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an71 Spring NetCourse schedule announced

NetCourse 101. An Introduction to Stata
6 weeks (4 lectures)
Course dates: February 25 through April 7
Deadline for enrollment: February 21
Cost: $ 85
Course leaders: Shana Carter, David Reichel, and Jeremy Wernow
Prerequisites: Stata 6, installed and working
Schedule:

Lecture 1 February 25
Lecture 2 March 3
One-week break March 9 through March 15
Lecture 3 March 17
Lecture 4 March 24
Closing discussion
Course ends April 7

NetCourse 151. An Introduction to Stata Programming
6 weeks (4 lectures)
Course dates: April 7 through May 19
Deadline for enrollment: April 3
Cost: $100
Course leaders: David Cowart, Roberto Gutierrez, and Ken Higbee
Prerequisites: Stata 6, installed and working

Basic knowledge of using Stata interactively
Schedule:

Lecture 1 April 7
Lecture 2 April 14
One-week break April 20 through April 26
Lecture 3 April 28
Lecture 4 May 5
Closing discussion
Course ends May 19

NetCourse 152. Advanced Stata programming
6 weeks (4 lectures)
Course dates: March 3 through April 14
Deadline for enrollment: February 28
Cost: $100
Course leaders: David Drukker, Ken Higbee, and Allen McDowell
Prerequisites: Stata 6, installed and working

NetCourse 151 or equivalent knowledge
Schedule:

Lecture 1 March 3
Lecture 2 March 10
One-week break March 16 through March 22
Lecture 3 March 24
Lecture 4 March 31
Closing discussion
Course ends April 14

More information, including an outline of each course, can be obtained by pointing your browser to http://www.stata.com;
clicking on the Headline Spring NetCourse schedule announced; and emailing stata@stata.com for enrollment forms.
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dm63.1 A new version of winshow for Stata 6

Tony Brady, Imperial College School of Medicine, UK, t.brady@ic.ac.uk

The winshow command (Brady 1998) has been updated and improved for Stata 6. The major new features are the ability
to display and enter data into a variety of controls (edit boxes, drop-down lists, check boxes and radio buttons), and the ability
to search a dataset for particular observations.

Syntax

winshow

�
varlist

� �
if exp

� �
in range

� �
, maxdisp(#) edit new del find strict

dateord(str) log(varlist) call(program name) caption(text) header(var)

lspace(#) drop(#) nonum novar nodesc notype nopreserve

�

winset

�
varlist

� �
, list do

�

New options

There are four new options in the new version of winshow (see Brady 1998 for a complete description of all options):

find adds a find button to the winshow dialog box allowing searches for a particular value in one of the variables (see Figure 1).
By default, searches start at the next observation and go forward through the dataset, cycling around to the first observation
and finishing at the current observation. Backward searches are allowed and the cycling round can be disabled if required.
Dates can be entered naturally into the “search-for” field; they will be converted into elapsed dates before the search starts.
Searching for text within a string variable will be deemed successful even if the search text is only part of the searched
text and regardless of case. For example, searching for ‘good’ in a surname variable would find observations with surnames
‘Goodman’, ‘MR GOOD’, ‘Holgoods’, and so on.

header(var) adds a header to the dialog box displaying the current value of var. This is useful when an observation is spread
over several pages.

lspace(#) determines the horizontal spacing between lines (the default is 11).

drop(#) defines the maximum depth of drop-down lists (the default is 60).

do in winset displays the char commands necessary for creating the current winshow settings for varlist. Programmers might
find it useful to log these commands to a do-file.

Figure 1. Example of search facility.

Example

The winshow dialog box shown in Figure 2 was generated with the command:

. winshow, edit new del find header(name) novar notype
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The controls used to display information are determined by the contype characteristic of each variable. These can be set
manually with the char command or through the winset interface (see below). Edit boxes can be used to display any type of
variable but all other control types may only be used with labeled categorical variables. Radio buttons allow variables with two,
three, or four categories defined by the first and one or more contiguous values in the set df1; 2; 3; 4g. Check boxes only allow
variables with two categories which must be coded 0 (unchecked) and 1 (checked). By their nature, radio buttons and check
boxes do not allow missing values. There is no limit on the number of categories allowed with drop-down boxes, and missing
values are allowed unless otherwise specified (the specialty variable shown in Figure 2 is an example of missing not allowed).

Figure 2. Example of new control types and header.

winshow characteristics are used by winshow to determine how variables are to be displayed and dealt with during data
entry. These characteristics are most easily manipulated with the winset program (see Figure 3).
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Figure 3. Reviewing the variable characteristics.

winset also allows the user to edit variable and value labels. For programmers, the relevant characteristics are

Characteristic Value Description

contype # Controltype: 1=edit box, 2=drop-down list, 3=check box, 4=radio buttons

default # or string or “to-
days date”

Specifies a default value the variable is to take when entering a new
observation. A special default value for date variables is allowed; namely,
todays date. This allows observations to be date-stamped according to
when they were entered.

len # The length in characters of the edit box used to display values of the
variable. The default length is either the length of the maximum value of
the variable (for numeric) or the space allocated to a string variable (e.g.,
12 for str12).

noedit # A value of 1 prohibits editing of the variable.

nomiss # A value of 1 prevents the user from leaving the variable blank or entering
missing (a stricter version of req).

range # #
�
strict

�
The valid range of input values is defined by the two numbers (lower
and upper limit, respectively). Optionally, strict may be specified which
prohibits entry of values outside the valid range (including missing).

