x.



Chapter 13

Maximum likelihood

estimation
The maximum likelihood estimator is important because it uses all

of the information in a fully specified statistical model. Its use of all

of the information causes it to have a number of attractive proper-

ties, foremost of which is asymptotic efficiency. For this reason, the

530



ML estimator can serve as a benchmark against which other estima-

tors may be measured. The ML estimator requires that the statistical

model be fully specified, which essentially means that there is enough

information to draw data from the DGP, given the parameter. This is

a fairly strong requirement, and for this reason we need to be con-

cerned about the possible misspecification of the statistical model. If

this is the case, the ML estimator will not have the nice properties that

it has under correct specification.

13.1 The likelihood function

Suppose we have a sample of size n of the random vectors y and z.

Suppose the joint density of Y =
(
y1 . . . yn

)
and Z =

(
z1 . . . zn

)
is characterized by a parameter vector ψ0 :

fY Z(Y, Z, ψ0).



This is the joint density of the sample. This density can be factored as

fY Z(Y, Z, ψ0) = fY |Z(Y |Z, θ0)fZ(Z, ρ0)

The likelihood function is just this density evaluated at other values

ψ

L(Y, Z, ψ) = f (Y, Z, ψ), ψ ∈ Ψ,

where Ψ is a parameter space.
The maximum likelihood estimator of ψ0 is the value of ψ that max-

imizes the likelihood function.

Note that if θ0 and ρ0 share no elements, then the maximizer of

the conditional likelihood function fY |Z(Y |Z, θ) with respect to θ is the

same as the maximizer of the overall likelihood function fY Z(Y, Z, ψ) =

fY |Z(Y |Z, θ)fZ(Z, ρ), for the elements of ψ that correspond to θ. In

this case, the variables Z are said to be exogenous for estimation of θ,

and we may more conveniently work with the conditional likelihood



function fY |Z(Y |Z, θ) for the purposes of estimating θ0.

The maximum likelihood estimator of θ0 = arg max fY |Z(Y |Z, θ)

• If the n observations are independent, the likelihood function

can be written as

L(Y |Z, θ) =

n∏
t=1

f (yt|zt, θ)

where the ft are possibly of different form.

• If this is not possible, we can always factor the likelihood into

contributions of observations, by using the fact that a joint density

can be factored into the product of a marginal and conditional

(doing this iteratively)

L(Y, θ) = f (y1|z1, θ)f (y2|y1, z2, θ)f (y3|y1, y2, z3, θ) · · · f (yn|y1,y2, . . . yt−n, zn, θ)



To simplify notation, define

xt = {y1, y2, ..., yt−1, zt}

so x1 = z1, x2 = {y1, z2}, etc. - it contains exogenous and prede-

termined endogeous variables. Now the likelihood function can be

written as

L(Y, θ) =

n∏
t=1

f (yt|xt, θ)

The criterion function can be defined as the average log-likelihood

function:

sn(θ) =
1

n
lnL(Y, θ) =

1

n

n∑
t=1

ln f (yt|xt, θ)

The maximum likelihood estimator may thus be defined equivalently

as

θ̂ = arg max sn(θ),



where the set maximized over is defined below. Since ln(·) is a mono-

tonic increasing function, lnL and L maximize at the same value of θ.

Dividing by n has no effect on θ̂.

Example: Bernoulli trial

Suppose that we are flipping a coin that may be biased, so that the

probability of a heads may not be 0.5. Maybe we’re interested in es-

timating the probability of a heads. Let Y = 1(heads) be a binary

variable that indicates whether or not a heads is observed. The out-

come of a toss is a Bernoulli random variable:

fY (y, p0) = py0 (1− p0)1−y , y ∈ {0, 1}
= 0, y /∈ {0, 1}



So a representative term that enters the likelihood function is

fY (y, p) = py (1− p)1−y

and

ln fY (y, p) = y ln p + (1− y) ln (1− p)

The derivative of this is

∂ ln fY (y, p)

∂p
=
y

p
− (1− y)

(1− p)

=
y − p

p (1− p)

Averaging this over a sample of size n gives

∂sn(p)

∂p
=

1

n

n∑
i=1

yi − p
p (1− p)



Setting to zero and solving gives

p̂ = ȳ (13.1)

So it’s easy to calculate the MLE of p0 in this case. For future reference,

note that E(Y ) =
∑Y=1

Y=0 yp
y
0 (1− p0)1−y = p0 and V ar(Y ) = E(Y 2) −

[E(Y )]2 = p0 − p2
0.

Now imagine that we had a bag full of bent coins, each bent

around a sphere of a different radius (with the head pointing to the

outside of the sphere). We might suspect that the probability of a

heads could depend upon the radius. Suppose that pi ≡ p(xi, β) =

(1 + exp(−x′iβ))−1 where xi =
[

1 ri

]′
, so that β is a 2×1 vector. Now

∂pi(β)

∂β
= pi (1− pi)xi



so

∂ ln fY (y, β)

∂β
=

y − pi
pi (1− pi)

pi (1− pi)xi

= (yi − p(xi, β))xi

So the derivative of the average log lihelihood function is now

∂sn(β)

∂β
=

∑n
i=1 (yi − p(xi, β))xi

n

This is a set of 2 nonlinear equations in the two unknown elements

in β. There is no explicit solution for the two elements that set the

equations to zero. This is commonly the case with ML estimators:

they are often nonlinear, and finding the value of the estimate often

requires use of numeric methods to find solutions to the first order

conditions. See Chapter 11 for more information on how to do this.



13.2 Consistency of MLE

The MLE is an extremum estimator, given basic assumptions it is con-

sistent for the value that maximizes the limiting objective function,

following Theorem 28. The question is: what is the value that maxi-

mizes s∞(θ)?

Remember that sn(θ) = 1
n lnL(Y, θ), and L(Y, θ0) is the true density

of the sample data. For any θ 6= θ0

E
(

ln

(
L(θ)

L(θ0)

))
≤ ln

(
E
(
L(θ)

L(θ0)

))
by Jensen’s inequality ( ln (·) is a concave function).

Now, the expectation on the RHS is

E
(
L(θ)

L(θ0)

)
=

∫
L(θ)

L(θ0)
L(θ0)dy = 1,

since L(θ0) is the density function of the observations, and since the



integral of any density is 1. Therefore, since ln(1) = 0,

E
(

ln

(
L(θ)

L(θ0)

))
≤ 0,

or

E (sn (θ))− E (sn (θ0)) ≤ 0.

A SLLN tells us that sn(θ)
a.s.→ s∞(θ, θ0) = lim E (sn (θ)), and with

continuity and a compact parameter space, this is uniform, so

s∞(θ, θ0)− s∞(θ0, θ0) ≤ 0

except on a set of zero probability. Note: the θ0 appears because the

expectation is taken with respect to the true density L(θ0).

By the identification assumption there is a unique maximizer, so

the inequality is strict if θ 6= θ0:

s∞(θ, θ0)− s∞(θ0, θ0) < 0,∀θ 6= θ0, a.s.



Therefore, θ0 is the unique maximizer of s∞(θ, θ0), and thus, Theorem

28 tells us that

lim
n→∞

θ̂ = θ0, a.s.

So, the ML estimator is consistent.

13.3 The score function

Assumption: (Differentiability) Assume that sn(θ) is twice con-

tinuously differentiable in a neighborhood N(θ0) of θ0, at least

when n is large enough.



To maximize the log-likelihood function, take derivatives:

gn(Y, θ) = Dθsn(θ)

=
1

n

n∑
t=1

Dθ ln f (yt|xx, θ)

≡ 1

n

n∑
t=1

gt(θ).

This is the score vector (with dim K × 1). Note that the score function

has Y as an argument, which implies that it is a random function. Y

(and any exogeneous variables) will often be suppressed for clarity,

but one should not forget that they are still there.

The ML estimator θ̂ sets the derivatives to zero:

gn(θ̂) =
1

n

n∑
t=1

gt(θ̂) ≡ 0.

We will show that Eθ [gt(θ)] = 0, ∀t. This is the expectation taken



with respect to the density f (θ), not necessarily f (θ0) .

Eθ [gt(θ)] =

∫
[Dθ ln f (yt|xt, θ)]f (yt|x, θ)dyt

=

∫
1

f (yt|xt, θ)
[Dθf (yt|xt, θ)] f (yt|xt, θ)dyt

=

∫
Dθf (yt|xt, θ)dyt.

Given some regularity conditions on boundedness of Dθf, we can

switch the order of integration and differentiation, by the dominated

convergence theorem. This gives

Eθ [gt(θ)] = Dθ

∫
f (yt|xt, θ)dyt

= Dθ1

= 0

where we use the fact that the integral of the density is 1.



• So Eθ(gt(θ) = 0 : the expectation of the score vector is zero.

• This hold for all t, so it implies that Eθgn(Y, θ) = 0.

13.4 Asymptotic normality of MLE

Recall that we assume that the log-likelihood function sn(θ) is twice

continuously differentiable. Take a first order Taylor’s series expan-

sion of g(Y, θ̂) about the true value θ0 :

0 ≡ g(θ̂) = g(θ0) + (Dθ′g(θ∗))
(
θ̂ − θ0

)
or with appropriate definitions

J (θ∗)
(
θ̂ − θ0

)
= −g(θ0),



where θ∗ = λθ̂+ (1− λ)θ0, 0 < λ < 1. Assume J (θ∗) is invertible (we’ll

justify this in a minute). So

√
n
(
θ̂ − θ0

)
= −J (θ∗)−1

√
ng(θ0)

Now consider J (θ∗), the matrix of second derivatives of the aver-

age log likelihood function. This is

J (θ∗) = Dθ′g(θ∗)

= D2
θsn(θ∗)

=
1

n

n∑
t=1

D2
θ ln ft(θ

∗)

where the notation

D2
θsn(θ) ≡ ∂2sn(θ)

∂θ∂θ′
.

Given that this is an average of terms, it should usually be the case

that this satisfies a strong law of large numbers (SLLN). Regularity



conditions are a set of assumptions that guarantee that this will hap-

pen. There are different sets of assumptions that can be used to justify

appeal to different SLLN’s. For example, the D2
θ ln ft(θ

∗) must not be

too strongly dependent over time, and their variances must not be-

come infinite. We don’t assume any particular set here, since the ap-

propriate assumptions will depend upon the particularities of a given

model. However, we assume that a SLLN applies.

Also, since we know that θ̂ is consistent, and since θ∗ = λθ̂ + (1 −
λ)θ0, we have that θ∗a.s.→ θ0. Also, by the above differentiability as-

sumption, J (θ) is continuous in θ. Given this, J (θ∗) converges to the

limit of it’s expectation:

J (θ∗)
a.s.→ lim

n→∞
E
(
D2
θsn(θ0)

)
= J∞(θ0) <∞

This matrix converges to a finite limit.
Re-arranging orders of limits and differentiation, which is legiti-

mate given certain regularity conditions related to the boundedness



of the log-likelihood function, we get

J∞(θ0) = D2
θ lim
n→∞
E (sn(θ0))

= D2
θs∞(θ0, θ0)

We’ve already seen that

s∞(θ, θ0) < s∞(θ0, θ0)

i.e., θ0 maximizes the limiting objective function. Since there is a

unique maximizer, and by the assumption that sn(θ) is twice contin-

uously differentiable (which holds in the limit), then J∞(θ0) must be

negative definite, and therefore of full rank. Therefore the previous

inversion is justified, asymptotically, and we have

√
n
(
θ̂ − θ0

)
= −J (θ∗)−1

√
ng(θ0). (13.2)



Now consider
√
ng(θ0). This is

√
ngn(θ0) =

√
nDθsn(θ)

=

√
n

n

n∑
t=1

Dθ ln ft(yt|xt, θ0)

=
1√
n

n∑
t=1

gt(θ0)

We’ve already seen that Eθ [gt(θ)] = 0. As such, it is reasonable to

assume that a CLT applies.

Note that gn(θ0)
a.s.→ 0, by consistency. To avoid this collapse to a

degenerate r.v. (a constant vector) we need to scale by
√
n. A generic

CLT states that, for Xn a random vector that satisfies certain condi-

tions,

Xn − E(Xn)
d→ N(0, limV (Xn))

The “certain conditions” that Xn must satisfy depend on the case at



hand. Usually, Xn will be of the form of an average, scaled by
√
n:

Xn =
√
n

∑n
t=1Xt

n

This is the case for
√
ng(θ0) for example. Then the properties of Xn

depend on the properties of the Xt. For example, if the Xt have finite

variances and are not too strongly dependent, then a CLT for depen-

dent processes will apply. Supposing that a CLT applies, and noting

that E(
√
ngn(θ0) = 0, we get

√
ngn(θ0)

d→ N [0, I∞(θ0)] (13.3)

where

I∞(θ0) = lim
n→∞
Eθ0

(
n [gn(θ0)] [gn(θ0)]′

)
= lim

n→∞
Vθ0

(√
ngn(θ0)

)



This can also be written as

• I∞(θ0) is known as the information matrix.

• Combining [13.2] and [13.3], and noting that J (θ∗)
a.s.→ J∞(θ0),

we get

√
n
(
θ̂ − θ0

)
a∼ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
.

The MLE estimator is asymptotically normally distributed.

Definition 31. Consistent and asymptotically normal (CAN). An es-

timator θ̂ of a parameter θ0 is
√
n-consistent and asymptotically nor-

mally distributed if
√
n
(
θ̂ − θ0

)
d→ N (0, V∞) where V∞ is a finite pos-

itive definite matrix.

There do exist, in special cases, estimators that are consistent such

that
√
n
(
θ̂ − θ0

)
p→ 0. These are known as superconsistent estimators,



since in ordinary circumstances with stationary data,
√
n is the high-

est factor that we can multiply by and still get convergence to a stable

limiting distribution.

Definition 32. Asymptotically unbiased. An estimator θ̂ of a parame-

ter θ0 is asymptotically unbiased if

limn→∞ Eθ(θ̂) = θ.

Estimators that are CAN are asymptotically unbiased, though not

all consistent estimators are asymptotically unbiased. Such cases are

unusual, though.



13.5 The information matrix equality

We will show that J∞(θ) = −I∞(θ). Let ft(θ) be short for f (yt|xt, θ)

1 =

∫
ft(θ)dy, so

0 =

∫
Dθft(θ)dy

=

∫
(Dθ ln ft(θ)) ft(θ)dy

Now differentiate again:

0 =

∫ [
D2
θ ln ft(θ)

]
ft(θ)dy +

∫
[Dθ ln ft(θ)]Dθ′ft(θ)dy

= Eθ
[
D2
θ ln ft(θ)

]
+

∫
[Dθ ln ft(θ)] [Dθ′ ln ft(θ)] ft(θ)dy

= Eθ
[
D2
θ ln ft(θ)

]
+ Eθ [Dθ ln ft(θ)] [Dθ′ ln ft(θ)]

= Eθ [Jt(θ)] + Eθ [gt(θ)] [gt(θ)]′ (13.4)



Now sum over n and multiply by 1
n

Eθ
1

n

n∑
t=1

[Jt(θ)] = −Eθ

[
1

n

n∑
t=1

[gt(θ)] [gt(θ)]′
]

(13.5)

The scores gt and gs are uncorrelated for t 6= s, since for t > s,

ft(yt|y1, ..., yt−1, θ) has conditioned on prior information, so what was

random in s is fixed in t. (This forms the basis for a specification

test proposed by White: if the scores appear to be correlated one may

question the specification of the model). This allows us to write

Eθ [Jn(θ)] = −Eθ
(
n [g(θ)] [g(θ)]′

)
since all cross products between different periods expect to zero. Fi-

nally take limits, we get

J∞(θ) = −I∞(θ). (13.6)



This holds for all θ, in particular, for θ0. Using this,

√
n
(
θ̂ − θ0

)
a.s.→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
simplifies to

√
n
(
θ̂ − θ0

)
a.s.→ N

[
0, I∞(θ0)−1

]
(13.7)

or
√
n
(
θ̂ − θ0

)
a.s.→ N

[
0,−J∞(θ0)−1

]
(13.8)

To estimate the asymptotic variance, we need estimators of J∞(θ0)

and I∞(θ0). We can use

Î∞(θ0) =
1

n

n∑
t=1

gt(θ̂)gt(θ̂)′

Ĵ∞(θ0) = Jn(θ̂).



as is intuitive if one considers equation 13.5. Note, one can’t use

Î∞(θ0) = n
[
gn(θ̂)

] [
gn(θ̂)

]′
to estimate the information matrix. Why not?

From this we see that there are alternative ways to estimate V∞(θ0)

that are all valid. These include

V̂∞(θ0) = −Ĵ∞(θ0)
−1

V̂∞(θ0) = Î∞(θ0)
−1

V̂∞(θ0) = Ĵ∞(θ0)
−1
Î∞(θ0)Ĵ∞(θ0)

−1

These are known as the inverse Hessian, outer product of the gradient
(OPG) and sandwich estimators, respectively. The sandwich form is

the most robust, since it coincides with the covariance estimator of

the quasi-ML estimator.



Example, Coin flipping, again

In section 13.1 we saw that the MLE for the parameter of a Bernoulli

trial, with i.i.d. data, is the sample mean: p̂ = ȳ (equation 13.1).

Now let’s find the limiting variance of
√
n (p̂− p0). We can do this in

a simple way:

limV ar
√
n (p̂− p0) = limnV ar (p̂− p0)

= limnV ar (p̂)

= limnV ar (ȳ)

= limnV ar

(∑
yt
n

)
= lim

1

n

∑
V ar(yt) (by independence of obs.)

= lim
1

n
nV ar(y) (by identically distributed obs.)

= V ar(y)

= p0 (1− p0)



While that is simple, let’s verify this using the methods of Chapter 12

give the same answer. The log-likelihood function is

sn(p) =
1

n

n∑
t=1

{yt ln p + (1− yt) (1− ln p)}

so

Esn(p) = p0 ln p +
(
1− p0

)
(1− ln p)

by the fact that the observations are i.i.d. Thus, s∞(p) = p0 ln p +(
1− p0

)
(1− ln p). A bit of calculation shows that

D2
θsn(p)

∣∣
p=p0 ≡ Jn(θ) =

−1

p0 (1− p0)
,

which doesn’t depend upon n. By results we’ve seen on MLE, limV ar
√
n
(
p̂− p0

)
=

−J −1
∞ (p0). And in this case, −J −1

∞ (p0) = p0
(
1− p0

)
. So, we get the

same limiting variance using both methods.



13.6 The Cramér-Rao lower bound

Theorem 33. [Cramer-Rao Lower Bound] The limiting variance of a
CAN estimator of θ0, say θ̃, minus the inverse of the information matrix
is a positive semidefinite matrix.

Proof: Since the estimator is CAN, it is asymptotically unbiased, so

lim
n→∞
Eθ(θ̃ − θ) = 0

Differentiate wrt θ′ :

Dθ′ lim
n→∞
Eθ(θ̃ − θ) = lim

n→∞

∫
Dθ′

[
f (Y, θ)

(
θ̃ − θ

)]
dy

= 0 (this is a K ×K matrix of zeros).

Noting that Dθ′f (Y, θ) = f (θ)Dθ′ ln f (θ), we can write

lim
n→∞

∫ (
θ̃ − θ

)
f (θ)Dθ′ ln f (θ)dy + lim

n→∞

∫
f (Y, θ)Dθ′

(
θ̃ − θ

)
dy = 0.



Now note that Dθ′

(
θ̃ − θ

)
= −IK, and

∫
f (Y, θ)(−IK)dy = −IK. With

this we have

lim
n→∞

∫ (
θ̃ − θ

)
f (θ)Dθ′ ln f (θ)dy = IK.

Playing with powers of n we get

lim
n→∞

∫ √
n
(
θ̃ − θ

)√
n

1

n
[Dθ′ ln f (θ)]︸ ︷︷ ︸ f (θ)dy = IK

Note that the bracketed part is just the transpose of the score vector,

g(θ), so we can write

lim
n→∞
Eθ
[√

n
(
θ̃ − θ

)√
ng(θ)′

]
= IK

This means that the covariance of the score function with
√
n
(
θ̃ − θ

)
,

for θ̃ any CAN estimator, is an identity matrix. Using this, suppose the



variance of
√
n
(
θ̃ − θ

)
tends to V∞(θ̃). Therefore,

V∞

√n(θ̃ − θ)√
ng(θ)

 =

[
V∞(θ̃) IK

IK I∞(θ)

]
. (13.9)

Since this is a covariance matrix, it is positive semi-definite. There-

fore, for any K -vector α,

[
α′ −α′I−1

∞ (θ)
] [ V∞(θ̃) IK

IK I∞(θ)

][
α

−I∞(θ)−1α

]
≥ 0.

This simplifies to

α′
[
V∞(θ̃)− I−1

∞ (θ)
]
α ≥ 0.

Since α is arbitrary, V∞(θ̃)− I−1
∞ (θ) is positive semidefinite. This con-

ludes the proof.

This means that I−1
∞ (θ) is a lower bound for the asymptotic variance



of a CAN estimator.

(Asymptotic efficiency) Given two CAN estimators of a parameter

θ0, say θ̃ and θ̂, θ̂ is asymptotically efficient with respect to θ̃ if V∞(θ̃)−
V∞(θ̂) is a positive semidefinite matrix.

A direct proof of asymptotic efficiency of an estimator is infeasible,

but if one can show that the asymptotic variance is equal to the in-

verse of the information matrix, then the estimator is asymptotically

efficient. In particular, the MLE is asymptotically efficient with respect
to any other CAN estimator.

13.7 Likelihood ratio-type tests

Suppose we would like to test a set of q possibly nonlinear restrictions

r(θ) = 0, where the q × k matrix Dθ′r(θ) has rank q. The Wald test

can be calculated using the unrestricted model. The score test can

be calculated using only the restricted model. The likelihood ratio



test, on the other hand, uses both the restricted and the unrestricted

estimators. The test statistic is

LR = 2
(

lnL(θ̂)− lnL(θ̃)
)

where θ̂ is the unrestricted estimate and θ̃ is the restricted estimate.

To show that it is asymptotically χ2, take a second order Taylor’s series

expansion of lnL(θ̃) about θ̂ :

lnL(θ̃) ' lnL(θ̂) +
n

2

(
θ̃ − θ̂

)′
J (θ̂)

(
θ̃ − θ̂

)
(note, the first order term drops out since Dθ lnL(θ̂) ≡ 0 by the fonc

and we need to multiply the second-order term by n since J (θ) is

defined in terms of 1
n lnL(θ)) so

LR ' −n
(
θ̃ − θ̂

)′
J (θ̂)

(
θ̃ − θ̂

)



As n→∞,J (θ̂)→ J∞(θ0) = −I(θ0), by the information matrix equal-

ity. So

LR
a
= n

(
θ̃ − θ̂

)′
I∞(θ0)

(
θ̃ − θ̂

)
(13.10)

We also have that, from the theory on the asymptotic normality of the

MLE and the information matrix equality

√
n
(
θ̂ − θ0

)
a
= I∞(θ0)−1n1/2g(θ0).

An analogous result for the restricted estimator is (this is unproven

here, to prove this set up the Lagrangean for MLE subject to Rβ = r,

and manipulate the first order conditions) :

√
n
(
θ̃ − θ0

)
a
= I∞(θ0)−1

(
In −R′

(
RI∞(θ0)−1R′

)−1
RI∞(θ0)−1

)
n1/2g(θ0).

Combining the last two equations

√
n
(
θ̃ − θ̂

)
a
= −n1/2I∞(θ0)−1R′

(
RI∞(θ0)−1R′

)−1
RI∞(θ0)−1g(θ0)



so, substituting into [13.10]

LR
a
=
[
n1/2g(θ0)′I∞(θ0)−1R′

] [
RI∞(θ0)−1R′

]−1
[
RI∞(θ0)−1n1/2g(θ0)

]
But since

n1/2g(θ0)
d→ N (0, I∞(θ0))

the linear function

RI∞(θ0)−1n1/2g(θ0)
d→ N(0, RI∞(θ0)−1R′).

We can see that LR is a quadratic form of this rv, with the inverse of

its variance in the middle, so

LR
d→ χ2(q).



Summary of MLE

• Consistent

• Asymptotically normal (CAN)

• Asymptotically efficient

• Asymptotically unbiased

• LR test is available for testing hypothesis

• The presentation is for general MLE: we haven’t specified the

distribution or the linearity/nonlinearity of the estimator

13.8 Example: Binary response models

This section extends the Bernoulli trial model to binary response mod-

els with conditioning variables, as such models arise in a variety of



contexts.

Assume that

y∗ = x′θ − ε
y = 1(y∗ > 0)

ε ∼ N(0, 1)

Here, y∗ is an unobserved (latent) continuous variable, and y is a

binary variable that indicates whether y∗is negative or positive. Then

the probit model results, where Pr(y = 1|x) = Pr(ε < x′θ) = Φ(x′θ),

where

Φ(•) =

∫ xβ

−∞
(2π)−1/2 exp(−ε

2

2
)dε

is the standard normal distribution function.

The logit model results if the errors ε are not normal, but rather

have a logistic distribution. This distribution is similar to the stan-

dard normal, but has fatter tails. The probability has the following



parameterization

Pr(y = 1|x) = Λ(x′θ) = (1 + exp(−x′θ))
−1
.

In general, a binary response model will require that the choice

probability be parameterized in some form which could be logit, pro-

bit, or something else. For a vector of explanatory variables x, the

response probability will be parameterized in some manner

Pr(y = 1|x) = p(x, θ)

Again, if p(x, θ) = Λ(x′θ), we have a logit model. If p(x, θ) = Φ(x′θ),

where Φ(·) is the standard normal distribution function, then we have

a probit model.

Regardless of the parameterization, we are dealing with a Bernoulli

density,

fYi(yi|xi) = p(xi, θ)yi(1− p(x, θ))1−yi



so as long as the observations are independent, the maximum likeli-

hood (ML) estimator, θ̂, is the maximizer of

sn(θ) =
1

n

n∑
i=1

(yi ln p(xi, θ) + (1− yi) ln [1− p(xi, θ)])

≡ 1

n

n∑
i=1

s(yi, xi, θ). (13.11)

Following the above theoretical results, θ̂ tends in probability to the

θ0 that maximizes the uniform almost sure limit of sn(θ). Noting that

Eyi = p(xi, θ0), and following a SLLN for i.i.d. processes, sn(θ) con-

verges almost surely to the expectation of a representative term s(y, x, θ).

First one can take the expectation conditional on x to get

Ey|x {y ln p(x, θ) + (1− y) ln [1− p(x, θ)]} = p(x, θ0) ln p(x, θ)+[1− p(x, θ0)] ln [1− p(x, θ)] .



Next taking expectation over x we get the limiting objective function

s∞(θ) =

∫
X
{p(x, θ0) ln p(x, θ) + [1− p(x, θ0)] ln [1− p(x, θ)]}µ(x)dx,

(13.12)

where µ(x) is the (joint - the integral is understood to be multiple, and

X is the support of x) density function of the explanatory variables

x. This is clearly continuous in θ, as long as p(x, θ) is continuous,

and if the parameter space is compact we therefore have uniform

almost sure convergence. Note that p(x, θ) is continous for the logit

and probit models, for example. The maximizing element of s∞(θ),

θ∗, solves the first order conditions∫
X

{
p(x, θ0)

p(x, θ∗)

∂

∂θ
p(x, θ∗)− 1− p(x, θ0)

1− p(x, θ∗)

∂

∂θ
p(x, θ∗)

}
µ(x)dx = 0

This is clearly solved by θ∗ = θ0. Provided the solution is unique, θ̂

is consistent. Question: what’s needed to ensure that the solution is



unique?

The asymptotic normality theorem tells us that

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
.

In the case of i.i.d. observations I∞(θ0) = limn→∞ V ar
√
nDθsn(θ0) is

simply the expectation of a typical element of the outer product of the

gradient.

• There’s no need to subtract the mean, since it’s zero, following

the f.o.c. in the consistency proof above and the fact that obser-

vations are i.i.d.



• The terms in n also drop out by the same argument:

lim
n→∞

V ar
√
nDθsn(θ0) = lim

n→∞
V ar
√
nDθ

1

n

∑
t

s(θ0)

= lim
n→∞

V ar
1√
n
Dθ

∑
t

s(θ0)

= lim
n→∞

1

n
V ar

∑
t

Dθs(θ0)

= lim
n→∞

V arDθs(θ0)

= V arDθs(θ0)

So we get

I∞(θ0) = E
{
∂

∂θ
s(y, x, θ0)

∂

∂θ′
s(y, x, θ0)

}
.

Likewise,

J∞(θ0) = E ∂2

∂θ∂θ′
s(y, x, θ0).

Expectations are jointly over y and x, or equivalently, first over y con-



ditional on x, then over x. From above, a typical element of the ob-

jective function is

s(y, x, θ0) = y ln p(x, θ0) + (1− y) ln [1− p(x, θ0)] .

Now suppose that we are dealing with a correctly specified logit model:

p(x, θ) = (1 + exp(−x′θ))
−1
.

We can simplify the above results in this case. We have that

∂

∂θ
p(x, θ) = (1 + exp(−x′θ))

−2
exp(−x′θ)x

= (1 + exp(−x′θ))
−1 exp(−x′θ)

1 + exp(−x′θ)
x

= p(x, θ) (1− p(x, θ))x

=
(
p(x, θ)− p(x, θ)2

)
x.



So

∂

∂θ
s(y, x, θ0) = [y − p(x, θ0)]x (13.13)

∂2

∂θ∂θ′
s(θ0) = −

[
p(x, θ0)− p(x, θ0)2

]
xx′.

Taking expectations over y then x gives

I∞(θ0) =

∫
EY

[
y2 − 2p(x, θ0)p(x, θ0) + p(x, θ0)2

]
xx′µ(x)dx(13.14)

=

∫ [
p(x, θ0)− p(x, θ0)2

]
xx′µ(x)dx. (13.15)

where we use the fact that EY (y) = EY (y2) = p(x, θ0). Likewise,

J∞(θ0) = −
∫ [

p(x, θ0)− p(x, θ0)2
]
xx′µ(x)dx. (13.16)

Note that we arrive at the expected result: the information matrix



equality holds (that is, J∞(θ0) = −I∞(θ0)). With this,

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
simplifies to

√
n
(
θ̂ − θ0

)
d→ N

[
0,−J∞(θ0)−1

]
which can also be expressed as

√
n
(
θ̂ − θ0

)
d→ N

[
0, I∞(θ0)−1

]
.

On a final note, the logit and standard normal CDF’s are very sim-

ilar - the logit distribution is a bit more fat-tailed. While coefficients

will vary slightly between the two models, functions of interest such

as estimated probabilities p(x, θ̂) will be virtually identical for the two

models.



13.9 Examples

For examples of MLE using logit and Poisson model applied to data,

see Section 11.4 in the chapter on Numerical Optimization. You

should examine the scripts and run them to see you MLE is actually

done.

13.10 Exercises

1. Consider coin tossing with a single possibly biased coin. The

density function for the random variable y = 1(heads) is

fY (y, p0) = py0 (1− p0)1−y , y ∈ {0, 1}
= 0, y /∈ {0, 1}



Suppose that we have a sample of size n. We know from above

that the ML estimator is p̂0 = ȳ. We also know from the theory

above that

√
n (ȳ − p0)

a∼ N
[
0,J∞(p0)−1I∞(p0)J∞(p0)−1

]
a) find the analytic expression for gt(θ) and show that Eθ [gt(θ)] =

0

b) find the analytical expressions for J∞(p0) and I∞(p0) for this

problem

c) verify that the result for limV ar
√
n (p̂− p) found in section

13.5 is equal to J∞(p0)−1I∞(p0)J∞(p0)−1

d) Write an Octave program that does a Monte Carlo study that

shows that
√
n (ȳ − p0) is approximately normally distributed

when n is large. Please give me histograms that show the sam-

pling frequency of
√
n (ȳ − p0) for several values of n.



2. Consider the model yt = x′tβ + αεt where the errors follow the

Cauchy (Student-t with 1 degree of freedom) density. So

f (εt) =
1

π (1 + ε2
t )
,−∞ < εt <∞

The Cauchy density has a shape similar to a normal density, but

with much thicker tails. Thus, extremely small and large er-

rors occur much more frequently with this density than would

happen if the errors were normally distributed. Find the score

function gn(θ) where θ =
(
β′ α

)′
.

3. Consider the model classical linear regression model yt = x′tβ+εt

where εt ∼ IIN(0, σ2). Find the score function gn(θ) where θ =(
β′ σ

)′
.

4. Compare the first order conditions that define the ML estimators

of problems 2 and 3 and interpret the differences. Why are the

first order conditions that define an efficient estimator different



in the two cases?

5. Assume a d.g.p. follows the logit model: Pr(y = 1|x) =
(
1 + exp(−β0x)

)−1.

(a) Assume that x ∼ uniform(-a,a). Find the asymptotic distri-

bution of the ML estimator of β0 (this is a scalar parameter).

(b) Now assume that x ∼ uniform(-2a,2a). Again find the

asymptotic distribution of the ML estimator of β0.

(c) Comment on the results

6. There is an ML estimation routine in the provided software that

accompanies these notes. Edit (to see what it does) then run the

script mle_example.m. Interpret the output.

7. Estimate the simple Nerlove model discussed in section 3.8 by

ML, assuming that the errors are i.i.d. N(0, σ2) and compare to

the results you get from running Nerlove.m .

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Econometrics/MLE/mle_example.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m
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14.1 Motivation

Sampling from χ2(θ0)

Example 34. (Method of moments, v1) Suppose we draw a random

sample of yt from the χ2(θ0) distribution. Here, θ0 is the parameter

of interest. The first moment (expectation), µ1, of a random variable

will in general be a function of the parameters of the distribution:µ1 =

µ1(θ0) .

In this example, if Y ∼ χ2(θ0), then E(Y ) = θ0, so the relationship

is the identity function µ1(θ0) = θ0, though in general the relationship

may be more complicated. The sample first moment is

µ̂1 =

n∑
t=1

yt/n.

Define the single observation contribution to the moment condi-



tion as the true moment minus the tth observation’s contribution to

the sample moment:

m1t(θ) = µ1(θ)− yt

The corresponding average moment condition is

m1(θ) = µ1(θ)− µ̂1

where the sample moment µ̂1 = ȳ =
∑n

t=1 yt/n.

The method of moments principle is to choose the estimator of the

parameter to set the estimate of the population moment equal to the

sample moment, i.e., m1(θ̂) ≡ 0. Then the equation is solved for the

estimator. In this case,

m1(θ̂) = θ̂ −
n∑
t=1

yt/n = 0

is solved by θ̂ = ȳ. Since ȳ =
∑n

t=1 yt/n
p→ θ0 by the LLN, the estimator



is consistent.

Example 35. (Method of moments, v2) The variance of a χ2(θ0) r.v. is

V (yt) = E
(
yt − θ0

)2
= 2θ0.

The sample variance is V̂ (yt) =
∑n
t=1(yt−ȳ)2

n . Define the average mo-

ment condition as the population moment minus the sample moment:

m2(θ) = V (yt)− V̂ (yt)

= 2θ −
∑n

t=1 (yt − ȳ)2

n

We can see that the average moment condition is the average of the

contributions

m2t(θ) = V (yt)− (yt − ȳ)2



The MM estimator using the variance would set

m2(θ̂) = 2θ̂ −
∑n

t=1 (yt − ȳ)2

n
≡ 0.

Again, by the LLN, the sample variance is consistent for the true vari-

ance, that is, ∑n
t=1 (yt − ȳ)2

n

p→ 2θ0.

So, the estimator is half the sample variance:

θ̂ =
1

2

∑n
t=1 (yt − ȳ)2

n
,

This estimator is also consistent for θ0.

Example 36. Try some MM estimation yourself: here’s an Octave

script that implements the two MM estimators discussed above: GM-

M/chi2mm.m

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2mm.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2mm.m


Note that when you run the script, the two estimators give differ-

ent results. Each of the two estimators is consistent.

• With two moment-parameter equations and only one parameter,

we have overidentification, which means that we have more in-

formation than is strictly necessary for consistent estimation of

the parameter.

• The idea behind GMM is to combine information from the two

moment-parameter equations to form a new estimator which

will be more efficient, in general (proof of this below).



Sampling from t(θ0)

Here’s another example based upon the t-distribution. The density

function of a t-distributed r.v. Yt is

fYt(yt, θ
0) =

Γ
[(
θ0 + 1

)
/2
]

(πθ0)1/2 Γ (θ0/2)

[
1 +

(
y2
t /θ

0
)]−(θ0+1)/2

Given an iid sample of size n, one could estimate θ0 by maximizing

the log-likelihood function

θ̂ ≡ arg max
Θ

lnLn(θ) =

n∑
t=1

ln fYt(yt, θ)

• This approach is attractive since ML estimators are asymptot-

ically efficient. This is because the ML estimator uses all of

the available information (e.g., the distribution is fully speci-

fied up to a parameter). Recalling that a distribution is com-

pletely characterized by its moments, the ML estimator is inter-



pretable as a GMM estimator that uses all of the moments. The

method of moments estimator uses only K moments to estimate

a K−dimensional parameter. Since information is discarded, in

general, by the MM estimator, efficiency is lost relative to the ML

estimator.

Example 37. (Method of moments). A t-distributed r.v. with density

fYt(yt, θ
0) has mean zero and variance V (yt) = θ0/

(
θ0 − 2

)
(for θ0 > 2).