req # A value of 1 means that the variable cannot be left blank (although missing
is allowed).
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dm75 Safe and easy matched merging

Jeroen Weesie, Utrecht University, Netherlands, j.weesie@fss.uu.nl

In this insert I describe the new command mmerge for “merging on matching variables” of two datasets. mmerge is both
safer and easier to use than the powerful standard Stata command merge. The safety of mmerge is best explained in terms of
an important property of matched variable(s): namely, whether or not it (they) form a key in the two datasets. A key comprises
one or more variables that uniquely define observations and is never missing. Whether or not one or more variables form a key
is primarily a theoretical issue; it depends on the properties of the objects represented by the data. If a dataset of individuals
contains a person’s social security number (SSN), SSN provides a good example of a key. There cannot be two persons with the
same social security number and it is never (should never be) missing. Of course, a dataset may violate these properties, but
this means there are errors in the dataset that need to be fixed. mmerge helps identify such problems.

I want to stress that key-ness is a theoretical property of the data that is derived from one’s understanding of the data—it is
not just an empirical issue. The claim that a (list of) variables forms a key, however, can be falsified on the data, e.g., it can be
verified that the SSN of all respondents is not missing, and that no two persons have the same SSN. It is also possible that one
or more variables uniquely identifies observations “by coincidence.” For instance, all persons in a dataset may have a different
date of birth, but it is ill-advised to say that such a variable is a key. If observations are added, there now may be two persons
with the same date of birth, and date of birth no longer may serve as a key, and mmerge would produce an error message.

Adopting the labels “master” and “using” for the data in memory and the data file to be match-merged to the master, we
can clearly distinguish four types of match-merging.

type master using

1:1 key key
n:1 — key
1:n key —
n:n — —

The simplest case is when the match variables form a key in both the master and the using data. For example, the two
datasets contain characteristics of a set of cars, identified by the make of the car. make will (should be) a key in both datasets.
1:1 matching on make creates a dataset on cars, with all characteristics of the cars found in the two datasets.

If the matching variables form a key in the master or in the using data, matched merging is sometimes called “table lookup”
or “spreading.” Consider type n:1. Conceptually, the master data file contains information about units of type A (e.g., persons),
that contain a property of type B (e.g., the city in which the person lives), while the using file contains properties of objects
of type B (e.g., properties of cities). The type B dataset has a (simple or composite) key, KeyB (e.g., cityid), and the master
contains a variable (e.g., city) that takes values in the set of values of KeyB. Match-merging means bringing properties of B
into the dataset on A (properties of the city of which a person lives are “imported” into the data on persons). In my experience,
table lookup is the most frequent application of matched merging.

Finally, in n:n matching, the match variables do not form a key in the master and using data. In this case, the standard
Stata command merge performs a one-to-one merge between the observations of the master and using data that tie on the
matching values, copying the last record “on the shorter side”. Thus, the physical order of the data within ties determines the
result of the matched merge; a very undesirable and dangerous “feature” indeed. This implementation of matched merging when
the matching variables do not form a key on either side is somewhat odd behavior; the main reason being that SAS, SPSS, and
Statistica implement matched merging similarly. mmerge takes another approach, also followed by relational database systems,
and also, for instance, by S-Plus; namely, a matched merge is defined as the set of all pairs of master and using observations
that have the same values on the match variables. Note that this definition generalizes 1:1, n:1, and 1:n matched merging quite
neatly. The resulting dataset is clearly independent of the order of observations of the master and using data.

This form of matched merging is not possible with the merge command. However, it is available in Stata, namely via the
command joinby. joinby can also be used to perform 1:1, 1:n, and n:1 matched merging, but is less efficient than mmerge,
and also lacks a substantial number of safety and convenience features offered by mmerge. For n:n matched merging, mmerge
indeed invokes joinby.

It should be noted that a new version of joinby has become available as of September 28, 1999. The new joinby has
additional features required by mmerge. The user should ensure they have a recent version of joinby installed.

Main features of mmerge

mmerge makes matched merging both easier and safer than using merge directly. This is due to the features described
below.
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� mmerge verifies whether the match variables are keys in the two datasets as specified by the option type. For instance,
type(1:n) asserts that the match variables are a key in the master dataset. mmerge verifies whether this is (may be) true,
and otherwise produces an error message, listing the duplicate key values. With type(1:n) it is not verified that the match
variables are not a key in the using file; the match variables may by coincidence uniquely identify observations. mmerge,
however, displays a message about key-ness also for datasets for which the match variables are not declared to be a key.

mmerge also supports the following two derived matching types.

� type(spread) is for people who cannot remember how to distinguish 1:n versus n:1 matching. mmerge will verify
that you have a key in at least one of the two datasets.

� type(auto) specifies that you don’t know whether the match variables form a key. This is easy but circumvents
the safety features that depend on the key-ness of matching variables, and should be avoided whenever possible. You
should think about your data and tell mmerge whether matching variables are (should be) a key in some dataset.

� mmerge can treat missing values in the match variables three different ways:

i) You may specify that you are convinced that there are no missing values. mmerge will verify this claim. This is the
default behavior.

ii) You may specify that missing values are to be treated like any other value. This is the strategy followed by many of
the Stata data manipulation commands, but I think that this seldomly makes good sense in the context of merging
datasets.

iii) You may specify that missing values may occur in the match variables of the master and the using data, but that
missing values in the master should not match missing values in the using data.

� mmerge has a simple way to specify whether unmatched observations from the master and using are to be retained in the
result. For example, unmatched(master) specifies that unmatched observations from the master are retained.

Like merge, mmerge generates a variable (with default name merge) that describes “where an observation in the merge
result comes from.” The value 3 means that the observations have “two parents.” merge uses the values 1 and 2 to
identify observations that only occur in the master and only in the using data, respectively. mmerge extends this scheme by
differentiating between two sources of mismatch; values �1 and �2 are used to mark unmatched observations that originate
in the master and using data with missing values in the match variables. The values 1 and 2 are reserved for unmatched
observations that are nonmissing in the match variables. Thus, in a merge of a dataset of person and a dataset of cities on
the city of residence, merge==-1 marks persons for whom the city of residence is unknown (missing), while merge==1

identifies persons who live in a city not described in the database of cities.

mmerge displays an understandable table describing the merge variable.

� mmerge displays the names of variables in common to the master (data in memory) and using data; these will be included
in the merged data only once, and a user may be confused as to the origin (and hence the interpretation) of such variables.
Following mmerge, the common variable contains the values of the master data, unless options replace and update specify
otherwise. Currently, mmerge does not inform the user whether common variables take the same values in the master and
using data. It should in a future release of mmerge.

Convenience features of mmerge

mmerge provides a number of features to make merging convenient to the user:

� mmerge provides options for two standard merge files operations:

� The option simple should be specified if you are convinced that the master and using data describe the same objects,
identified by the match variables. simple is equivalent to specifying type(1:1) and unmatched(both), and typing
assert merge==3 upon the completion of mmerge.

� table specifies table-lookup merging in which the master data describing objects of type A (e.g., persons) with an
embedded type B object (e.g., city of residence), is enlarged with the properties of cities from a dataset of objects of
type B (e.g., cities). This is equivalent to specifying type(n:1) and unmatched(master).

� While merge requires you to sort the master and using data explicitly by hand, mmerge does this for you. Third, mmerge
offers a number of features for the manipulation of the using data file. (For the master data, one can do these easily before
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invoking mmerge.) These features are requested via a series of options that start with u to indicate that they manipulate the
using data. One can:

� Select observations (via option uif(exp)).

� Select variables (options ukeep(varlist) and udrop(varlist)).

� Rename the matching variables (option umatch(varlist)),

� Prefix the names of variables or fully rename variables (options uname(stub) and urename(stub)).

� Prefix a string to the variable labels (ulabel(stub)).

Of course, one can do without these features, and do everything by hand. This would, however, often mean that one would
have to modify the type-B file each time one would want to merge this file into some type A file. A large fraction of this is
standard work, and hence could and should be made automatic by a declarative command such as mmerge. Also, ideally, if all
is done by hand, one should do this within a do-file in which the merge is performed, and one should remove the modified
type-B file immediately afterwards. However, I am not in an ideal world, or more accurately I am sloppy, and very similar data
files too often clutter my hard disk, and it is sometimes hard to decide which of the files can be deleted. I doubt that this is
peculiar to me.

Merging with implicit matching

The Stata command merge also supports merging without matching variables. In the Stata Reference Manual this is described
as one-to-one merging. This should not be confused with one-to-one matching as supported by mmerge. One-to-one merging
involves the “horizontal concatenation” of variables from two datasets. A link between the ith record in dataset 1 and the ith
record in dataset 2 is only implicit, and this is the real danger of one-to-one merging. Thus the merge result is crucially dependent
on the physical order of the observations in the master data and the using data. It is too easy to make mistakes, e.g., one of
the datasets is in the wrong order, with awful consequences. Thus, one-to-one merging should be avoided unless you really
know what you are doing. In the Stata reference manual a firm warning is issued against one-to-one merging, but the merge

command fails to warn the user that one-to-one merging is being performed; I would welcome an option that has to be specified
if one-to-one merging is to be performed, that tells merge: “Leave me alone, I know what I am doing.” At times, I performed
merging without matching variables because I accidentally omitted the planned match variable; only finding out my mistake
much later. mmerge does not support one-to-one merging; there is no safe way to play with dynamite, and the unsafe should not
be (made) easy!

Example of 1:1 matched merging

This example is adapted from the section on merge in the Stata Reference Manual. For this example, I have split the
variables in the automobile data into three datasets autotech, autocost, and automore:

. describe using autotech

Contains data 1978 Automobile Data

obs: 74 6 Oct 1999 12:17

vars: 4

size: 2,072

-------------------------------------------------------------------------------

1. make str18 %-18s Make and Model

2. mpg int %8.0g Mileage (mpg)

3. weight int %8.0gc Weight (lbs.)

4. length int %8.0g Length (in.)

-------------------------------------------------------------------------------

Sorted by:

. describe using autocost

Contains data 1978 Automobile Data

obs: 74 6 Oct 1999 12:17

vars: 3

size: 1,924

-------------------------------------------------------------------------------

1. make str18 %-18s Make and Model

2. price int %8.0gc Price

3. rep78 int %8.0g Repair Record 1978

-------------------------------------------------------------------------------

Sorted by:

. describe using automore
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Contains data 1978 Automobile Data

obs: 74 6 Oct 1999 12:17

vars: 2

size: 1,776

-------------------------------------------------------------------------------

1. make str18 %-18s Make and Model

2. displ int %8.0g Displacement (cu. in.)