Using the notation introduced previously, define a moment con-

tribution m1t(θ) = θ/ (θ − 2) − y2
t and the average moment condition

m1(θ) = 1/n
∑n

t=1m1t(θ) = θ/ (θ − 2) − 1/n
∑n

t=1 y
2
t . As before, when

evaluated at the true parameter value θ0, both Eθ0

[
m1t(θ

0)
]

= 0 and

Eθ0

[
m1(θ0)

]
= 0.

Choosing θ̂ to set m1(θ̂) ≡ 0 yields a MM estimator:

θ̂ =
2

1− n∑
i y

2
i

(14.1)



This estimator is based on only one moment of the distribution - it

uses less information than the ML estimator, so it is intuitively clear

that the MM estimator will be inefficient relative to the ML estimator.

Example 38. (Method of moments). An alternative MM estimator

could be based upon the fourth moment of the t-distribution. The

fourth moment of a t-distributed r.v. is

µ4 ≡ E(y4
t ) =

3
(
θ0
)2

(θ0 − 2) (θ0 − 4)
,

provided that θ0 > 4. We can define a second moment condition

m2(θ) =
3 (θ)2

(θ − 2) (θ − 4)
− 1

n

n∑
t=1

y4
t

A second, different MM estimator chooses θ̂ to setm2(θ̂) ≡ 0. If you

solve this you’ll see that the estimate is different from that in equation

14.1.



This estimator isn’t efficient either, since it uses only one moment.

A GMM estimator would use the two moment conditions together to

estimate the single parameter. The GMM estimator is overidentified,

which leads to an estimator which is efficient relative to the just iden-

tified MM estimators (more on efficiency later).

14.2 Definition of GMM estimator

For the purposes of this course, the following definition of the GMM

estimator is sufficiently general:

Definition 39. The GMM estimator of the K -dimensional parame-

ter vector θ0, θ̂ ≡ arg minΘ sn(θ) ≡ mn(θ)′Wnmn(θ), where mn(θ) =
1
n

∑n
t=1mt(θ) is a g-vector, g ≥ K, with Eθm(θ) = 0, and Wn converges

almost surely to a finite g × g symmetric positive definite matrix W∞.

What’s the reason for using GMM if MLE is asymptotically efficient?



• Robustness: GMM is based upon a limited set of moment con-

ditions. For consistency, only these moment conditions need to

be correctly specified, whereas MLE in effect requires correct

specification of every conceivable moment condition. GMM is ro-
bust with respect to distributional misspecification. The price for

robustness is loss of efficiency with respect to the MLE estima-

tor. Keep in mind that the true distribution is not known so if

we erroneously specify a distribution and estimate by MLE, the

estimator will be inconsistent in general (not always).

• Feasibility: in some cases the MLE estimator is not available,

because we are not able to deduce the likelihood function. More

on this in the section on simulation-based estimation. The GMM

estimator may still be feasible even though MLE is not available.

Example 40. The Octave script GMM/chi2gmm.m implements GMM

using the same χ2 data as was using in Example 36, above. The two

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2gmm.m


moment conditions, based on the sample mean and sample variance

are combined. The weight matrix is an identity matrix, I2. In Octave,

type ”help gmm_estimate” to get more information on how the GMM

estimation routine works.

14.3 Consistency

We simply assume that the assumptions of Theorem 28 hold, so the

GMM estimator is strongly consistent. The only assumption that war-

rants additional comments is that of identification. In Theorem 28,

the third assumption reads: (c) Identification: s∞(·) has a unique

global maximum at θ0, i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0. Taking the case of

a quadratic objective function sn(θ) = mn(θ)′Wnmn(θ), first consider

mn(θ).

• Applying a uniform law of large numbers, we getmn(θ)
a.s.→ m∞(θ).



• Since Eθ0mn(θ0) = 0 by assumption, m∞(θ0) = 0.

• Since s∞(θ0) = m∞(θ0)′W∞m∞(θ0) = 0, in order for asymptotic

identification, we need that m∞(θ) 6= 0 for θ 6= θ0, for at least

some element of the vector. This and the assumption that Wn
a.s.→

W∞, a finite positive g × g definite g × g matrix guarantee that

θ0 is asymptotically identified.

• Note that asymptotic identification does not rule out the possi-

bility of lack of identification for a given data set - there may be

multiple minimizing solutions in finite samples.

Example 41. Increase n in the Octave script GMM/chi2gmm.m to see

evidence of the consistency of the GMM estimator.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2gmm.m


14.4 Asymptotic normality

We also simply assume that the conditions of Theorem 30 hold, so

we will have asymptotic normality. However, we do need to find the

structure of the asymptotic variance-covariance matrix of the estima-

tor. From Theorem 30, we have

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′sn(θ) when evaluated at

θ0 and

I∞(θ0) = lim
n→∞

V ar
√
n
∂

∂θ
sn(θ0).

We need to determine the form of these matrices given the objective

function sn(θ) = mn(θ)′Wnmn(θ).



Now using the product rule from the introduction,

∂

∂θ
sn(θ) = 2

[
∂

∂θ
m
′
n (θ)

]
Wnmn (θ)

(this is analogous to ∂
∂ββ

′X ′Xβ = 2X ′Xβ which appears when com-

puting the first order conditions for the OLS estimator)

Define the K × g matrix

Dn(θ) ≡ ∂

∂θ
m′n (θ) ,

so:
∂

∂θ
s(θ) = 2D(θ)Wm (θ) . (14.2)

(Note that sn(θ), Dn(θ), Wn and mn(θ) all depend on the sample size

n, but it is omitted to unclutter the notation).

To take second derivatives, let Di be the i− th row of D(θ). Using



the product rule,

∂2

∂θ′∂θi
s(θ) =

∂

∂θ′
2Di(θ)Wm (θ)

= 2DiWD′ + 2m′W

[
∂

∂θ′
D′i

]
When evaluating the term

2m(θ)′W

[
∂

∂θ′
D(θ)′i

]
at θ0, assume that ∂

∂θ′D(θ)′i satisfies a LLN, so that it converges almost

surely to a finite limit. In this case, we have

2m(θ0)′W

[
∂

∂θ′
D(θ0)′i

]
a.s.→ 0,

since m(θ0) = op(1) and W a.s.→ W∞.



Stacking these results over the K rows of D, we get

lim
∂2

∂θ∂θ′
sn(θ0) = J∞(θ0) = 2D∞W∞D

′
∞, a.s.,

where we define limD = D∞, a.s., and limW = W∞, a.s. (we assume

a LLN holds).

With regard to I∞(θ0), following equation 14.2, and noting that

the scores have mean zero at θ0 (since Em(θ0) = 0 by assumption),

we have

I∞(θ0) = lim
n→∞

V ar
√
n
∂

∂θ
sn(θ0)

= lim
n→∞
E4nDWm(θ0)m(θ0)′WD′

= lim
n→∞
E4DW

{√
nm(θ0)

}{√
nm(θ0)′

}
WD′

Now, given that m(θ0) is an average of centered (mean-zero) quanti-

ties, it is reasonable to expect a CLT to apply, after multiplication by



√
n. Assuming this,

√
nm(θ0)

d→ N(0,Ω∞),

where

Ω∞ = lim
n→∞
E
[
nm(θ0)m(θ0)′

]
.

Using this, and the last equation, we get

I∞(θ0) = 4D∞W∞Ω∞W∞D
′
∞

Using these results, the asymptotic normality theorem (30) gives us

√
n
(
θ̂ − θ0

)
d→ N

[
0, (D∞W∞D

′
∞)
−1
D∞W∞Ω∞W∞D

′
∞ (D∞W∞D

′
∞)
−1
]
,

the asymptotic distribution of the GMM estimator for arbitrary weight-

ing matrix Wn. Note that for J∞ to be positive definite, D∞ must have

full row rank, ρ(D∞) = k. This is related to identification. If the rows



of mn(θ) were not linearly independent of one another, then neither

Dnnor D∞would have full row rank. Identification plus two times

differentiability of the objective function lead to J∞ being positive

definite.

Example 42. The Octave script GMM/AsymptoticNormalityGMM.m

does a Monte Carlo of the GMM estimator for the χ2 data. Histograms

for 1000 replications of
√
n
(
θ̂ − θ0

)
are given in Figure 14.1. On

the left are results for n = 30, on the right are results for n = 1000.

Note that the two distributions are fairly similar. In both cases the

distribution is approximately normal. The distribution for the small

sample size is somewhat asymmetric. This has mostly disappeared for

the larger sample size.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/AsymptoticNormalityGMM.m


Figure 14.1: Asymptotic Normality of GMM estimator, χ2 example
(a) n = 30 (b) n = 1000



14.5 Choosing the weighting matrix

W is a weighting matrix, which determines the relative importance

of violations of the individual moment conditions. For example, if

we are much more sure of the first moment condition, which is based

upon the variance, than of the second, which is based upon the fourth

moment, we could set

W =

[
a 0

0 b

]
with a much larger than b. In this case, errors in the second moment

condition have less weight in the objective function.

• Since moments are not independent, in general, we should ex-

pect that there be a correlation between the moment conditions,

so it may not be desirable to set the off-diagonal elements to 0.

W may be a random, data dependent matrix.



• We have already seen that the choice of W will influence the

asymptotic distribution of the GMM estimator. Since the GMM

estimator is already inefficient w.r.t. MLE, we might like to

choose theW matrix to make the GMM estimator efficient within
the class of GMM estimators defined by mn(θ).

• To provide a little intuition, consider the linear model y = x′β +

ε, where ε ∼ N(0,Ω). That is, he have heteroscedasticity and

autocorrelation.

• Let P be the Cholesky factorization of Ω−1, e.g, P ′P = Ω−1.

• Then the model Py = PXβ + Pε satisfies the classical assump-

tions of homoscedasticity and nonautocorrelation, since V (Pε) =

PV (ε)P ′ = PΩP ′ = P (P ′P )−1P ′ = PP−1 (P ′)−1 P ′ = In. (Note:

we use (AB)−1 = B−1A−1 for A, B both nonsingular). This

means that the transformed model is efficient.



• The OLS estimator of the model Py = PXβ + Pε minimizes the

objective function (y−Xβ)′Ω−1(y−Xβ). Interpreting (y −Xβ) =

ε(β) as moment conditions (note that they do have zero expec-

tation when evaluated at β0), the optimal weighting matrix is

seen to be the inverse of the covariance matrix of the moment

conditions. This result carries over to GMM estimation. (Note:

this presentation of GLS is not a GMM estimator, because the

number of moment conditions here is equal to the sample size,

n. Later we’ll see that GLS can be put into the GMM framework

defined above).

Theorem 43. If θ̂ is a GMM estimator that minimizes mn(θ)′Wnmn(θ),

the asymptotic variance of θ̂ will be minimized by choosing Wn so that
Wn

a.s→ W∞ = Ω−1
∞ , where Ω∞ = limn→∞ E

[
nm(θ0)m(θ0)′

]
.

Proof: For W∞ = Ω−1
∞ , the asymptotic variance

(D∞W∞D
′
∞)
−1
D∞W∞Ω∞W∞D

′
∞ (D∞W∞D

′
∞)
−1



simplifies to
(
D∞Ω−1

∞D
′
∞
)−1

. Now, let A be the difference between the
general form and the simplified form:

A = (D∞W∞D
′
∞)
−1
D∞W∞Ω∞W∞D

′
∞ (D∞W∞D

′
∞)
−1 −

(
D∞Ω−1

∞D
′
∞
)−1

Set B = (D∞W∞D
′
∞)−1D∞W∞−

(
D∞Ω−1

∞D
′
∞
)−1

D∞Ω−1
∞ . You can show

that A = BΩ∞B
′
. This is a quadratic form in a p.d. matrix, so it is

p.s.d., which concludes the proof.

The result

√
n
(
θ̂ − θ0

)
d→ N

[
0,
(
D∞Ω−1

∞D
′
∞
)−1
]

(14.3)

allows us to treat

θ̂ ≈ N

(
θ0,

(
D∞Ω−1

∞D
′
∞
)−1

n

)
,



where the ≈ means ”approximately distributed as.” To operationalize

this we need estimators of D∞ and Ω∞.

• The obvious estimator of D̂∞ is simply ∂
∂θm

′
n

(
θ̂
)
, which is con-

sistent by the consistency of θ̂, assuming that ∂
∂θm

′
n is continuous

in θ. Stochastic equicontinuity results can give us this result even

if ∂
∂θm

′
n is not continuous.

Example 44. To see the effect of using an efficient weight matrix,

consider the Octave script GMM/EfficientGMM.m. This modifies the

previous Monte Carlo for the χ2 data. This new Monte Carlo com-

putes the GMM estimator in two ways:

1) based on an identity weight matrix

2) using an estimated optimal weight matrix. The estimated efficient

weight matrix is computed as the inverse of the estimated covariance

of the moment conditions, using the inefficient estimator of the first

step. See the next section for more on how to do this.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/EfficientGMM.m


Figure 14.2: Inefficient and Efficient GMM estimators, χ2 data
(a) inefficient (b) efficient

Figure 14.2 shows the results, plotting histograms for 1000 replica-

tions of
√
n
(
θ̂ − θ0

)
. Note that the use of the estimated efficient

weight matrix leads to much better results in this case. This is a sim-

ple case where it is possible to get a good estimate of the efficient

weight matrix. This is not always so. See the next section.



14.6 Estimation of the variance-covariance
matrix

(See Hamilton Ch. 10, pp. 261-2 and 280-84)∗.

In the case that we wish to use the optimal weighting matrix, we

need an estimate of Ω∞, the limiting variance-covariance matrix of
√
nmn(θ0). While one could estimate Ω∞ parametrically, we in general

have little information upon which to base a parametric specification.

In general, we expect that:

• mt will be autocorrelated (Γts = E(mtm
′
t−s) 6= 0). Note that this

autocovariance will not depend on t if the moment conditions

are covariance stationary.

• contemporaneously correlated, since the individual moment con-

ditions will not in general be independent of one another (E(mitmjt) 6=
0).



• and have different variances (E(m2
it) = σ2

it ).

Since we need to estimate so many components if we are to take the

parametric approach, it is unlikely that we would arrive at a correct

parametric specification. For this reason, research has focused on

consistent nonparametric estimators of Ω∞.

Henceforth we assume thatmt is covariance stationary (the covari-

ance between mt and mt−s does not depend on t). Define the v − th
autocovariance of the moment conditions Γv = E(mtm

′
t−s). Note that

E(mtm
′
t+s) = Γ′v. Recall thatmt andm are functions of θ, so for now as-

sume that we have some consistent estimator of θ0, so that m̂t = mt(θ̂).



Now

Ωn = E
[
nm(θ0)m(θ0)′

]
= E

[
n

(
1/n

n∑
t=1

mt

)(
1/n

n∑
t=1

m′t

)]

= E

[
1/n

(
n∑
t=1

mt

)(
n∑
t=1

m′t

)]
= Γ0 +

n− 1

n
(Γ1 + Γ′1) +

n− 2

n
(Γ2 + Γ′2) · · · + 1

n

(
Γn−1 + Γ′n−1

)
A natural, consistent estimator of Γv is

Γ̂v = 1/n

n∑
t=v+1

m̂tm̂
′
t−v.

(you might use n− v in the denominator instead). So, a natural, but



inconsistent, estimator of Ω∞ would be

Ω̂ = Γ̂0 +
n− 1

n

(
Γ̂1 + Γ̂′1

)
+
n− 2

n

(
Γ̂2 + Γ̂′2

)
+ · · · +

(
Γ̂n−1 + Γ̂′n−1

)
= Γ̂0 +

n−1∑
v=1

n− v
n

(
Γ̂v + Γ̂′v

)
.

This estimator is inconsistent in general, since the number of pa-

rameters to estimate is more than the number of observations, and

increases more rapidly than n, so information does not build up as

n→∞.
On the other hand, supposing that Γv tends to zero sufficiently

rapidly as v tends to∞, a modified estimator

Ω̂ = Γ̂0 +

q(n)∑
v=1

(
Γ̂v + Γ̂′v

)
,

where q(n)
p→ ∞ as n → ∞ will be consistent, provided q(n) grows



sufficiently slowly. The term n−v
n can be dropped because q(n) must

be op(n). This allows information to accumulate at a rate that satisfies

a LLN. A disadvantage of this estimator is that it may not be positive

definite. This could cause one to calculate a negative χ2 statistic, for

example!

• Note: the formula for Ω̂ requires an estimate of m(θ0), which in

turn requires an estimate of θ, which is based upon an estimate

of Ω! The solution to this circularity is to set the weighting matrix

W arbitrarily (for example to an identity matrix), obtain a first

consistent but inefficient estimate of θ0, then use this estimate

to form Ω̂, then re-estimate θ0. The process can be iterated until

neither Ω̂ nor θ̂ change appreciably between iterations.



Newey-West covariance estimator

The Newey-West estimator (Econometrica, 1987) solves the problem

of possible nonpositive definiteness of the above estimator. Their es-

timator is

Ω̂ = Γ̂0 +

q(n)∑
v=1

[
1− v

q + 1

](
Γ̂v + Γ̂′v

)
.

This estimator is p.d. by construction. The condition for consistency is

that n−1/4q → 0. Note that this is a very slow rate of growth for q. This

estimator is nonparametric - we’ve placed no parametric restrictions

on the form of Ω. It is an example of a kernel estimator.

In a more recent paper, Newey and West (Review of Economic Stud-
ies, 1994) use pre-whitening before applying the kernel estimator. The

idea is to fit a VAR model to the moment conditions. It is expected

that the residuals of the VAR model will be more nearly white noise,

so that the Newey-West covariance estimator might perform better



with short lag lengths..

The VAR model is

m̂t = Θ1m̂t−1 + · · · + Θpm̂t−p + ut

This is estimated, giving the residuals ût. Then the Newey-West co-

variance estimator is applied to these pre-whitened residuals, and the

covariance Ω is estimated combining the fitted VAR

̂̂mt = Θ̂1m̂t−1 + · · · + Θ̂pm̂t−p

with the kernel estimate of the covariance of the ut. See Newey-West

for details.

• I have a program that does this if you’re interested.



14.7 Estimation using conditional moments

So far, the moment conditions have been presented as unconditional

expectations. One common way of defining unconditional moment

conditions is based upon conditional moment conditions.

Suppose that a random variable Y has zero expectation condi-

tional on the random variable X

EY |XY =

∫
Y f (Y |X)dY = 0

Then the unconditional expectation of the product of Y and a function

g(X) of X is also zero. The unconditional expectation is

EY g(X) =

∫
X

(∫
Y
Y g(X)f (Y,X)dY

)
dX.

This can be factored into a conditional expectation and an expectation



w.r.t. the marginal density of X :

EY g(X) =

∫
X

(∫
Y
Y g(X)f (Y |X)dY

)
f (X)dX.

Since g(X) doesn’t depend on Y it can be pulled out of the integral

EY g(X) =

∫
X

(∫
Y
Y f (Y |X)dY

)
g(X)f (X)dX.

But the term in parentheses on the rhs is zero by assumption, so

EY g(X) = 0

as claimed.

This is important econometrically, since models often imply re-

strictions on conditional moments. Suppose a model tells us that the

function K(yt, xt) has expectation, conditional on the information set



It, equal to k(xt, θ),

EθK(yt, xt)|It = k(xt, θ).

• For example, in the context of the classical linear model yt =

x′tβ + εt, we can set K(yt, xt) = yt so that k(xt, θ) = x′tβ.

With this, the error function

εt(θ) = K(yt, xt)− k(xt, θ)

has conditional expectation equal to zero

Eθεt(θ)|It = 0.

This is a scalar moment condition, which isn’t sufficient to identify

a K -dimensional parameter θ (K > 1). However, the above result



allows us to form various unconditional expectations

mt(θ) = Z(wt)εt(θ)

where Z(wt) is a g × 1-vector valued function of wt and wt is a set of

variables drawn from the information set It. The Z(wt) are instrumen-
tal variables. We now have g moment conditions, so as long as g > K

the necessary condition for identification holds.



One can form the n× g matrix

Zn =


Z1(w1) Z2(w1) · · · Zg(w1)

Z1(w2) Z2(w2) Zg(w2)
... ...

Z1(wn) Z2(wn) · · · Zg(wn)



=


Z ′1

Z ′2

Z ′n


With this we can form the g moment conditions

mn(θ) =
1

n
Z ′n


ε1(θ)

ε2(θ)
...

εn(θ)





Define the vector of error functions

hn(θ) =


ε1(θ)

ε2(θ)
...

εn(θ)


With this, we can write

mn(θ) =
1

n
Z ′nhn(θ)

=
1

n

n∑
t=1

Ztht(θ)

=
1

n

n∑
t=1

mt(θ)

where Z(t,·) is the tth row of Zn. This fits the previous treatment.



14.8 Estimation using dynamic moment con-
ditions

Note that dynamic moment conditions simplify the var-cov matrix,

but are often harder to formulate. The will be added in future edi-

tions. For now, the Hansen application below is enough.

14.9 A specification test

The first order conditions for minimization, using the an estimate of

the optimal weighting matrix, are

∂

∂θ
s(θ̂) = 2

[
∂

∂θ
m
′
n

(
θ̂
)]

Ω̂−1mn

(
θ̂
)
≡ 0

or



D(θ̂)Ω̂−1mn(θ̂) ≡ 0

Consider a Taylor expansion of m(θ̂):

m(θ̂) = mn(θ0) + D′n(θ∗)
(
θ̂ − θ0

)
(14.4)

where θ∗ is between θ̂ and θ0. Multiplying by D(θ̂)Ω̂−1 we obtain

D(θ̂)Ω̂−1m(θ̂) = D(θ̂)Ω̂−1mn(θ0) + D(θ̂)Ω̂−1D(θ∗)′
(
θ̂ − θ0

)
The lhs is zero, so

D(θ̂)Ω̂−1mn(θ0) = −
[
D(θ̂)Ω̂−1D(θ∗)′

] (
θ̂ − θ0

)
or

(
θ̂ − θ0

)
= −

(
D(θ̂)Ω̂−1D(θ∗)′

)−1

D(θ̂)Ω̂−1mn(θ0)



With this, and taking into account the original expansion (equa-

tion 14.4), we get

√
nm(θ̂) =

√
nmn(θ0)−

√
nD′n(θ∗)

(
D(θ̂)Ω̂−1D(θ∗)′

)−1

D(θ̂)Ω̂−1mn(θ0).

With some factoring, this last can be written as

√
nm(θ̂) =

(
Ω̂1/2 −D′n(θ∗)

(
D(θ̂)Ω̂−1D(θ∗)′

)−1

D′n(θ∗)Ω̂−1/2

)(√
nΩ̂−1/2mn(θ0)

)
and then multiply be Ω̂−1/2 to get

√
nΩ̂−1/2m(θ̂) =

(
Ig − Ω̂−1/2D′n(θ∗)

(
D(θ̂)Ω̂−1D(θ∗)′

)−1

D′n(θ∗)Ω̂−1/2

)(√
nΩ̂−1/2mn(θ0)

)
Now

√
nΩ̂−1/2mn(θ0)

d→ N(0, Ig)

and the big matrix Ig − Ω̂−1/2D′n(θ∗)
(
D(θ̂)Ω̂−1D(θ∗)′

)−1

D′n(θ∗)Ω̂−1/2



converges in probability to P = Ig−Ω
−1/2
∞ D′∞

(
D∞Ω−1

∞D
′
∞
)−1

D∞Ω
−1/2
∞ .

However, one can easily verify that P is idempotent and has rank

g − K, (recall that the rank of an idempotent matrix is equal to its

trace). We know that N(0, Ig)
′P ·N(0, Ig) ∼ χ2(g−K). So, a quadratic

form on the r.h.s. has an asymptotic chi-square distribution. The

quadratic form on the l.h.s. must also have the same distribution, so

we finally get(√
nΩ̂−1/2m(θ̂)

)′ (√
nΩ̂−1/2m(θ̂)

)
= nm(θ̂)′Ω̂−1m(θ̂)

d→ χ2(g −K)

or

n · sn(θ̂)
d→ χ2(g −K)

supposing the model is correctly specified. This is a convenient test

since we just multiply the optimized value of the objective function by

n, and compare with a χ2(g −K) critical value. The test is a general

test of whether or not the moments used to estimate are correctly



specified.

• This won’t work when the estimator is just identified. The f.o.c.

are

Dθsn(θ) = DΩ̂−1m(θ̂) ≡ 0.

But with exact identification, both D and Ω̂ are square and in-

vertible (at least asymptotically, assuming that asymptotic nor-

mality hold), so

m(θ̂) ≡ 0.

So the moment conditions are zero regardless of the weighting

matrix used. As such, we might as well use an identity matrix

and save trouble. Also sn(θ̂) = 0, so the test breaks down.

• A note: this sort of test often over-rejects in finite samples. One

should be cautious in rejecting a model when this test rejects.



14.10 Example: Generalized instrumental vari-
ables estimator

The IV estimator may appear a bit unusual at first, but it will grow on

you over time. We have in fact already seen the IV estimator above,

in the discussion of conditional moments. Let’s look at the special

case of a linear model with iid errors, but with correlation between

regressors and errors:

yt = x′tθ + εt

E(x′tεt) 6= 0

• Let’s assume, just to keep things simple, that the errors are iid

• The model in matrix form is y = Xθ + ε

Let K = dim(xt). Consider some vector zt of dimension G× 1, where

G ≥ K. Assume that E(ztεt) = 0. The variables zt are instrumental



variables. Consider the moment conditions

mt(θ) = ztεt

= zt (yt − x′tθ)

We can arrange the instruments in the n×G matrix

Z =


z′1

z′2
...

z′n


The average moment conditions are

mn(θ) =
1

n
Z ′ε

=
1

n
(Z ′y − Z ′Xθ)



The generalized instrumental variables estimator is just the GMM esti-

mator based upon these moment conditions. When G = K, we have

exact identification, and it is referred to as the instrumental variables

estimator.

The first order conditions for GMM are DnWnmn(θ̂) = 0, which

imply that

DnWnZ
′Xθ̂IV = DnWnZ

′y

Exercise 45. Verify that Dn = −X ′Z
n . Remember that (assuming dif-

ferentiability) identification of the GMM estimator requires that this

matrix must converge to a matrix with full row rank. Can just any

variable that is uncorrelated with the error be used as an instrument,

or is there some other condition?

Exercise 46. Verify that the efficient weight matrix is Wn =
(
Z ′Z
n

)−1

(up to a constant).



If we accept what is stated in these two exercises, then

X ′Z

n

(
Z ′Z

n

)−1

Z ′Xθ̂IV =
X ′Z

n

(
Z ′Z

n

)−1

Z ′y

Noting that the powers of n cancel, we get

X ′Z (Z ′Z)
−1
Z ′Xθ̂IV = X ′Z (Z ′Z)

−1
Z ′y

or

θ̂IV =
(
X ′Z (Z ′Z)

−1
Z ′X

)−1

X ′Z (Z ′Z)
−1
Z ′y (14.5)

Another way of arriving to the same point is to define the projec-

tion matrix PZ
PZ = Z(Z ′Z)−1Z ′

Anything that is projected onto the space spanned by Z will be uncor-

related with ε, by the definition of Z. Transforming the model with



this projection matrix we get

PZy = PZXβ + PZε

or

y∗ = X∗θ + ε∗

Now we have that ε∗ and X∗ are uncorrelated, since this is simply

E(X∗′ε∗) = E(X ′P ′ZPZε)

= E(X ′PZε)

and

PZX = Z(Z ′Z)−1Z ′X

is the fitted value from a regression of X on Z. This is a linear com-

bination of the columns of Z, so it must be uncorrelated with ε. This



implies that applying OLS to the model

y∗ = X∗θ + ε∗

will lead to a consistent estimator, given a few more assumptions.

Exercise 47. Verify algebraically that applying OLS to the above model

gives the IV estimator of equation 14.5.

With the definition of PZ, we can write

θ̂IV = (X ′PZX)−1X ′PZy

from which we obtain

θ̂IV = (X ′PZX)−1X ′PZ(Xθ0 + ε)

= θ0 + (X ′PZX)−1X ′PZε



so

θ̂IV − θ0 = (X ′PZX)−1X ′PZε

=
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′ε

Now we can introduce factors of n to get

θ̂IV − θ0 =

((
X ′Z

n

)(
Z ′Z

n

−1
)(

Z ′X

n

))−1(
X ′Z

n

)(
Z ′Z

n

)−1(
Z ′ε

n

)
Assuming that each of the terms with a n in the denominator satisfies

a LLN, so that

• Z ′Z
n

p→ QZZ, a finite pd matrix

• X ′Z
n

p→ QXZ, a finite matrix with rank K (= cols(X) ). That is to

say, the instruments must be correlated with the regressors.

• Z ′ε
n

p→ 0



then the plim of the rhs is zero. This last term has plim 0 since we

assume that Z and ε are uncorrelated, e.g.,

E(z′tεt) = 0,

Given these assumtions the IV estimator is consistent

θ̂IV
p→ θ0.

Furthermore, scaling by
√
n, we have

√
n
(
θ̂IV − θ0

)
=

((
X ′Z

n

)(
Z ′Z

n

)−1(
Z ′X

n

))−1(
X ′Z

n

)(
Z ′Z

n

)−1(
Z ′ε√
n

)
Assuming that the far right term satifies a CLT, so that

• Z ′ε√
n

d→ N(0, QZZσ
2)



then we get

√
n
(
θ̂IV − θ0

)
d→ N

(
0, (QXZQ

−1
ZZQ

′
XZ)−1σ2

)
The estimators for QXZ and QZZ are the obvious ones. An estimator

for σ2 is

σ̂2
IV =

1

n

(
y −Xθ̂IV

)′ (
y −Xθ̂IV

)
.

This estimator is consistent following the proof of consistency of the

OLS estimator of σ2, when the classical assumptions hold.

The formula used to estimate the variance of θ̂IV is

V̂ (θ̂IV ) =
(

(X ′Z) (Z ′Z)
−1

(Z ′X)
)−1

σ̂2
IV



The GIV estimator is

1. Consistent

2. Asymptotically normally distributed

3. Biased in general, since even though E(X ′PZε) = 0, E(X ′PZX)−1X ′PZε

may not be zero, since (X ′PZX)−1 and X ′PZε are not indepen-

dent.

An important point is that the asymptotic distribution of β̂IV depends

uponQXZ andQZZ, and these depend upon the choice of Z. The choice
of instruments influences the efficiency of the estimator. This point was

made above, when optimal instruments were discussed.

• When we have two sets of instruments, Z1 and Z2 such that

Z1 ⊂ Z2, then the IV estimator using Z2 is at least as efficiently

asymptotically as the estimator that used Z1. More instruments

leads to more asymptotically efficient estimation, in general.



• The penalty for indiscriminant use of instruments is that the

small sample bias of the IV estimator rises as the number of

instruments increases. The reason for this is that PZX becomes

closer and closer to X itself as the number of instruments in-

creases.

Exercise 48. How would one adapt the GIV estimator presented here

to deal with the case of HET and AUT?

Example 49. Recall Example 19 which deals with a dynamic model

with measurement error. The model is

y∗t = α + ρy∗t−1 + βxt + εt

yt = y∗t + υt

where εt and υt are independent Gaussian white noise errors. Suppose

that y∗t is not observed, and instead we observe yt. If we estimate the



equation

yt = α + ρyt−1 + βxt + νt

by OLS, we have seen in Example 19 that the estimator is biased an

inconsistent. What about using the GIV estimator? Consider using

as instruments Z = [1xt xt−1 xt−2]. The lags of xt are correlated with

yt−1as long as ρ and β are different from zero, and by assumption

xt and its lags are uncorrelated with εt and υt (and thus they’re also

uncorrelated with νt). Thus, these are legitimate instruments. As we

have 4 instruments and 3 parameters, this is an overidentified situa-

tion. The Octave script GMM/MeasurementErrorIV.m does a Monte

Carlo study using 1000 replications, with a sample size of 100. The

results are comparable with those in Example 19. Using the GIV esti-

mator, descriptive statistics for 1000 replications are

octave:3> MeasurementErrorIV

rm: cannot remove `meas_error.out': No such file or directory

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/MeasurementErrorIV.m


mean st. dev. min max

0.000 0.241 -1.250 1.541

-0.016 0.149 -0.868 0.827

-0.001 0.177 -0.757 0.876

octave:4>

If you compare these with the results for the OLS estimator, you will

see that the bias of the GIV estimator is much less for estimation of ρ.

If you increase the sample size, you will see that the GIV estimator is

consistent, but that the OLS estimator is not.

A histogram for ρ̂− ρ is in Figure 14.3. You can compare with the

similar figure for the OLS estimator, Figure 7.4.



Figure 14.3: GIV estimation results for ρ̂ − ρ, dynamic model with
measurement error



2SLS

In the general discussion of GIV above, we haven’t considered from

where we get the instruments. Two stage least squares is an example

of a particular GIV estimator, where the instruments are obtained in a

particular way. Consider a single equation from a system of simulta-

neous equations. Refer back to equation 10.2 for context. The model

is

y = Y1γ1 + X1β1 + ε

= Zδ + ε

where Y1 are current period endogenous variables that are correlated

with the error term. X1 are exogenous and predetermined variables

that are assumed not to be correlated with the error term. Let X be

all of the weakly exogenous variables (please refer back for context).

The problem, recall, is that the variables in Y1 are correlated with ε.



• Define Ẑ =
[
Ŷ1 X1

]
as the vector of predictions of Z when

regressed upon X:

Ẑ = X (X ′X)
−1
X ′Z

Remember that X are all of the exogenous variables from all

equations. The fitted values of a regression of X1 on X are just

X1, because X contains X1. So, Ŷ1 are the reduced form predic-

tions of Y1.

• Since Ẑ is a linear combination of the weakly exogenous vari-

ables X, it must be uncorrelated with ε. This suggests the K-

dimensional moment condition mt(δ) = ẑt (yt − z′tδ) and so

m(δ) = 1/n
∑
t

ẑt (yt − z′tδ) .

• Since we have K parameters and K moment conditions, the



GMM estimator will set m identically equal to zero, regardless

of W, so we have

δ̂ =

(∑
t

ẑtz
′
t

)−1∑
t

(ẑtyt) =
(
Ẑ′Z

)−1

Ẑ′y

This is the standard formula for 2SLS. We use the exogenous vari-

ables and the reduced form predictions of the endogenous variables

as instruments, and apply IV estimation. See Hamilton pp. 420-21 for

the varcov formula (which is the standard formula for 2SLS), and for

how to deal with εt heterogeneous and dependent (basically, just use

the Newey-West or some other consistent estimator of Ω, and apply

the usual formula).

• Note that autocorrelation of εt causes lagged endogenous vari-

ables to loose their status as legitimate instruments. Some cau-

tion is warranted if this suspicion arises.



14.11 Nonlinear simultaneous equations

GMM provides a convenient way to estimate nonlinear systems of

simultaneous equations. We have a system of equations of the form

y1t = f1(zt, θ
0
1) + ε1t

y2t = f2(zt, θ
0
2) + ε2t

...

yGt = fG(zt, θ
0
G) + εGt,

or in compact notation

yt = f (zt, θ
0) + εt,

where f (·) is a G -vector valued function, and θ0 = (θ0′
1 , θ

0′
2 , · · · , θ0′

G)′.

We need to find an Ai× 1 vector of instruments xit, for each equa-

tion, that are uncorrelated with εit. Typical instruments would be low



order monomials in the exogenous variables in zt, with their lagged

values. Then we can define the
(∑G

i=1Ai

)
× 1 orthogonality condi-

tions

mt(θ) =


(y1t − f1(zt, θ1))x1t

(y2t − f2(zt, θ2))x2t

...

(yGt − fG(zt, θG))xGt

 .
• A note on identification: selection of instruments that ensure

identification is a non-trivial problem.

• A note on efficiency: the selected set of instruments has impor-

tant effects on the efficiency of estimation. Unfortunately there

is little theory offering guidance on what is the optimal set. More

on this later.



14.12 Maximum likelihood

In the introduction we argued that ML will in general be more effi-

cient than GMM since ML implicitly uses all of the moments of the

distribution while GMM uses a limited number of moments. Actually,

a distribution with P parameters can be uniquely characterized by P

moment conditions. However, some sets of P moment conditions may

contain more information than others, since the moment conditions

could be highly correlated. A GMM estimator that chose an optimal

set of P moment conditions would be fully efficient. Here we’ll see

that the optimal moment conditions are simply the scores of the ML

estimator.

Let yt be a G -vector of variables, and let Yt = (y′1, y
′
2, ..., y

′
t)
′. Then

at time t, Yt−1 has been observed (refer to it as the information set,

since we assume the conditioning variables have been selected to take

advantage of all useful information). The likelihood function is the



joint density of the sample:

L(θ) = f (y1, y2, ..., yn, θ)

which can be factored as

L(θ) = f (yn|Yn−1, θ) · f (Yn−1, θ)

and we can repeat this to get

L(θ) = f (yn|Yn−1, θ) · f (yn−1|Yn−2, θ) · ... · f (y1).

The log-likelihood function is therefore

lnL(θ) =

n∑
t=1

ln f (yt|Yt−1, θ).

Define

mt(Yt, θ) ≡ Dθ ln f (yt|Yt−1, θ)



as the score of the tth observation. It can be shown that, under the reg-

ularity conditions, that the scores have conditional mean zero when

evaluated at θ0 (see notes to Introduction to Econometrics):

E{mt(Yt, θ
0)|Yt−1} = 0

so one could interpret these as moment conditions to use to define a

just-identified GMM estimator ( if there are K parameters there are

K score equations). The GMM estimator sets

1/n

n∑
t=1

mt(Yt, θ̂) = 1/n

n∑
t=1

Dθ ln f (yt|Yt−1, θ̂) = 0,

which are precisely the first order conditions of MLE. Therefore, MLE

can be interpreted as a GMM estimator. The GMM varcov formula is

V∞ =
(
D∞Ω−1D′∞

)−1.

Consistent estimates of variance components are as follows



• D∞
D̂∞ =

∂

∂θ′
m(Yt, θ̂) = 1/n

n∑
t=1

D2
θ ln f (yt|Yt−1, θ̂)

• Ω

It is important to note that mt and mt−s, s > 0 are both condi-

tionally and unconditionally uncorrelated. Conditional uncorre-

lation follows from the fact that mt−s is a function of Yt−s, which

is in the information set at time t. Unconditional uncorrelation

follows from the fact that conditional uncorrelation hold regard-

less of the realization of Yt−1, so marginalizing with respect to

Yt−1 preserves uncorrelation (see the section on ML estimation,

above). The fact that the scores are serially uncorrelated implies

that Ω can be estimated by the estimator of the 0th autocovari-



ance of the moment conditions:

Ω̂ = 1/n

n∑
t=1

mt(Yt, θ̂)mt(Yt, θ̂)′ = 1/n

n∑
t=1

[
Dθ ln f (yt|Yt−1, θ̂)

] [
Dθ ln f (yt|Yt−1, θ̂)

]′
Recall from study of ML estimation that the information matrix equal-

ity (equation 13.4) states that

E
{[
Dθ ln f (yt|Yt−1, θ

0)
] [
Dθ ln f (yt|Yt−1, θ

0)
]′}

= −E
{
D2
θ ln f (yt|Yt−1, θ

0)
}
.

This result implies the well known (and already seeen) result that we

can estimate V∞ in any of three ways:

• The sandwich version:

V̂∞ = n



{∑n
t=1D

2
θ ln f (yt|Yt−1, θ̂)

}
×{∑n

t=1

[
Dθ ln f (yt|Yt−1, θ̂)

] [
Dθ ln f (yt|Yt−1, θ̂)

]′}−1

×{∑n
t=1D

2
θ ln f (yt|Yt−1, θ̂)

}


−1



• or the inverse of the negative of the Hessian (since the middle

and last term cancel, except for a minus sign):

V̂∞ =

[
−1/n

n∑
t=1

D2
θ ln f (yt|Yt−1, θ̂)

]−1

,

• or the inverse of the outer product of the gradient (since the

middle and last cancel except for a minus sign, and the first

term converges to minus the inverse of the middle term, which

is still inside the overall inverse)

V̂∞ =

{
1/n

n∑
t=1

[
Dθ ln f (yt|Yt−1, θ̂)

] [
Dθ ln f (yt|Yt−1, θ̂)

]′}−1

.

This simplification is a special result for the MLE estimator - it doesn’t

apply to GMM estimators in general.

Asymptotically, if the model is correctly specified, all of these forms

converge to the same limit. In small samples they will differ. In par-



ticular, there is evidence that the outer product of the gradient for-

mula does not perform very well in small samples (see Davidson and

MacKinnon, pg. 477). White’s Information matrix test (Econometrica,

1982) is based upon comparing the two ways to estimate the infor-

mation matrix: outer product of gradient or negative of the Hessian.

If they differ by too much, this is evidence of misspecification of the

model.

14.13 Example: OLS as a GMM estimator -
the Nerlove model again

The simple Nerlove model can be estimated using GMM. The Octave

script NerloveGMM.m estimates the model by GMM and by OLS. It

also illustrates that the weight matrix does not matter when the mo-

ments just identify the parameter. You are encouraged to examine the

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/NerloveGMM.m


script and run it.

14.14 Example: The MEPS data

The MEPS data on health care usage discussed in section 11.4 esti-

mated a Poisson model by ”maximum likelihood” (probably misspec-

ified). Perhaps the same latent factors (e.g., chronic illness) that in-

duce one to make doctor visits also influence the decision of whether

or not to purchase insurance. If this is the case, the PRIV variable

could well be endogenous, in which case, the Poisson ”ML” estimator

would be inconsistent, even if the conditional mean were correctly

specified. The Octave script meps.m estimates the parameters of the

model presented in equation 11.1, using Poisson ”ML” (better thought

of as quasi-ML), and IV estimation1. Both estimation methods are im-
1The validity of the instruments used may be debatable, but real data sets often don’t contain

ideal instruments.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/MEPS/meps.m


plemented using a GMM form. Running that script gives the output

OBDV

******************************************************

IV

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.004273

Observations: 4564

No moment covariance supplied, assuming efficient weight matrix

Value df p-value



X^2 test 19.502 3.000 0.000

estimate st. err t-stat p-value

constant -0.441 0.213 -2.072 0.038

pub. ins. -0.127 0.149 -0.851 0.395

priv. ins. -1.429 0.254 -5.624 0.000

sex 0.537 0.053 10.133 0.000

age 0.031 0.002 13.431 0.000

edu 0.072 0.011 6.535 0.000

inc 0.000 0.000 4.500 0.000

******************************************************

******************************************************

Poisson QML



GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.000000

Observations: 4564

No moment covariance supplied, assuming efficient weight matrix

Exactly identified, no spec. test

estimate st. err t-stat p-value

constant -0.791 0.149 -5.289 0.000

pub. ins. 0.848 0.076 11.092 0.000

priv. ins. 0.294 0.071 4.136 0.000

sex 0.487 0.055 8.796 0.000

age 0.024 0.002 11.469 0.000

edu 0.029 0.010 3.060 0.002



inc -0.000 0.000 -0.978 0.328

******************************************************

Note how the Poisson QML results, estimated here using a GMM

routine, are the same as were obtained using the ML estimation rou-

tine (see subsection 11.4). This is an example of how (Q)ML may

be represented as a GMM estimator. Also note that the IV and QML

results are considerably different. Treating PRIV as potentially en-

dogenous causes the sign of its coefficient to change. Perhaps it is

logical that people who own private insurance make fewer visits, if

they have to make a co-payment. Note that income becomes positive

and significant when PRIV is treated as endogenous.

Perhaps the difference in the results depending upon whether or

not PRIV is treated as endogenous can suggest a method for testing

exogeneity. Onward to the Hausman test!



14.15 Example: The Hausman Test

This section discusses the Hausman test, which was originally pre-

sented in Hausman, J.A. (1978), Specification tests in econometrics,

Econometrica, 46, 1251-71.

Consider the simple linear regression model yt = x′tβ + εt. We as-

sume that the functional form and the choice of regressors is correct,

but that the some of the regressors may be correlated with the error

term, which as you know will produce inconsistency of β̂. For exam-

ple, this will be a problem if

• if some regressors are endogeneous

• some regressors are measured with error

• lagged values of the dependent variable are used as regressors

and εt is autocorrelated.



To illustrate, the Octave program OLSvsIV.m performs a Monte Carlo

experiment where errors are correlated with regressors, and estima-

tion is by OLS and IV. The true value of the slope coefficient used to

generate the data is β = 2. Figure 14.4 shows that the OLS estimator

is quite biased, while Figure 14.5 shows that the IV estimator is on

average much closer to the true value. If you play with the program,

increasing the sample size, you can see evidence that the OLS esti-

mator is asymptotically biased, while the IV estimator is consistent.

We have seen that inconsistent and the consistent estimators con-

verge to different probability limits. This is the idea behind the Haus-

man test - a pair of consistent estimators converge to the same prob-

ability limit, while if one is consistent and the other is not they con-

verge to different limits. If we accept that one is consistent (e.g., the

IV estimator), but we are doubting if the other is consistent (e.g., the

OLS estimator), we might try to check if the difference between the

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/Hausman/OLSvsIV.m


Figure 14.4: OLS
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Figure 14.5: IV
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estimators is significantly different from zero.

• If we’re doubting about the consistency of OLS (or QML, etc.),

why should we be interested in testing - why not just use the

IV estimator? Because the OLS estimator is more efficient when

the regressors are exogenous and the other classical assumptions

(including normality of the errors) hold. When we have a more

efficient estimator that relies on stronger assumptions (such as

exogeneity) than the IV estimator, we might prefer to use it,

unless we have evidence that the assumptions are false.

So, let’s consider the covariance between the MLE estimator θ̂ (or any

other fully efficient estimator) and some other CAN estimator, say θ̃.

Now, let’s recall some results from MLE. Equation 13.2 is:

√
n
(
θ̂ − θ0

)
a.s.→ −J∞(θ0)−1

√
ng(θ0).



Equation 13.6 is

J∞(θ) = −I∞(θ).

Combining these two equations, we get

√
n
(
θ̂ − θ0

)
a.s.→ I∞(θ0)−1

√
ng(θ0).

Also, equation 13.9 tells us that the asymptotic covariance be-

tween any CAN estimator and the MLE score vector is

V∞

√n(θ̃ − θ)√
ng(θ)

 =

[
V∞(θ̃) IK

IK I∞(θ)

]
.

Now, consider[
IK 0K

0K I∞(θ)−1

]√n(θ̃ − θ)√
ng(θ)

 a.s.→

√n(θ̃ − θ)√
n
(
θ̂ − θ

)  .



The asymptotic covariance of this is

V∞

√n(θ̃ − θ)√
n
(
θ̂ − θ

)  =

[
IK 0K

0K I∞(θ)−1

][
V∞(θ̃) IK

IK I∞(θ)

][
IK 0K

0K I∞(θ)−1

]

=

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 I∞(θ)−1

]
,

which, for clarity in what follows, we might write as

V∞

√n(θ̃ − θ)√
n
(
θ̂ − θ

)  =

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 V∞(θ̂)

]
.

So, the asymptotic covariance between the MLE and any other CAN

estimator is equal to the MLE asymptotic variance (the inverse of the

information matrix).

Now, suppose we with to test whether the the two estimators are

in fact both converging to θ0, versus the alternative hypothesis that



the ”MLE” estimator is not in fact consistent (the consistency of θ̃ is a

maintained hypothesis). Under the null hypothesis that they are, we

have [
IK −IK

]√n(θ̃ − θ0

)
√
n
(
θ̂ − θ0

)  =
√
n
(
θ̃ − θ̂

)
,

will be asymptotically normally distributed as

√
n
(
θ̃ − θ̂

)
d→ N

(
0, V∞(θ̃)− V∞(θ̂)

)
.

So,

n
(
θ̃ − θ̂

)′ (
V∞(θ̃)− V∞(θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ),

where ρ is the rank of the difference of the asymptotic variances. A

statistic that has the same asymptotic distribution is(
θ̃ − θ̂

)′ (
V̂ (θ̃)− V̂ (θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ).



This is the Hausman test statistic, in its original form. The reason that

this test has power under the alternative hypothesis is that in that

case the ”MLE” estimator will not be consistent, and will converge to

θA, say, where θA 6= θ0. Then the mean of the asymptotic distribution

of vector
√
n
(
θ̃ − θ̂

)
will be θ0 − θA, a non-zero vector, so the test

statistic will eventually reject, regardless of how small a significance

level is used.

• Note: if the test is based on a sub-vector of the entire parameter

vector of the MLE, it is possible that the inconsistency of the MLE

will not show up in the portion of the vector that has been used.

If this is the case, the test may not have power to detect the

inconsistency. This may occur, for example, when the consistent

but inefficient estimator is not identified for all the parameters

of the model.

Some things to note:



• The rank, ρ, of the difference of the asymptotic variances is often

less than the dimension of the matrices, and it may be difficult

to determine what the true rank is. If the true rank is lower than

what is taken to be true, the test will be biased against rejection

of the null hypothesis. The contrary holds if we underestimate

the rank.

• A solution to this problem is to use a rank 1 test, by comparing

only a single coefficient. For example, if a variable is suspected

of possibly being endogenous, that variable’s coefficients may be

compared.

• This simple formula only holds when the estimator that is being

tested for consistency is fully efficient under the null hypothesis.

This means that it must be a ML estimator or a fully efficient

estimator that has the same asymptotic distribution as the ML

estimator. This is quite restrictive since modern estimators such



Figure 14.6: Incorrect rank and the Hausman test



as GMM and QML are not in general fully efficient.

Following up on this last point, let’s think of two not necessarily ef-

ficient estimators, θ̂1 and θ̂2, where one is assumed to be consistent,

but the other may not be. We assume for expositional simplicity that

both θ̂1 and θ̂2 belong to the same parameter space, and that they can

be expressed as generalized method of moments (GMM) estimators.

The estimators are defined (suppressing the dependence upon data)

by

θ̂i = arg min
θi∈Θ

m
i
(θi)

′Wimi(θi)

where mi(θi) is a gi × 1 vector of moment conditions, and Wi is a gi ×
gi positive definite weighting matrix, i = 1, 2. Consider the omnibus



GMM estimator(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)′ m2(θ2)′

] [ W1 0(g1×g2)

0(g2×g1) W2

][
m1(θ1)

m2(θ2)

]
.

(14.6)

Suppose that the asymptotic covariance of the omnibus moment vec-

tor is

Σ = lim
n→∞

V ar

{
√
n

[
m1(θ1)

m2(θ2)

]}
(14.7)

≡

(
Σ1 Σ12

· Σ2

)
.

The standard Hausman test is equivalent to a Wald test of the equal-

ity of θ1 and θ2 (or subvectors of the two) applied to the omnibus

GMM estimator, but with the covariance of the moment conditions



estimated as

Σ̂ =

(
Σ̂1 0(g1×g2)

0(g2×g1) Σ̂2

)
.

While this is clearly an inconsistent estimator in general, the omitted

Σ12 term cancels out of the test statistic when one of the estimators is

asymptotically efficient, as we have seen above, and thus it need not

be estimated.

The general solution when neither of the estimators is efficient

is clear: the entire Σ matrix must be estimated consistently, since

the Σ12 term will not cancel out. Methods for consistently estimat-

ing the asymptotic covariance of a vector of moment conditions are

well-known, e.g., the Newey-West estimator discussed previously. The

Hausman test using a proper estimator of the overall covariance ma-

trix will now have an asymptotic χ2 distribution when neither estima-

tor is efficient. This is

However, the test suffers from a loss of power due to the fact that



the omnibus GMM estimator of equation 14.6 is defined using an in-

efficient weight matrix. A new test can be defined by using an alter-

native omnibus GMM estimator(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)′ m2(θ2)′

] (
Σ̃
)−1

[
m1(θ1)

m2(θ2)

]
, (14.8)

where Σ̃ is a consistent estimator of the overall covariance matrix

Σ of equation 14.7. By standard arguments, this is a more efficient

estimator than that defined by equation 14.6, so the Wald test us-

ing this alternative is more powerful. See my article in Applied Eco-
nomics, 2004, for more details, including simulation results. The Oc-

tave script hausman.m calculates the Wald test corresponding to the

efficient joint GMM estimator (the ”H2” test in my paper), for a simple

linear model.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/Hausman/hausman.m


14.16 Application: Nonlinear rational expec-
tations

Readings: Hansen and Singleton, 1982∗; Tauchen, 1986

Though GMM estimation has many applications, application to ra-

tional expectations models is elegant, since theory directly suggests

the moment conditions. Hansen and Singleton’s 1982 paper is also a

classic worth studying in itself. Though I strongly recommend reading

the paper, I’ll use a simplified model with similar notation to Hamil-

ton’s. The literature on estimation of these models has grown a lot

since these early papers. After work like the cited papers, people

moved to ML estimation of linearized models, using Kalman filter-

ing. Current methods are usually Bayesian, and involve sophisticated

filtering methods to compute the likelihood function for nonlinear

models with non-normal shocks. There is a lot of interesting stuff

that is beyond the scope of this course. I have done some work using



simulation-based estimation methods applied to such models. The

methods explained in this section are intended to provide an example

of GMM estimation. They are not the state of the art for estimation of

such models.

We assume a representative consumer maximizes expected dis-

counted utility over an infinite horizon. Utility is temporally additive,

and the expected utility hypothesis holds. The future consumption

stream is the stochastic sequence {ct}∞t=0 . The objective function at

time t is the discounted expected utility

∞∑
s=0

βsE (u(ct+s)|It) . (14.9)

• The parameter β is between 0 and 1, and reflects discounting.

• It is the information set at time t, and includes the all realizations

of random variables indexed t and earlier.



• The choice variable is ct - current consumption, which is con-

stained to be less than or equal to current wealth wt.

• Suppose the consumer can invest in a risky asset. A dollar in-

vested in the asset yields a gross return

(1 + rt+1) =
pt+1 + dt+1

pt

where pt is the price and dt is the dividend in period t. The price

of ct is normalized to 1.

• Current wealth wt = (1 + rt)it−1, where it−1 is investment in pe-

riod t− 1. So the problem is to allocate current wealth between

current consumption and investment to finance future consump-

tion: wt = ct + it.

• Future net rates of return rt+s, s > 0 are not known in period t:

the asset is risky.



A partial set of necessary conditions for utility maximization have the

form:

u′(ct) = βE {(1 + rt+1)u′(ct+1)|It} . (14.10)

To see that the condition is necessary, suppose that the lhs < rhs.

Then by reducing current consumption marginally would cause equa-

tion 14.9 to drop by u′(ct), since there is no discounting of the current

period. At the same time, the marginal reduction in consumption

finances investment, which has gross return (1 + rt+1) , which could

finance consumption in period t + 1. This increase in consumption

would cause the objective function to increase by βE {(1 + rt+1)u′(ct+1)|It} .
Therefore, unless the condition holds, the expected discounted utility

function is not maximized.

• To use this we need to choose the functional form of utility. A



constant relative risk aversion form is

u(ct) =
c1−γ
t − 1

1− γ

where γ is the coefficient of relative risk aversion. With this form,

u′(ct) = c−γt

so the foc are

c−γt = βE
{

(1 + rt+1) c−γt+1|It
}

While it is true that

E
(
c−γt − β

{
(1 + rt+1) c−γt+1

})
|It = 0

so that we could use this to define moment conditions, it is unlikely

that ct is stationary, even though it is in real terms, and our theory



requires stationarity. To solve this, divide though by c−γt

E

(
1-β

{
(1 + rt+1)

(
ct+1

ct

)−γ})
|It = 0

(note that ct can be passed though the conditional expectation since

ct is chosen based only upon information available in time t).

Now

1-β

{
(1 + rt+1)

(
ct+1

ct

)−γ}
is analogous to ht(θ) defined above: it’s a scalar moment condition.

To get a vector of moment conditions we need some instruments.

Suppose that zt is a vector of variables drawn from the information

set It. We can use the necessary conditions to form the expressions[
1− β (1 + rt+1)

(
ct+1
ct

)−γ]
zt ≡ mt(θ)

• θ represents β and γ.



• Therefore, the above expression may be interpreted as a mo-

ment condition which can be used for GMM estimation of the

parameters θ0.

Note that at time t, mt−s has been observed, and is therefore an ele-

ment of the information set. By rational expectations, the autocovari-

ances of the moment conditions other than Γ0 should be zero. The

optimal weighting matrix is therefore the inverse of the variance of

the moment conditions:

Ω∞ = limE
[
nm(θ0)m(θ0)′

]
which can be consistently estimated by

Ω̂ = 1/n

n∑
t=1

mt(θ̂)mt(θ̂)′

As before, this estimate depends on an initial consistent estimate of



θ, which can be obtained by setting the weighting matrix W arbitrar-

ily (to an identity matrix, for example). After obtaining θ̂, we then

minimize

s(θ) = m(θ)′Ω̂−1m(θ).

This process can be iterated, e.g., use the new estimate to re-estimate

Ω, use this to estimate θ0, and repeat until the estimates don’t change.

• In principle, we could use a very large number of moment condi-

tions in estimation, since any current or lagged variable could be

used in xt. Since use of more moment conditions will lead to a

more (asymptotically) efficient estimator, one might be tempted

to use many instrumental variables. We will do a computer lab

that will show that this may not be a good idea with finite sam-

ples. This issue has been studied using Monte Carlos (Tauchen,

JBES, 1986). The reason for poor performance when using many

instruments is that the estimate of Ω becomes very imprecise.



• Empirical papers that use this approach often have serious prob-

lems in obtaining precise estimates of the parameters, and iden-

tification can be problematic. Note that we are basing every-

thing on a single partial first order condition. Probably this f.o.c.

is simply not informative enough.

14.17 Empirical example: a portfolio model

The Octave program portfolio.m performs GMM estimation of a port-

folio model, using the data file tauchen.data. The columns of this data

file are c, p, and d in that order. There are 95 observations (source:

Tauchen, JBES, 1986). As instruments we use lags of c and r, as

well as a constant. For a single lag the estimation results are

MPITB extensions found

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/portfolio.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/tauchen.data


******************************************************

Example of GMM estimation of rational expectations model

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.000014

Observations: 94

Value df p-value

X^2 test 0.001 1.000 0.971

estimate st. err t-stat p-value

beta 0.915 0.009 97.271 0.000

gamma 0.569 0.319 1.783 0.075



******************************************************

For two lags the estimation results are

MPITB extensions found

******************************************************

Example of GMM estimation of rational expectations model

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.037882

Observations: 93



Value df p-value

X^2 test 3.523 3.000 0.318

estimate st. err t-stat p-value

beta 0.857 0.024 35.636 0.000

gamma -2.351 0.315 -7.462 0.000

******************************************************

Pretty clearly, the results are sensitive to the choice of instruments.

Maybe there is some problem here: poor instruments, or possibly a

conditional moment that is not very informative. Moment conditions

formed from Euler conditions sometimes do not identify the param-

eter of a model. See Hansen, Heaton and Yarron, (1996) JBES V14,

N3. Is that a problem here, (I haven’t checked it carefully)?



14.18 Exercises

1. Do the exercises in section 14.10.

2. Show how the GIV estimator presented in section 14.10 can be

adapted to account for an error term with HET and/or AUT.

3. For the GIV estimator presented in section 14.10, find the form

of the expressions I∞(θ0) and J∞(θ0) that appear in the asymp-

totic distribution of the estimator, assuming that an efficient

weight matrix is used.

4. The Octave script meps.m estimates a model for office-based

doctpr visits (OBDV) using two different moment conditions, a

Poisson QML approach and an IV approach. If all conditioning

variables are exogenous, both approaches should be consistent.

If the PRIV variable is endogenous, only the IV approach should

be consistent. Neither of the two estimators is efficient in any

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/MEPS/meps.m


case, since we already know that this data exhibits variability

that exceeds what is implied by the Poisson model (e.g., nega-

tive binomial and other models fit much better). Test the exo-

geneity of the variable PRIV with a GMM-based Hausman-type

test, using the Octave script hausman.m for hints about how to

set up the test.

5. Using Octave, generate data from the logit dgp. The script Esti-

mateLogit.m should prove quite helpful.

(a) Recall that E(yt|xt) = p(xt, θ) = [1 + exp(−xt′θ)]−1. Con-

sider the moment condtions (exactly identified) mt(θ) =

[yt − p(xt, θ)]xtEstimate by GMM (using gmm_results), us-

ing these moments.

(b) Estimate by ML (using mle_results).

(c) The two estimators should coincide. Prove analytically that

the estimators coicide.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/Hausman/hausman.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


6. Verify the missing steps needed to show that n·m(θ̂)′Ω̂−1m(θ̂) has

a χ2(g −K) distribution. That is, show that the monster matrix

is idempotent and has trace equal to g −K.

7. For the portfolio example, experiment with the program using

lags of 3 and 4 periods to define instruments

(a) Iterate the estimation of θ = (β, γ) and Ω to convergence.

(b) Comment on the results. Are the results sensitive to the set

of instruments used? Look at Ω̂ as well as θ̂. Are these good

instruments? Are the instruments highly correlated with

one another? Is there something analogous to collinearity

going on here?

8. Run the Octave script GMM/chi2gmm.m with several sample

sizes. Do the results you obtain seem to agree with the con-

sistency of the GMM estimator? Explain.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2gmm.m


9. The GMM estimator with an arbitrary weight matrix has the

asymptotic distribution

√
n
(
θ̂ − θ0

)
d→ N

[
0, (D∞W∞D

′
∞)
−1
D∞W∞Ω∞W∞D

′
∞ (D∞W∞D

′
∞)
−1
]

Supposing that you compute a GMM estimator using an arbi-

trary weight matrix, so that this result applies. Carefully ex-

plain how you could test the hypothesis H0 : Rθ0 = r versus

HA : Rθ0 6= r, where R is a given q × k matrix, and r is a given

q × 1 vector. I suggest that you use a Wald test. Explain exactly

what is the test statistic, and how to compute every quantity that

appears in the statistic.

10. (proof that the GMM optimal weight matrix is one such that

W∞ = Ω−1
∞ ) Consider the difference of the asymptotic variance

using an arbitrary weight matrix, minus the asymptotic variance



using the optimal weight matrix:

A = (D∞W∞D
′
∞)
−1
D∞W∞Ω∞W∞D

′
∞ (D∞W∞D

′
∞)
−1 −

(
D∞Ω−1

∞D
′
∞
)−1

Set B = (D∞W∞D
′
∞)−1D∞W∞ −

(
D∞Ω−1

∞D
′
∞
)−1

D∞Ω−1
∞ . Verify

that A = BΩ∞B
′
. What is the implication of this? Explain.

11. Recall the dynamic model with measurement error that was dis-

cussed in class:

y∗t = α + ρy∗t−1 + βxt + εt

yt = y∗t + υt

where εt and υt are independent Gaussian white noise errors.

Suppose that y∗t is not observed, and instead we observe yt. If

we estimate the equation

yt = α + ρyt−1 + βxt + νt



The Octave script GMM/SpecTest.m performs a Monte Carlo

study of the performance of the GMM criterion test,

n · sn(θ̂)
d→ χ2(g −K)

Examine the script and describe what it does. Run this script to

verify that the test over-rejects. Increase the sample size, to de-

termine if the over-rejection problem becomes less severe. Dis-

cuss your findings.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/SpecTest.m


Chapter 15

Introduction to panel

data
Reference: Cameron and Trivedi, 2005, Microeconometrics: Methods
and Applications, Part V, Chapters 21 and 22 (plus 23 if you have

special interest in the topic).

In this chapter we’ll look at panel data. Panel data is an important

687



area in applied econometrics, simply because much of the available

data has this structure. Also, it provides an example where things

we’ve already studied (GLS, endogeneity, GMM, Hausman test) come

into play. There has been much work in this area, and the intention

is not to give a complete overview, but rather to highlight the issues

and see how the tools we have studied can be applied.

15.1 Generalities

Panel data combines cross sectional and time series data: we have a

time series for each of the agents observed in a cross section. The ad-

dition of temporal information can in principle allow us to investigate

issues such as persistence, habit formation, and dynamics. Starting

from the perspective of a single time series, the addition of cross-

sectional information allows investigation of heterogeneity. In both

cases, if parameters are common across units or over time, the addi-



tional data allows for more precise estimation.

The basic idea is to allow variables to have two indices, i = 1, 2, ..., n

and t = 1, 2, ..., T . The simple linear model

yi = α + xiβ + εi

becomes

yit = α + xitβ + εit

We could think of allowing the parameters to change over time and

over cross sectional units. This would give

yit = αit + xitβit + εit

The problem here is that there are more parameters than observa-

tions, to the model is not identified. We need some restraint! The

proper restrictions to use of course depend on the problem at hand,

and a single model is unlikely to be appropriate for all situations.



For example, one could have time and cross-sectional dummies, and

slopes that vary by time:

yit = αi + αt + xitβt + εit

There is a lot of room for playing around here. We also need to con-

sider whether or not n and T are fixed or growing. We’ll need at least

one of them to be growing in order to do asymptotics.

To provide some focus, we’ll consider common slope parameters,

but agent-specific intercepts, which:

yit = αi + xitβ + εit (15.1)

I will refer to this as the ”simple linear panel model”. This is the

model most often encountered in the applied literature. It is like the

original cross-sectional model, in that the β′s are constant over time

for all i. However we’re now allowing for the constant to vary across



i (some individual heterogeneity). The β′s are fixed over time, which

is a testable restriction, of course. We can consider what happens as

n → ∞ but T is fixed. This would be relevant for microeconometric

panels, (e.g., the PSID data) where a survey of a large number of in-

dividuals may be done for a limited number of time periods. Macroe-

conometric applications might look at longer time series for a small

number of cross-sectional units (e.g., 40 years of quarterly data for

15 European countries). For that case, we could keep n fixed (seems

appropriate when dealing with the EU countries), and do asymptotics

as T increases, as is normal for time series. The asymptotic results

depend on how we do this, of course.

Why bother using panel data, what are the benefits? The model

yit = αi + xitβ + εit



is a restricted version of

yit = αi + xitβi + εit

which could be estimated for each i in turn. Why use the panel ap-

proach?

• Because the restrictions that βi = βj = ... = β, if true, lead to

more efficient estimation. Estimation for each i in turn will be

very uninformative if T is small.

• Another reason is that panel data allows us to estimate parame-

ters that are not identified by cross sectional (time series) data.

For example, if the model is

yit = αi + αt + xitβt + εit

and we have only cross sectional data, we cannot estimate the

αi. If we have only time series data on a single cross sectional



unit i = 1, we cannot estimate the αt. Cross-sectional variation

allows us to estimate parameters indexed by time, and time se-

ries variation allows us to estimate parameters indexed by cross-

sectional unit. Parameters indexed by both i and t will require

other forms of restrictions in order to be estimable.

The main issues are:

• can β be estimated consistently? This is almost always a goal.

• can the αi be estimated consistently? This is often of secondary

interest.

• sometimes, we’re interested in estimating the distribution of αi
across i.

• are the αi correlated with xit?

• does the presence of αi complicate estimation of β?



• what about the covariance stucture? We’re likely to have HET

and AUT, so GLS issue will probably be relevant. Potential for

efficiency gains.

15.2 Static issues and panel data

To begin with, assume that the xit are weakly exogenous variables

(uncorrelated with εit), and that the model is static: xit does not con-

tain lags of yit. The basic problem we have in the panel data model

yit = αi + xitβ + εit is the presence of the αi. These are individual-

specific parameters. Or, possibly more accurately, they can be thought

of as individual-specific variables that are not observed (latent vari-

ables). The reason for thinking of them as variables is because the

agent may choose their values following some process.

Define α = E(αi), so E(αi − α) = 0. Our model yit = αi + xitβ + εit



may be written

yit = αi + xitβ + εit

= α + xitβ + (αi − α + εit)

= α + xitβ + ηit

Note that E(ηit) = 0. A way of thinking about the data generating

process is this: First, αi is drawn, either in turn from the set of n fixed

values, or randomly, and then x is drawn from fX(z|αi). In either case,

the important point is that the distribution of x may vary depending

on the realization, αi. Thus, there may be correlation between αi and

xit, which means that E(xitηit) 6=0 in the above equation. This means

that OLS estimation of the model would lead to biased and incon-

sistent estimates. However, it is possible (but unlikely for economic

data) that xit and ηit are independent or at least uncorrelated, if the

distribution of xit is constant with respect to the realization of αi. In



this case OLS estimation would be consistent.

Fixed effects: when E(xitηit) 6=0, the model is called the ”fixed

effects model”

Random effects: when E(xitηit) = 0, the model is called the ”ran-

dom effects model”.

I find this to be pretty poor nomenclature, because the issue is

not whether ”effects” are fixed or random (they are always random,

unconditional on i). The issue is whether or not the ”effects” are cor-

related with the other regressors. In economics, it seems likely that

the unobserved variable α is probably correlated with the observed

regressors, x (this is simply the presence of collinearity between ob-

served and unobserved variables, and collinearity is usually the rule

rather than the exception). So, we expect that the ”fixed effects”

model is probably the relevant one unless special circumstances mean

that the αi are uncorrelated with the xit.



15.3 Estimation of the simple linear panel
model

”Fixed effects”: The ”within” estimator

How can we estimate the parameters of the simple linear panel model

(equation 15.1) and what properties do the estimators have? First, we

assume that the αi are correlated with the xit (”fixed effects” model

). The model can be written as yit = α + xitβ + ηit, and we have

that E(xitηit) 6=0. As such, OLS estimation of this model will give

biased an inconsistent estimated of the parameters α and β. The

”within” estimator is a solution - this involves subtracting the time



series average from each cross sectional unit.

xi =
1

T

T∑
t=1

xit

εi =
1

T

T∑
t=1

εit

yi =
1

T

T∑
t=1

yit = αi +
1

T

T∑
t=1

xitβ +
1

T

T∑
t=1

εit

yi = αi + xiβ + εi (15.2)

The transformed model is

yit − yi = αi + xitβ + εit − αi − xiβ − εi (15.3)

y∗it = x∗itβ + ε∗it

where x∗it = xit − xi and ε∗it = εit − εi. In this model, it is clear that

x∗it and ε∗it are uncorrelated, as long as the original regressors xit are



strongly exogenous with respect to the original error εit (E(xitεis) =

0, ∀t, s). Thus OLS will give consistent estimates of the parameters of

this model, β.

What about the αi? Can they be estimated? An estimator is

α̂i =
1

T

T∑
t=1

(
yit − xitβ̂

)
It’s fairly obvious that this is a consistent estimator if T → ∞. For

a short panel with fixed T, this estimator is not consistent. Never-

theless, the variation in the α̂i can be fairly informative about the

heterogeneity. A couple of notes:

• an equivalent approach is to estimate the model

yit =

n∑
j=1

dj,itαi + xitβ + εit



by OLS. The dj, j = 1, 2, ..., n are n dummy variables that take

on the value 1 if j = 1, zero otherwise. They are indicators

of the cross sectional unit of the observation. (Write out form

of regressor matrix on blackboard). Estimating this model by

OLS gives numerically exactly the same results as the ”within”

estimator, and you get the α̂i automatically. See Cameron and

Trivedi, section 21.6.4 for details. An interesting and important

result known as the Frisch-Waugh-Lovell Theorem can be used

to show that the two means of estimation give identical results.

• This last expression makes it clear why the ”within” estima-

tor cannot estimate slope coefficients corresponding to variables

that have no time variation. Such variables are perfectly collinear

with the cross sectional dummies dj. The corresponding coeffi-

cients are not identified.

• OLS estimation of the ”within” model is consistent, but proba-



bly not efficient, because it is highly probable that the εit are

not iid. There is very likely heteroscedasticity across the i and

autocorrelation between the T observations corresponding to

a given i. One needs to estimate the covariance matrix of the
parameter estimates taking this into account. It is possible to

use GLS corrections if you make assumptions regarding the het.

and autocor. Quasi-GLS, using a possibly misspecified model of

the error covariance, can lead to more efficient estimates than

simple OLS. One can then combine it with subsequent panel-

robust covariance estimation to deal with the misspecification

of the error covariance, which would invalidate inferences if ig-

nored. The White heteroscedasticity consistent covariance esti-

mator is easily extended to panel data with independence across

i, but with heteroscedasticity and autocorrelation within i, and

heteroscedasticity between i. See Cameron and Trivedi, Section

21.2.3.



Estimation with random effects

The original model is

yit = αi + xitβ + εit

This can be written as

yit = α + xitβ + (αi − α + εit)

yit = α + xitβ + ηit (15.4)

where E(ηit) = 0, and E(xitηit) = 0. As such, the OLS estimator of

this model is consistent. We can recover estimates of the αi as dis-

cussed above. It is to be noted that the error ηit is almost certainly

heteroscedastic and autocorrelated, so OLS will not be efficient, and

inferences based on OLS need to be done taking this into account.

One could attempt to use GLS, or panel-robust covariance matrix es-

timation, or both, as above.



There are other estimators when we have random effects, a well-

known example being the ”between” estimator, which operates on the

time averages of the cross sectional units. There is no advantage to

doing this, as the overall estimator is already consistent, and aver-

aging looses information (efficiency loss). One would still need to

deal with cross sectional heteroscedasticity when using the between

estimator, so there is no gain in simplicity, either.

It is to be emphasized that ”random effects” is not a plausible as-

sumption with most economic data, so use of this estimator is dis-

couraged, even if your statistical package offers it as an option. Think

carefully about whether the assumption is warranted before trusting

the results of this estimator.



Hausman test

Suppose you’re doubting about whether fixed or random effects are

present. If we have fixed effects, then the ”within” estimator will be

consistent, but the estimator of the previous section will not. Evidence

that the two estimators are converging to different limits is evidence

in favor of fixed effects, not random effects. A Hausman test statistic

can be computed, using the difference between the two estimators.

The null hypothesis is ”random effects” so that both estimators are

consistent. When the test rejects, we conclude that fixed effects are

present, so the ”within” estimator should be used. Now, what hap-

pens if the test does not reject? One could optimistically turn to the

random effects model, but it’s probably more realistic to conclude that

the test may have low power. Failure to reject does not mean that the

null hypothesis is true. After all, estimation of the covariance matri-

ces needed to compute the Hausman test is a non-trivial issue, and is



a source of considerable noise in the test statistic (noise=low power).

Finally, the simple version of the Hausman test requires that the esti-

mator under the null be fully efficient. Achieving this goal is probably

a utopian prospect. A conservative approach would acknowledge that

neither estimator is likely to be efficient, and to operate accordingly.

I have a little paper on this topic, Creel, Applied Economics, 2004. See

also Cameron and Trivedi, section 21.4.3.