-------------------------------------------------------------------------------

Sorted by:

I want to merge the datasets into one. As mmerge can only merge a file “into” the master data, i.e., the data in memory, we
have to take two merge steps. We start with autotech and autocost. As both datasets describe the same objects, I have to
specify the option type(1:1).

. use autotech, clear

(1978 Automobile Data)

. mmerge make using autocost, type(1:1)

-------------------+-----------------------------------------------------------

matching type | 1:1

mv's on match vars | none

unmatched obs from | both

-------------------+-----------------------------------------------------------

master file | autotech.dta

obs | 74

vars | 4

match vars | make (key)

-------------------+-----------------------------------------------------------

using file | autocost.dta

obs | 74

vars | 3

match vars | make (key)

-------------------+-----------------------------------------------------------

common variables | none

-------------------+-----------------------------------------------------------

result file | autotech.dta

obs | 74

vars | 7 (including _merge)

-------------------+-----------------------------------------------------------

all observations come from master and using data (_merge==3)

Compared to merge, mmerge provides an extensive report describing what has happened (the report may actually be
suppressed with the option noshow). mmerge has verified that make is a key in both autotech and autocost, and has found
out that the master and using data have no variables in common apart from the matching variables. Then mmerge sorted these
datasets, merged them, and displayed a report on the result. Since merge==3 for all observations, we conclude that autotech
and autocost describe the same cars.

We proceed to a one-to-one merge of the third dataset automore with additional properties of the cars.

. mmerge make using automore, type(1:1)

-------------------+-----------------------------------------------------------

matching type | 1:1

mv's on match vars | none

unmatched obs from | both

-------------------+-----------------------------------------------------------

master file | autotech.dta

obs | 74

vars | 6

match vars | make (key)

-------------------+-----------------------------------------------------------

using file | automore.dta

obs | 74

vars | 2

match vars | make (key)

-------------------+-----------------------------------------------------------

common variables | none

-------------------+-----------------------------------------------------------

result file | autotech.dta

obs | 75

vars | 8 (including _merge)

-------------------+-----------------------------------------------------------
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_merge code | freq

----------------------------------------+--------

only in master data 1 | 1

only in using data 2 | 1

both in master and using data 3 | 73

----------------------------------------+--------

Total | 75

Everything seems to work fine. But is it? There is a problem: I had expected that the datasets described the same cars, and
hence merge== 3 in all observations. This is not the case. There appears to be one observation that originates in the master
data (the previous merge), and one that originates in the using data (automore). What is wrong? Somehow, the matching on
make is not as expected. Let’s take a look at the values of make in the unmatched observations:

. list make if _merge!=3

make

72. VW Rabbit

75. Volkswagen Rabbit

Now it is obvious. In one dataset I entered the abbreviation ‘VW’, and in the other I spelled out ‘Volkswagen.’ After fixing this
problem in automore.dta, and rerunning the above two mmerge commands again, everything is correct.

Next, I want to include the merging commands and subsequent analyses in a do-file. At this stage, I am sure that one-to-one
matching works fine. In fact, I would like to assert that this is true, so that if I later rerun the do-file, and make other modifications
to the datasets, I can be sure that the same cars are described in the three datasets. mmerge’s type has a value simple to
simplify this. It says in effect: “Both datasets describe the same objects. If this is not the case, please tell me so, and do not
continue.”

. use autotech

. mmerge make using autocost, type(simple)

(output omitted )
. mmerge make using automore, type(simple)

(output omitted )
. (analyses)

Example of n:1 matched merging

In this example, I focus on table-lookup merging using a number of data files. In a household data file (hn95data), I have
variables that specify for 1,535 two-partner households the cities in which the couple lives and works, some household variables
such as the number of children living in the household, and individual variables (the race of the husband and the wife). The file
cities contains variables describing properties of 640 cities.

. describe using hn95data

Contains data Households in the Netherlands

survey 1995

obs: 1,534 14 Sep 1999 14:18

vars: 10

size: 27,612

-------------------------------------------------------------------------------

1. hhid int %9.0g household id

2. city int %9.0g city of residence

3. hhinc byte %9.0g household income

4. nkids byte %9.0g nr of kids

5. hrace byte %9.0g husband: race

6. hwcity int %9.0g work husband: city

7. wrace byte %9.0g wife: race

8. wwcity int %9.0g work wife: city

9. religion byte %9.0g religion of couple

10. vchurch byte %9.0g frequency church visit couple

-------------------------------------------------------------------------------

Sorted by:

. describe using cities

Contains data database by city

obs: 640 14 Sep 1999 14:18

vars: 5

size: 5,760

-------------------------------------------------------------------------------

1. cityid byte %9.0g city identifier

2. inhabit byte %9.0g nr of inhabitants

3. region byte %9.0g region
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4. jobs byte %9.0g nr of jobs

5. vacant byte %9.0g nr of vacancies

-------------------------------------------------------------------------------

Sorted by:

I want to add information about the city in which the couple lives to the household file that I have in memory as the master
file. Using the standard Stata command merge, I would have to proceed as follows:

. use cities

. rename cityid city

. sort city

. save TEMPNAME

. use hn95data, clear

. sort city

. merge city using TEMPNAME

. tab _merge

. drop TEMPNAME

The merging step can be accomplished far more simply by mmerge, using the option umatch() to specify the name of the
matching variable in the using data (cities).