15.4 Dynamic panel data

When we have panel data, we have information on both yit as well

as yi,t−1. One may naturally think of including yi,t−1 as a regressor, to

capture dynamic effects that can’t be analyed with only cross-sectional

data. Excluding dynamic effects is often the reason for detection of

spurious AUT of the errors. With dynamics, there is likely to be less of

a problem of autocorrelation, but one should still be concerned that



some might still be present. The model becomes

yit = αi + γyi,t−1 + xitβ + εit

yit = α + γyi,t−1 + xitβ + (αi − α + εit)

yit = α + γyi,t−1 + xitβ + ηit

We assume that the xit are uncorrelated with εit. Note that αi is a

component that determines both yit and its lag, yi,t−1. Thus, αi and

yi,t−1 are correlated, even if the αi are pure random effects (uncorre-

lated with xit). So, yi,t−1 is correlated with ηit. For this reason, OLS

estimation is inconsistent even for the random effects model, and it’s

also of course still inconsistent for the fixed effects model. When re-

gressors are correlated with the errors, the natural thing to do is start

thinking of instrumental variables estimation, or GMM.

To illustrate, consider a simple linear dynamic panel model

yit = αi + φ0yit−1 + εit (15.5)



where εit ∼ N(0, 1), αi ∼ N(0, 1), φ0 = 0, 0.3, 0.6, 0.9 and αi and εi

are independently distributed. Tables 15.1 and 15.2 present bias and

RMSE for the ”within” estimator (labeled as ML) and some simulation-

based estimators. Note that the ”within” estimator is very biased, and

has a large RMSE. The overidentified SBIL estimator has the lowest

RMSE. Simulation-based estimators are discussed in a later Chapter.

Perhaps these results will stimulate your interest.



Table 15.1: Dynamic panel data model. Bias. Source for ML and
II is Gouriéroux, Phillips and Yu, 2010, Table 2. SBIL, SMIL and II
are exactly identified, using the ML auxiliary statistic. SBIL(OI) and
SMIL(OI) are overidentified, using both the naive and ML auxiliary
statistics.

T N φ ML II SBIL SBIL(OI)
5 100 0.0 -0.199 0.001 0.004 -0.000
5 100 0.3 -0.274 -0.001 0.003 -0.001
5 100 0.6 -0.362 0.000 0.004 -0.001
5 100 0.9 -0.464 0.000 -0.022 -0.000
5 200 0.0 -0.200 0.000 0.001 0.000
5 200 0.3 -0.275 -0.010 0.001 -0.001
5 200 0.6 -0.363 -0.000 0.001 -0.001
5 200 0.9 -0.465 -0.003 -0.010 0.001



Table 15.2: Dynamic panel data model. RMSE. Source for ML and
II is Gouriéroux, Phillips and Yu, 2010, Table 2. SBIL, SMIL and II
are exactly identified, using the ML auxiliary statistic. SBIL(OI) and
SMIL(OI) are overidentified, using both the naive and ML auxiliary
statistics.

T N φ ML II SBIL SBIL(OI)
5 100 0.0 0.204 0.057 0.059 0.044
5 100 0.3 0.278 0.081 0.065 0.041
5 100 0.6 0.365 0.070 0.071 0.036
5 100 0.9 0.467 0.076 0.059 0.033
5 200 0.0 0.203 0.041 0.041 0.031
5 200 0.3 0.277 0.074 0.046 0.029
5 200 0.6 0.365 0.050 0.050 0.025
5 200 0.9 0.467 0.054 0.046 0.027



Arellano-Bond estimator

The first thing is to realize that the αi that are a component of the

error are correlated with all regressors in the general case of fixed ef-

fects. Getting rid of the αi is a step in the direction of solving the prob-

lem. We could subtract the time averages, as above for the ”within”

estimator, but this would give us problems later when we need to

define instruments. Instead, consider the model in first differences

yit − yi,t−1 = αi + γyi,t−1 + xitβ + εit − αi − γyi,t−2 − xi,t−1β − εi,t−1

yit − yi,t−1 = γ (yi,t−1 − yi,t−2) + (xit − xi,t−1) β + εit − εi,t−1

or

∆yit = γ∆yi,t−1 + ∆xitβ + ∆εit

Now the pesky αi are no longer in the picture. Note that we loose

one observation when doing first differencing. OLS estimation of this

model will still be inconsistent, because yi,t−1is clearly correlated with



εi,t−1. Note also that the error ∆εit is serially correlated even if the εit
are not. There is no problem of correlation between ∆xit and ∆εit.

Thus, to do GMM, we need to find instruments for ∆yi,t−1, but the

variables in ∆xit can serve as their own instruments.

How about using yi.t−2 as an instrument? It is clearly correlated

with ∆yi,t−1 = (yi,t−1 − yi,t−2), and as long as the εit are not serially cor-

related, then yi.t−2 is not correlated with ∆εit = εit− εi,t−1. We can also

use additional lags yi.t−s, s ≥ 2 to increase efficiency, because GMM

with additional instruments is asymptotically more efficient than with

less instruments. This sort of estimator is widely known in the litera-

ture as an Arellano-Bond estimator, due to the influential 1991 paper

of Arellano and Bond (1991).

• Note that this sort of estimators requires T = 3 at a minimum.

Suppose T = 4. Then for t = 1 and t = 2, we cannot compute

the moment conditions. For t = 3, we can compute the mo-

ment conditions using a single lag yi,1 as an instrument. When



t = 4, we can use both yi,1 and yi,2 as instruments. This sort of

unbalancedness in the instruments requires a bit of care when

programming. Also, additional instruments increase asymptotic

efficiency but can lead to increased small sample bias, so one

should be a little careful with using too many instruments. Some

robustness checks, looking at the stability of the estimates are a

way to proceed.

• One should note that serial correlation of the εit will cause this

estimator to be inconsistent. Serial correlation of the errors may
be due to dynamic misspecification, and this can be solved by

including additional lags of the dependent variable. However,

serial correlation may also be due to factors not captured in lags

of the dependent variable. If this is a possibility, then the validity

of the Arellano-Bond type instruments is in question.

• A final note is that the error ∆εit is serially correlated, and very



likely heteroscedastic across i. One needs to take this into ac-

count when computing the covariance of the GMM estimator.

One can also attempt to use GLS style weighting to improve ef-

ficiency. There are many possibilities.

15.5 Exercises

1. In the context of a dynamic model with fixed effects, why is the

differencing used in the ”within” estimation approach (equation

15.3) problematic? That is, why does the Arellano-Bond estima-

tor operate on the model in first differences instead of using the

within approach?

2. Consider the simple linear panel data model with random effects

(equation 15.4). Suppose that the εit are independent across

cross sectional units, so that E(εitεjs) = 0, i 6= j, ∀t, s. With a



cross sectional unit, the errors are independently and identically

distributed, so E(ε2
it) = σ2

i , but E(εitεis) = 0, t 6= s. More com-

pactly, let εi =
[
εi1 εi2 · · · εiT

]′
. Then the assumptions are that

E(εiε
′
i) = σ2

i IT , and E(εiε
′
j) = 0, i 6= j.

(a) write out the form of the entire covariance matrix (nT×nT )

of all errors, Σ = E(εε′), where ε =
[
ε′1 ε′2 · · · ε′T

]′
is the

column vector of nT errors.

(b) suppose that n is fixed, and consider asymptotics as T grows.

Is it possible to estimate the Σi consistently? If so, how?

(c) suppose that T is fixed, and consider asymptotics an n grows.

Is it possible to estimate the Σi consistently? If so, how?

(d) For one of the two preceeding parts (b) and (c), consis-

tent estimation is possible. For that case, outline how to do

”within” estimation using a GLS correction.



Chapter 16

Quasi-ML
Quasi-ML is the estimator one obtains when a misspecified probability

model is used to calculate an ”ML” estimator.

Given a sample of size n of a random vector y and a vector of con-

ditioning variables x, suppose the joint density of Y =
(
y1 . . . yn

)
conditional on X =

(
x1 . . . xn

)
is a member of the parametric fam-

ily pY(Y|X, ρ), ρ ∈ Ξ. The true joint density is associated with the

715



vector ρ0 :

pY(Y|X, ρ0).

As long as the marginal density of X doesn’t depend on ρ0, this con-

ditional density fully characterizes the random characteristics of sam-

ples: i.e., it fully describes the probabilistically important features of

the d.g.p. The likelihood function is just this density evaluated at other

values ρ

L(Y|X, ρ) = pY(Y|X, ρ), ρ ∈ Ξ.

• Let Yt−1 =
(
y1 . . . yt−1

)
, Y0 = 0, and let Xt =

(
x1 . . . xt

)
The likelihood function, taking into account possible dependence



of observations, can be written as

L(Y|X, ρ) =

n∏
t=1

pt(yt|Yt−1,Xt, ρ)

≡
n∏
t=1

pt(ρ)

• The average log-likelihood function is:

sn(ρ) =
1

n
lnL(Y|X, ρ) =

1

n

n∑
t=1

ln pt(ρ)

• Suppose that we do not have knowledge of the family of densi-

ties pt(ρ). Mistakenly, we may assume that the conditional den-

sity of yt is a member of the family ft(yt|Yt−1,Xt, θ), θ ∈ Θ,

where there is no θ0 such that ft(yt|Yt−1,Xt, θ
0) = pt(yt|Yt−1,Xt, ρ

0),∀t
(this is what we mean by “misspecified”).



• This setup allows for heterogeneous time series data, with dy-

namic misspecification.

The QML estimator is the argument that maximizes the misspecified

average log likelihood, which we refer to as the quasi-log likelihood

function. This objective function is

sn(θ) =
1

n

n∑
t=1

ln ft(yt|Yt−1,Xt, θ
0)

≡ 1

n

n∑
t=1

ln ft(θ)

and the QML is

θ̂n = arg max
Θ

sn(θ)

A SLLN for dependent sequences applies (we assume), so that

sn(θ)
a.s.→ lim

n→∞
E 1

n

n∑
t=1

ln ft(θ) ≡ s∞(θ)



We assume that this can be strengthened to uniform convergence,

a.s., following the previous arguments. The “pseudo-true” value of θ

is the value that maximizes s̄(θ):

θ0 = arg max
Θ

s∞(θ)

Given assumptions so that theorem 28 is applicable, we obtain

lim
n→∞

θ̂n = θ0, a.s.

• Applying the asymptotic normality theorem,

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
where

J∞(θ0) = lim
n→∞
ED2

θsn(θ0)

and

I∞(θ0) = lim
n→∞

V ar
√
nDθsn(θ0).



• Note that asymptotic normality only requires that the additional

assumptions regarding J and I hold in a neighborhood of θ0 for

J and at θ0, for I, not throughout Θ. In this sense, asymptotic

normality is a local property.

16.1 Consistent Estimation of Variance Com-
ponents

Consistent estimation of J∞(θ0) is straightforward. Assumption (b) of

Theorem 30 implies that

Jn(θ̂n) =
1

n

n∑
t=1

D2
θ ln ft(θ̂n)

a.s.→ lim
n→∞
E 1

n

n∑
t=1

D2
θ ln ft(θ

0) = J∞(θ0).

That is, just calculate the Hessian using the estimate θ̂n in place of θ0.

Consistent estimation of I∞(θ0) is more difficult, and may be im-



possible.

• Notation: Let gt ≡ Dθft(θ
0)

We need to estimate

I∞(θ0) = lim
n→∞

V ar
√
nDθsn(θ0)

= lim
n→∞

V ar
√
n

1

n

n∑
t=1

Dθ ln ft(θ
0)

= lim
n→∞

1

n
V ar

n∑
t=1

gt

= lim
n→∞

1

n
E

{(
n∑
t=1

(gt − Egt)

)(
n∑
t=1

(gt − Egt)

)′}

This is going to contain a term

lim
n→∞

1

n

n∑
t=1

(Egt) (Egt)′



which will not tend to zero, in general. This term is not consistently

estimable in general, since it requires calculating an expectation using

the true density under the d.g.p., which is unknown.

• There are important cases where I∞(θ0) is consistently estimable.

For example, suppose that the data come from a random sample

(i.e., they are iid). This would be the case with cross sectional

data, for example. (Note: under i.i.d. sampling, the joint dis-

tribution of (yt, xt) is identical. This does not imply that the

conditional density f (yt|xt) is identical).

• With random sampling, the limiting objective function is simply

s∞(θ0) = EXE0 ln f (y|x, θ0)

where E0 means expectation of y|x and EX means expectation

respect to the marginal density of x.

• By the requirement that the limiting objective function be maxi-



mized at θ0 we have

DθEXE0 ln f (y|x, θ0) = Dθs∞(θ0) = 0

• The dominated convergence theorem allows switching the order

of expectation and differentiation, so

DθEXE0 ln f (y|x, θ0) = EXE0Dθ ln f (y|x, θ0) = 0

The CLT implies that

1√
n

n∑
t=1

Dθ ln f (y|x, θ0)
d→ N(0, I∞(θ0)).

That is, it’s not necessary to subtract the individual means, since

they are zero. Given this, and due to independent observations,



a consistent estimator is

Î =
1

n

n∑
t=1

Dθ ln ft(θ̂)Dθ′ ln ft(θ̂)

This is an important case where consistent estimation of the covari-

ance matrix is possible. Other cases exist, even for dynamically mis-

specified time series models.

16.2 Example: the MEPS Data

To check the plausibility of the Poisson model for the MEPS data,

we can compare the sample unconditional variance with the esti-

mated unconditional variance according to the Poisson model: V̂ (y) =∑n
t=1 λ̂t
n . Using the program PoissonVariance.m, for OBDV and ERV, we

get We see that even after conditioning, the overdispersion is not cap-

tured in either case. There is huge problem with OBDV, and a sig-

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/PoissonVariance.m


Table 16.1: Marginal Variances, Sample and Estimated (Poisson)

OBDV ERV
Sample 38.09 0.151

Estimated 3.28 0.086

nificant problem with ERV. In both cases the Poisson model does not

appear to be plausible. You can check this for the other use measures

if you like.

Infinite mixture models: the negative binomial model

Reference: Cameron and Trivedi (1998) Regression analysis of count
data, chapter 4.

The two measures seem to exhibit extra-Poisson variation. To cap-

ture unobserved heterogeneity, a possibility is the random parameters
approach. Consider the possibility that the constant term in a Poisson



model were random:

fY (y|x, ε) =
exp(−θ)θy

y!
θ = exp(x′β + ε)

= exp(x′β) exp(ε)

= λν

where λ = exp(x′β) and ν = exp(ε). Now ν captures the randomness

in the constant. The problem is that we don’t observe ν, so we will

need to marginalize it to get a usable density

fY (y|x) =

∫ ∞
−∞

exp[−θ]θy

y!
fv(z)dz

This density can be used directly, perhaps using numerical integration

to evaluate the likelihood function. In some cases, though, the inte-

gral will have an analytic solution. For example, if ν follows a certain



one parameter gamma density, then

fY (y|x, φ) =
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ(
λ

ψ + λ

)y
(16.1)

where φ = (λ, ψ). ψ appears since it is the parameter of the gamma

density.

• For this density, E(y|x) = λ, which we have parameterized λ =

exp(x′β)

• The variance depends upon how ψ is parameterized.

– If ψ = λ/α, where α > 0, then V (y|x) = λ+αλ. Note that λ

is a function of x, so that the variance is too. This is referred

to as the NB-I model.

– If ψ = 1/α, where α > 0, then V (y|x) = λ + αλ2. This is

referred to as the NB-II model.



So both forms of the NB model allow for overdispersion, with the

NB-II model allowing for a more radical form.

Testing reduction of a NB model to a Poisson model cannot be

done by testing α = 0 using standard Wald or LR procedures. The

critical values need to be adjusted to account for the fact that α = 0 is

on the boundary of the parameter space. Without getting into details,

suppose that the data were in fact Poisson, so there is equidispersion

and the true α = 0. Then about half the time the sample data will

be underdispersed, and about half the time overdispersed. When the

data is underdispersed, the MLE of α will be α̂ = 0. Thus, under the

null, there will be a probability spike in the asymptotic distribution of√
n(α̂−α) =

√
nα̂ at 0, so standard testing methods will not be valid.

This program will do estimation using the NB model. Note how

modelargs is used to select a NB-I or NB-II density. Here are NB-I

estimation results for OBDV:

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


MPITB extensions found

OBDV

======================================================

BFGSMIN final results

Used analytic gradient

------------------------------------------------------

STRONG CONVERGENCE

Function conv 1 Param conv 1 Gradient conv 1

------------------------------------------------------

Objective function value 2.18573

Stepsize 0.0007

17 iterations

------------------------------------------------------

param gradient change

1.0965 0.0000 -0.0000



0.2551 -0.0000 0.0000

0.2024 -0.0000 0.0000

0.2289 0.0000 -0.0000

0.1969 0.0000 -0.0000

0.0769 0.0000 -0.0000

0.0000 -0.0000 0.0000

1.7146 -0.0000 0.0000

******************************************************

Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results

BFGS convergence: Normal convergence

Average Log-L: -2.185730

Observations: 4564

estimate st. err t-stat p-value

constant -0.523 0.104 -5.005 0.000



pub. ins. 0.765 0.054 14.198 0.000

priv. ins. 0.451 0.049 9.196 0.000

sex 0.458 0.034 13.512 0.000

age 0.016 0.001 11.869 0.000

edu 0.027 0.007 3.979 0.000

inc 0.000 0.000 0.000 1.000

alpha 5.555 0.296 18.752 0.000

Information Criteria

CAIC : 20026.7513 Avg. CAIC: 4.3880

BIC : 20018.7513 Avg. BIC: 4.3862

AIC : 19967.3437 Avg. AIC: 4.3750

******************************************************

Note that the parameter values of the last BFGS iteration are dif-

ferent that those reported in the final results. This reflects two things

- first, the data were scaled before doing the BFGS minimization, but

the mle_results script takes this into account and reports the results



using the original scaling. But also, the parameterization α = exp(α∗)

is used to enforce the restriction that α > 0. The unrestricted param-

eter α∗ = logα is used to define the log-likelihood function, since the

BFGS minimization algorithm does not do contrained minimization.

To get the standard error and t-statistic of the estimate of α, we need

to use the delta method. This is done inside mle_results, making use

of the function parameterize.m .

Likewise, here are NB-II results:

MPITB extensions found

OBDV

======================================================

BFGSMIN final results

Used analytic gradient

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/parameterize.m


------------------------------------------------------

STRONG CONVERGENCE

Function conv 1 Param conv 1 Gradient conv 1

------------------------------------------------------

Objective function value 2.18496

Stepsize 0.0104394

13 iterations

------------------------------------------------------

param gradient change

1.0375 0.0000 -0.0000

0.3673 -0.0000 0.0000

0.2136 0.0000 -0.0000

0.2816 0.0000 -0.0000

0.3027 0.0000 0.0000

0.0843 -0.0000 0.0000

-0.0048 0.0000 -0.0000

0.4780 -0.0000 0.0000



******************************************************

Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results

BFGS convergence: Normal convergence

Average Log-L: -2.184962

Observations: 4564

estimate st. err t-stat p-value

constant -1.068 0.161 -6.622 0.000

pub. ins. 1.101 0.095 11.611 0.000

priv. ins. 0.476 0.081 5.880 0.000

sex 0.564 0.050 11.166 0.000

age 0.025 0.002 12.240 0.000

edu 0.029 0.009 3.106 0.002

inc -0.000 0.000 -0.176 0.861

alpha 1.613 0.055 29.099 0.000



Information Criteria

CAIC : 20019.7439 Avg. CAIC: 4.3864

BIC : 20011.7439 Avg. BIC: 4.3847

AIC : 19960.3362 Avg. AIC: 4.3734

******************************************************

• For the OBDV usage measurel, the NB-II model does a slightly

better job than the NB-I model, in terms of the average log-

likelihood and the information criteria (more on this last in a

moment).

• Note that both versions of the NB model fit much better than

does the Poisson model (see 11.4).

• The estimated α is highly significant.

To check the plausibility of the NB-II model, we can compare the sam-

ple unconditional variance with the estimated unconditional variance



according to the NB-II model: V̂ (y) =
∑n
t=1 λ̂t+α̂(λ̂t)

2

n . For OBDV and

ERV (estimation results not reported), we get For OBDV, the overdis-

Table 16.2: Marginal Variances, Sample and Estimated (NB-II)

OBDV ERV
Sample 38.09 0.151

Estimated 30.58 0.182

persion problem is significantly better than in the Poisson case, but

there is still some that is not captured. For ERV, the negative binomial

model seems to capture the overdispersion adequately.

Finite mixture models: the mixed negative binomial

model

The finite mixture approach to fitting health care demand was intro-

duced by Deb and Trivedi (1997). The mixture approach has the intu-



itive appeal of allowing for subgroups of the population with different

health status. If individuals are classified as healthy or unhealthy then

two subgroups are defined. A finer classification scheme would lead

to more subgroups. Many studies have incorporated objective and/or

subjective indicators of health status in an effort to capture this het-

erogeneity. The available objective measures, such as limitations on

activity, are not necessarily very informative about a person’s overall

health status. Subjective, self-reported measures may suffer from the

same problem, and may also not be exogenous

Finite mixture models are conceptually simple. The density is

fY (y, φ1, ..., φp, π1, ..., πp−1) =

p−1∑
i=1

πif
(i)
Y (y, φi) + πpf

p
Y (y, φp),

where πi > 0, i = 1, 2, ..., p, πp = 1 −
∑p−1

i=1 πi, and
∑p

i=1 πi = 1. Iden-

tification requires that the πi are ordered in some way, for example,

π1 ≥ π2 ≥ · · · ≥ πp and φi 6= φj, i 6= j. This is simple to accomplish



post-estimation by rearrangement and possible elimination of redun-

dant component densities.

• The properties of the mixture density follow in a straightfor-

ward way from those of the components. In particular, the mo-

ment generating function is the same mixture of the moment

generating functions of the component densities, so, for exam-

ple, E(Y |x) =
∑p

i=1 πiµi(x), where µi(x) is the mean of the ith

component density.

• Mixture densities may suffer from overparameterization, since

the total number of parameters grows rapidly with the number

of component densities. It is possible to constrained parameters

across the mixtures.

• Testing for the number of component densities is a tricky issue.

For example, testing for p = 1 (a single component, which is to

say, no mixture) versus p = 2 (a mixture of two components)



involves the restriction π1 = 1, which is on the boundary of the

parameter space. Not that when π1 = 1, the parameters of the

second component can take on any value without affecting the

density. Usual methods such as the likelihood ratio test are not

applicable when parameters are on the boundary under the null

hypothesis. Information criteria means of choosing the model

(see below) are valid.

The following results are for a mixture of 2 NB-II models, for the

OBDV data, which you can replicate using this program .

OBDV

******************************************************

Mixed Negative Binomial model, MEPS 1996 full data set

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


MLE Estimation Results

BFGS convergence: Normal convergence

Average Log-L: -2.164783

Observations: 4564

estimate st. err t-stat p-value

constant 0.127 0.512 0.247 0.805

pub. ins. 0.861 0.174 4.962 0.000

priv. ins. 0.146 0.193 0.755 0.450

sex 0.346 0.115 3.017 0.003

age 0.024 0.004 6.117 0.000

edu 0.025 0.016 1.590 0.112

inc -0.000 0.000 -0.214 0.831

alpha 1.351 0.168 8.061 0.000

constant 0.525 0.196 2.678 0.007

pub. ins. 0.422 0.048 8.752 0.000

priv. ins. 0.377 0.087 4.349 0.000

sex 0.400 0.059 6.773 0.000

age 0.296 0.036 8.178 0.000



edu 0.111 0.042 2.634 0.008

inc 0.014 0.051 0.274 0.784

alpha 1.034 0.187 5.518 0.000

Mix 0.257 0.162 1.582 0.114

Information Criteria

CAIC : 19920.3807 Avg. CAIC: 4.3647

BIC : 19903.3807 Avg. BIC: 4.3610

AIC : 19794.1395 Avg. AIC: 4.3370

******************************************************

It is worth noting that the mixture parameter is not significantly

different from zero, but also not that the coefficients of public insur-

ance and age, for example, differ quite a bit between the two latent

classes.



Information criteria

As seen above, a Poisson model can’t be tested (using standard meth-

ods) as a restriction of a negative binomial model. But it seems, based

upon the values of the likelihood functions and the fact that the NB

model fits the variance much better, that the NB model is more appro-

priate. How can we determine which of a set of competing models is

the best?

The information criteria approach is one possibility. Information

criteria are functions of the log-likelihood, with a penalty for the num-

ber of parameters used. Three popular information criteria are the

Akaike (AIC), Bayes (BIC) and consistent Akaike (CAIC). The formu-

lae are

CAIC = −2 lnL(θ̂) + k(lnn + 1)

BIC = −2 lnL(θ̂) + k lnn

AIC = −2 lnL(θ̂) + 2k



It can be shown that the CAIC and BIC will select the correctly speci-

fied model from a group of models, asymptotically. This doesn’t mean,

of course, that the correct model is necesarily in the group. The AIC

is not consistent, and will asymptotically favor an over-parameterized

model over the correctly specified model. Here are information cri-

teria values for the models we’ve seen, for OBDV. Pretty clearly, the

Table 16.3: Information Criteria, OBDV

Model AIC BIC CAIC
Poisson 7.345 7.355 7.357

NB-I 4.375 4.386 4.388
NB-II 4.373 4.385 4.386

MNB-II 4.337 4.361 4.365

NB models are better than the Poisson. The one additional parameter

gives a very significant improvement in the likelihood function value.

Between the NB-I and NB-II models, the NB-II is slightly favored. But

one should remember that information criteria values are statistics,



with variances. With another sample, it may well be that the NB-

I model would be favored, since the differences are so small. The

MNB-II model is favored over the others, by all 3 information criteria.

Why is all of this in the chapter on QML? Let’s suppose that the cor-

rect model for OBDV is in fact the NB-II model. It turns out in this case

that the Poisson model will give consistent estimates of the slope pa-

rameters (if a model is a member of the linear-exponential family and

the conditional mean is correctly specified, then the parameters of the

conditional mean will be consistently estimated). So the Poisson esti-

mator would be a QML estimator that is consistent for some param-

eters of the true model. The ordinary OPG or inverse Hessian ”ML”

covariance estimators are however biased and inconsistent, since the

information matrix equality does not hold for QML estimators. But for

i.i.d. data (which is the case for the MEPS data) the QML asymptotic

covariance can be consistently estimated, as discussed above, using

the sandwich form for the ML estimator. mle_results in fact reports



sandwich results, so the Poisson estimation results would be reliable

for inference even if the true model is the NB-I or NB-II. Not that they

are in fact similar to the results for the NB models.

However, if we assume that the correct model is the MNB-II model,

as is favored by the information criteria, then both the Poisson and

NB-x models will have misspecified mean functions, so the parame-

ters that influence the means would be estimated with bias and in-

consistently.



16.3 Exercises

1. Considering the MEPS data (the description is in Section 11.4),

for the OBDV (y) measure, let η be a latent index of health sta-

tus that has expectation equal to unity.1 We suspect that η and

PRIV may be correlated, but we assume that η is uncorrelated

with the other regressors. We assume that

E(y|PUB,PRIV,AGE,EDUC, INC, η)

= exp(β1 + β2PUB + β3PRIV + β4AGE + β5EDUC + β6INC)η.

We use the Poisson QML estimator of the model

y ∼ Poisson(λ)

λ = exp(β1 + β2PUB + β3PRIV + (16.2)

β4AGE + β5EDUC + β6INC).

1A restriction of this sort is necessary for identification.



Since much previous evidence indicates that health care services

usage is overdispersed2, this is almost certainly not an ML esti-

mator, and thus is not efficient. However, when η and PRIV

are uncorrelated, this estimator is consistent for the βi param-

eters, since the conditional mean is correctly specified in that

case. When η and PRIV are correlated, Mullahy’s (1997) NLIV

estimator that uses the residual function

ε =
y

λ
− 1,

where λ is defined in equation 16.2, with appropriate instru-

ments, is consistent. As instruments we use all the exogenous

regressors, as well as the cross products of PUB with the vari-

ables in Z = {AGE,EDUC, INC}. That is, the full set of in-
2Overdispersion exists when the conditional variance is greater than the conditional mean. If this

is the case, the Poisson specification is not correct.



struments is

W = {1 PUB Z PUB × Z }.

(a) Calculate the Poisson QML estimates.

(b) Calculate the generalized IV estimates (do it using a GMM

formulation - see the portfolio example for hints how to do

this).

(c) Calculate the Hausman test statistic to test the exogeneity

of PRIV.

(d) comment on the results



Chapter 17

Nonlinear least squares

(NLS)
Readings: Davidson and MacKinnon, Ch. 2∗ and 5∗; Gallant, Ch. 1

749



17.1 Introduction and definition

Nonlinear least squares (NLS) is a means of estimating the parameter

of the model

yt = f (xt, θ
0) + εt.

• In general, εt will be heteroscedastic and autocorrelated, and

possibly nonnormally distributed. However, dealing with this is

exactly as in the case of linear models, so we’ll just treat the iid

case here,

εt ∼ iid(0, σ2)

If we stack the observations vertically, defining

y = (y1, y2, ..., yn)′

f = (f (x1, θ), f (x1, θ), ..., f (x1, θ))′



and

ε = (ε1, ε2, ..., εn)′

we can write the n observations as

y = f(θ) + ε

Using this notation, the NLS estimator can be defined as

θ̂ ≡ arg min
Θ
sn(θ) =

1

n
[y − f(θ)]′ [y − f(θ)] =

1

n
‖ y − f(θ) ‖2

• The estimator minimizes the weighted sum of squared errors,

which is the same as minimizing the Euclidean distance between

y and f(θ).

The objective function can be written as

sn(θ) =
1

n
[y′y − 2y′f(θ) + f(θ)′f(θ)] ,



which gives the first order conditions

−
[
∂

∂θ
f(θ̂)′

]
y +

[
∂

∂θ
f(θ̂)′

]
f(θ̂) ≡ 0.

Define the n×K matrix

F(θ̂) ≡ Dθ′f(θ̂). (17.1)

In shorthand, use F̂ in place of F(θ̂). Using this, the first order condi-

tions can be written as

−F̂′y + F̂′f(θ̂) ≡ 0,

or

F̂′
[
y − f(θ̂)

]
≡ 0. (17.2)

This bears a good deal of similarity to the f.o.c. for the linear model

- the derivative of the prediction is orthogonal to the prediction error.



If f(θ) = Xθ, then F̂ is simply X, so the f.o.c. (with spherical errors)

simplify to

X′y −X′Xβ = 0,

the usual 0LS f.o.c.

We can interpret this geometrically: INSERT drawings of geometri-
cal depiction of OLS and NLS (see Davidson and MacKinnon, pgs. 8,13
and 46).

• Note that the nonlinearity of the manifold leads to potential mul-

tiple local maxima, minima and saddlepoints: the objective func-

tion sn(θ) is not necessarily well-behaved and may be difficult to

minimize.



17.2 Identification

As before, identification can be considered conditional on the sample,

and asymptotically. The condition for asymptotic identification is that

sn(θ) tend to a limiting function s∞(θ) such that s∞(θ0) < s∞(θ), ∀θ 6=
θ0. This will be the case if s∞(θ0) is strictly convex at θ0,which requires

that D2
θs∞(θ0) be positive definite. Consider the objective function:

sn(θ) =
1

n

n∑
t=1

[yt − f (xt, θ)]2

=
1

n

n∑
t=1

[
f (xt, θ

0) + εt − ft(xt, θ)
]2

=
1

n

n∑
t=1

[
ft(θ

0)− ft(θ)
]2

+
1

n

n∑
t=1

(εt)
2

− 2

n

n∑
t=1

[
ft(θ

0)− ft(θ)
]
εt



• As in example 12.4, which illustrated the consistency of ex-

tremum estimators using OLS, we conclude that the second term

will converge to a constant which does not depend upon θ.

• A LLN can be applied to the third term to conclude that it con-

verges pointwise to 0, as long as f(θ) and ε are uncorrelated.

• Next, pointwise convergence needs to be stregnthened to uni-

form almost sure convergence. There are a number of possible

assumptions one could use. Here, we’ll just assume it holds.

• Turning to the first term, we’ll assume a pointwise law of large

numbers applies, so

1

n

n∑
t=1

[
ft(θ

0)− ft(θ)
]2 a.s.→

∫ [
f (z, θ0)− f (z, θ)

]2
dµ(z), (17.3)

where µ(x) is the distribution function of x. In many cases, f (x, θ)

will be bounded and continuous, for all θ ∈ Θ, so strengthening



to uniform almost sure convergence is immediate. For example

if f (x, θ) = [1 + exp(−xθ)]−1 , f : <K → (0, 1) , a bounded range,

and the function is continuous in θ.

Given these results, it is clear that a minimizer is θ0.When considering

identification (asymptotic), the question is whether or not there may

be some other minimizer. A local condition for identification is that

∂2

∂θ∂θ′
s∞(θ) =

∂2

∂θ∂θ′

∫ [
f (x, θ0)− f (x, θ)

]2
dµ(x)

be positive definite at θ0. Evaluating this derivative, we obtain (after

a little work)

∂2

∂θ∂θ′

∫ [
f (x, θ0)− f (x, θ)

]2
dµ(x)

∣∣∣∣
θ0

= 2

∫ [
Dθf (z, θ0)′

] [
Dθ′f (z, θ0)

]′
dµ(z)

the expectation of the outer product of the gradient of the regression

function evaluated at θ0. (Note: the uniform boundedness we have



already assumed allows passing the derivative through the integral,

by the dominated convergence theorem.) This matrix will be positive

definite (wp1) as long as the gradient vector is of full rank (wp1). The

tangent space to the regression manifold must span a K -dimensional

space if we are to consistently estimate a K -dimensional parameter

vector. This is analogous to the requirement that there be no perfect

colinearity in a linear model. This is a necessary condition for identi-

fication. Note that the LLN implies that the above expectation is equal

to

J∞(θ0) = 2 lim EF
′F

n

17.3 Consistency

We simply assume that the conditions of Theorem 28 hold, so the

estimator is consistent. Given that the strong stochastic equicontinu-

ity conditions hold, as discussed above, and given the above identifi-



cation conditions an a compact estimation space (the closure of the

parameter space Θ), the consistency proof’s assumptions are satisfied.

17.4 Asymptotic normality

As in the case of GMM, we also simply assume that the conditions

for asymptotic normality as in Theorem 30 hold. The only remain-

ing problem is to determine the form of the asymptotic variance-

covariance matrix. Recall that the result of the asymptotic normality

theorem is

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
,

where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′sn(θ) evaluated at θ0, and

I∞(θ0) = limV ar
√
nDθsn(θ0)



The objective function is

sn(θ) =
1

n

n∑
t=1

[yt − f (xt, θ)]2

So

Dθsn(θ) = −2

n

n∑
t=1

[yt − f (xt, θ)]Dθf (xt, θ).

Evaluating at θ0,

Dθsn(θ0) = −2

n

n∑
t=1

εtDθf (xt, θ
0).

Note that the expectation of this is zero, since εt and xt are assumed to

be uncorrelated. So to calculate the variance, we can simply calculate



the second moment about zero. Also note that
n∑
t=1

εtDθf (xt, θ
0) =

∂

∂θ

[
f(θ0)

]′
ε

= F′ε

With this we obtain

I∞(θ0) = limV ar
√
nDθsn(θ0)

= limnE 4

n2
F′εε’F

= 4σ2 lim EF
′F

n

We’ve already seen that

J∞(θ0) = 2 lim EF
′F

n
,



where the expectation is with respect to the joint density of x and ε.

Combining these expressions for J∞(θ0) and I∞(θ0), and the result of

the asymptotic normality theorem, we get

√
n
(
θ̂ − θ0

)
d→ N

(
0,

(
lim EF

′F

n

)−1

σ2

)
.

We can consistently estimate the variance covariance matrix using(
F̂′F̂

n

)−1

σ̂2, (17.4)

where F̂ is defined as in equation 17.1 and

σ̂2 =

[
y − f(θ̂)

]′ [
y − f(θ̂)

]
n

,



the obvious estimator. Note the close correspondence to the results

for the linear model.

17.5 Example: The Poisson model for count
data

Suppose that yt conditional on xt is independently distributed Pois-

son. A Poisson random variable is a count data variable, which means

it can take the values {0,1,2,...}. This sort of model has been used

to study visits to doctors per year, number of patents registered by

businesses per year, etc.
The Poisson density is

f (yt) =
exp(−λt)λytt

yt!
, yt ∈ {0, 1, 2, ...}.

The mean of yt is λt, as is the variance. Note that λt must be positive.



Suppose that the true mean is

λ0
t = exp(x′tβ

0),

which enforces the positivity of λt. Suppose we estimate β0 by nonlin-

ear least squares:

β̂ = arg min sn(β) =
1

T

n∑
t=1

(yt − exp(x′tβ))
2

We can write

sn(β) =
1

T

n∑
t=1

(
exp(x′tβ

0 + εt − exp(x′tβ)
)2

=
1

T

n∑
t=1

(
exp(x′tβ

0 − exp(x′tβ)
)2

+
1

T

n∑
t=1

ε2
t + 2

1

T

n∑
t=1

εt
(
exp(x′tβ

0 − exp(x′tβ)
)

The last term has expectation zero since the assumption that E(yt|xt) =

exp(x′tβ
0) implies that E (εt|xt) = 0, which in turn implies that func-



tions of xt are uncorrelated with εt. Applying a strong LLN, and not-

ing that the objective function is continuous on a compact parameter

space, we get

s∞(β) = Ex
(
exp(x′β0 − exp(x′β)

)2
+ Ex exp(x′β0)

where the last term comes from the fact that the conditional variance

of ε is the same as the variance of y. This function is clearly minimized

at β = β0, so the NLS estimator is consistent as long as identification

holds.

Exercise 50. Determine the limiting distribution of
√
n
(
β̂ − β0

)
. This

means finding the the specific forms of ∂2

∂β∂β′sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and

I(β0). Again, use a CLT as needed, no need to verify that it can be

applied.



17.6 The Gauss-Newton algorithm

Readings: Davidson and MacKinnon, Chapter 6, pgs. 201-207∗.

The Gauss-Newton optimization technique is specifically designed

for nonlinear least squares. The idea is to linearize the nonlinear

model, rather than the objective function. The model is

y = f(θ0) + ε.

At some θ in the parameter space, not equal to θ0, we have

y = f(θ) + ν

where ν is a combination of the fundamental error term ε and the

error due to evaluating the regression function at θ rather than the

true value θ0. Take a first order Taylor’s series approximation around



a point θ1 :

y = f(θ1) +
[
Dθ′f

(
θ1
)] (

θ − θ1
)

+ ν + approximation error.

Define z ≡ y − f(θ1) and b ≡ (θ − θ1). Then the last equation can be

written as

z = F(θ1)b + ω,

where, as above, F(θ1) ≡ Dθ′f(θ1) is the n×K matrix of derivatives of

the regression function, evaluated at θ1, and ω is ν plus approximation

error from the truncated Taylor’s series.

• Note that F is known, given θ1.

• Note that one could estimate b simply by performing OLS on the

above equation.

• Given b̂, we calculate a new round estimate of θ0 as θ2 = b̂ +

θ1. With this, take a new Taylor’s series expansion around θ2



and repeat the process. Stop when b̂ = 0 (to within a specified

tolerance).

To see why this might work, consider the above approximation, but

evaluated at the NLS estimator:

y = f(θ̂) + F(θ̂)
(
θ − θ̂

)
+ ω

The OLS estimate of b ≡ θ − θ̂ is

b̂ =
(
F̂′F̂

)−1

F̂′
[
y − f(θ̂)

]
.

This must be zero, since

F̂′
(
θ̂
) [

y − f(θ̂)
]
≡ 0

by definition of the NLS estimator (these are the normal equations as

in equation 17.2, Since b̂ ≡ 0 when we evaluate at θ̂, updating would



stop.

• The Gauss-Newton method doesn’t require second derivatives,

as does the Newton-Raphson method, so it’s faster.

• The varcov estimator, as in equation 17.4 is simple to calculate,

since we have F̂ as a by-product of the estimation process (i.e.,
it’s just the last round “regressor matrix”). In fact, a normal OLS

program will give the NLS varcov estimator directly, since it’s

just the OLS varcov estimator from the last iteration.

• The method can suffer from convergence problems since F(θ)′F(θ),

may be very nearly singular, even with an asymptotically identi-

fied model, especially if θ is very far from θ̂. Consider the exam-

ple

y = β1 + β2xtβ
3 + εt

When evaluated at β2 ≈ 0, β3 has virtually no effect on the NLS



objective function, so F will have rank that is “essentially” 2,

rather than 3. In this case, F′F will be nearly singular, so (F′F)−1

will be subject to large roundoff errors.

17.7 Application: Limited dependent vari-
ables and sample selection

Readings: Davidson and MacKinnon, Ch. 15∗ (a quick reading is suf-

ficient), J. Heckman, “Sample Selection Bias as a Specification Error”,

Econometrica, 1979 (This is a classic article, not required for reading,

and which is a bit out-dated. Nevertheless it’s a good place to start if

you encounter sample selection problems in your research).

Sample selection is a common problem in applied research. The

problem occurs when observations used in estimation are sampled

non-randomly, according to some selection scheme.



Example: Labor Supply

Labor supply of a person is a positive number of hours per unit time

supposing the offer wage is higher than the reservation wage, which

is the wage at which the person prefers not to work. The model (very

simple, with t subscripts suppressed):

• Characteristics of individual: x

• Latent labor supply: s∗ = x′β + ω

• Offer wage: wo = z′γ + ν

• Reservation wage: wr = q′δ + η

Write the wage differential as

w∗ = (z′γ + ν)− (q′δ + η)

≡ r′θ + ε



We have the set of equations

s∗ = x′β + ω

w∗ = r′θ + ε.

Assume that [
ω

ε

]
∼ N

([
0

0

]
,

[
σ2 ρσ

ρσ 1

])
.

We assume that the offer wage and the reservation wage, as well as

the latent variable s∗ are unobservable. What is observed is

w = 1 [w∗ > 0]

s = ws∗.

In other words, we observe whether or not a person is working. If the

person is working, we observe labor supply, which is equal to latent

labor supply, s∗. Otherwise, s = 0 6= s∗. Note that we are using a



simplifying assumption that individuals can freely choose their weekly

hours of work.

Suppose we estimated the model

s∗ = x′β + residual

using only observations for which s > 0. The problem is that these

observations are those for which w∗ > 0, or equivalently, −ε < r′θ

and

E [ω| − ε < r′θ] 6= 0,

since ε and ω are dependent. Furthermore, this expectation will in

general depend on x since elements of x can enter in r. Because of

these two facts, least squares estimation is biased and inconsistent.

Consider more carefully E [ω| − ε < r′θ] . Given the joint normality

of ω and ε, we can write (see for example Spanos Statistical Founda-



tions of Econometric Modelling, pg. 122)

ω = ρσε + η,

where η has mean zero and is independent of ε. With this we can

write

s∗ = x′β + ρσε + η.

If we condition this equation on −ε < r′θ we get

s = x′β + ρσE(ε| − ε < r′θ) + η

which may be written as

s = x′β + ρσE(ε|ε > −r′θ) + η

• A useful result is that for

z ∼ N(0, 1)



E(z|z > z∗) =
φ(z∗)

Φ(−z∗)
,

where φ (·) and Φ (·) are the standard normal density and distri-

bution function, respectively. The quantity on the RHS above is

known as the inverse Mill’s ratio:

IMR(z∗) =
φ(z∗)

Φ(−z∗)

With this we can write (making use of the fact that the standard

normal density is symmetric about zero, so that φ(−a) = φ(a)):

s = x′β + ρσ
φ (r′θ)

Φ (r′θ)
+ η (17.5)

≡
[
x′

φ(r′θ)
Φ(r′θ)

] [ β
ζ

]
+ η. (17.6)



where ζ = ρσ. The error term η has conditional mean zero, and

is uncorrelated with the regressors x′
φ(r′θ)
Φ(r′θ)

. At this point, we can

estimate the equation by NLS.

• Heckman showed how one can estimate this in a two step proce-

dure where first θ is estimated, then equation 17.6 is estimated

by least squares using the estimated value of θ to form the re-

gressors. This is inefficient and estimation of the covariance is a

tricky issue. It is probably easier (and more efficient) just to do

MLE.

• The model presented above depends strongly on joint normality.

There exist many alternative models which weaken the main-

tained assumptions. It is possible to estimate consistently with-

out distributional assumptions. See Ahn and Powell, Journal of
Econometrics, 1994.



Chapter 18

Nonparametric inference

18.1 Possible pitfalls of parametric inference:
estimation

Readings: H. White (1980) “Using Least Squares to Approximate

Unknown Regression Functions,” International Economic Review, pp.

149-70.
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In this section we consider a simple example, which illustrates

both why nonparametric methods may in some cases be preferred

to parametric methods.

We suppose that data is generated by random sampling of (y, x),

where y = f (x) +ε, x is uniformly distributed on (0, 2π), and ε is a

classical error. Suppose that

f (x) = 1 +
3x

2π
−
( x

2π

)2

The problem of interest is to estimate the elasticity of f (x) with re-

spect to x, throughout the range of x.

In general, the functional form of f (x) is unknown. One idea is

to take a Taylor’s series approximation to f (x) about some point x0.

Flexible functional forms such as the transcendental logarithmic (usu-

ally know as the translog) can be interpreted as second order Taylor’s

series approximations. We’ll work with a first order approximation,



for simplicity. Approximating about x0:

h(x) = f (x0) + Dxf (x0) (x− x0)

If the approximation point is x0 = 0, we can write

h(x) = a + bx

The coefficient a is the value of the function at x = 0, and the slope is

the value of the derivative at x = 0. These are of course not known.

One might try estimation by ordinary least squares. The objective

function is

s(a, b) = 1/n

n∑
t=1

(yt − h(xt))
2 .

The limiting objective function, following the argument we used to



get equations 12.1 and 17.3 is

s∞(a, b) =

∫ 2π

0

(f (x)− h(x))2 dx.

The theorem regarding the consistency of extremum estimators (The-

orem 28) tells us that â and b̂ will converge almost surely to the

values that minimize the limiting objective function. Solving the

first order conditions1 reveals that s∞(a, b) obtains its minimum at{
a0 = 7

6, b
0 = 1

π

}
. The estimated approximating function ĥ(x) there-

fore tends almost surely to

h∞(x) = 7/6 + x/π

In Figure 18.1 we see the true function and the limit of the approxi-

mation to see the asymptotic bias as a function of x.
1The following results were obtained using the free computer algebra system (CAS) Maxima.

Unfortunately, I have lost the source code to get the results :-(

http://maxima.sourceforge.net/


Figure 18.1: True and simple approximating functions
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(The approximating model is the straight line, the true model has

curvature.) Note that the approximating model is in general incon-

sistent, even at the approximation point. This shows that “flexible

functional forms” based upon Taylor’s series approximations do not

in general lead to consistent estimation of functions.

The approximating model seems to fit the true model fairly well,

asymptotically. However, we are interested in the elasticity of the

function. Recall that an elasticity is the marginal function divided by

the average function:

ε(x) = xφ′(x)/φ(x)

Good approximation of the elasticity over the range of x will require

a good approximation of both f (x) and f ′(x) over the range of x. The

approximating elasticity is

η(x) = xh′(x)/h(x)



Figure 18.2: True and approximating elasticities
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In Figure 18.2 we see the true elasticity and the elasticity obtained

from the limiting approximating model.

The true elasticity is the line that has negative slope for large x.

Visually we see that the elasticity is not approximated so well. Root

mean squared error in the approximation of the elasticity is(∫ 2π

0

(ε(x)− η(x))2 dx

)1/2

= . 31546



Now suppose we use the leading terms of a trigonometric series as

the approximating model. The reason for using a trigonometric series

as an approximating model is motivated by the asymptotic properties

of the Fourier flexible functional form (Gallant, 1981, 1982), which

we will study in more detail below. Normally with this type of model

the number of basis functions is an increasing function of the sample

size. Here we hold the set of basis function fixed. We will consider

the asymptotic behavior of a fixed model, which we interpret as an

approximation to the estimator’s behavior in finite samples. Consider

the set of basis functions:

Z(x) =
[

1 x cos(x) sin(x) cos(2x) sin(2x)
]
.

The approximating model is

gK(x) = Z(x)α.



Maintaining these basis functions as the sample size increases, we

find that the limiting objective function is minimized at{
a1 =

7

6
, a2 =

1

π
, a3 = − 1

π2
, a4 = 0, a5 = − 1

4π2
, a6 = 0

}
.

Substituting these values into gK(x) we obtain the almost sure limit

of the approximation

g∞(x) = 7/6+x/π+(cosx)

(
− 1

π2

)
+(sinx) 0+(cos 2x)

(
− 1

4π2

)
+(sin 2x) 0

(18.1)

In Figure 18.3 we have the approximation and the true function:

Clearly the truncated trigonometric series model offers a better ap-

proximation, asymptotically, than does the linear model. In Figure

18.4 we have the more flexible approximation’s elasticity and that of

the true function: On average, the fit is better, though there is some

implausible wavyness in the estimate. Root mean squared error in the



Figure 18.3: True function and more flexible approximation
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Figure 18.4: True elasticity and more flexible approximation
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approximation of the elasticity is(∫ 2π

0

(
ε(x)− g′∞(x)x

g∞(x)

)2

dx

)1/2

= . 16213,

about half that of the RMSE when the first order approximation is

used. If the trigonometric series contained infinite terms, this error

measure would be driven to zero, as we shall see.

18.2 Possible pitfalls of parametric inference:
hypothesis testing

What do we mean by the term “nonparametric inference”? Simply,

this means inferences that are possible without restricting the func-

tions of interest to belong to a parametric family.

• Consider means of testing for the hypothesis that consumers



maximize utility. A consequence of utility maximization is that

the Slutsky matrix D2
ph(p, U), where h(p, U) are the a set of

compensated demand functions, must be negative semi-definite.

One approach to testing for utility maximization would estimate

a set of normal demand functions x(p,m).

• Estimation of these functions by normal parametric methods re-

quires specification of the functional form of demand, for exam-

ple

x(p,m) = x(p,m, θ0) + ε, θ0 ∈ Θ0,

where x(p,m, θ0) is a function of known form and Θ0 is a finite

dimensional parameter.

• After estimation, we could use x̂ = x(p,m, θ̂) to calculate (by

solving the integrability problem, which is non-trivial) D̂2
ph(p, U).

If we can statistically reject that the matrix is negative semi-

definite, we might conclude that consumers don’t maximize util-



ity.

• The problem with this is that the reason for rejection of the the-

oretical proposition may be that our choice of functional form

is incorrect. In the introductory section we saw that functional

form misspecification leads to inconsistent estimation of the func-

tion and its derivatives.

• Testing using parametric models always means we are testing

a compound hypothesis. The hypothesis that is tested is 1) the

economic proposition we wish to test, and 2) the model is cor-

rectly specified. Failure of either 1) or 2) can lead to rejection

(as can a Type-I error, even when 2) holds). This is known as

the “model-induced augmenting hypothesis.”

• Varian’s WARP allows one to test for utility maximization with-

out specifying the form of the demand functions. The only as-

sumptions used in the test are those directly implied by theory,



so rejection of the hypothesis calls into question the theory.

• Nonparametric inference also allows direct testing of economic

propositions, avoiding the “model-induced augmenting hypoth-

esis”. The cost of nonparametric methods is usually an increase

in complexity, and a loss of power, compared to what one would

get using a well-specified parametric model. The benefit is ro-

bustness against possible misspecification.

18.3 Estimation of regression functions

The Fourier functional form

Readings: Gallant, 1987, “Identification and consistency in semi-

nonparametric regression,” in Advances in Econometrics, Fifth World
Congress, V. 1, Truman Bewley, ed., Cambridge.



Suppose we have a multivariate model

y = f (x) + ε,

where f (x) is of unknown form and x is a P−dimensional vector. For

simplicity, assume that ε is a classical error. Let us take the estimation

of the vector of elasticities with typical element

ξxi =
xi
f (x)

∂f (x)

∂xif (x)
,

at an arbitrary point xi.

The Fourier form, following Gallant (1982), but with a somewhat

different parameterization, may be written as

gK(x | θK) = α+x′β+1/2x′Cx+

A∑
α=1

J∑
j=1

(ujα cos(jk′αx)− vjα sin(jk′αx)) .

(18.2)



where the K-dimensional parameter vector

θK = {α, β′, vec∗(C)′, u11, v11, . . . , uJA, vJA}′. (18.3)

• We assume that the conditioning variables x have each been

transformed to lie in an interval that is shorter than 2π. This is

required to avoid periodic behavior of the approximation, which

is desirable since economic functions aren’t periodic. For exam-

ple, subtract sample means, divide by the maxima of the condi-

tioning variables, and multiply by 2π − eps, where eps is some

positive number less than 2π in value.

• The kα are ”elementary multi-indices” which are simply P− vec-

tors formed of integers (negative, positive and zero). The kα,

α = 1, 2, ..., A are required to be linearly independent, and we

follow the convention that the first non-zero element be posi-



tive. For example [
0 1 −1 0 1

]′
is a potential multi-index to be used, but[

0 −1 −1 0 1
]′

is not since its first nonzero element is negative. Nor is[
0 2 −2 0 2

]′
a multi-index we would use, since it is a scalar multiple of the

original multi-index.

• We parameterize the matrix C differently than does Gallant be-

cause it simplifies things in practice. The cost of this is that we

are no longer able to test a quadratic specification using nested

testing.



The vector of first partial derivatives is

DxgK(x | θK) = β + Cx +

A∑
α=1

J∑
j=1

[(−ujα sin(jk′αx)− vjα cos(jk′αx)) jkα]

(18.4)

and the matrix of second partial derivatives is

D2
xgK(x|θK) = C +

A∑
α=1

J∑
j=1

[
(−ujα cos(jk′αx) + vjα sin(jk′αx)) j2kαk

′
α

]
(18.5)

To define a compact notation for partial derivatives, let λ be an

N -dimensional multi-index with no negative elements. Define | λ |∗

as the sum of the elements of λ. If we have N arguments x of the (ar-

bitrary) function h(x), use Dλh(x) to indicate a certain partial deriva-



tive:

Dλh(x) ≡ ∂|λ|
∗

∂xλ1
1 ∂x

λ2
2 · · · ∂x

λN
N

h(x)

When λ is the zero vector, Dλh(x) ≡ h(x). Taking this definition and

the last few equations into account, we see that it is possible to define

(1×K) vector Zλ(x) so that

DλgK(x|θK) = zλ(x)′θK. (18.6)

• Both the approximating model and the derivatives of the approx-

imating model are linear in the parameters.

• For the approximating model to the function (not derivatives),

write gK(x|θK) = z′θK for simplicity.

The following theorem can be used to prove the consistency of the

Fourier form.



Theorem 51. [Gallant and Nychka, 1987] Suppose that ĥn is obtained
by maximizing a sample objective function sn(h) over HKn where HK is
a subset of some function space H on which is defined a norm ‖ h ‖.
Consider the following conditions:

(a) Compactness: The closure of H with respect to ‖ h ‖ is compact
in the relative topology defined by ‖ h ‖.

(b) Denseness: ∪KHK, K = 1, 2, 3, ... is a dense subset of the closure
of H with respect to ‖ h ‖ and HK ⊂ HK+1.

(c) Uniform convergence: There is a point h∗ in H and there is a
function s∞(h, h∗) that is continuous in h with respect to ‖ h ‖ such that

lim
n→∞

sup
H
| sn(h)− s∞(h, h∗) |= 0

almost surely.
(d) Identification: Any point h in the closure of H with s∞(h, h∗) ≥

s∞(h∗, h∗) must have ‖ h− h∗ ‖= 0.



Under these conditions limn→∞ ‖ h∗−ĥn ‖= 0 almost surely, provided
that limn→∞Kn =∞ almost surely.

The modification of the original statement of the theorem that has

been made is to set the parameter space Θ in Gallant and Nychka’s

(1987) Theorem 0 to a single point and to state the theorem in terms

of maximization rather than minimization.

This theorem is very similar in form to Theorem 28. The main

differences are:

1. A generic norm ‖ h ‖ is used in place of the Euclidean norm.

This norm may be stronger than the Euclidean norm, so that

convergence with respect to ‖ h ‖ implies convergence w.r.t the

Euclidean norm. Typically we will want to make sure that the

norm is strong enough to imply convergence of all functions of

interest.

2. The “estimation space” H is a function space. It plays the role



of the parameter space Θ in our discussion of parametric esti-

mators. There is no restriction to a parametric family, only a

restriction to a space of functions that satisfy certain conditions.

This formulation is much less restrictive than the restriction to a

parametric family.

3. There is a denseness assumption that was not present in the

other theorem.

We will not prove this theorem (the proof is quite similar to the proof

of theorem [28], see Gallant, 1987) but we will discuss its assump-

tions, in relation to the Fourier form as the approximating model.

Sobolev norm Since all of the assumptions involve the norm ‖ h ‖ ,

we need to make explicit what norm we wish to use. We need a norm

that guarantees that the errors in approximation of the functions we

are interested in are accounted for. Since we are interested in first-



order elasticities in the present case, we need close approximation of

both the function f (x) and its first derivative f ′(x), throughout the

range of x. Let X be an open set that contains all values of x that

we’re interested in. The Sobolev norm is appropriate in this case. It

is defined, making use of our notation for partial derivatives, as:

‖ h ‖m,X= max
|λ∗|≤m

sup
X

∣∣Dλh(x)
∣∣

To see whether or not the function f (x) is well approximated by an

approximating model gK(x | θK), we would evaluate

‖ f (x)− gK(x | θK) ‖m,X .

We see that this norm takes into account errors in approximating the

function and partial derivatives up to order m. If we want to estimate

first order elasticities, as is the case in this example, the relevant m

would be m = 1. Furthermore, since we examine the sup over X ,



convergence w.r.t. the Sobolev means uniform convergence, so that

we obtain consistent estimates for all values of x.

Compactness Verifying compactness with respect to this norm is

quite technical and unenlightening. It is proven by Elbadawi, Gallant

and Souza, Econometrica, 1983. The basic requirement is that if we

need consistency w.r.t. ‖ h ‖m,X , then the functions of interest must

belong to a Sobolev space which takes into account derivatives of

order m + 1. A Sobolev space is the set of functions

Wm,X (D) = {h(x) :‖ h(x) ‖m,X< D},

where D is a finite constant. In plain words, the functions must have

bounded partial derivatives of one order higher than the derivatives

we seek to estimate.



The estimation space and the estimation subspace Since in our

case we’re interested in consistent estimation of first-order elasticities,

we’ll define the estimation space as follows:

Definition 52. [Estimation space] The estimation spaceH =W2,X (D).

The estimation space is an open set, and we presume that h∗ ∈ H.

So we are assuming that the function to be estimated has bounded

second derivatives throughout X .

With seminonparametric estimators, we don’t actually optimize

over the estimation space. Rather, we optimize over a subspace, HKn,

defined as:

Definition 53. [Estimation subspace] The estimation subspace HK is

defined as

HK = {gK(x|θK) : gK(x|θK) ∈ W2,Z(D), θK ∈ <K},



where gK(x, θK) is the Fourier form approximation as defined in Equa-

tion 18.2.

Denseness The important point here is that HK is a space of func-

tions that is indexed by a finite dimensional parameter (θK has K

elements, as in equation 18.3). With n observations, n > K, this pa-

rameter is estimable. Note that the true function h∗ is not necessarily

an element of HK, so optimization over HK may not lead to a consis-

tent estimator. In order for optimization over HK to be equivalent to

optimization over H, at least asymptotically, we need that:

1. The dimension of the parameter vector, dim θKn →∞ as n→∞.
This is achieved by making A and J in equation 18.2 increasing

functions of n, the sample size. It is clear that K will have to

grow more slowly than n. The second requirement is:

2. We need that the HK be dense subsets of H.



The estimation subspace HK, defined above, is a subset of the closure

of the estimation space, H . A set of subsets Aa of a set A is “dense”

if the closure of the countable union of the subsets is equal to the

closure of A:

∪∞a=1Aa = A

Use a picture here. The rest of the discussion of denseness is provided
just for completeness: there’s no need to study it in detail. To show

that HK is a dense subset of H with respect to ‖ h ‖1,X , it is useful

to apply Theorem 1 of Gallant (1982), who in turn cites Edmunds

and Moscatelli (1977). We reproduce the theorem as presented by

Gallant, with minor notational changes, for convenience of reference:

Theorem 54. [Edmunds and Moscatelli, 1977] Let the real-valued func-
tion h∗(x) be continuously differentiable up to order m on an open set
containing the closure of X . Then it is possible to choose a triangular ar-
ray of coefficients θ1, θ2, . . . θK, . . . , such that for every q with 0 ≤ q < m,



and every ε > 0, ‖ h∗(x)− hK(x|θK) ‖q,X= o(K−m+q+ε) as K →∞.

In the present application, q = 1, and m = 2. By definition of

the estimation space, the elements of H are once continuously differ-

entiable on X , which is open and contains the closure of X , so the

theorem is applicable. Closely following Gallant and Nychka (1987),

∪∞HK is the countable union of the HK. The implication of Theorem

54 is that there is a sequence of {hK} from ∪∞HK such that

lim
K→∞

‖ h∗ − hK ‖1,X= 0,

for all h∗ ∈ H. Therefore,

H ⊂ ∪∞HK.

However,

∪∞HK ⊂ H,



so

∪∞HK ⊂ H.

Therefore

H = ∪∞HK,

so ∪∞HK is a dense subset of H, with respect to the norm ‖ h ‖1,X .

Uniform convergence We now turn to the limiting objective func-

tion. We estimate by OLS. The sample objective function stated in

terms of maximization is

sn(θK) = −1

n

n∑
t=1

(yt − gK(xt | θK))2

With random sampling, as in the case of Equations 12.1 and 17.3, the

limiting objective function is



s∞ (g, f ) = −
∫
X

(f (x)− g(x))2 dµx− σ2
ε . (18.7)

where the true function f (x) takes the place of the generic function h∗

in the presentation of the theorem. Both g(x) and f (x) are elements

of ∪∞HK.

The pointwise convergence of the objective function needs to be

strengthened to uniform convergence. We will simply assume that

this holds, since the way to verify this depends upon the specific ap-

plication. We also have continuity of the objective function in g, with

respect to the norm ‖ h ‖1,X since

lim
‖g1−g0‖1,X→0

{
s∞
(
g1, f )

)
− s∞

(
g0, f )

)}
= lim
‖g1−g0‖1,X→0

∫
X

[(
g1(x)− f (x)

)2 −
(
g0(x)− f (x)

)2
]
dµx.

By the dominated convergence theorem (which applies since the fi-



nite bound D used to define W2,Z(D) is dominated by an integrable

function), the limit and the integral can be interchanged, so by in-

spection, the limit is zero.

Identification The identification condition requires that for any point

(g, f ) in H×H, s∞(g, f ) ≥ s∞(f, f )⇒ ‖ g − f ‖1,X= 0. This condition

is clearly satisfied given that g and f are once continuously differen-

tiable (by the assumption that defines the estimation space).

Review of concepts For the example of estimation of first-order

elasticities, the relevant concepts are:

• Estimation spaceH =W2,X (D): the function space in the closure

of which the true function must lie.

• Consistency norm ‖ h ‖1,X . The closure of H is compact with

respect to this norm.



• Estimation subspace HK. The estimation subspace is the subset

of H that is representable by a Fourier form with parameter θK.

These are dense subsets of H.

• Sample objective function sn(θK), the negative of the sum of

squares. By standard arguments this converges uniformly to the

• Limiting objective function s∞( g, f ), which is continuous in g

and has a global maximum in its first argument, over the closure

of the infinite union of the estimation subpaces, at g = f.

• As a result of this, first order elasticities

xi
f (x)

∂f (x)

∂xif (x)

are consistently estimated for all x ∈ X .



Discussion Consistency requires that the number of parameters used

in the expansion increase with the sample size, tending to infinity. If

parameters are added at a high rate, the bias tends relatively rapidly

to zero. A basic problem is that a high rate of inclusion of additional

parameters causes the variance to tend more slowly to zero. The issue

of how to chose the rate at which parameters are added and which to

add first is fairly complex. A problem is that the allowable rates for

asymptotic normality to obtain (Andrews 1991; Gallant and Souza,

1991) are very strict. Supposing we stick to these rates, our approxi-

mating model is:

gK(x|θK) = z′θK.

• Define ZK as the n×K matrix of regressors obtained by stacking

observations. The LS estimator is

θ̂K = (Z′KZK)
+
Z′Ky,



where (·)+ is the Moore-Penrose generalized inverse.

– This is used since Z′KZK may be singular, as would be the

case for K(n) large enough when some dummy variables

are included.

• . The prediction, z′θ̂K, of the unknown function f (x) is asymp-

totically normally distributed:

√
n
(
z′θ̂K − f (x)

)
d→ N(0, AV ),

where

AV = lim
n→∞

E

[
z′
(
Z′KZK

n

)+

zσ̂2

]
.

Formally, this is exactly the same as if we were dealing with a

parametric linear model. I emphasize, though, that this is only

valid if K grows very slowly as n grows. If we can’t stick to



acceptable rates, we should probably use some other method of

approximating the small sample distribution. Bootstrapping is a

possibility. We’ll discuss this in the section on simulation.

Kernel regression estimators

Readings: Bierens, 1987, “Kernel estimators of regression functions,”

in Advances in Econometrics, Fifth World Congress, V. 1, Truman Bew-

ley, ed., Cambridge.

An alternative method to the semi-nonparametric method is a fully

nonparametric method of estimation. Kernel regression estimation is

an example (others are splines, nearest neighbor, etc.). We’ll consider

the Nadaraya-Watson kernel regression estimator in a simple case.

• Suppose we have an iid sample from the joint density f (x, y),



where x is k -dimensional. The model is

yt = g(xt) + εt,

where

E(εt|xt) = 0.

• The conditional expectation of y given x is g(x). By definition of

the conditional expectation, we have

g(x) =

∫
y
f (x, y)

h(x)
dy

=
1

h(x)

∫
yf (x, y)dy,

where h(x) is the marginal density of x :

h(x) =

∫
f (x, y)dy.



• This suggests that we could estimate g(x) by estimating h(x) and∫
yf (x, y)dy.

Estimation of the denominator

A kernel estimator for h(x) has the form

ĥ(x) =
1

n

n∑
t=1

K [(x− xt) /γn]

γkn
,

where n is the sample size and k is the dimension of x.

• The function K(·) (the kernel) is absolutely integrable:∫
|K(x)|dx <∞,

and K(·) integrates to 1 :∫
K(x)dx = 1.



In this respect, K(·) is like a density function, but we do not

necessarily restrict K(·) to be nonnegative.

• The window width parameter, γn is a sequence of positive num-

bers that satisfies

lim
n→∞

γn = 0

lim
n→∞

nγkn = ∞

So, the window width must tend to zero, but not too quickly.

• To show pointwise consistency of ĥ(x) for h(x), first consider the

expectation of the estimator (since the estimator is an average

of iid terms we only need to consider the expectation of a repre-

sentative term):

E
[
ĥ(x)

]
=

∫
γ−kn K [(x− z) /γn]h(z)dz.



Change variables as z∗ = (x−z)/γn, so z = x−γnz∗ and | dzdz∗′| = γkn,

we obtain

E
[
ĥ(x)

]
=

∫
γ−kn K (z∗)h(x− γnz∗)γkndz∗

=

∫
K (z∗)h(x− γnz∗)dz∗.

Now, asymptotically,

lim
n→∞

E
[
ĥ(x)

]
= lim

n→∞

∫
K (z∗)h(x− γnz∗)dz∗

=

∫
lim
n→∞

K (z∗)h(x− γnz∗)dz∗

=

∫
K (z∗)h(x)dz∗

= h(x)

∫
K (z∗) dz∗

= h(x),



since γn → 0 and
∫
K (z∗) dz∗ = 1 by assumption. (Note: that we

can pass the limit through the integral is a result of the domi-

nated convergence theorem.. For this to hold we need that h(·)
be dominated by an absolutely integrable function.

• Next, considering the variance of ĥ(x), we have, due to the iid

assumption

nγknV
[
ĥ(x)

]
= nγkn

1

n2

n∑
t=1

V

{
K [(x− xt) /γn]

γkn

}
= γ−kn

1

n

n∑
t=1

V {K [(x− xt) /γn]}

• By the representative term argument, this is

nγknV
[
ĥ(x)

]
= γ−kn V {K [(x− z) /γn]}



• Also, since V (x) = E(x2)− E(x)2 we have

nγknV
[
ĥ(x)

]
= γ−kn E

{
(K [(x− z) /γn])2

}
− γ−kn {E (K [(x− z) /γn])}2

=

∫
γ−kn K [(x− z) /γn]2 h(z)dz − γkn

{∫
γ−kn K [(x− z) /γn]h(z)dz

}2

=

∫
γ−kn K [(x− z) /γn]2 h(z)dz − γknE

[
ĥ(x)

]2

The second term converges to zero:

γknE
[
ĥ(x)

]2

→ 0,

by the previous result regarding the expectation and the fact that

γn → 0. Therefore,

lim
n→∞

nγknV
[
ĥ(x)

]
= lim

n→∞

∫
γ−kn K [(x− z) /γn]2 h(z)dz.

Using exactly the same change of variables as before, this can be



shown to be

lim
n→∞

nγknV
[
ĥ(x)

]
= h(x)

∫
[K(z∗)]2 dz∗.

Since both
∫

[K(z∗)]2 dz∗ and h(x) are bounded, this is bounded,

and since nγkn →∞ by assumption, we have that

V
[
ĥ(x)

]
→ 0.

• Since the bias and the variance both go to zero, we have point-

wise consistency (convergence in quadratic mean implies con-

vergence in probability).

Estimation of the numerator

To estimate
∫
yf (x, y)dy, we need an estimator of f (x, y). The esti-

mator has the same form as the estimator for h(x), only with one



dimension more:

f̂ (x, y) =
1

n

n∑
t=1

K∗ [(y − yt) /γn, (x− xt) /γn]

γk+1
n

The kernel K∗ (·) is required to have mean zero:∫
yK∗ (y, x) dy = 0

and to marginalize to the previous kernel for h(x) :∫
K∗ (y, x) dy = K(x).

With this kernel, we have∫
yf̂ (y, x)dy =

1

n

n∑
t=1

yt
K [(x− xt) /γn]

γkn



by marginalization of the kernel, so we obtain

ĝ(x) =
1

ĥ(x)

∫
yf̂ (y, x)dy

=

1
n

∑n
t=1 yt

K[(x−xt)/γn]

γkn

1
n

∑n
t=1

K[(x−xt)/γn]

γkn

=

∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

.

This is the Nadaraya-Watson kernel regression estimator.

Discussion

• The kernel regression estimator for g(xt) is a weighted average

of the yj, j = 1, 2, ..., n, where higher weights are associated with

points that are closer to xt. The weights sum to 1.

• The window width parameter γn imposes smoothness. The es-



timator is increasingly flat as γn → ∞, since in this case each

weight tends to 1/n.

• A large window width reduces the variance (strong imposition

of flatness), but increases the bias.

• A small window width reduces the bias, but makes very little use

of information except points that are in a small neighborhood of

xt. Since relatively little information is used, the variance is large

when the window width is small.

• The standard normal density is a popular choice for K(.) and

K∗(y, x), though there are possibly better alternatives.

Choice of the window width: Cross-validation

The selection of an appropriate window width is important. One pop-

ular method is cross validation. This consists of splitting the sample



into two parts (e.g., 50%-50%). The first part is the “in sample” data,

which is used for estimation, and the second part is the “out of sam-

ple” data, used for evaluation of the fit though RMSE or some other

criterion. The steps are:

1. Split the data. The out of sample data is yout and xout.

2. Choose a window width γ.

3. With the in sample data, fit ŷoutt corresponding to each xoutt . This

fitted value is a function of the in sample data, as well as the

evaluation point xoutt , but it does not involve youtt .

4. Repeat for all out of sample points.

5. Calculate RMSE(γ)

6. Go to step 2, or to the next step if enough window widths have

been tried.



7. Select the γ that minimizes RMSE(γ) (Verify that a minimum

has been found, for example by plotting RMSE as a function of

γ).

8. Re-estimate using the best γ and all of the data.

This same principle can be used to choose A and J in a Fourier form

model.

18.4 Density function estimation

Kernel density estimation

The previous discussion suggests that a kernel density estimator may

easily be constructed. We have already seen how joint densities may

be estimated. If were interested in a conditional density, for exam-

ple of y conditional on x, then the kernel estimate of the conditional



density is simply

f̂y|x =
f̂ (x, y)

ĥ(x)

=

1
n

∑n
t=1

K∗[(y−yt)/γn,(x−xt)/γn]

γk+1
n

1
n

∑n
t=1

K[(x−xt)/γn]

γkn

=
1

γn

∑n
t=1K∗ [(y − yt) /γn, (x− xt) /γn]∑n

t=1K [(x− xt) /γn]

where we obtain the expressions for the joint and marginal densities

from the section on kernel regression.

Semi-nonparametric maximum likelihood

Readings: Gallant and Nychka, Econometrica, 1987. For a Fortran

program to do this and a useful discussion in the user’s guide, see this

link. See also Cameron and Johansson, Journal of Applied Economet-

http://www.econ.duke.edu/~get/snp.html
http://www.econ.duke.edu/~get/snp.html


rics, V. 12, 1997.

MLE is the estimation method of choice when we are confident

about specifying the density. Is is possible to obtain the benefits of

MLE when we’re not so confident about the specification? In part,

yes.

Suppose we’re interested in the density of y conditional on x (both

may be vectors). Suppose that the density f (y|x, φ) is a reasonable

starting approximation to the true density. This density can be re-

shaped by multiplying it by a squared polynomial. The new density

is

gp(y|x, φ, γ) =
h2
p(y|γ)f (y|x, φ)

ηp(x, φ, γ)

where

hp(y|γ) =

p∑
k=0

γky
k

and ηp(x, φ, γ) is a normalizing factor to make the density integrate



(sum) to one. Because h2
p(y|γ)/ηp(x, φ, γ) is a homogenous function

of θ it is necessary to impose a normalization: γ0 is set to 1. The

normalization factor ηp(φ, γ) is calculated (following Cameron and

Johansson) using

E(Y r) =

∞∑
y=0

yrfY (y|φ, γ)

=

∞∑
y=0

yr
[hp (y|γ)]2

ηp(φ, γ)
fY (y|φ)

=

∞∑
y=0

p∑
k=0

p∑
l=0

yrfY (y|φ)γkγly
kyl/ηp(φ, γ)

=

p∑
k=0

p∑
l=0

γkγl


∞∑
y=0

yr+k+lfY (y|φ)

 /ηp(φ, γ)

=

p∑
k=0

p∑
l=0

γkγlmk+l+r/ηp(φ, γ).



By setting r = 0 we get that the normalizing factor is

18.8

ηp(φ, γ) =

p∑
k=0

p∑
l=0

γkγlmk+l (18.8)

Recall that γ0 is set to 1 to achieve identification. The mr in equa-

tion 18.8 are the raw moments of the baseline density. Gallant and

Nychka (1987) give conditions under which such a density may be

treated as correctly specified, asymptotically. Basically, the order of

the polynomial must increase as the sample size increases. However,

there are technicalities.