. use hn95data, clear

. mmerge city using cities, table umatch(cityid)

match-var in using data should form a key

error: duplicate values in match-var(s)

Did you mix up match types n:1 and 1:n?

Non-unique key values

cityid __FREQ

265 2

640 4

What is happening? mmerge complains that the file cities is not suitable for table lookup (n:1 matching) since the match
variable cityid in cities is not a key; it does not uniquely define observations. It also lists the duplicate key values, in this
case 265 and 640. In the code fragment using merge, this problem probably would not have become clear immediately, if at all.
mmerge has located the problem for you. After fixing the problem with the key, I reissue the mmerge command:

. mmerge city using cities, table umatch(cityid)

-------------------+-----------------------------------------------------------

matching type | n:1

mv's on match vars | none

unmatched obs from | master

-------------------+-----------------------------------------------------------

master file | hn95data.dta

obs | 1534

vars | 10

match vars | city (not a key)

-------------------+-----------------------------------------------------------

using file | cities.dta

obs | 640

vars | 5

match vars | cityid (key)

-------------------+-----------------------------------------------------------

common variables | none

-------------------+-----------------------------------------------------------

result file | hn95data.dta

obs | 1534

vars | 15 (including _merge)

-------------------+-----------------------------------------------------------

_merge code | freq

-------------------------------------------+--------

matchvar==missing in master data -1 | 71

only in master data 1 | 115

both in master and using data 3 | 1348

-------------------------------------------+--------

Total | 1534

This time mmerge performed as planned. It verified that cityid is now a key and sorted the data. It also states that city is not
a key in the master data, i.e., city either has missing values and/or has duplicate values in the matching variables. This is no
surprise; survey data have missing values, and there is no reason to believe that all sampled households live in different cities.
Next, mmerge extracted relevant information from the using data, and performed the matched merge. Also, it provided details
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about the merging process. Note that mmerge has analyzed whether the master and using data have no variables in common apart
from matching variables. Had there been variable names in common, mmerge would not have imported such variables from the
using data into the master data in memory, which is usually an unexpected and undesirable affair in table-lookup matching.

Finally, mmerge reports the status of the observations in the master data after merging was completed. As explained above,
mmerge has expanded the set of possible merge values with a value �1 that is generated (only in case of table lookup merging)
if the key variable(s) in the master is missing. In our example, there are 75 households for which the city of residence is missing.
Next, mmerge reports that there are 113 households for which the city of residence is nonmissing, but for which no information
is available in the cities file. In a serious analysis, one would need to seek to extend the cities file with extra records on
cities currently not covered. Here I simply put the problem aside.

A careful reader may have noticed that there are no observations in the merged file with merge==2. One can expect that
the cities dataset contains records on cities that do not occur in the household data file (this is indeed the case). In contrast
with merge, mmerge ignores these records by default in case of table lookup merging, i.e., mmerge sets unmatched(master).

I move one step further, and add the region, number of vacancies, and number of jobs in the cities in which the husband
and wife work to the household data. A naming conflict is facing us, as we can’t have two variables named vacant in one
dataset. Moreover, we already have a variable region in the master dataset, namely the region in which the couple lives, and
we can’t import the region variable from the cities file for the regions in which the husband and wife work without some extra
effort. Performing a straightforward merge would leave variables such as region unchanged, i.e., the variables will be associated
with the city of residence, and so fail to import information about the cities in which the couple work. mmerge provides via the
option uname(stub) a simple mechanism to deal with this common problem, namely prefixing a “stub” (string) to the names of
variables to be imported. One clearly has to be careful that the prefixed variable names, truncated to eight characters, are still
unique, so generally the stubs should not exceed one or two characters; mmerge will notice the problem.

Personally, I like to use variable labels abundantly. In this case, I like to have informative labels for the added variables.
This is facilitated by the ulabel option of mmerge that specifies a prefix to the variables labels of the variables in the using
data.

To do the relevant table lookup merging, one could issue the commands

. mmerge hwcity using cities, table umatch(cityid) uname(HW) ulabel(work husband)

-------------------+-----------------------------------------------------------

matching type | n:1

mv's on match vars | none

unmatched obs from | master

-------------------+-----------------------------------------------------------

master file | hn95data.dta

obs | 1534

vars | 14

match vars | hwcity (not a key)

-------------------+-----------------------------------------------------------

using file | cities.dta

obs | 640

vars | 5

match vars | cityid (key)

-------------------+-----------------------------------------------------------

common variables | none

-------------------+-----------------------------------------------------------

result file | hn95data.dta

obs | 1534

vars | 19 (including _merge)

-------------------+-----------------------------------------------------------

_merge code | freq

-------------------------------------------+--------

matchvar==missing in master data -1 | 143

only in master data 1 | 122

both in master and using data 3 | 1269

-------------------------------------------+--------

Total | 1534

and, with some abbreviation of option names:

. mmerge wwcity using cities, ta um(cityid) un(WW) ul(work wife)
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-------------------+-----------------------------------------------------------

matching type | n:1

mv's on match vars | none

unmatched obs from | master

-------------------+-----------------------------------------------------------

master file | hn95data.dta

obs | 1534

vars | 18

match vars | wwcity (not a key)

-------------------+-----------------------------------------------------------

using file | cities.dta

obs | 640

vars | 5

match vars | cityid (key)

-------------------+-----------------------------------------------------------

common variables | none

-------------------+-----------------------------------------------------------

result file | hn95data.dta

obs | 1534

vars | 23 (including _merge)