Similarly to Cameron and Johannson (1997), we may develop a

negative binomial polynomial (NBP) density for count data. The neg-

ative binomial baseline density may be written (see equation as

fY (y|φ) =
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ(
λ

ψ + λ

)y



where φ = {λ, ψ}, λ > 0 and ψ > 0. The usual means of incorporating

conditioning variables x is the parameterization λ = ex
′β. When ψ =

λ/α we have the negative binomial-I model (NB-I). When ψ = 1/α

we have the negative binomial-II (NP-II) model. For the NB-I density,

V (Y ) = λ + αλ. In the case of the NB-II model, we have V (Y ) =

λ + αλ2. For both forms, E(Y ) = λ.

The reshaped density, with normalization to sum to one, is

fY (y|φ, γ) =
[hp (y|γ)]2

ηp(φ, γ)

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ(
λ

ψ + λ

)y
. (18.9)

To get the normalization factor, we need the moment generating func-

tion:

MY (t) = ψψ
(
λ− etλ + ψ

)−ψ
. (18.10)

To illustrate, Figure 18.5 shows calculation of the first four raw mo-

ments of the NB density, calculated using MuPAD, which is a Com-

puter Algebra System that (used to be?) free for personal use. These

http://www.mupad.org


are the moments you would need to use a second order polynomial

(p = 2). MuPAD will output these results in the form of C code, which

is relatively easy to edit to write the likelihood function for the model.

This has been done in NegBinSNP.cc, which is a C++ version of this

model that can be compiled to use with octave using the mkoctfile

command. Note the impressive length of the expressions when the

degree of the expansion is 4 or 5! This is an example of a model that

would be difficult to formulate without the help of a program like

MuPAD.
It is possible that there is conditional heterogeneity such that the

appropriate reshaping should be more local. This can be accomo-

dated by allowing the γk parameters to depend upon the conditioning

variables, for example using polynomials.

Gallant and Nychka, Econometrica, 1987 prove that this sort of

density can approximate a wide variety of densities arbitrarily well

as the degree of the polynomial increases with the sample size. This

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/NegBinSNP.cc


Figure 18.5: Negative binomial raw moments



approach is not without its drawbacks: the sample objective function

can have an extremely large number of local maxima that can lead

to numeric difficulties. If someone could figure out how to do in a

way such that the sample objective function was nice and smooth,

they would probably get the paper published in a good journal. Any

ideas?

Here’s a plot of true and the limiting SNP approximations (with the

order of the polynomial fixed) to four different count data densities,

which variously exhibit over and underdispersion, as well as excess

zeros. The baseline model is a negative binomial density.
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18.5 Examples

MEPS health care usage data

We’ll use the MEPS OBDV data to illustrate kernel regression and

semi-nonparametric maximum likelihood.

Kernel regression estimation

Let’s try a kernel regression fit for the OBDV data. The program OBD-

Vkernel.m loads the MEPS OBDV data, scans over a range of window

widths and calculates leave-one-out CV scores, and plots the fitted

OBDV usage versus AGE, using the best window width. The plot is in

Figure 18.6. Note that usage increases with age, just as we’ve seen

with the parametric models. Once could use bootstrapping to gener-

ate a confidence interval to the fit.

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m


Figure 18.6: Kernel fitted OBDV usage versus AGE
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Seminonparametric ML estimation and the MEPS data

Now let’s estimate a seminonparametric density for the OBDV data.

We’ll reshape a negative binomial density, as discussed above. The

program EstimateNBSNP.m loads the MEPS OBDV data and estimates

the model, using a NB-I baseline density and a 2nd order polynomial

expansion. The output is:

OBDV

======================================================

BFGSMIN final results

Used numeric gradient

------------------------------------------------------

STRONG CONVERGENCE

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/EstimateNBSNP.m


Function conv 1 Param conv 1 Gradient conv 1

------------------------------------------------------

Objective function value 2.17061

Stepsize 0.0065

24 iterations

------------------------------------------------------

param gradient change

1.3826 0.0000 -0.0000

0.2317 -0.0000 0.0000

0.1839 0.0000 0.0000

0.2214 0.0000 -0.0000

0.1898 0.0000 -0.0000

0.0722 0.0000 -0.0000

-0.0002 0.0000 -0.0000

1.7853 -0.0000 -0.0000

-0.4358 0.0000 -0.0000

0.1129 0.0000 0.0000



******************************************************

NegBin SNP model, MEPS full data set

MLE Estimation Results

BFGS convergence: Normal convergence

Average Log-L: -2.170614

Observations: 4564

estimate st. err t-stat p-value

constant -0.147 0.126 -1.173 0.241

pub. ins. 0.695 0.050 13.936 0.000

priv. ins. 0.409 0.046 8.833 0.000

sex 0.443 0.034 13.148 0.000

age 0.016 0.001 11.880 0.000

edu 0.025 0.006 3.903 0.000

inc -0.000 0.000 -0.011 0.991

gam1 1.785 0.141 12.629 0.000

gam2 -0.436 0.029 -14.786 0.000

lnalpha 0.113 0.027 4.166 0.000



Information Criteria

CAIC : 19907.6244 Avg. CAIC: 4.3619

BIC : 19897.6244 Avg. BIC: 4.3597

AIC : 19833.3649 Avg. AIC: 4.3456

******************************************************

Note that the CAIC and BIC are lower for this model than for the

models presented in Table 16.3. This model fits well, still being par-

simonious. You can play around trying other use measures, using a

NP-II baseline density, and using other orders of expansions. Density

functions formed in this way may have MANY local maxima, so you

need to be careful before accepting the results of a casual run. To

guard against having converged to a local maximum, one can try us-

ing multiple starting values, or one could try simulated annealing as

an optimization method. If you uncomment the relevant lines in the

program, you can use SA to do the minimization. This will take a lot



Figure 18.7: Dollar-Euro

of time, compared to the default BFGS minimization. The chapter on

parallel computations might be interesting to read before trying this.

Financial data and volatility

The data set rates contains the growth rate (100×log difference) of

the daily spot $/euro and $/yen exchange rates at New York, noon,

from January 04, 1999 to February 12, 2008. There are 2291 obser-

vations. See the README file for details. Figures ?? and ?? show the

data and their histograms.

http://pareto.uab.es/mcreel/Econometrics/ExamplesNonparametric/SpotRate/rates
http://pareto.uab.es/mcreel/Econometrics/ExamplesNonparametric/SpotRate/README


Figure 18.8: Dollar-Yen

• at the center of the histograms, the bars extend above the nor-

mal density that best fits the data, and the tails are fatter than

those of the best fit normal density. This feature of the data is

known as leptokurtosis.

• in the series plots, we can see that the variance of the growth

rates is not constant over time. Volatility clusters are apparent,

alternating between periods of stability and periods of more wild

swings. This is known as conditional heteroscedasticity. ARCH

and GARCH well-known models that are often applied to this



sort of data.

• Many structural economic models often cannot generate data

that exhibits conditional heteroscedasticity without directly as-

suming shocks that are conditionally heteroscedastic. It would

be nice to have an economic explanation for how conditional

heteroscedasticity, leptokurtosis, and other (leverage, etc.) fea-

tures of financial data result from the behavior of economic

agents, rather than from a black box that provides shocks.

The Octave script kernelfit.m performs kernel regression to fitE(y2
t |y2

t−1,y
2
t−2),

and generates the plots in Figure 18.9.

• From the point of view of learning the practical aspects of kernel

regression, note how the data is compactified in the example

script.

• In the Figure, note how current volatility depends on lags of the

http://pareto.uab.es/mcreel/Econometrics/ExamplesNonparametric/SpotRate/kernelfit.m


squared return rate - it is high when both of the lags are high,

but drops off quickly when either of the lags is low.

• The fact that the plots are not flat suggests that this conditional

moment contain information about the process that generates

the data. Perhaps attempting to match this moment might be a

means of estimating the parameters of the dgp. We’ll come back

to this later.



Figure 18.9: Kernel regression fitted conditional second moments,
Yen/Dollar and Euro/Dollar

(a) Yen/Dollar (b) Euro/Dollar



18.6 Exercises

1. In Octave, type ”edit kernel_example”.

(a) Look this script over, and describe in words what it does.

(b) Run the script and interpret the output.

(c) Experiment with different bandwidths, and comment on the

effects of choosing small and large values.

2. In Octave, type ”help kernel_regression”.

(a) How can a kernel fit be done without supplying a band-

width?

(b) How is the bandwidth chosen if a value is not provided?

(c) What is the default kernel used?



3. Using the Octave script OBDVkernel.m as a model, plot kernel

regression fits for OBDV visits as a function of income and edu-

cation.

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m


Chapter 19

Simulation-based

estimation
Readings: Gourieroux and Monfort (1996) Simulation-Based Econo-
metric Methods (Oxford University Press). There are many articles.

Some of the seminal papers are Gallant and Tauchen (1996), “Which

Moments to Match?”, ECONOMETRIC THEORY, Vol. 12, 1996, pages

846



657-681; Gourieroux, Monfort and Renault (1993), “Indirect Infer-

ence,” J. Apl. Econometrics; Pakes and Pollard (1989) Econometrica;

McFadden (1989) Econometrica.

19.1 Motivation

Simulation methods are of interest when the DGP is fully character-

ized by a parameter vector, so that simulated data can be generated,

but the likelihood function and moments of the observable varables

are not calculable, so that MLE or GMM estimation is not possible.

Many moderately complex models result in intractible likelihoods or

moments, as we will see. Simulation-based estimation methods open

up the possibility to estimate truly complex models. The desirability

introducing a great deal of complexity may be an issue1, but it least it
1Remember that a model is an abstraction from reality, and abstraction helps us to isolate the

important features of a phenomenon.



becomes a possibility.

Example: Multinomial and/or dynamic discrete response

models

Let y∗i be a latent random vector of dimension m. Suppose that

y∗i = Xiβ + εi

where Xi is m×K. Suppose that

εi ∼ N(0,Ω) (19.1)

Henceforth drop the i subscript when it is not needed for clarity.

• y∗ is not observed. Rather, we observe a many-to-one mapping

y = τ (y∗)



This mapping is such that each element of y is either zero or one

(in some cases only one element will be one).

• Define

Ai = A(yi) = {y∗|yi = τ (y∗)}

Suppose random sampling of (yi, Xi). In this case the elements

of yi may not be independent of one another (and clearly are not

if Ω is not diagonal). However, yi is independent of yj, i 6= j.

• Let θ = (β′, (vec∗Ω)′)′ be the vector of parameters of the model.

The contribution of the ith observation to the likelihood function

is

pi(θ) =

∫
Ai

n(y∗i −Xiβ,Ω)dy∗i

where

n(ε,Ω) = (2π)−M/2 |Ω|−1/2 exp

[
−ε′Ω−1ε

2

]
is the multivariate normal density of an M -dimensional random



vector. The log-likelihood function is

lnL(θ) =
1

n

n∑
i=1

ln pi(θ)

and the MLE θ̂ solves the score equations

1

n

n∑
i=1

gi(θ̂) =
1

n

n∑
i=1

Dθpi(θ̂)

pi(θ̂)
≡ 0.

• The problem is that evaluation of Li(θ) and its derivative w.r.t. θ

by standard methods of numeric integration such as quadrature

is computationally infeasible when m (the dimension of y) is

higher than 3 or 4 (as long as there are no restrictions on Ω).

• The mapping τ (y∗) has not been made specific so far. This setup

is quite general: for different choices of τ (y∗) it nests the case

of dynamic binary discrete choice models as well as the case of



multinomial discrete choice (the choice of one out of a finite set

of alternatives).

– Multinomial discrete choice is illustrated by a (very simple)

job search model. We have cross sectional data on individ-

uals’ matching to a set of m jobs that are available (one of

which is unemployment). The utility of alternative j is

uj = Xjβ + εj

Utilities of jobs, stacked in the vector ui are not observed.

Rather, we observe the vector formed of elements

yj = 1 [uj > uk,∀k ∈ m, k 6= j]

Only one of these elements is different than zero.

– Dynamic discrete choice is illustrated by repeated choices

over time between two alternatives. Let alternative j have



utility

ujt = Wjtβ − εjt,
j ∈ {1, 2}
t ∈ {1, 2, ...,m}

Then

y∗ = u2 − u1

= (W2 −W1)β + ε2 − ε1

≡ Xβ + ε

Now the mapping is (element-by-element)

y = 1 [y∗ > 0] ,

that is yit = 1 if individual i chooses the second alternative



in period t, zero otherwise.

Example: Marginalization of latent variables

Economic data often presents substantial heterogeneity that may be

difficult to model. A possibility is to introduce latent random vari-

ables. This can cause the problem that there may be no known closed

form for the distribution of observable variables after marginalizing

out the unobservable latent variables. For example, count data (that

takes values 0, 1, 2, 3, ...) is often modeled using the Poisson distribu-

tion

Pr(y = i) =
exp(−λ)λi

i!

The mean and variance of the Poisson distribution are both equal to

λ :

E(y) = V (y) = λ.



Often, one parameterizes the conditional mean as

λi = exp(Xiβ).

This ensures that the mean is positive (as it must be). Estimation by

ML is straightforward.

Often, count data exhibits “overdispersion” which simply means

that

V (y) > E(y).

If this is the case, a solution is to use the negative binomial distribu-

tion rather than the Poisson. An alternative is to introduce a latent

variable that reflects heterogeneity into the specification:

λi = exp(Xiβ + ηi)

where ηi has some specified density with support S (this density may

depend on additional parameters). Let dµ(ηi) be the density of ηi. In



some cases, the marginal density of y

Pr(y = yi) =

∫
S

exp [− exp(Xiβ + ηi)] [exp(Xiβ + ηi)]
yi

yi!
dµ(ηi)

will have a closed-form solution (one can derive the negative bino-

mial distribution in the way if η has an exponential distribution - see

equation 16.1), but often this will not be possible. In this case, sim-

ulation is a means of calculating Pr(y = i), which is then used to do

ML estimation. This would be an example of the Simulated Maximum

Likelihood (SML) estimation.

• In this case, since there is only one latent variable, quadrature is

probably a better choice. However, a more flexible model with

heterogeneity would allow all parameters (not just the constant)

to vary. For example

Pr(y = yi) =

∫
S

exp [− exp(Xiβi)] [exp(Xiβi)]
yi

yi!
dµ(βi)



entails a K = dim βi-dimensional integral, which will not be

evaluable by quadrature when K gets large.

Estimation of models specified in terms of stochastic

differential equations

It is often convenient to formulate models in terms of continuous time

using differential equations. A realistic model should account for ex-

ogenous shocks to the system, which can be done by assuming a ran-

dom component. This leads to a model that is expressed as a system

of stochastic differential equations. Consider the process

dyt = g(θ, yt)dt + h(θ, yt)dWt



which is assumed to be stationary. {Wt} is a standard Brownian mo-

tion (Weiner process), such that

W (T ) =

∫ T

0

dWt ∼ N(0, T )

Brownian motion is a continuous-time stochastic process such that

• W (0) = 0

• [W (s)−W (t)] ∼ N(0, s− t)

• [W (s)−W (t)] and [W (j)−W (k)] are independent for s > t >

j > k. That is, non-overlapping segments are independent.

One can think of Brownian motion the accumulation of independent

normally distributed shocks with infinitesimal variance.

• The function g(θ, yt) is the deterministic part.

• h(θ, yt) determines the variance of the shocks.



To estimate a model of this sort, we typically have data that are as-

sumed to be observations of yt in discrete points y1, y2, ...yT . That is,

though yt is a continuous process it is observed in discrete time.

To perform inference on θ, direct ML or GMM estimation is not

usually feasible, because one cannot, in general, deduce the transi-

tion density f (yt|yt−1, θ). This density is necessary to evaluate the like-

lihood function or to evaluate moment conditions (which are based

upon expectations with respect to this density).

• A typical solution is to “discretize” the model, by which we mean

to find a discrete time approximation to the model. The dis-

cretized version of the model is

yt − yt−1 = g(φ, yt−1) + h(φ, yt−1)εt

εt ∼ N(0, 1)

The discretization induces a new parameter, φ (that is, the φ0



which defines the best approximation of the discretization to

the actual (unknown) discrete time version of the model is not

equal to θ0 which is the true parameter value). This is an ap-

proximation, and as such “ML” estimation of φ (which is actu-

ally quasi-maximum likelihood, QML) based upon this equation

is in general biased and inconsistent for the original parameter,

θ. Nevertheless, the approximation shouldn’t be too bad, which

will be useful, as we will see.

• The important point about these three examples is that compu-

tational difficulties prevent direct application of ML, GMM, etc.

Nevertheless the model is fully specified in probabilistic terms up

to a parameter vector. This means that the model is simulable,

conditional on the parameter vector.



19.2 Simulated maximum likelihood (SML)

For simplicity, consider cross-sectional data. An ML estimator solves

θ̂ML = arg max sn(θ) =
1

n

n∑
t=1

ln p(yt|Xt, θ)

where p(yt|Xt, θ) is the density function of the tth observation. When

p(yt|Xt, θ) does not have a known closed form, θ̂ML is an infeasible

estimator. However, it may be possible to define a random function

such that

Eνf (ν, yt, Xt, θ) = p(yt|Xt, θ)

where the density of ν is known. If this is the case, the simulator

p̃ (yt, Xt, θ) =
1

H

H∑
s=1

f (νts, yt, Xt, θ)



is unbiased for p(yt|Xt, θ).

• The SML simply substitutes p̃ (yt, Xt, θ) in place of p(yt|Xt, θ) in

the log-likelihood function, that is

θ̂SML = arg max sn(θ) =
1

n

n∑
i=1

ln p̃ (yt, Xt, θ)

Example: multinomial probit

Recall that the utility of alternative j is

uj = Xjβ + εj

and the vector y is formed of elements

yj = 1 [uj > uk, k ∈ m, k 6= j]



The problem is that Pr(yj = 1|θ) can’t be calculated when m is larger

than 4 or 5. However, it is easy to simulate this probability.

• Draw ε̃i from the distribution N(0,Ω)

• Calculate ũi = Xiβ + ε̃i (where Xi is the matrix formed by stack-

ing the Xij)

• Define ỹij = 1 [uij > uik,∀k ∈ m, k 6= j]

• Repeat this H times and define

π̃ij =

∑H
h=1 ỹijh
H

• Define π̃i as the m-vector formed of the π̃ij. Each element of π̃i
is between 0 and 1, and the elements sum to one.

• Now p̃ (yi, Xi, θ) = y′iπ̃i



• The SML multinomial probit log-likelihood function is

lnL(β,Ω) =
1

n

n∑
i=1

y′i ln p̃ (yi, Xi, θ)

This is to be maximized w.r.t. β and Ω.

Notes:

• The H draws of ε̃i are draw only once and are used repeatedly

during the iterations used to find β̂ and Ω̂. The draws are dif-

ferent for each i. If the ε̃i are re-drawn at every iteration the

estimator will not converge.

• The log-likelihood function with this simulator is a discontinu-

ous function of β and Ω. This does not cause problems from a

theoretical point of view since it can be shown that lnL(β,Ω) is

stochastically equicontinuous. However, it does cause problems

if one attempts to use a gradient-based optimization method



such as Newton-Raphson.

• It may be the case, particularly if few simulations, H, are used,

that some elements of π̃i are zero. If the corresponding element

of yi is equal to 1, there will be a log(0) problem.

• Solutions to discontinuity:

– 1) use an estimation method that doesn’t require a continu-

ous and differentiable objective function, for example, sim-

ulated annealing. This is computationally costly.

– 2) Smooth the simulated probabilities so that they are con-

tinuous functions of the parameters. For example, apply a

kernel transformation such as

ỹij = Φ
(
A×

[
uij −

m
max
k=1

uik

])
+ .5× 1

[
uij =

m
max
k=1

uik

]
where A is a large positive number. This approximates a



step function such that ỹij is very close to zero if uij is not

the maximum, and ỹij is very close to 1 if uij is the maxi-

mum. This makes ỹij a continuous function of β and Ω, so

that p̃ij and therefore lnL(β,Ω) will be continuous and dif-

ferentiable. Consistency requires that A(n)
p→ ∞, so that

the approximation to a step function becomes arbitrarily

close as the sample size increases. There are alternative

methods (e.g., Gibbs sampling) that may work better, but

this is too technical to discuss here.

• To solve to log(0) problem, one possibility is to search the web

for the slog function. Also, increase H if this is a serious prob-

lem.



Properties

The properties of the SML estimator depend on how H is set. The fol-

lowing is taken from Lee (1995) “Asymptotic Bias in Simulated Max-

imum Likelihood Estimation of Discrete Choice Models,” Econometric
Theory, 11, pp. 437-83.

Theorem 55. [Lee] 1) if limn→∞ n
1/2/H = 0, then

√
n
(
θ̂SML − θ0

)
d→ N(0, I−1(θ0))

2) if limn→∞ n
1/2/H = λ, λ a finite constant, then

√
n
(
θ̂SML − θ0

)
d→ N(B, I−1(θ0))

where B is a finite vector of constants.

• This means that the SML estimator is asymptotically biased if H

doesn’t grow faster than n1/2.



• The varcov is the typical inverse of the information matrix, so

that as long as H grows fast enough the estimator is consistent

and fully asymptotically efficient.

19.3 Method of simulated moments (MSM)

Suppose we have a DGP(y|x, θ) which is simulable given θ, but is such

that the density of y is not calculable.

Once could, in principle, base a GMM estimator upon the moment

conditions

mt(θ) = [K(yt, xt)− k(xt, θ)] zt

where

k(xt, θ) =

∫
K(yt, xt)p(y|xt, θ)dy,

zt is a vector of instruments in the information set and p(y|xt, θ) is the

density of y conditional on xt. The problem is that this density is not



available.

• However k(xt, θ) is readily simulated using

k̃ (xt, θ) =
1

H

H∑
h=1

K(ỹht , xt)

• By the law of large numbers, k̃ (xt, θ)
a.s.→ k (xt, θ) , as H → ∞,

which provides a clear intuitive basis for the estimator, though

in fact we obtain consistency even for H finite, since a law of

large numbers is also operating across the n observations of real

data, so errors introduced by simulation cancel themselves out.

• This allows us to form the moment conditions

m̃t(θ) =
[
K(yt, xt)− k̃ (xt, θ)

]
zt (19.2)



where zt is drawn from the information set. As before, form

m̃(θ) =
1

n

n∑
i=1

m̃t(θ)

=
1

n

n∑
i=1

[
K(yt, xt)−

1

H

H∑
h=1

k(ỹht , xt)

]
zt (19.3)

with which we form the GMM criterion and estimate as usual.

Note that the unbiased simulator k(ỹht , xt) appears linearly within

the sums.

Properties

Suppose that the optimal weighting matrix is used. McFadden (ref.

above) and Pakes and Pollard (refs. above) show that the asymp-

totic distribution of the MSM estimator is very similar to that of the

infeasible GMM estimator. In particular, assuming that the optimal



weighting matrix is used, and for H finite,

√
n
(
θ̂MSM − θ0

)
d→ N

[
0,

(
1 +

1

H

)(
D∞Ω−1D′∞

)−1
]

(19.4)

where
(
D∞Ω−1D′∞

)−1 is the asymptotic variance of the infeasible GMM

estimator.

• That is, the asymptotic variance is inflated by a factor 1 + 1/H.

For this reason the MSM estimator is not fully asymptotically

efficient relative to the infeasible GMM estimator, for H finite,

but the efficiency loss is small and controllable, by setting H

reasonably large.

• The estimator is asymptotically unbiased even for H = 1. This is

an advantage relative to SML.

• If one doesn’t use the optimal weighting matrix, the asymptotic

varcov is just the ordinary GMM varcov, inflated by 1 + 1/H.



• The above presentation is in terms of a specific moment condi-

tion based upon the conditional mean. Simulated GMM can be

applied to moment conditions of any form.

Comments

Why is SML inconsistent if H is finite, while MSM is? The reason

is that SML is based upon an average of logarithms of an unbiased

simulator (the densities of the observations). To use the multinomial

probit model as an example, the log-likelihood function is

lnL(β,Ω) =
1

n

n∑
i=1

y′i ln pi(β,Ω)

The SML version is

lnL(β,Ω) =
1

n

n∑
i=1

y′i ln p̃i(β,Ω)



The problem is that

E ln(p̃i(β,Ω)) 6= ln(E p̃i(β,Ω))

in spite of the fact that

E p̃i(β,Ω) = pi(β,Ω)

due to the fact that ln(·) is a nonlinear transformation. The only way

for the two to be equal (in the limit) is if H tends to infinite so that

p̃ (·) tends to p (·).
The reason that MSM does not suffer from this problem is that in

this case the unbiased simulator appears linearly within every sum

of terms, and it appears within a sum over n (see equation [19.3]).

Therefore the SLLN applies to cancel out simulation errors, from which

we get consistency. That is, using simple notation for the random



sampling case, the moment conditions

m̃(θ) =
1

n

n∑
i=1

[
K(yt, xt)−

1

H

H∑
h=1

k(ỹht , xt)

]
zt (19.5)

=
1

n

n∑
i=1

[
k(xt, θ

0) + εt −
1

H

H∑
h=1

[k(xt, θ) + ε̃ht]

]
zt (19.6)

converge almost surely to

m̃∞(θ) =

∫ [
k(x, θ0)− k(x, θ)

]
z(x)dµ(x).

(note: zt is assume to be made up of functions of xt). The objective

function converges to

s∞(θ) = m̃∞(θ)′Ω−1
∞ m̃∞(θ)

which obviously has a minimum at θ0, henceforth consistency.



• If you look at equation 19.6 a bit, you will see why the variance

inflation factor is (1 + 1
H ).

19.4 Efficient method of moments (EMM)

The choice of which moments upon which to base a GMM estimator

can have very pronounced effects upon the efficiency of the estimator.

• A poor choice of moment conditions may lead to very inefficient

estimators, and can even cause identification problems (as we’ve

seen with the GMM problem set).

• The drawback of the above approach MSM is that the moment

conditions used in estimation are selected arbitrarily. The asymp-

totic efficiency of the estimator may be low.

• The asymptotically optimal choice of moments would be the



score vector of the likelihood function,

mt(θ) = Dθ ln pt(θ | It)

As before, this choice is unavailable.

The efficient method of moments (EMM) (see Gallant and Tauchen

(1996), “Which Moments to Match?”, ECONOMETRIC THEORY, Vol.

12, 1996, pages 657-681) seeks to provide moment conditions that

closely mimic the score vector. If the approximation is very good, the

resulting estimator will be very nearly fully efficient.

The DGP is characterized by random sampling from the density

p(yt|xt, θ0) ≡ pt(θ
0)



We can define an auxiliary model, called the “score generator”,

which simply provides a (misspecified) parametric density

f (y|xt, λ) ≡ ft(λ)

• This density is known up to a parameter λ. We assume that this

density function is calculable. Therefore quasi-ML estimation is

possible. Specifically,

λ̂ = arg max
Λ
sn(λ) =

1

n

n∑
t=1

ln ft(λ).

• After determining λ̂we can calculate the score functionsDλ ln f (yt|xt, λ̂).

• The important point is that even if the density is misspecified,

there is a pseudo-true λ0 for which the true expectation, taken

with respect to the true but unknown density of y, p(y|xt, θ0),



and then marginalized over x is zero:

∃λ0 : EXEY |X
[
Dλ ln f (y|x, λ0)

]
=

∫
X

∫
Y |X

Dλ ln f (y|x, λ0)p(y|x, θ0)dydµ(x) = 0

• We have seen in the section on QML that λ̂
p→ λ0; this suggests

using the moment conditions

mn(θ, λ̂) =
1

n

n∑
t=1

∫
Dλ ln ft(λ̂)pt(θ)dy (19.7)

• These moment conditions are not calculable, since pt(θ) is not

available, but they are simulable using

m̃n(θ, λ̂) =
1

n

n∑
t=1

1

H

H∑
h=1

Dλ ln f (ỹht |xt, λ̂)

where ỹht is a draw from DGP (θ), holding xt fixed. By the LLN



and the fact that λ̂ converges to λ0,

m̃∞(θ0, λ0) = 0.

This is not the case for other values of θ, assuming that λ0 is

identified.

• The advantage of this procedure is that if f (yt|xt, λ) closely ap-

proximates p(y|xt, θ), then m̃n(θ, λ̂) will closely approximate the

optimal moment conditions which characterize maximum likeli-

hood estimation, which is fully efficient.

• If one has prior information that a certain density approximates

the data well, it would be a good choice for f (·).

• If one has no density in mind, there exist good ways of approxi-

mating unknown distributions parametrically: Philips’ ERA’s (Econo-
metrica, 1983) and Gallant and Nychka’s (Econometrica, 1987)



SNP density estimator which we saw before. Since the SNP den-

sity is consistent, the efficiency of the indirect estimator is the

same as the infeasible ML estimator.

Optimal weighting matrix

I will present the theory for H finite, and possibly small. This is done

because it is sometimes impractical to estimate with H very large.

Gallant and Tauchen give the theory for the case of H so large that

it may be treated as infinite (the difference being irrelevant given the

numerical precision of a computer). The theory for the case of H

infinite follows directly from the results presented here.

The moment condition m̃(θ, λ̂) depends on the pseudo-ML esti-

mate λ̂. We can apply Theorem 30 to conclude that

√
n
(
λ̂− λ0

)
d→ N

[
0,J (λ0)−1I(λ0)J (λ0)−1

]
(19.8)



If the density f (yt|xt, λ̂) were in fact the true density p(y|xt, θ), then λ̂

would be the maximum likelihood estimator, and J (λ0)−1I(λ0) would

be an identity matrix, due to the information matrix equality. How-

ever, in the present case we assume that f (yt|xt, λ̂) is only an approx-

imation to p(y|xt, θ), so there is no cancellation.

Recall that J (λ0) ≡ p lim
(

∂2

∂λ∂λ′sn(λ0)
)
. Comparing the definition

of sn(λ) with the definition of the moment condition in Equation 19.7,

we see that

J (λ0) = Dλ′m(θ0, λ0).

As in Theorem 30,

I(λ0) = lim
n→∞
E
[
n
∂sn(λ)

∂λ

∣∣∣∣
λ0

∂sn(λ)

∂λ′

∣∣∣∣
λ0

]
.

In this case, this is simply the asymptotic variance covariance matrix

of the moment conditions, Ω. Now take a first order Taylor’s series

approximation to
√
nmn(θ0, λ̂) about λ0 :



√
nm̃n(θ0, λ̂) =

√
nm̃n(θ0, λ0) +

√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
+ op(1)

First consider
√
nm̃n(θ0, λ0). It is straightforward but somewhat

tedious to show that the asymptotic variance of this term is 1
HI∞(λ0).

Next consider the second term
√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
. Note that

Dλ′m̃n(θ0, λ0)
a.s.→ J (λ0), so we have

√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
=
√
nJ (λ0)

(
λ̂− λ0

)
, a.s.

But noting equation 19.8

√
nJ (λ0)

(
λ̂− λ0

)
a∼ N

[
0, I(λ0)

]
Now, combining the results for the first and second terms,

√
nm̃n(θ0, λ̂)

a∼ N

[
0,

(
1 +

1

H

)
I(λ0)

]



Suppose that Î(λ0) is a consistent estimator of the asymptotic variance-

covariance matrix of the moment conditions. This may be compli-

cated if the score generator is a poor approximator, since the individ-

ual score contributions may not have mean zero in this case (see the

section on QML) . Even if this is the case, the individuals means can

be calculated by simulation, so it is always possible to consistently es-

timate I(λ0) when the model is simulable. On the other hand, if the

score generator is taken to be correctly specified, the ordinary estima-

tor of the information matrix is consistent. Combining this with the

result on the efficient GMM weighting matrix in Theorem 43, we see

that defining θ̂ as

θ̂ = arg min
Θ
mn(θ, λ̂)′

[(
1 +

1

H

)
Î(λ0)

]−1

mn(θ, λ̂)

is the GMM estimator with the efficient choice of weighting matrix.

• If one has used the Gallant-Nychka ML estimator as the auxiliary



model, the appropriate weighting matrix is simply the informa-

tion matrix of the auxiliary model, since the scores are uncorre-

lated. (e.g., it really is ML estimation asymptotically, since the

score generator can approximate the unknown density arbitrar-

ily well).

Asymptotic distribution

Since we use the optimal weighting matrix, the asymptotic distribu-

tion is as in Equation 14.3, so we have (using the result in Equation

19.8):

√
n
(
θ̂ − θ0

)
d→ N

0,

(
D∞

[(
1 +

1

H

)
I(λ0)

]−1

D′∞

)−1
 ,

where

D∞ = lim
n→∞
E
[
Dθm

′
n(θ0, λ0)

]
.



This can be consistently estimated using

D̂ = Dθm
′
n(θ̂, λ̂)

Diagnotic testing

The fact that

√
nmn(θ0, λ̂)

a∼ N

[
0,

(
1 +

1

H

)
I(λ0)

]
implies that

nmn(θ̂, λ̂)′
[(

1 +
1

H

)
I(λ̂)

]−1

mn(θ̂, λ̂)
a∼ χ2(q)

where q is dim(λ) − dim(θ), since without dim(θ) moment conditions

the model is not identified, so testing is impossible. One test of the

model is simply based on this statistic: if it exceeds the χ2(q) critical



point, something may be wrong (the small sample performance of

this sort of test would be a topic worth investigating).

• Information about what is wrong can be gotten from the pseudo-

t-statistics: (
diag

[(
1 +

1

H

)
I(λ̂)

]1/2
)−1
√
nmn(θ̂, λ̂)

can be used to test which moments are not well modeled. Since

these moments are related to parameters of the score genera-

tor, which are usually related to certain features of the model,

this information can be used to revise the model. These aren’t

actually distributed asN(0, 1), since
√
nmn(θ0, λ̂) and

√
nmn(θ̂, λ̂)

have different distributions (that of
√
nmn(θ̂, λ̂) is somewhat more

complicated). It can be shown that the pseudo-t statistics are bi-

ased toward nonrejection. See Gourieroux et. al. or Gallant and

Long, 1995, for more details.



19.5 Examples

SML of a Poisson model with latent heterogeneity

We have seen (see equation 16.1) that a Poisson model with latent

heterogeneity that follows an exponential distribution leads to the

negative binomial model. To illustrate SML, we can integrate out

the latent heterogeneity using Monte Carlo, rather than the analyt-

ical approach which leads to the negative binomial model. In ac-

tual practice, one would not want to use SML in this case, but it

is a nice example since it allows us to compare SML to the actual

ML estimator. The Octave function defined by PoissonLatentHet.m

calculates the simulated log likelihood for a Poisson model where

λ = exp x′tβ + ση), where η ∼ N(0, 1). This model is similar to the

negative binomial model, except that the latent variable is normally

distributed rather than gamma distributed. The Octave script Esti-

http://pareto.uab.es/mcreel/Econometrics/Examples/SBEM/PoissonLatentHet.m
http://pareto.uab.es/mcreel/Econometrics/Examples/SBEM/EstimatePoissonLatentHet.m


matePoissonLatentHet.m estimates this model using the MEPS OBDV

data that has already been discussed. Note that simulated anneal-

ing is used to maximize the log likelihood function. Attempting to

use BFGS leads to trouble. I suspect that the log likelihood is ap-

proximately non-differentiable in places, around which it is very flat,

though I have not checked if this is true. If you run this script, you

will see that it takes a long time to get the estimation results, which

are:

******************************************************

Poisson Latent Heterogeneity model, SML estimation, MEPS 1996 full data set

MLE Estimation Results

BFGS convergence: Max. iters. exceeded

Average Log-L: -2.171826

http://pareto.uab.es/mcreel/Econometrics/Examples/SBEM/EstimatePoissonLatentHet.m
http://pareto.uab.es/mcreel/Econometrics/Examples/SBEM/EstimatePoissonLatentHet.m


Observations: 4564

estimate st. err t-stat p-value

constant -1.592 0.146 -10.892 0.000

pub. ins. 1.189 0.068 17.425 0.000

priv. ins. 0.655 0.065 10.124 0.000

sex 0.615 0.044 13.888 0.000

age 0.018 0.002 10.865 0.000

edu 0.024 0.010 2.523 0.012

inc -0.000 0.000 -0.531 0.596

lnalpha 0.203 0.014 14.036 0.000

Information Criteria

CAIC : 19899.8396 Avg. CAIC: 4.3602

BIC : 19891.8396 Avg. BIC: 4.3584

AIC : 19840.4320 Avg. AIC: 4.3472



******************************************************

octave:3>

If you compare these results to the results for the negative binomial

model, given in subsection (16.2), you can see that the present model

fits better according to the CAIC criterion. The present model is con-

siderably less convenient to work with, however, due to the computa-

tional requirements. The chapter on parallel computing is relevant if

you wish to use models of this sort.

SMM

To be added in future: do SMM using unconditional moments for SV

model (compare to Andersen et al and others)



SNM

To be added.

EMM estimation of a discrete choice model

In this section consider EMM estimation. There is a sophisticated

package by Gallant and Tauchen for this, but here we’ll look at some

simple, but hopefully didactic code. The file probitdgp.m generates

data that follows the probit model. The file emm_moments.m defines

EMM moment conditions, where the DGP and score generator can be

passed as arguments. Thus, it is a general purpose moment condition

for EMM estimation. This file is interesting enough to warrant some

discussion. A listing appears in Listing 19.1. Line 3 defines the DGP,

and the arguments needed to evaluate it are defined in line 4. The

score generator is defined in line 5, and its arguments are defined in

line 6. The QML estimate of the parameter of the score generator

http://www.econ.duke.edu/~get/emm.html
http://www.econ.duke.edu/~get/emm.html
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/gmm/emm_moments.m


is read in line 7. Note in line 10 how the random draws needed to

simulate data are passed with the data, and are thus fixed during

estimation, to avoid ”chattering”. The simulated data is generated in

line 16, and the derivative of the score generator using the simulated

data is calculated in line 18. In line 20 we average the scores of the

score generator, which are the moment conditions that the function

returns.
1 function scores = emm_moments(theta, data, momentargs)

2 k = momentargs{1};

3 dgp = momentargs{2}; # the data generating process (DGP)

4 dgpargs = momentargs{3}; # its arguments (cell array)

5 sg = momentargs{4}; # the score generator (SG)

6 sgargs = momentargs{5}; # SG arguments (cell array)

7 phi = momentargs{6}; # QML estimate of SG parameter

8 y = data(:,1);

9 x = data(:,2:k+1);

10 rand_draws = data(:,k+2:columns(data)); # passed with data to ensure



fixed across iterations

11 n = rows(y);

12 scores = zeros(n,rows(phi)); # container for moment contributions

13 reps = columns(rand_draws); # how many simulations?

14 for i = 1:reps

15 e = rand_draws(:,i);

16 y = feval(dgp, theta, x, e, dgpargs); # simulated data

17 sgdata = [y x]; # simulated data for SG

18 scores = scores + numgradient(sg, {phi, sgdata, sgargs}); # gradient

of SG

19 endfor

20 scores = scores / reps; # average over number of simulations

21 endfunction

Listing 19.1: emm_moments.m

The file emm_example.m performs EMM estimation of the probit

model, using a logit model as the score generator. The results we

obtain are

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_example.m


Score generator results:

=====================================================

BFGSMIN final results

Used analytic gradient

------------------------------------------------------

STRONG CONVERGENCE

Function conv 1 Param conv 1 Gradient conv 1

------------------------------------------------------

Objective function value 0.281571

Stepsize 0.0279

15 iterations

------------------------------------------------------

param gradient change

1.8979 0.0000 0.0000

1.6648 -0.0000 0.0000

1.9125 -0.0000 0.0000

1.8875 -0.0000 0.0000



1.7433 -0.0000 0.0000

======================================================

Model results:

******************************************************

EMM example

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.000000

Observations: 1000

Exactly identified, no spec. test

estimate st. err t-stat p-value

p1 1.069 0.022 47.618 0.000

p2 0.935 0.022 42.240 0.000

p3 1.085 0.022 49.630 0.000



p4 1.080 0.022 49.047 0.000

p5 0.978 0.023 41.643 0.000

******************************************************

It might be interesting to compare the standard errors with those

obtained from ML estimation, to check efficiency of the EMM estima-

tor. One could even do a Monte Carlo study.



19.6 Exercises

1. (basic) Examine the Octave script and function discussed in sub-

section 19.5 and describe what they do.

2. (basic) Examine the Octave scripts and functions discussed in

subsection 19.5 and describe what they do.

3. (advanced, but even if you don’t do this you should be able to

describe what needs to be done) Write Octave code to do SML

estimation of the probit model. Do an estimation using data

generated by a probit model ( probitdgp.m might be helpful).

Compare the SML estimates to ML estimates.

4. (more advanced) Do a little Monte Carlo study to compare ML,

SML and EMM estimation of the probit model. Investigate how

the number of simulations affect the two simulation-based esti-

mators.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m


Chapter 20

Parallel programming for

econometrics
The following borrows heavily from Creel (2005).

Parallel computing can offer an important reduction in the time

to complete computations. This is well-known, but it bears emphasis

since it is the main reason that parallel computing may be attractive to

897



users. To illustrate, the Intel Pentium IV (Willamette) processor, run-

ning at 1.5GHz, was introduced in November of 2000. The Pentium

IV (Northwood-HT) processor, running at 3.06GHz, was introduced

in November of 2002. An approximate doubling of the performance

of a commodity CPU took place in two years. Extrapolating this ad-

mittedly rough snapshot of the evolution of the performance of com-

modity processors, one would need to wait more than 6.6 years and

then purchase a new computer to obtain a 10-fold improvement in

computational performance. The examples in this chapter show that

a 10-fold improvement in performance can be achieved immediately,

using distributed parallel computing on available computers.

Recent (this is written in 2005) developments that may make par-

allel computing attractive to a broader spectrum of researchers who

do computations. The first is the fact that setting up a cluster of com-

puters for distributed parallel computing is not difficult. If you are

using the ParallelKnoppix bootable CD that accompanies these notes,

http://pareto.uab.es/mcreel/ParallelKnoppix


you are less than 10 minutes away from creating a cluster, supposing

you have a second computer at hand and a crossover ethernet cable.

See the ParallelKnoppix tutorial. A second development is the ex-

istence of extensions to some of the high-level matrix programming

(HLMP) languages1 that allow the incorporation of parallelism into

programs written in these languages. A third is the spread of dual

and quad-core CPUs, so that an ordinary desktop or laptop computer

can be made into a mini-cluster. Those cores won’t work together on

a single problem unless they are told how to.

Following are examples of parallel implementations of several main-

stream problems in econometrics. A focus of the examples is on the

possibility of hiding parallelization from end users of programs. If

programs that run in parallel have an interface that is nearly identi-

cal to the interface of equivalent serial versions, end users will find it
1By ”high-level matrix programming language” I mean languages such as MATLAB (TM the Math-

works, Inc.), Ox (TM OxMetrics Technologies, Ltd.), and GNU Octave (www.octave.org), for exam-
ple.

http://pareto.uab.es/mcreel/ParallelKnoppix/ParallelKnoppixTutorial.html
www.octave.org


easy to take advantage of parallel computing’s performance. We con-

tinue to use Octave, taking advantage of the MPI Toolbox (MPITB)

for Octave, by by Fernández Baldomero et al. (2004). There are also

parallel packages for Ox, R, and Python which may be of interest to

econometricians, but as of this writing, the following examples are

the most accessible introduction to parallel programming for econo-

metricians.

20.1 Example problems

This section introduces example problems from econometrics, and

shows how they can be parallelized in a natural way.

http://atc.ugr.es/javier-bin/mpitb
http://atc.ugr.es/javier-bin/mpitb


Monte Carlo

A Monte Carlo study involves repeating a random experiment many

times under identical conditions. Several authors have noted that

Monte Carlo studies are obvious candidates for parallelization (Doornik

et al. 2002; Bruche, 2003) since blocks of replications can be done in-

dependently on different computers. To illustrate the parallelization

of a Monte Carlo study, we use same trace test example as do Doornik,

et. al. (2002). tracetest.m is a function that calculates the trace test

statistic for the lack of cointegration of integrated time series. This

function is illustrative of the format that we adopt for Monte Carlo

simulation of a function: it receives a single argument of cell type,

and it returns a row vector that holds the results of one random sim-

ulation. The single argument in this case is a cell array that holds the

length of the series in its first position, and the number of series in the

second position. It generates a random result though a process that

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/tracetest.m


is internal to the function, and it reports some output in a row vector

(in this case the result is a scalar).

mc_example1.m is an Octave script that executes a Monte Carlo

study of the trace test by repeatedly evaluating the tracetest.m func-

tion. The main thing to notice about this script is that lines 7 and 10

call the function montecarlo.m. When called with 3 arguments, as

in line 7, montecarlo.m executes serially on the computer it is called

from. In line 10, there is a fourth argument. When called with four

arguments, the last argument is the number of slave hosts to use. We

see that running the Monte Carlo study on one or more processors is

transparent to the user - he or she must only indicate the number of

slave computers to be used.

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/mc_example1.m


ML

For a sample {(yt, xt)}n of n observations of a set of dependent and

explanatory variables, the maximum likelihood estimator of the pa-

rameter θ can be defined as

θ̂ = arg max sn(θ)

where

sn(θ) =
1

n

n∑
t=1

ln f (yt|xt, θ)

Here, yt may be a vector of random variables, and the model may be

dynamic since xt may contain lags of yt. As Swann (2002) points out,

this can be broken into sums over blocks of observations, for example



two blocks:

sn(θ) =
1

n


(

n1∑
t=1

ln f (yt|xt, θ)

)
+

 n∑
t=n1+1

ln f (yt|xt, θ)


Analogously, we can define up to n blocks. Again following Swann,

parallelization can be done by calculating each block on separate

computers.

mle_example1.m is an Octave script that calculates the maximum

likelihood estimator of the parameter vector of a model that assumes

that the dependent variable is distributed as a Poisson random vari-

able, conditional on some explanatory variables. In lines 1-3 the data

is read, the name of the density function is provided in the variable

model, and the initial value of the parameter vector is set. In line 5,

the function mle_estimate performs ordinary serial calculation of the

ML estimator, while in line 7 the same function is called with 6 argu-

ments. The fourth and fifth arguments are empty placeholders where

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/mle/mle_example1.m


options to mle_estimate may be set, while the sixth argument is the

number of slave computers to use for parallel execution, 1 in this case.

A person who runs the program sees no parallel programming code -

the parallelization is transparent to the end user, beyond having to se-

lect the number of slave computers. When executed, this script prints

out the estimates theta_s and theta_p, which are identical.

It is worth noting that a different likelihood function may be used

by making the model variable point to a different function. The like-

lihood function itself is an ordinary Octave function that is not paral-

lelized. The mle_estimate function is a generic function that can call

any likelihood function that has the appropriate input/output syntax

for evaluation either serially or in parallel. Users need only learn how

to write the likelihood function using the Octave language.



GMM

For a sample as above, the GMM estimator of the parameter θ can be

defined as

θ̂ ≡ arg min
Θ
sn(θ)

where

sn(θ) = mn(θ)′Wnmn(θ)

and

mn(θ) =
1

n

n∑
t=1

mt(yt|xt, θ)

Since mn(θ) is an average, it can obviously be computed blockwise,

using for example 2 blocks:

mn(θ) =
1

n


(

n1∑
t=1

mt(yt|xt, θ)

)
+

 n∑
t=n1+1

mt(yt|xt, θ)

 (20.1)



Likewise, we may define up to n blocks, each of which could poten-

tially be computed on a different machine.

gmm_example1.m is a script that illustrates how GMM estimation

may be done serially or in parallel. When this is run, theta_s and

theta_p are identical up to the tolerance for convergence of the min-

imization routine. The point to notice here is that an end user can

perform the estimation in parallel in virtually the same way as it is

done serially. Again, gmm_estimate, used in lines 8 and 10, is a generic

function that will estimate any model specified by the moments vari-

able - a different model can be estimated by changing the value of

the moments variable. The function that moments points to is an ordi-

nary Octave function that uses no parallel programming, so users can

write their models using the simple and intuitive HLMP syntax of Oc-

tave. Whether estimation is done in parallel or serially depends only

the seventh argument to gmm_estimate - when it is missing or zero,

estimation is by default done serially with one processor. When it is

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/gmm/gmm_example1.m


positive, it specifies the number of slave nodes to use.

Kernel regression

The Nadaraya-Watson kernel regression estimator of a function g(x)

at a point x is

ĝ(x) =

∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

≡
n∑
t=1

wtyy

We see that the weight depends upon every data point in the sample.

To calculate the fit at every point in a sample of size n, on the order

of n2k calculations must be done, where k is the dimension of the

vector of explanatory variables, x. Racine (2002) demonstrates that

MPI parallelization can be used to speed up calculation of the kernel



regression estimator by calculating the fits for portions of the sample

on different computers. We follow this implementation here. ker-

nel_example1.m is a script for serial and parallel kernel regression.

Serial execution is obtained by setting the number of slaves equal to

zero, in line 15. In line 17, a single slave is specified, so execution is

in parallel on the master and slave nodes.

The example programs show that parallelization may be mostly

hidden from end users. Users can benefit from parallelization without

having to write or understand parallel code. The speedups one can

obtain are highly dependent upon the specific problem at hand, as

well as the size of the cluster, the efficiency of the network, etc. Some

examples of speedups are presented in Creel (2005). Figure 20.1

reproduces speedups for some econometric problems on a cluster of

12 desktop computers. The speedup for k nodes is the time to finish

the problem on a single node divided by the time to finish the problem

on k nodes. Note that you can get 10X speedups, as claimed in the

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/kernel/kernel_example1.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/kernel/kernel_example1.m


Figure 20.1: Speedups from parallelization
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introduction. It’s pretty obvious that much greater speedups could

be obtained using a larger cluster, for the ”embarrassingly parallel”

problems.
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Chapter 21

Final project:

econometric estimation

of a RBC model
THIS IS NOT FINISHED - IGNORE IT FOR NOW

In this last chapter we’ll go through a worked example that com-
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bines a number of the topics we’ve seen. We’ll do simulated method

of moments estimation of a real business cycle model, similar to what

Valderrama (2002) does.

21.1 Data

We’ll develop a model for private consumption and real gross private

investment. The data are obtained from the US Bureau of Economic

Analysis (BEA) National Income and Product Accounts (NIPA), Table

11.1.5, Lines 2 and 6 (you can download quarterly data from 1947-I

to the present). The data we use are in the file rbc_data.m. This data

is real (constant dollars).

The program plots.m will make a few plots, including Figures 21.1

though 21.3. First looking at the plot for levels, we can see that real

consumption and investment are clearly nonstationary (surprise, sur-

prise). There appears to be somewhat of a structural change in the

http://www.bea.gov/bea/dn/nipaweb/TableView.asp?SelectedTable=5&FirstYear=2002&LastYear=2004&Freq=Qtr
http://www.bea.gov/bea/dn/nipaweb/TableView.asp?SelectedTable=5&FirstYear=2002&LastYear=2004&Freq=Qtr
http://pareto.uab.es/mcreel/Econometrics/Examples/RBC/rbc_data.m
http://pareto.uab.es/mcreel/Econometrics/Examples/RBC/plots.m


Figure 21.1: Consumption and Investment, Levels

Figure 21.2: Consumption and Investment, Growth Rates

mid-1970’s.

Looking at growth rates, the series for consumption has an extended

period of high growth in the 1970’s, becoming more moderate in the

90’s. The volatility of growth of consumption has declined somewhat,

over time. Looking at investment, there are some notable periods of

high volatility in the mid-1970’s and early 1980’s, for example. Since

1990 or so, volatility seems to have declined.

Economic models for growth often imply that there is no long term

growth (!) - the data that the models generate is stationary and

ergodic. Or, the data that the models generate needs to be passed

Figure 21.3: Consumption and Investment, Bandpass Filtered



through the inverse of a filter. We’ll follow this, and generate station-

ary business cycle data by applying the bandpass filter of Christiano

and Fitzgerald (1999). The filtered data is in Figure 21.3. We’ll try

to specify an economic model that can generate similar data. To get

data that look like the levels for consumption and investment, we’d

need to apply the inverse of the bandpass filter.

21.2 An RBC Model

Consider a very simple stochastic growth model (the same used by

Maliar and Maliar (2003), with minor notational difference):

max{ct,kt}∞t=0
E0

∑∞
t=0 β

tU(ct)

ct + kt = (1− δ) kt−1 + φtk
α
t−1

log φt = ρ log φt−1 + εt

εt ∼ IIN(0, σ2
ε )



Assume that the utility function is

U(ct) =
c1−γ
t − 1

1− γ

• β is the discount rate

• δ is the depreciation rate of capital

• α is the elasticity of output with respect to capital

• φ is a technology shock that is positive. φt is observed in period

t.

• γ is the coefficient of relative risk aversion. When γ = 1, the

utility function is logarithmic.

• gross investment, it, is the change in the capital stock:

it = kt − (1− δ) kt−1



• we assume that the initial condition (k0, θ0) is given.

We would like to estimate the parameters θ =
(
β, γ, δ, α, ρ, σ2

ε

)′ using

the data that we have on consumption and investment. This problem

is very similar to the GMM estimation of the portfolio model discussed

in Sections 14.16 and 14.17. Once can derive the Euler condition in

the same way we did there, and use it to define a GMM estimator.

That approach was not very successful, recall. Now we’ll try to use

some more informative moment conditions to see if we get better

results.

21.3 A reduced form model

Macroeconomic time series data are often modeled using vector au-

toregressions. A vector autogression is just the vector version of an

autoregressive model. Let yt be a G-vector of jointly dependent vari-



ables. A VAR(p) model is

yt = c + A1yt−1 + A2yt−2 + ... + Apyt−p + vt

where c is a G-vector of parameters, and Aj, j=1,2,...,p, are G × G

matrices of parameters. Let vt = Rtηt, where ηt ∼ IIN(0, I2), and

Rt is upper triangular. So V (vt|yt−1, ...yt−p) = RtR
′
t. You can think of

a VAR model as the reduced form of a dynamic linear simultaneous

equations model where all of the variables are treated as endogenous.

Clearly, if all of the variables are endogenous, one would need some

form of additional information to identify a structural model. But we

already have a structural model, and we’re only going to use the VAR

to help us estimate the parameters. A well-fitting reduced form model

will be adequate for the purpose.

We’re seen that our data seems to have episodes where the vari-

ance of growth rates and filtered data is non-constant. This brings us

to the general area of stochastic volatility. Without going into details,



we’ll just consider the exponential GARCH model of Nelson (1991) as

presented in Hamilton (1994, pg. 668-669).

Define ht = vec∗(Rt), the vector of elements in the upper triangle

of Rt (in our case this is a 3× 1 vector). We assume that the elements

follow

log hjt = κj + P(j,.)

{
|vt−1| −

√
2/π + ℵ(j,.)vt−1

}
+ G(j,.) log ht−1

The variance of the VAR error depends upon its own past, as well as

upon the past realizations of the shocks.

• This is an EGARCH(1,1) specification. The obvious generaliza-

tion is the EGARCH(r,m) specification, with longer lags (r for

lags of v, m for lags of h).

• The advantage of the EGARCH formulation is that the variance

is assuredly positive without parameter restrictions



• The matrix P has dimension 3× 2.

• The matrix G has dimension 3× 3.

• The matrix ℵ (reminder to self: this is an ”aleph”) has dimension

2× 2.

• The parameter matrix ℵ allows for leverage, so that positive and

negative shocks can have asymmetric effects upon volatility.

• We will probably want to restrict these parameter matrices in

some way. For instance, G could plausibly be diagonal.

With the above specification, we have

ηt ∼ IIN (0, I2)

ηt = R−1
t vt

and we know how to calculate Rt and vt, given the data and the



parameters. Thus, it is straighforward to do estimation by maximum

likelihood. This will be the score generator.

21.4 Results (I): The score generator

21.5 Solving the structural model

The first order condition for the structural model is

c−γt = βEt

(
c−γt+1

(
1− δ + αφt+1k

α−1
t

))
or

ct =
{
βEt

[
c−γt+1

(
1− δ + αφt+1k

α−1
t

)]}−1
γ

The problem is that we cannot solve for ct since we do not know the

solution for the expectation in the previous equation.

The parameterized expectations algorithm (PEA: den Haan and



Marcet, 1990), is a means of solving the problem. The expectations

term is replaced by a parametric function. As long as the paramet-

ric function is a flexible enough function of variables that have been

realized in period t, there exist parameter values that make the ap-

proximation as close to the true expectation as is desired. We will

write the approximation

Et

[
c−γt+1

(
1− δ + αφt+1k

α−1
t

)]
' exp (ρ0 + ρ1 log φt + ρ2 log kt−1)

For given values of the parameters of this approximating function, we

can solve for ct, and then for kt using the restriction that

ct + kt = (1− δ) kt−1 + φtk
α
t−1

This allows us to generate a series {(ct, kt)}. Then the expectations



approximation is updated by fitting

c−γt+1

(
1− δ + αφt+1k

α−1
t

)
= exp (ρ0 + ρ1 log φt + ρ2 log kt−1) + ηt

by nonlinear least squares. The 2 step procedure of generating data

and updating the parameters of the approximation to expectations is

iterated until the parameters no longer change. When this is the case,

the expectations function is the best fit to the generated data. As long

it is a rich enough parametric model to encompass the true expecta-

tions function, it can be made to be equal to the true expectations

function by using a long enough simulation.

Thus, given the parameters of the structural model, θ =
(
β, γ, δ, α, ρ, σ2

ε

)′,
we can generate data {(ct, kt)} using the PEA. From this we can get

the series {(ct, it)} using it = kt − (1− δ) kt−1. This can be used to do

EMM estimation using the scores of the reduced form model to define

moments, using the simulated data from the structural model.
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Chapter 22

Introduction to Octave
Why is Octave being used here, since it’s not that well-known by

econometricians? Well, because it is a high quality environment that

is easily extensible, uses well-tested and high performance numerical

libraries, it is licensed under the GNU GPL, so you can get it for free

and modify it if you like, and it runs on both GNU/Linux, Mac OSX

and Windows systems. It’s also quite easy to learn.
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22.1 Getting started

Get the ParallelKnoppix CD, as was described in Section 1.5. Then

burn the image, and boot your computer with it. This will give you

this same PDF file, but with all of the example programs ready to run.

The editor is configure with a macro to execute the programs using

Octave, which is of course installed. From this point, I assume you are

running the CD (or sitting in the computer room across the hall from

my office), or that you have configured your computer to be able to

run the *.m files mentioned below.

22.2 A short introduction

The objective of this introduction is to learn just the basics of Oc-

tave. There are other ways to use Octave, which I encourage you to

explore. These are just some rudiments. After this, you can look at

http://pareto.uab.es/mcreel/ParallelKnoppix


the example programs scattered throughout the document (and edit

them, and run them) to learn more about how Octave can be used to

do econometrics. Students of mine: your problem sets will include

exercises that can be done by modifying the example programs in

relatively minor ways. So study the examples!

Octave can be used interactively, or it can be used to run programs

that are written using a text editor. We’ll use this second method,

preparing programs with NEdit, and calling Octave from within the

editor. The program first.m gets us started. To run this, open it up

with NEdit (by finding the correct file inside the /home/knoppix/Desktop/Econometrics

folder and clicking on the icon) and then type CTRL-ALT-o, or use the

Octave item in the Shell menu (see Figure 22.1).

Note that the output is not formatted in a pleasing way. That’s

because printf() doesn’t automatically start a new line. Edit first.m

so that the 8th line reads ”printf(�hello world\n�);” and re-run the

program.

http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/first.m


Figure 22.1: Running an Octave program



We need to know how to load and save data. The program sec-

ond.m shows how. Once you have run this, you will find the file

”x” in the directory Econometrics/Examples/OctaveIntro/ You might

have a look at it with NEdit to see Octave’s default format for saving

data. Basically, if you have data in an ASCII text file, named for exam-

ple ”myfile.data”, formed of numbers separated by spaces, just use

the command ”load myfile.data”. After having done so, the matrix

”myfile” (without extension) will contain the data.

Please have a look at CommonOperations.m for examples of how

to do some basic things in Octave. Now that we’re done with the

basics, have a look at the Octave programs that are included as ex-

amples. If you are looking at the browsable PDF version of this docu-

ment, then you should be able to click on links to open them. If not,

the example programs are available here and the support files needed

to run these are available here. Those pages will allow you to exam-

ine individual files, out of context. To actually use these files (edit and

http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/second.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/second.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/CommonOperations.m
http://pareto.uab.es/mcreel/Econometrics/Examples/EconometricsOctaveFiles.html
http://pareto.uab.es/mcreel/Econometrics/Examples/SupportOctaveFiles.html


run them), you should go to the home page of this document, since

you will probably want to download the pdf version together with all

the support files and examples. Or get the bootable CD.

There are some other resources for doing econometrics with Oc-

tave. You might like to check the article Econometrics with Octave

and the Econometrics Toolbox , which is for Matlab, but much of

which could be easily used with Octave.

22.3 If you’re running a Linux installation...

Then to get the same behavior as found on the CD, you need to:

• Get the collection of support programs and the examples, from

the document home page.

• Put them somewhere, and tell Octave how to find them, e.g., by

putting a link to the MyOctaveFiles directory in /usr/local/share/octave/site-m

http://pareto.uab.es/mcreel/Econometrics
http://ideas.repec.org/a/jae/japmet/v15y2000i5p531-542.html
http://ideas.repec.org/a/jae/japmet/v15y2000i5p531-542.html
http://www.spatial-econometrics.com/
http://pareto.uab.es/mcreel/Econometrics/Examples/


• Make sure nedit is installed and configured to run Octave and

use syntax highlighting. Copy the file /home/econometrics/.nedit

from the CD to do this. Or, get the file NeditConfiguration and

save it in your $HOME directory with the name ”.nedit”. Not

to put too fine a point on it, please note that there is a period in

that name.

• Associate *.m files with NEdit so that they open up in the editor

when you click on them. That should do it.

http://pareto.uab.es/mcreel/NeditConfiguration


Chapter 23

Notation and Review
• All vectors will be column vectors, unless they have a transpose

symbol (or I forget to apply this rule - your help catching typos

and er0rors is much appreciated). For example, if xt is a p × 1

vector, x′t is a 1 × p vector. When I refer to a p-vector, I mean a

column vector.
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23.1 Notation for differentiation of vectors
and matrices

[3, Chapter 1]

Let s(·) : <p → < be a real valued function of the p-vector θ. Then
∂s(θ)
∂θ is organized as a p-vector,

∂s(θ)

∂θ
=


∂s(θ)
∂θ1
∂s(θ)
∂θ2
...

∂s(θ)
∂θp


Following this convention,∂s(θ)∂θ′ is a 1 × p vector, and ∂2s(θ)

∂θ∂θ′ is a p × p

matrix. Also,

∂2s(θ)

∂θ∂θ′
=

∂

∂θ

(
∂s(θ)

∂θ′

)
=

∂

∂θ′

(
∂s(θ)

∂θ

)
.



Exercise 56. For a and x both p-vectors, show that ∂a′x
∂x = a.

Let f (θ):<p → <n be a n-vector valued function of the p-vector θ.

Let f (θ)′ be the 1×n valued transpose of f . Then
(
∂
∂θf (θ)′

)′
= ∂

∂θ′f (θ).

• Product rule: Let f (θ):<p → <n and h(θ):<p → <n be n-vector

valued functions of the p-vector θ. Then

∂

∂θ′
h(θ)′f (θ) = h′

(
∂

∂θ′
f

)
+ f ′

(
∂

∂θ′
h

)
has dimension 1× p. Applying the transposition rule we get

∂

∂θ
h(θ)′f (θ) =

(
∂

∂θ
f ′
)
h +

(
∂

∂θ
h′
)
f

which has dimension p× 1.

Exercise 57. For A a p × p matrix and x a p × 1 vector, show that
∂x′Ax
∂x = A + A′.



• Chain rule: Let f (·):<p → <n a n-vector valued function of a

p-vector argument, and let g():<r → <p be a p-vector valued

function of an r-vector valued argument ρ. Then

∂

∂ρ′
f [g (ρ)] =

∂

∂θ′
f (θ)

∣∣∣∣
θ=g(ρ)

∂

∂ρ′
g(ρ)

has dimension n× r.

Exercise 58. For x and β both p × 1 vectors, show that ∂ exp(x′β)
∂β =

exp(x′β)x.

23.2 Convergenge modes

Readings: [1, Chapter 4];[4, Chapter 4].

We will consider several modes of convergence. The first three

modes discussed are simply for background. The stochastic modes



are those which will be used later in the course.

Definition 59. A sequence is a mapping from the natural numbers

{1, 2, ...} = {n}∞n=1 = {n} to some other set, so that the set is ordered

according to the natural numbers associated with its elements.

Real-valued sequences:

Definition 60. [Convergence] A real-valued sequence of vectors {an}
converges to the vector a if for any ε > 0 there exists an integer Nε

such that for all n > Nε, ‖ an − a ‖< ε . a is the limit of an, written

an → a.

Deterministic real-valued functions

Consider a sequence of functions {fn(ω)} where

fn : Ω→ T ⊆ <.



Ω may be an arbitrary set.

Definition 61. [Pointwise convergence] A sequence of functions {fn(ω)}
converges pointwise on Ω to the function f(ω) if for all ε > 0 and ω ∈ Ω

there exists an integer Nεω such that

|fn(ω)− f (ω)| < ε,∀n > Nεω.

It’s important to note that Nεω depends upon ω, so that converge

may be much more rapid for certain ω than for others. Uniform con-

vergence requires a similar rate of convergence throughout Ω.

Definition 62. [Uniform convergence] A sequence of functions {fn(ω)}
converges uniformly on Ω to the function f(ω) if for any ε > 0 there

exists an integer N such that

sup
ω∈Ω
|fn(ω)− f (ω)| < ε,∀n > N.

(insert a diagram here showing the envelope around f (ω) in which



fn(ω) must lie).

Stochastic sequences

In econometrics, we typically deal with stochastic sequences. Given

a probability space (Ω,F , P ) , recall that a random variable maps

the sample space to the real line, i.e., X(ω) : Ω → <. A sequence

of random variables {Xn(ω)} is a collection of such mappings, i.e.,
each Xn(ω) is a random variable with respect to the probability space

(Ω,F , P ) . For example, given the model Y = Xβ0+ε, the OLS estima-

tor β̂n = (X ′X)−1X ′Y, where n is the sample size, can be used to form

a sequence of random vectors {β̂n}. A number of modes of conver-

gence are in use when dealing with sequences of random variables.

Several such modes of convergence should already be familiar:

Definition 63. [Convergence in probability] Let Xn(ω) be a sequence

of random variables, and let X(ω) be a random variable. Let An =



{ω : |Xn(ω) − X(ω)| > ε}. Then {Xn(ω)} converges in probability to

X(ω) if

lim
n→∞

P (An) = 0,∀ε > 0.

Convergence in probability is written as Xn
p→ X, or plim Xn = X.

Definition 64. [Almost sure convergence] Let Xn(ω) be a sequence of

random variables, and let X(ω) be a random variable. Let A = {ω :

limn→∞Xn(ω) = X(ω)}. Then {Xn(ω)} converges almost surely to

X(ω) if

P (A) = 1.

In other words, Xn(ω) → X(ω) (ordinary convergence of the two

functions) except on a set C = Ω−A such that P (C) = 0. Almost sure

convergence is written as Xn
a.s.→ X, or Xn → X, a.s. One can show

that

Xn
a.s.→ X ⇒ Xn

p→ X.



Definition 65. [Convergence in distribution] Let the r.v. Xn have dis-

tribution function Fn and the r.v. Xn have distribution function F. If

Fn → F at every continuity point of F, then Xn converges in distribu-

tion to X.

Convergence in distribution is written as Xn
d→ X. It can be shown

that convergence in probability implies convergence in distribution.

Stochastic functions

Simple laws of large numbers (LLN’s) allow us to directly conclude

that β̂n
a.s.→ β0 in the OLS example, since

β̂n = β0 +

(
X ′X

n

)−1(
X ′ε

n

)
,

and X ′ε
n

a.s.
→ 0 by a SLLN. Note that this term is not a function of the

parameter β. This easy proof is a result of the linearity of the model,



which allows us to express the estimator in a way that separates pa-

rameters from random functions. In general, this is not possible. We

often deal with the more complicated situation where the stochastic

sequence depends on parameters in a manner that is not reducible

to a simple sequence of random variables. In this case, we have a

sequence of random functions that depend on θ: {Xn(ω, θ)}, where

each Xn(ω, θ) is a random variable with respect to a probability space

(Ω,F , P ) and the parameter θ belongs to a parameter space θ ∈ Θ.

Definition 66. [Uniform almost sure convergence] {Xn(ω, θ)} converges

uniformly almost surely in Θ to X(ω, θ) if

lim
n→∞

sup
θ∈Θ
|Xn(ω, θ)−X(ω, θ)| = 0, (a.s.)

Implicit is the assumption that all Xn(ω, θ) and X(ω, θ) are random

variables w.r.t. (Ω,F , P ) for all θ ∈ Θ. We’ll indicate uniform almost

sure convergence by u.a.s.→ and uniform convergence in probability by



u.p.→ .

• An equivalent definition, based on the fact that “almost sure”

means “with probability one” is

Pr

(
lim
n→∞

sup
θ∈Θ
|Xn(ω, θ)−X(ω, θ)| = 0

)
= 1

This has a form similar to that of the definition of a.s. conver-

gence - the essential difference is the addition of the sup.

23.3 Rates of convergence and asymptotic
equality

It’s often useful to have notation for the relative magnitudes of quanti-

ties. Quantities that are small relative to others can often be ignored,

which simplifies analysis.



Definition 67. [Little-o] Let f (n) and g(n) be two real-valued func-

tions. The notation f (n) = o(g(n)) means limn→∞
f(n)
g(n) = 0.

Definition 68. [Big-O] Let f (n) and g(n) be two real-valued functions.

The notation f (n) = O(g(n)) means there exists some N such that for

n > N,
∣∣∣f(n)
g(n)

∣∣∣ < K, where K is a finite constant.

This definition doesn’t require that f(n)
g(n) have a limit (it may fluctu-

ate boundedly).

If {fn} and {gn} are sequences of random variables analogous def-

initions are

Definition 69. The notation f (n) = op(g(n)) means f(n)
g(n)

p→ 0.

Example 70. The least squares estimator θ̂ = (X ′X)−1X ′Y = (X ′X)−1X ′
(
Xθ0 + ε

)
=

θ0 +(X ′X)−1X ′ε. Since plim(X ′X)−1X ′ε
1 = 0, we can write (X ′X)−1X ′ε =



op(1) and θ̂ = θ0 + op(1). Asymptotically, the term op(1) is negligible.

This is just a way of indicating that the LS estimator is consistent.

Definition 71. The notation f (n) = Op(g(n)) means there exists some

Nε such that for ε > 0 and all n > Nε,

P

(∣∣∣∣f (n)

g(n)

∣∣∣∣ < Kε

)
> 1− ε,

where Kε is a finite constant.

Example 72. If Xn ∼ N(0, 1) then Xn = Op(1), since, given ε, there is

always some Kε such that P (|Xn| < Kε) > 1− ε.

Useful rules:

• Op(n
p)Op(n

q) = Op(n
p+q)

• op(np)op(nq) = op(n
p+q)



Example 73. Consider a random sample of iid r.v.’s with mean 0 and

variance σ2. The estimator of the mean θ̂ = 1/n
∑n

i=1 xi is asymptot-

ically normally distributed, e.g., n1/2θ̂
A∼ N(0, σ2). So n1/2θ̂ = Op(1),

so θ̂ = Op(n
−1/2). Before we had θ̂ = op(1), now we have have the

stronger result that relates the rate of convergence to the sample size.

Example 74. Now consider a random sample of iid r.v.’s with mean

µ and variance σ2. The estimator of the mean θ̂ = 1/n
∑n

i=1 xi is

asymptotically normally distributed, e.g., n1/2
(
θ̂ − µ

)
A∼ N(0, σ2). So

n1/2
(
θ̂ − µ

)
= Op(1), so θ̂ − µ = Op(n

−1/2), so θ̂ = Op(1).

These two examples show that averages of centered (mean zero)

quantities typically have plim 0, while averages of uncentered quanti-

ties have finite nonzero plims. Note that the definition of Op does not

mean that f (n) and g(n) are of the same order. Asymptotic equality

ensures that this is the case.



Definition 75. Two sequences of random variables {fn} and {gn} are

asymptotically equal (written fn
a
= gn) if

plim

(
f (n)

g(n)

)
= 1

Finally, analogous almost sure versions of op and Op are defined in

the obvious way.



For a and x both p× 1 vectors, show that Dxa
′x = a.

For A a p×pmatrix and x a p×1 vector, show thatD2
xx
′Ax = A+A′.

For x and β both p× 1 vectors, show that Dβ expx′β = exp(x′β)x.

For x and β both p × 1 vectors, find the analytic expression for

D2
β expx′β.

Write an Octave program that verifies each of the previous results

by taking numeric derivatives. For a hint, type help numgradient and

help numhessian inside octave.



Chapter 24

Licenses
This document and the associated examples and materials are copy-

right Michael Creel, under the terms of the GNU General Public Li-

cense, ver. 2., or at your option, under the Creative Commons Attribution-

Share Alike License, Version 2.5. The licenses follow.

950



24.1 The GPL

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This



General Public License applies to most of the Free Software

Foundation's software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you



distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so



that any problems introduced by others will not reflect on the original

authors' reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.



GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program



is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion



of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a



notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you



distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,



under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is



allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering



access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.



5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to



this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under



any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to



be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will



be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals



of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING



WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs



If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or



(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:



Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than `show w' and `show c'; they could even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program



`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

24.2 Creative Commons

Legal Code

Attribution-ShareAlike 2.5

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND



DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LI-

CENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP.

CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-

IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARD-

ING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR

DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE

TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR

"LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR

OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN

AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS

PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE,

YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS

LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED



HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS

AND CONDITIONS.

1. Definitions

1. "Collective Work" means a work, such as a periodical issue, an-

thology or encyclopedia, in which the Work in its entirety in unmod-

ified form, along with a number of other contributions, constituting

separate and independent works in themselves, are assembled into a

collective whole. A work that constitutes a Collective Work will not

be considered a Derivative Work (as defined below) for the purposes

of this License.

2. "Derivative Work" means a work based upon the Work or upon

the Work and other pre-existing works, such as a translation, musi-

cal arrangement, dramatization, fictionalization, motion picture ver-

sion, sound recording, art reproduction, abridgment, condensation,

or any other form in which the Work may be recast, transformed, or

adapted, except that a work that constitutes a Collective Work will not



be considered a Derivative Work for the purpose of this License. For

the avoidance of doubt, where the Work is a musical composition or

sound recording, the synchronization of the Work in timed-relation

with a moving image ("synching") will be considered a Derivative

Work for the purpose of this License.