-------------------+-----------------------------------------------------------

_merge code | freq

-------------------------------------------+--------

matchvar==missing in master data -1 | 314

only in master data 1 | 103

both in master and using data 3 | 1117

-------------------------------------------+--------

Total | 1534

Let us look at the variable description of the data in memory:

. describe

Contains data from hn95data.dta

obs: 1,534 Households in the Netherlands

survey 1995

vars: 23 6 Oct 1999 14:00

size: 47,554 (99.8% of memory free)

-------------------------------------------------------------------------------

1. hhid int %9.0g household id

2. city int %9.0g city of residence

3. hhinc byte %9.0g household income

4. nkids byte %9.0g nr of kids

5. hrace byte %9.0g husband: race

6. hwcity int %9.0g work husband: city

7. wrace byte %9.0g wife: race

8. wwcity int %9.0g work wife: city

9. religion byte %9.0g religion of couple

10. vchurch byte %9.0g frequency church visit couple

11. inhabit byte %9.0g nr of inhabitants

12. region byte %9.0g region

13. jobs byte %9.0g nr of jobs

14. vacant byte %9.0g nr of vacancies

15. HWinhabi byte %9.0g work husband: nr of inhabitants

16. HWregion byte %9.0g work husband: region

17. HWjobs byte %9.0g work husband: nr of jobs

18. HWvacant byte %9.0g work husband: nr of vacancies

19. WWinhabi byte %9.0g work wife: nr of inhabitants

20. WWregion byte %9.0g work wife: region

21. WWjobs byte %9.0g work wife: nr of jobs

22. WWvacant byte %9.0g work wife: nr of vacancies

23. _merge byte %32.0g __MERGE

-------------------------------------------------------------------------------

You may have noticed that describe informs us that the variable merge has an attached variable label MERGE. This
label is produced by mmerge to improve the usefulness of merge. (The value labels depend on whether update matching is
performed. mmerge only produces the label if there is no variable label in the data named MERGE, unless it was produced by
mmerge itself.)

In the rest of this example, I demonstrate two further applications of mmerge. First, I want to look up regional information
about the region in which the husband works, contained in the variable HWregion. Note that HWregion did not occur in the
original household data (hn95data), but was created by a previous table-lookup merge. Characteristics (actually, only an indicator
for regional economic development) of the 10 regions in the Netherlands are described in dataset regions.
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. describe using regions

Contains data database by region

obs: 10 6 Oct 1999 14:00

vars: 2

size: 60

-------------------------------------------------------------------------------

1. regid byte %9.0g region identifier

2. growth byte %9.0g regional economic growth in 1990

-------------------------------------------------------------------------------

Sorted by:

. mmerge HWregion using regions, table um(regid) un(HW) ul(work husband) noshow

_merge code | freq

-------------------------------------------+--------

matchvar==missing in master data -1 | 265

both in master and using data 3 | 1269

-------------------------------------------+--------

Total | 1534

In the final step in this example, I illustrate that mmerge supports table lookup with compound keys, i.e., keys that consist
of more than one variable. The dataset cregfile describes the number of churches of 10 different denominations in each of
the 640 cities in 1970, 1980, and 1990.

. describe using cityregi

Contains data database by city and religion

obs: 6,400 6 Oct 1999 14:00

vars: 5

size: 64,000

-------------------------------------------------------------------------------

1. idcity int %9.0g city identifier

2. idrelig byte %9.0g religion identifier

3. nchurch7 byte %9.0g nr of churches in 1970

4. nchurch8 byte %9.0g nr of churches in 1980

5. nchurch9 byte %9.0g nr of churches in 1990

-------------------------------------------------------------------------------

Sorted by:

I now mmerge in the data on 1990, renaming the variable at the same time, (multiple rename clauses are to be separated by a
backslash):

. mmerge city religion using cityregi, table umatch(idcity idrelig)

> ukeep(nchurch9) urename(nchurch9 nch1990)

-------------------+-----------------------------------------------------------

matching type | n:1

mv's on match vars | none

unmatched obs from | master

-------------------+-----------------------------------------------------------

master file | hn95data.dta

obs | 1534

vars | 23

match vars | city religion (not a key)

-------------------+-----------------------------------------------------------

using file | cityregi.dta

obs | 6400

vars | 3 (selection via udrop/ukeep)

match vars | idcity idrelig (key)

-------------------+-----------------------------------------------------------

common variables | none

-------------------+-----------------------------------------------------------

result file | hn95data.dta

obs | 1534

vars | 25 (including _merge)

-------------------+-----------------------------------------------------------

_merge code | freq

-------------------------------------------+--------

matchvar==missing in master data -1 | 76

only in master data 1 | 257

both in master and using data 3 | 1201

-------------------------------------------+--------

Total | 1534
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Syntax for important special cases

mmerge match variable(s) using filename
�
,

�
simple j table 	

umatch(varlist) ukeep(varlist)
�

Full syntax

mmerge match variable(s) using filename
�
, type(type value) unmatched(unmatched value)

�
simple j table 	

missing(missing value) nolabel replace update merge(varname)

noshow ukeep(varlist) udrop(varlist) uif(exp) umatch(varlist) uname(stub)

urename(rename specs) ulabel(stub)
�

where type value is of the form�
auto j 1:1 j 1:n j n:1 j n:n j spread

	
unmatched value is of the form�

both j none j master j using 	
missing value is of the form�

none j value j nomatch 	
and rename specs is of the form

oldname newname n oldname newname n : : :

Options to specify special cases

simple specifies matched merging in which the master and using data supposedly describe the same objects, fully identified by
the match variables, i.e., the match variables form a key in the master and using data. simple is equivalent to specifying
options type(1:1) and unmatched(both), and invoking assert merge==3 upon the completion of mmerge.

table specifies a “table lookup merge”, in which the master dataset contains data on objects of type A (e.g., households) that
contain an object of type B (e.g., a city), identified by the match-variables (e.g., the city of residence), while the using data
contains descriptions of type B (cities). Thus, the match variables should form a key in the using data. table is equivalent
to specifying options type(n:1) and unmatched(master).