3. "Licensor" means the individual or entity that offers the Work

under the terms of this License.

4. "Original Author" means the individual or entity who created

the Work.

5. "Work" means the copyrightable work of authorship offered

under the terms of this License.

6. "You" means an individual or entity exercising rights under this

License who has not previously violated the terms of this License with

respect to the Work, or who has received express permission from

the Licensor to exercise rights under this License despite a previous

violation.



7. "License Elements" means the following high-level license at-

tributes as selected by Licensor and indicated in the title of this Li-

cense: Attribution, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce,

limit, or restrict any rights arising from fair use, first sale or other limi-

tations on the exclusive rights of the copyright owner under copyright

law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this

License, Licensor hereby grants You a worldwide, royalty-free, non-

exclusive, perpetual (for the duration of the applicable copyright) li-

cense to exercise the rights in the Work as stated below:

1. to reproduce the Work, to incorporate the Work into one or

more Collective Works, and to reproduce the Work as incorporated in

the Collective Works;

2. to create and reproduce Derivative Works;

3. to distribute copies or phonorecords of, display publicly, per-



form publicly, and perform publicly by means of a digital audio trans-

mission the Work including as incorporated in Collective Works;

4. to distribute copies or phonorecords of, display publicly, per-

form publicly, and perform publicly by means of a digital audio trans-

mission Derivative Works.

5.

For the avoidance of doubt, where the work is a musical composi-

tion:

1. Performance Royalties Under Blanket Licenses. Licensor waives

the exclusive right to collect, whether individually or via a perfor-

mance rights society (e.g. ASCAP, BMI, SESAC), royalties for the pub-

lic performance or public digital performance (e.g. webcast) of the

Work.

2. Mechanical Rights and Statutory Royalties. Licensor waives the

exclusive right to collect, whether individually or via a music rights

society or designated agent (e.g. Harry Fox Agency), royalties for



any phonorecord You create from the Work ("cover version") and dis-

tribute, subject to the compulsory license created by 17 USC Section

115 of the US Copyright Act (or the equivalent in other jurisdictions).

6. Webcasting Rights and Statutory Royalties. For the avoidance

of doubt, where the Work is a sound recording, Licensor waives the

exclusive right to collect, whether individually or via a performance-

rights society (e.g. SoundExchange), royalties for the public digital

performance (e.g. webcast) of the Work, subject to the compulsory

license created by 17 USC Section 114 of the US Copyright Act (or

the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether

now known or hereafter devised. The above rights include the right to

make such modifications as are technically necessary to exercise the

rights in other media and formats. All rights not expressly granted by

Licensor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly



made subject to and limited by the following restrictions:

1. You may distribute, publicly display, publicly perform, or pub-

licly digitally perform the Work only under the terms of this License,

and You must include a copy of, or the Uniform Resource Identifier

for, this License with every copy or phonorecord of the Work You dis-

tribute, publicly display, publicly perform, or publicly digitally per-

form. You may not offer or impose any terms on the Work that alter

or restrict the terms of this License or the recipients’ exercise of the

rights granted hereunder. You may not sublicense the Work. You must

keep intact all notices that refer to this License and to the disclaimer

of warranties. You may not distribute, publicly display, publicly per-

form, or publicly digitally perform the Work with any technological

measures that control access or use of the Work in a manner incon-

sistent with the terms of this License Agreement. The above applies

to the Work as incorporated in a Collective Work, but this does not

require the Collective Work apart from the Work itself to be made



subject to the terms of this License. If You create a Collective Work,

upon notice from any Licensor You must, to the extent practicable, re-

move from the Collective Work any credit as required by clause 4(c),

as requested. If You create a Derivative Work, upon notice from any

Licensor You must, to the extent practicable, remove from the Deriva-

tive Work any credit as required by clause 4(c), as requested.

2. You may distribute, publicly display, publicly perform, or pub-

licly digitally perform a Derivative Work only under the terms of this

License, a later version of this License with the same License Ele-

ments as this License, or a Creative Commons iCommons license that

contains the same License Elements as this License (e.g. Attribution-

ShareAlike 2.5 Japan). You must include a copy of, or the Uniform

Resource Identifier for, this License or other license specified in the

previous sentence with every copy or phonorecord of each Deriva-

tive Work You distribute, publicly display, publicly perform, or pub-

licly digitally perform. You may not offer or impose any terms on



the Derivative Works that alter or restrict the terms of this License or

the recipients’ exercise of the rights granted hereunder, and You must

keep intact all notices that refer to this License and to the disclaimer

of warranties. You may not distribute, publicly display, publicly per-

form, or publicly digitally perform the Derivative Work with any tech-

nological measures that control access or use of the Work in a manner

inconsistent with the terms of this License Agreement. The above ap-

plies to the Derivative Work as incorporated in a Collective Work, but

this does not require the Collective Work apart from the Derivative

Work itself to be made subject to the terms of this License.

3. If you distribute, publicly display, publicly perform, or pub-

licly digitally perform the Work or any Derivative Works or Collective

Works, You must keep intact all copyright notices for the Work and

provide, reasonable to the medium or means You are utilizing: (i) the

name of the Original Author (or pseudonym, if applicable) if supplied,

and/or (ii) if the Original Author and/or Licensor designate another



party or parties (e.g. a sponsor institute, publishing entity, journal)

for attribution in Licensor’s copyright notice, terms of service or by

other reasonable means, the name of such party or parties; the title

of the Work if supplied; to the extent reasonably practicable, the Uni-

form Resource Identifier, if any, that Licensor specifies to be associated

with the Work, unless such URI does not refer to the copyright notice

or licensing information for the Work; and in the case of a Derivative

Work, a credit identifying the use of the Work in the Derivative Work

(e.g., "French translation of the Work by Original Author," or "Screen-

play based on original Work by Original Author"). Such credit may be

implemented in any reasonable manner; provided, however, that in

the case of a Derivative Work or Collective Work, at a minimum such

credit will appear where any other comparable authorship credit ap-

pears and in a manner at least as prominent as such other comparable

authorship credit.

5. Representations, Warranties and Disclaimer



UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING,

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESEN-

TATIONS OR WARRANTIES OF ANY KIND CONCERNING THE MATE-

RIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUD-

ING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHAN-

TIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGE-

MENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCU-

RACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR

NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE

EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY

NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED

BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE

TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,

CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING

OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LI-



CENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-

AGES.

7. Termination

1. This License and the rights granted hereunder will terminate

automatically upon any breach by You of the terms of this License.

Individuals or entities who have received Derivative Works or Collec-

tive Works from You under this License, however, will not have their

licenses terminated provided such individuals or entities remain in

full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will

survive any termination of this License.

2. Subject to the above terms and conditions, the license granted

here is perpetual (for the duration of the applicable copyright in the

Work). Notwithstanding the above, Licensor reserves the right to re-

lease the Work under different license terms or to stop distributing the

Work at any time; provided, however that any such election will not

serve to withdraw this License (or any other license that has been,



or is required to be, granted under the terms of this License), and

this License will continue in full force and effect unless terminated as

stated above.

8. Miscellaneous

1. Each time You distribute or publicly digitally perform the Work

or a Collective Work, the Licensor offers to the recipient a license to

the Work on the same terms and conditions as the license granted to

You under this License.

2. Each time You distribute or publicly digitally perform a Deriva-

tive Work, Licensor offers to the recipient a license to the original

Work on the same terms and conditions as the license granted to You

under this License.

3. If any provision of this License is invalid or unenforceable under

applicable law, it shall not affect the validity or enforceability of the

remainder of the terms of this License, and without further action

by the parties to this agreement, such provision shall be reformed



to the minimum extent necessary to make such provision valid and

enforceable.

4. No term or provision of this License shall be deemed waived

and no breach consented to unless such waiver or consent shall be

in writing and signed by the party to be charged with such waiver or

consent.

5. This License constitutes the entire agreement between the par-

ties with respect to the Work licensed here. There are no understand-

ings, agreements or representations with respect to the Work not spec-

ified here. Licensor shall not be bound by any additional provisions

that may appear in any communication from You. This License may

not be modified without the mutual written agreement of the Licensor

and You.

Creative Commons is not a party to this License, and makes no

warranty whatsoever in connection with the Work. Creative Com-

mons will not be liable to You or any party on any legal theory for any



damages whatsoever, including without limitation any general, spe-

cial, incidental or consequential damages arising in connection to this

license. Notwithstanding the foregoing two (2) sentences, if Creative

Commons has expressly identified itself as the Licensor hereunder, it

shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the

Work is licensed under the CCPL, neither party will use the trade-

mark "Creative Commons" or any related trademark or logo of Cre-

ative Commons without the prior written consent of Creative Com-

mons. Any permitted use will be in compliance with Creative Com-

mons’ then-current trademark usage guidelines, as may be published

on its website or otherwise made available upon request from time to

time.

Creative Commons may be contacted at http://creativecommons.org/.



Chapter 25

The attic
This holds material that is not really ready to be incorporated into the

main body, but that I don’t want to lose. Basically, ignore it, unless

you’d like to help get it ready for inclusion.
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Optimal instruments for GMM

PLEASE IGNORE THE REST OF THIS SECTION: there is a flaw in the

argument that needs correction. In particular, it may be the case that

E(Ztεt) 6= 0 if instruments are chosen in the way suggested here.

An interesting question that arises is how one should choose the

instrumental variables Z(wt) to achieve maximum efficiency.

Note that with this choice of moment conditions, we have that

Dn ≡ ∂
∂θm

′(θ) (a K × g matrix) is

Dn(θ) =
∂

∂θ

1

n
(Z ′nhn(θ))

′

=
1

n

(
∂

∂θ
h′n (θ)

)
Zn

which we can define to be

Dn(θ) =
1

n
HnZn.



where Hn is a K × n matrix that has the derivatives of the individual

moment conditions as its columns. Likewise, define the var-cov. of

the moment conditions

Ωn = E
[
nmn(θ0)mn(θ0)′

]
= E

[
1

n
Z ′nhn(θ0)hn(θ0)′Zn

]
= Z ′nE

(
1

n
hn(θ0)hn(θ0)′

)
Zn

≡ Z ′n
Φn

n
Zn

where we have defined Φn = V
(
hn(θ0)

)
. Note that the dimension of

this matrix is growing with the sample size, so it is not consistently

estimable without additional assumptions.

The asymptotic normality theorem above says that the GMM esti-



mator using the optimal weighting matrix is distributed as

√
n
(
θ̂ − θ0

)
d→ N(0, V∞)

where

V∞ = lim
n→∞

((
HnZn
n

)(
Z ′nΦnZn

n

)−1(
Z ′nH

′
n

n

))−1

. (25.1)

Using an argument similar to that used to prove that Ω−1
∞ is the effi-

cient weighting matrix, we can show that putting

Zn = Φ−1
n H

′
n

causes the above var-cov matrix to simplify to

V∞ = lim
n→∞

(
HnΦ−1

n H
′
n

n

)−1

. (25.2)



and furthermore, this matrix is smaller that the limiting var-cov for

any other choice of instrumental variables. (To prove this, examine

the difference of the inverses of the var-cov matrices with the optimal

intruments and with non-optimal instruments. As above, you can

show that the difference is positive semi-definite).

• Note that both Hn, which we should write more properly as

Hn(θ0), since it depends on θ0, and Φ must be consistently es-

timated to apply this.

• Usually, estimation of Hn is straightforward - one just uses

Ĥ =
∂

∂θ
h′n

(
θ̃
)
,

where θ̃ is some initial consistent estimator based on non-optimal

instruments.

• Estimation of Φn may not be possible. It is an n × n matrix, so



it has more unique elements than n, the sample size, so without

restrictions on the parameters it can’t be estimated consistently.

Basically, you need to provide a parametric specification of the

covariances of the ht(θ) in order to be able to use optimal in-

struments. A solution is to approximate this matrix parametri-

cally to define the instruments. Note that the simplified var-cov

matrix in equation 25.2 will not apply if approximately optimal

instruments are used - it will be necessary to use an estima-

tor based upon equation 25.1, where the term n−1Z ′nΦnZn must

be estimated consistently apart, for example by the Newey-West

procedure.

25.1 Hurdle models

Returning to the Poisson model, lets look at actual and fitted count

probabilities. Actual relative frequencies are f (y = j) =
∑

i 1(yi =



j)/n and fitted frequencies are f̂ (y = j) =
∑n

i=1 fY (j|xi, θ̂)/n We see

Table 25.1: Actual and Poisson fitted frequencies

Count OBDV ERV
Count Actual Fitted Actual Fitted

0 0.32 0.06 0.86 0.83
1 0.18 0.15 0.10 0.14
2 0.11 0.19 0.02 0.02
3 0.10 0.18 0.004 0.002
4 0.052 0.15 0.002 0.0002
5 0.032 0.10 0 2.4e-5

that for the OBDV measure, there are many more actual zeros than

predicted. For ERV, there are somewhat more actual zeros than fitted,

but the difference is not too important.

Why might OBDV not fit the zeros well? What if people made the

decision to contact the doctor for a first visit, they are sick, then the

doctor decides on whether or not follow-up visits are needed. This



is a principal/agent type situation, where the total number of visits

depends upon the decision of both the patient and the doctor. Since

different parameters may govern the two decision-makers choices,

we might expect that different parameters govern the probability of

zeros versus the other counts. Let λp be the parameters of the patient’s

demand for visits, and let λd be the paramter of the doctor’s “demand”

for visits. The patient will initiate visits according to a discrete choice

model, for example, a logit model:

Pr(Y = 0) = fY (0, λp) = 1− 1/ [1 + exp(−λp)]
Pr(Y > 0) = 1/ [1 + exp(−λp)] ,

The above probabilities are used to estimate the binary 0/1 hurdle

process. Then, for the observations where visits are positive, a trun-



cated Poisson density is estimated. This density is

fY (y, λd|y > 0) =
fY (y, λd)

Pr(y > 0)

=
fY (y, λd)

1− exp(−λd)

since according to the Poisson model with the doctor’s paramaters,

Pr(y = 0) =
exp(−λd)λ0

d

0!
.

Since the hurdle and truncated components of the overall density

for Y share no parameters, they may be estimated separately, which

is computationally more efficient than estimating the overall model.

(Recall that the BFGS algorithm, for example, will have to invert the

approximated Hessian. The computational overhead is of order K2

where K is the number of parameters to be estimated) . The expec-



tation of Y is

E(Y |x) = Pr(Y > 0|x)E(Y |Y > 0, x)

=

(
1

1 + exp(−λp)

)(
λd

1− exp(−λd)

)



Here are hurdle Poisson estimation results for OBDV, obtained

from this estimation program

**************************************************************************

MEPS data, OBDV

logit results

Strong convergence

Observations = 500

Function value -0.58939

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -1.5502 -2.5709 -2.5269 -2.5560

pub_ins 1.0519 3.0520 3.0027 3.0384

priv_ins 0.45867 1.7289 1.6924 1.7166

sex 0.63570 3.0873 3.1677 3.1366

age 0.018614 2.1547 2.1969 2.1807

educ 0.039606 1.0467 0.98710 1.0222

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_hpoisson.ox


inc 0.077446 1.7655 2.1672 1.9601

Information Criteria

Consistent Akaike

639.89

Schwartz

632.89

Hannan-Quinn

614.96

Akaike

603.39

**************************************************************************



The results for the truncated part:

**************************************************************************

MEPS data, OBDV

tpoisson results

Strong convergence

Observations = 500

Function value -2.7042

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.54254 7.4291 1.1747 3.2323

pub_ins 0.31001 6.5708 1.7573 3.7183

priv_ins 0.014382 0.29433 0.10438 0.18112

sex 0.19075 10.293 1.1890 3.6942

age 0.016683 16.148 3.5262 7.9814

educ 0.016286 4.2144 0.56547 1.6353

inc -0.0079016 -2.3186 -0.35309 -0.96078



Information Criteria

Consistent Akaike

2754.7

Schwartz

2747.7

Hannan-Quinn

2729.8

Akaike

2718.2

**************************************************************************



Fitted and actual probabilites (NB-II fits are provided as well) are:

Table 25.2: Actual and Hurdle Poisson fitted frequencies

Count OBDV ERV
Count Actual Fitted HP Fitted NB-II Actual Fitted HP Fitted NB-II

0 0.32 0.32 0.34 0.86 0.86 0.86
1 0.18 0.035 0.16 0.10 0.10 0.10
2 0.11 0.071 0.11 0.02 0.02 0.02
3 0.10 0.10 0.08 0.004 0.006 0.006
4 0.052 0.11 0.06 0.002 0.002 0.002
5 0.032 0.10 0.05 0 0.0005 0.001

For the Hurdle Poisson models, the ERV fit is very accurate. The

OBDV fit is not so good. Zeros are exact, but 1’s and 2’s are under-

estimated, and higher counts are overestimated. For the NB-II fits,

performance is at least as good as the hurdle Poisson model, and one

should recall that many fewer parameters are used. Hurdle version of

the negative binomial model are also widely used.



Finite mixture models

The following are results for a mixture of 2 negative binomial (NB-I)

models, for the OBDV data, which you can replicate using this esti-

mation program

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_mixnegbin.ox
http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_mixnegbin.ox


**************************************************************************

MEPS data, OBDV

mixnegbin results

Strong convergence

Observations = 500

Function value -2.2312

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.64852 1.3851 1.3226 1.4358

pub_ins -0.062139 -0.23188 -0.13802 -0.18729

priv_ins 0.093396 0.46948 0.33046 0.40854

sex 0.39785 2.6121 2.2148 2.4882

age 0.015969 2.5173 2.5475 2.7151

educ -0.049175 -1.8013 -1.7061 -1.8036

inc 0.015880 0.58386 0.76782 0.73281

ln_alpha 0.69961 2.3456 2.0396 2.4029



constant -3.6130 -1.6126 -1.7365 -1.8411

pub_ins 2.3456 1.7527 3.7677 2.6519

priv_ins 0.77431 0.73854 1.1366 0.97338

sex 0.34886 0.80035 0.74016 0.81892

age 0.021425 1.1354 1.3032 1.3387

educ 0.22461 2.0922 1.7826 2.1470

inc 0.019227 0.20453 0.40854 0.36313

ln_alpha 2.8419 6.2497 6.8702 7.6182

logit_inv_mix 0.85186 1.7096 1.4827 1.7883

Information Criteria

Consistent Akaike

2353.8

Schwartz

2336.8

Hannan-Quinn

2293.3



Akaike

2265.2

**************************************************************************

Delta method for mix parameter st. err.

mix se_mix

0.70096 0.12043

• The 95% confidence interval for the mix parameter is perilously

close to 1, which suggests that there may really be only one

component density, rather than a mixture. Again, this is not the

way to test this - it is merely suggestive.

• Education is interesting. For the subpopulation that is “healthy”,

i.e., that makes relatively few visits, education seems to have

a positive effect on visits. For the “unhealthy” group, education

has a negative effect on visits. The other results are more mixed.

A larger sample could help clarify things.



The following are results for a 2 component constrained mixture neg-

ative binomial model where all the slope parameters in λj = exβj are

the same across the two components. The constants and the overdis-

persion parameters αj are allowed to differ for the two components.



**************************************************************************

MEPS data, OBDV

cmixnegbin results

Strong convergence

Observations = 500

Function value -2.2441

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -0.34153 -0.94203 -0.91456 -0.97943

pub_ins 0.45320 2.6206 2.5088 2.7067

priv_ins 0.20663 1.4258 1.3105 1.3895

sex 0.37714 3.1948 3.4929 3.5319

age 0.015822 3.1212 3.7806 3.7042

educ 0.011784 0.65887 0.50362 0.58331

inc 0.014088 0.69088 0.96831 0.83408

ln_alpha 1.1798 4.6140 7.2462 6.4293



const_2 1.2621 0.47525 2.5219 1.5060

lnalpha_2 2.7769 1.5539 6.4918 4.2243

logit_inv_mix 2.4888 0.60073 3.7224 1.9693

Information Criteria

Consistent Akaike

2323.5

Schwartz

2312.5

Hannan-Quinn

2284.3

Akaike

2266.1

**************************************************************************

Delta method for mix parameter st. err.

mix se_mix



0.92335 0.047318

• Now the mixture parameter is even closer to 1.

• The slope parameter estimates are pretty close to what we got

with the NB-I model.

25.2 Models for time series data

This section can be ignored in its present form. Just left in to form a

basis for completion (by someone else ?!) at some point.

Hamilton, Time Series Analysis is a good reference for this section.

This is very incomplete and contributions would be very welcome.

Up to now we’ve considered the behavior of the dependent vari-

able yt as a function of other variables xt. These variables can of

course contain lagged dependent variables, e.g., xt = (wt, yt−1, ..., yt−j).

Pure time series methods consider the behavior of yt as a function only



of its own lagged values, unconditional on other observable variables.

One can think of this as modeling the behavior of yt after marginal-

izing out all other variables. While it’s not immediately clear why a

model that has other explanatory variables should marginalize to a

linear in the parameters time series model, most time series work is

done with linear models, though nonlinear time series is also a large

and growing field. We’ll stick with linear time series models.

Basic concepts

Definition 76. [Stochastic process]A stochastic process is a sequence

of random variables, indexed by time: {Yt}∞t=−∞

Definition 77. [Time series] A time series is one observation of a

stochastic process, over a specific interval: {yt}nt=1.



So a time series is a sample of size n from a stochastic process. It’s

important to keep in mind that conceptually, one could draw another

sample, and that the values would be different.

Definition 78. [Autocovariance] The jth autocovariance of a stochas-

tic process is γjt = E(yt − µt)(yt−j − µt−j) where µt = E (yt) .

Definition 79. [Covariance (weak) stationarity] A stochastic process

is covariance stationary if it has time constant mean and autocovari-

ances of all orders:

µt = µ, ∀t
γjt = γj, ∀t

As we’ve seen, this implies that γj = γ−j : the autocovariances



depend only one the interval between observations, but not the time

of the observations.

Definition 80. [Strong stationarity]A stochastic process is strongly

stationary if the joint distribution of an arbitrary collection of the {Yt}
doesn’t depend on t.

Since moments are determined by the distribution, strong stationarity⇒weak

stationarity.

What is the mean of Yt? The time series is one sample from the

stochastic process. One could think of M repeated samples from the

stoch. proc., e.g., {ymt } By a LLN, we would expect that

lim
M→∞

1

M

M∑
m=1

ytm
p→ E(Yt)

The problem is, we have only one sample to work with, since we can’t

go back in time and collect another. How can E(Yt) be estimated then?



It turns out that ergodicity is the needed property.

Definition 81. [Ergodicity]. A stationary stochastic process is ergodic

(for the mean) if the time average converges to the mean

1

n

n∑
t=1

yt
p→ µ (25.3)

A sufficient condition for ergodicity is that the autocovariances be

absolutely summable:
∞∑
j=0

|γj| <∞

This implies that the autocovariances die off, so that the yt are not so

strongly dependent that they don’t satisfy a LLN.

Definition 82. [Autocorrelation] The jth autocorrelation, ρj is just the

jth autocovariance divided by the variance:



ρj =
γj
γ0

(25.4)

Definition 83. [White noise] White noise is just the time series liter-

ature term for a classical error. εt is white noise if i) E(εt) = 0,∀t, ii)

V (εt) = σ2,∀t and iii) εt and εs are independent, t 6= s. Gaussian white

noise just adds a normality assumption.

ARMA models

With these concepts, we can discuss ARMA models. These are closely

related to the AR and MA error processes that we’ve already dis-

cussed. The main difference is that the lhs variable is observed di-

rectly now.



MA(q) processes

A qth order moving average (MA) process is

yt = µ + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

where εt is white noise. The variance is

γ0 = E (yt − µ)2

= E (εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q)
2

= σ2
(
1 + θ2

1 + θ2
2 + · · · + θ2

q

)
Similarly, the autocovariances are

γj = θj + θj+1θ1 + θj+2θ2 + · · · + θqθq−j, j ≤ q

= 0, j > q



Therefore an MA(q) process is necessarily covariance stationary and

ergodic, as long as σ2 and all of the θj are finite.

AR(p) processes

An AR(p) process can be represented as

yt = c + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt

The dynamic behavior of an AR(p) process can be studied by writing

this pth order difference equation as a vector first order difference



equation:


yt

yt−1

...

yt−p+1

 =


c

0
...

0





φ1 φ2 · · · φp

1 0 0 0

0 1 0 . . . 0
... . . . . . . . . . 0 · · ·
0 · · · 0 1 0




yt−1

yt−2

...

yt−p

 +


εt

0
...

0


or

Yt = C + FYt−1 + Et

With this, we can recursively work forward in time:

Yt+1 = C + FYt + Et+1

= C + F (C + FYt−1 + Et) + Et+1

= C + FC + F 2Yt−1 + FEt + Et+1



and

Yt+2 = C + FYt+1 + Et+2

= C + F
(
C + FC + F 2Yt−1 + FEt + Et+1

)
+ Et+2

= C + FC + F 2C + F 3Yt−1 + F 2Et + FEt+1 + Et+2

or in general

Yt+j = C+FC+· · ·+F jC+F j+1Yt−1+F jEt+F
j−1Et+1+· · ·+FEt+j−1+Et+j

Consider the impact of a shock in period t on yt+j. This is simply

∂Yt+j
∂E ′t (1,1)

= F j
(1,1)

If the system is to be stationary, then as we move forward in time this

impact must die off. Otherwise a shock causes a permanent change



in the mean of yt. Therefore, stationarity requires that

lim
j→∞

F j
(1,1) = 0

• Save this result, we’ll need it in a minute.

Consider the eigenvalues of the matrix F. These are the for λ such

that

|F − λIP | = 0

The determinant here can be expressed as a polynomial. for example,

for p = 1, the matrix F is simply

F = φ1

so

|φ1 − λ| = 0



can be written as

φ1 − λ = 0

When p = 2, the matrix F is

F =

[
φ1 φ2

1 0

]
so

F − λIP =

[
φ1 − λ φ2

1 −λ

]
and

|F − λIP | = λ2 − λφ1 − φ2

So the eigenvalues are the roots of the polynomial

λ2 − λφ1 − φ2



which can be found using the quadratic equation. This generalizes.

For a pth order AR process, the eigenvalues are the roots of

λp − λp−1φ1 − λp−2φ2 − · · · − λφp−1 − φp = 0

Supposing that all of the roots of this polynomial are distinct, then

the matrix F can be factored as

F = TΛT−1

where T is the matrix which has as its columns the eigenvectors of F,

and Λ is a diagonal matrix with the eigenvalues on the main diagonal.

Using this decomposition, we can write

F j =
(
TΛT−1

) (
TΛT−1

)
· · ·
(
TΛT−1

)



where TΛT−1 is repeated j times. This gives

F j = TΛjT−1

and

Λj =


λj1 0 0

0 λj2
. . .

0 λjp


Supposing that the λi i = 1, 2, ..., p are all real valued, it is clear that

lim
j→∞

F j
(1,1) = 0

requires that

|λi| < 1, i = 1, 2, ..., p

e.g., the eigenvalues must be less than one in absolute value.



• It may be the case that some eigenvalues are complex-valued.

The previous result generalizes to the requirement that the eigen-

values be less than one in modulus, where the modulus of a com-

plex number a + bi is

mod(a + bi) =
√
a2 + b2

This leads to the famous statement that “stationarity requires the

roots of the determinantal polynomial to lie inside the complex

unit circle.” draw picture here.

• When there are roots on the unit circle (unit roots) or outside

the unit circle, we leave the world of stationary processes.

• Dynamic multipliers: ∂yt+j/∂εt = F j
(1,1) is a dynamic multiplier

or an impulse-response function. Real eigenvalues lead to steady

movements, whereas comlpex eigenvalue lead to ocillatory be-

havior. Of course, when there are multiple eigenvalues the over-



all effect can be a mixture. pictures

Invertibility of AR process

To begin with, define the lag operator L

Lyt = yt−1

The lag operator is defined to behave just as an algebraic quantity,

e.g.,

L2yt = L(Lyt)

= Lyt−1

= yt−2

or

(1− L)(1 + L)yt = 1− Lyt + Lyt − L2yt

= 1− yt−2



A mean-zero AR(p) process can be written as

yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p = εt

or

yt(1− φ1L− φ2L
2 − · · · − φpLp) = εt

Factor this polynomial as

1− φ1L− φ2L
2 − · · · − φpLp = (1− λ1L)(1− λ2L) · · · (1− λpL)

For the moment, just assume that the λi are coefficients to be deter-

mined. Since L is defined to operate as an algebraic quantitiy, deter-

mination of the λi is the same as determination of the λi such that the

following two expressions are the same for all z :

1− φ1z − φ2z
2 − · · · − φpzp = (1− λ1z)(1− λ2z) · · · (1− λpz)



Multiply both sides by z−p

z−p−φ1z
1−p−φ2z

2−p−· · ·φp−1z
−1−φp = (z−1−λ1)(z−1−λ2) · · · (z−1−λp)

and now define λ = z−1 so we get

λp − φ1λ
p−1 − φ2λ

p−2 − · · · − φp−1λ− φp = (λ− λ1)(λ− λ2) · · · (λ− λp)

The LHS is precisely the determinantal polynomial that gives the

eigenvalues of F. Therefore, the λi that are the coefficients of the

factorization are simply the eigenvalues of the matrix F.

Now consider a different stationary process

(1− φL)yt = εt

• Stationarity, as above, implies that |φ| < 1.



Multiply both sides by 1 + φL + φ2L2 + ... + φjLj to get(
1 + φL + φ2L2 + ... + φjLj

)
(1−φL)yt =

(
1 + φL + φ2L2 + ... + φjLj

)
εt

or, multiplying the polynomials on th LHS, we get(
1 + φL + φ2L2 + ... + φjLj − φL− φ2L2 − ...− φjLj − φj+1Lj+1

)
yt

==
(
1 + φL + φ2L2 + ... + φjLj

)
εt

and with cancellations we have(
1− φj+1Lj+1

)
yt =

(
1 + φL + φ2L2 + ... + φjLj

)
εt

so

yt = φj+1Lj+1yt +
(
1 + φL + φ2L2 + ... + φjLj

)
εt

Now as j →∞, φj+1Lj+1yt → 0, since |φ| < 1, so

yt ∼=
(
1 + φL + φ2L2 + ... + φjLj

)
εt



and the approximation becomes better and better as j increases. How-

ever, we started with

(1− φL)yt = εt

Substituting this into the above equation we have

yt ∼=
(
1 + φL + φ2L2 + ... + φjLj

)
(1− φL)yt

so (
1 + φL + φ2L2 + ... + φjLj

)
(1− φL) ∼= 1

and the approximation becomes arbitrarily good as j increases arbi-

trarily. Therefore, for |φ| < 1, define

(1− φL)−1 =

∞∑
j=0

φjLj



Recall that our mean zero AR(p) process

yt(1− φ1L− φ2L
2 − · · · − φpLp) = εt

can be written using the factorization

yt(1− λ1L)(1− λ2L) · · · (1− λpL) = εt

where the λ are the eigenvalues of F, and given stationarity, all the

|λi| < 1. Therefore, we can invert each first order polynomial on the

LHS to get

yt =

 ∞∑
j=0

λj1L
j

 ∞∑
j=0

λj2L
j

 · · ·
 ∞∑

j=0

λjpL
j

 εt

The RHS is a product of infinite-order polynomials in L, which can be

represented as

yt = (1 + ψ1L + ψ2L
2 + · · · )εt



where the ψi are real-valued and absolutely summable.

• The ψi are formed of products of powers of the λi, which are in

turn functions of the φi.

• The ψi are real-valued because any complex-valued λi always

occur in conjugate pairs. This means that if a+bi is an eigenvalue

of F, then so is a− bi. In multiplication

(a + bi) (a− bi) = a2 − abi + abi− b2i2

= a2 + b2

which is real-valued.

• This shows that an AR(p) process is representable as an infinite-

order MA(q) process.

• Recall before that by recursive substitution, an AR(p) process



can be written as

Yt+j = C+FC+· · ·+F jC+F j+1Yt−1+F jEt+F
j−1Et+1+· · ·+FEt+j−1+Et+j

If the process is mean zero, then everything with a C drops out.

Take this and lag it by j periods to get

Yt = F j+1Yt−j−1 + F jEt−j + F j−1Et−j+1 + · · · + FEt−1 + Et

As j → ∞, the lagged Y on the RHS drops out. The Et−s are

vectors of zeros except for their first element, so we see that the

first equation here, in the limit, is just

yt =

∞∑
j=0

(
F j
)

1,1
εt−j

which makes explicit the relationship between the ψi and the φi
(and the λi as well, recalling the previous factorization of F j).



Moments of AR(p) process The AR(p) process is

yt = c + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt

Assuming stationarity, E(yt) = µ, ∀t, so

µ = c + φ1µ + φ2µ + ... + φpµ

so

µ =
c

1− φ1 − φ2 − ...− φp
and

c = µ− φ1µ− ...− φpµ

so

yt − µ = µ− φ1µ− ...− φpµ + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt − µ
= φ1(yt−1 − µ) + φ2(yt−2 − µ) + ... + φp(yt−p − µ) + εt



With this, the second moments are easy to find: The variance is

γ0 = φ1γ1 + φ2γ2 + ... + φpγp + σ2

The autocovariances of orders j ≥ 1 follow the rule

γj = E [(yt − µ) (yt−j − µ))]

= E [(φ1(yt−1 − µ) + φ2(yt−2 − µ) + ... + φp(yt−p − µ) + εt) (yt−j − µ)]

= φ1γj−1 + φ2γj−2 + ... + φpγj−p

Using the fact that γ−j = γj, one can take the p + 1 equations for

j = 0, 1, ..., p, which have p + 1 unknowns (σ2, γ0, γ1, ..., γp) and solve

for the unknowns. With these, the γj for j > p can be solved for

recursively.



Invertibility of MA(q) process

An MA(q) can be written as

yt − µ = (1 + θ1L + ... + θqL
q)εt

As before, the polynomial on the RHS can be factored as

(1 + θ1L + ... + θqL
q) = (1− η1L)(1− η2L)...(1− ηqL)

and each of the (1 − ηiL) can be inverted as long as |ηi| < 1. If this is

the case, then we can write

(1 + θ1L + ... + θqL
q)−1(yt − µ) = εt

where

(1 + θ1L + ... + θqL
q)−1



will be an infinite-order polynomial in L, so we get

∞∑
j=0

−δjLj(yt−j − µ) = εt

with δ0 = −1, or

(yt − µ)− δ1(yt−1 − µ)− δ2(yt−2 − µ) + ... = εt

or

yt = c + δ1yt−1 + δ2yt−2 + ... + εt

where

c = µ + δ1µ + δ2µ + ...

So we see that an MA(q) has an infinite AR representation, as long as

the |ηi| < 1, i = 1, 2, ..., q.

• It turns out that one can always manipulate the parameters of an



MA(q) process to find an invertible representation. For example,

the two MA(1) processes

yt − µ = (1− θL)εt

and

y∗t − µ = (1− θ−1L)ε∗t

have exactly the same moments if

σ2
ε∗ = σ2

εθ
2

For example, we’ve seen that

γ0 = σ2(1 + θ2).

Given the above relationships amongst the parameters,

γ∗0 = σ2
εθ

2(1 + θ−2) = σ2(1 + θ2)



so the variances are the same. It turns out that all the autoco-

variances will be the same, as is easily checked. This means that

the two MA processes are observationally equivalent. As before,

it’s impossible to distinguish between observationally equivalent

processes on the basis of data.

• For a given MA(q) process, it’s always possible to manipulate

the parameters to find an invertible representation (which is

unique).

• It’s important to find an invertible representation, since it’s the

only representation that allows one to represent εt as a function

of past y′s. The other representations express

• Why is invertibility important? The most important reason is

that it provides a justification for the use of parsimonious mod-

els. Since an AR(1) process has an MA(∞) representation, one

can reverse the argument and note that at least some MA(∞)



processes have an AR(1) representation. At the time of esti-

mation, it’s a lot easier to estimate the single AR(1) coefficient

rather than the infinite number of coefficients associated with

the MA representation.

• This is the reason that ARMA models are popular. Combining

low-order AR and MA models can usually offer a satisfactory

representation of univariate time series data with a reasonable

number of parameters.

• Stationarity and invertibility of ARMA models is similar to what

we’ve seen - we won’t go into the details. Likewise, calculating

moments is similar.

Exercise 84. Calculate the autocovariances of an ARMA(1,1) model:(1+

φL)yt = c + (1 + θL)εt
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Index
ARCH, 840

asymptotic equality, 948

Chain rule, 937

Cobb-Douglas model, 42

conditional heteroscedasticity, 840

convergence, almost sure, 941

convergence, in distribution, 942

convergence, in probability, 940

Convergence, ordinary, 938

convergence, pointwise, 939

convergence, uniform, 939

convergence, uniform almost sure,

943

estimator, linear, 55, 72

estimator, OLS, 45

extremum estimator, 493

fitted values, 47

GARCH, 840

leptokurtosis, 840

leverage, 56

likelihood function, 532

matrix, idempotent, 54
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matrix, projection, 52

matrix, symmetric, 54

observations, influential, 55

outliers, 55

own influence, 57

parameter space, 532

Product rule, 936

R- squared, uncentered, 60

R-squared, centered, 62

residuals, 47
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