In a future version of mmerge, I hope to provide additional “standard types of matched merging”.

Options for matching

type(type value) specifies whether the match variables are keys in the master and using data. Valid values are

auto mmerge determines the match-type. (default)
1:1 key in the master and using data
1:n key in master data
n:1 key in using data
n:n no keys; mmerge performs a relational join via joinby

spread mmerge determines which of 1:n or n:1 holds

While auto is easy, you are strongly advised to specify your knowledge of the relationship between the master and using
data via one of the other values. This allows mmerge to test whether your understanding is consistent with the data.

missing(missing value) specifies how missing values in the match variables are treated. Valid values are

none missing values not allowed in the match vars (default)
value missing values are treated as ordinary values
nomatch missing values of the match vars in the master should not

match missing values in the match-vars of the using data
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Options for merging

unmatched(unmatched value) specifies whether nonmatching observations in the master and using data are included in the
merge result. Valid values are

both nonmatching observations from master and using are included (default)
none only completely matching observations are retained
master nonmatching observations from master are included
using nonmatching observations from using are included

nolabel prevents Stata from copying the value label definitions from the disk dataset. Even if you do not specify this option,
in no event do label definitions from disk replace those already in memory.

update varies the action mmerge takes when an observation is matched. By default, the master data is held inviolate; values
from the master data are retained when the same variables are found in both datasets. If update is specified, however, the
values from the using data are retained in cases where the master data contains missing.

replace, allowed with update only, specifies that even in the case when the master dataset contains nonmissing values, they
are to be replaced with corresponding values from the using data when corresponding data are not equal. A nonmissing
value, however, will never be replaced with a missing value.

merge(varname) specifies the name of the variable that will mark the source of the resulting observation. The default is
merge( merge).

noshow specifies that the report on the files and the contents of merge is suppressed.

Options for manipulating the using data (u options)

ukeep(varlist) and udrop(varlist) specify a varlist in the using data that has to be kept (dropped) before being merged into the
master data. It is not valid to specify both ukeep and udrop. If neither is specified, all variables of the using data are used.
The match variable(s) need not be specified in ukeep; they are automatically included in ukeep (excluded from udrop).

uif(exp) specifies that only the observations in the using data that meet expression exp are to be used. Properness of the key
in the using data is determined after uif is processed.

umatch(varlist) specifies the names of the match variables in the using data. The umatch variables are associated with the
match variables in the specified order. Clearly, the number of match variables in umatch should be the same as the number
of matching variables in the master.

urename(rename specs) specifies a list of oldname newname clauses to be applied to the using data, separated by a backslash.
Note that urename is applied after ukeep and udrop, and hence ukeep and udrop should use the original names. It is
not allowed to rename the match variables here. Use umatch instead. mmerge renames the umatch variables to the master
match variable names after ukeep and udrop have been processed, but before urename is processed. An error occurs if
there are naming conflicts.

uname(stub) specifies a stub prefixed to the names of the variables imported from the using data, truncated at eight characters.
uname may not be combined with urename.

ulabel(stub) specifies a stub to be prefixed to the variable labels of the imported variables from the using data.

Miscellaneous commands

The command mmerge depends on two utility commands that may be of independent interest to some readers. The command
tabl displays a one-variable tabulation with value labels as well as numeric codes. mmerge uses tabl to tabulate the contents
of the merge variable. tabl can also be invoked directly. See help tabl.

enumopt is a programmer’s utility that facilitates the handling of options that are specified to take one of a series of values.
enumopt support the conventional abbreviation rules of Stata, and allows one to set defaults. I wrote this utility for mmerge,
but also believe that many Stata commands seem to have a rather complicated syntax because exclusive options are spelled out
sequentially instead of as possible values of a single option. Given the fate of earlier parsing utilities that I contributed to the
STB, I hope that options of type “enumerate” will be supported in a future release of Stata, so that enumopt can become obsolete
as soon as possible.
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the further development of mmerge are welcome indeed.

sg35.2 Robust tests for the equality of variances update to Stata 6

Mario Cleves, Stata Corporation, mcleves@stata.com

robvar originally published in STB-25 (Cleves 1995) computes Levene’s robust test statistic for the equality of variances
and two reformulations suggested by Brown and Forsythe based on robust estimators of central tendency.

robvar has been updated to Stata 6. It is now faster and all calculations are performed in double precision. Additionally,
the command now accepts the if and in modifiers, and saves results in r().

Syntax

robvar varname
�
if exp

� �
in range

�
; by(groupvar)

Description

Both the traditional F test for the homogeneity of variances and Bartlett’s generalization of this test to K samples are
highly sensitive to the assumption that the data are drawn from an underlying Gaussian distribution. Levene (1960) proposed
a test statistic for equality of variance that is robust under non-normality. Subsequently Brown and Forsythe (1974) proposed
alternative formulations of Levene’s test statistic using more robust estimators of central tendency in place of the mean. These
reformulations were demonstrated to be more robust than Levene’s test when dealing with skewed populations.

robvar reports Levene’s statistic (W0) and two statistics proposed by Brown and Forsythe that replace the mean in Levene’s
formula with alternative location estimators. The first alternative (W50) replaces the mean with the median. The second alternative
replaces the mean with the 10 percent trimmed mean (W10).

See Cleves (1995) for a complete description of this command.

Examples

We wish to test whether the standard deviation of the length of stay for patients hospitalized for a given medical procedure
differs by gender. Our data consists of observations on the length of hospital stay for 1778 patients; 884 males and 894 females.
Length of stay, lgthstay, is highly skewed (Skewness coefficient=4.912591) and thus violates Bartlett’s normality assumption.
We therefore use robvar to compare the variances.

. robvar lgthstay, by(sex)

1:FEMALE | Mean Std. Dev. Freq.

------------+------------------------------------

0 | 9.0874434 9.7884747 884

1 | 8.800671 9.1081478 894

------------+------------------------------------

Total | 8.9432508 9.4509466 1778

W0= .55505315 df(1, 1776) Pr > F = .45635888

W50= .42714734 df(1, 1776) Pr > F = .51347664

W10= .44577674 df(1, 1776) Pr > F = .50443411

For his data we cannot reject the null hypothesis that the variances are equal, however, Bartlett’s test yields a significance
probability of 0.0319 due to the pronounced skewness of the data.

robvar saves in r():

Scalars
r(N) number of observations
r(df1) numerator degrees of freedom
r(df2) denominator degrees of freedom
r(w0) Levene’s F statistic
r(p w0) Levene’s p-value
r(w50) Brown and Forsythe’s F statistic (median)
r(p w50) Brown and Forsythe’s p-value (median)
r(w10) Brown and Forsythe’s F statistic (trimmed mean)
r(p w10) Brown and Forsythe’s p-value (trimmed mean)
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sg120.1 Two new options added to rocfit command

Mario Cleves, Stata Corporation, mcleves@stata.com

In STB-52 (Cleves, 1999), under the heading roctab, I introduced a series of commands for performing Receiver Operating
Characteristic (ROC) analysis on rating and discrete classification data.

Although the nonparametric roctab command can be used with a continuous classification variable, the parametric rocfit

model, an implementation of the popular approach developed by Dorfman and Alf (1969) for obtaining maximum likelihood
estimates of the parameters of a smooth fitting ROC curve, can be difficult or impossible to estimate with a continuous classification
variable. The reason for this difficulty is that the Dorfman and Alf approach requires that in addition to two regression parameters,
k � 1 fixed boundary parameters be simultaneously estimated, where k is the number of distinct values of the classification
variable. A new option, cont(), allows us to group the continuous variable by specifying the number of groups to be created,
and the generate() option generates a variable containing values indicating the groups.

Syntax

rocfit now has syntax

rocfit refvar classvar
�
weight

� �
if exp

� �
in range

�
�
, cont(#) generate(newvar) level(#) nolog maximize options

�

The cont() and generate() options are new. See Cleves (1999) for a description of the other options.

New options

cont(#) specifies that the continuous classvar be divided into # groups approximately of equal length. The option is required
when classvar takes more than 20 distinct values.

cont(.) may be specified to indicate that classvar is to be used as it is, even though it could take more than 20 distinct
values.

generate(newvar) specifies the name of the new variable to contain values indicating the groups produced by cont(#).
generate(newvar) is not valid without specifying cont(#) or with cont(.).

Examples
If classvar has less than 20 distinct values then we can specify

. rocfit disease rating

This works whether rating is categorical or continuous.

If classvar has more than 20 distinct values, for example 25, and we wish to use the variable as it is, then we can specify

. rocfit disease rating, cont(.)

This also works whether rating is categorical or continuous, although presumably rating is categorical.

If classvar takes a large number of values, for example 100, and we wish to fit the model by creating 10 groups, then we
can specify

. rocfit disease rating, cont(10)

This is appropriate only if rating is continuous. cont(10) specifies that rating should be categorized into 10 groups.

The generate() option can be used to generate a new variable containing the values indicating the groups created by
cont(10).

. rocfit disease rating, cont(10) generate(group)

Of course we could have grouped our data prior to analysis and used our own group variable as the classvar, omitting cont(10).
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sg124 Interpreting logistic regression in all its forms

William Gould, Stata Corporation, wgould@stata.com

Abstract: The interpretation of logistic regression in all of its forms—ordinary, conditional, ordered, and multinomial—is
explained. In all cases, exponentiated coefficients can be interpreted as some form of odds ratio. Guidance is provided on
the accuracy of interpreting odds ratios as risk ratios.

Keywords: logit, logistic regression, conditional logistic regression, MacFadden choice model, fixed-effects logistic regression,
ordered logistic regression, multinomial logistic regression; case–control, matched case–control; odds, odds ratios, conditional
odds ratios, risk ratios.

Contents:
1. Ordinary (binary-outcome) logistic regression

1.1 Odds
1.2 Odds ratios
1.3 Constancy of the odds ratios
1.4 Interpreting logit output
1.5 Actions of predict after logit and logistic
1.6 Demonstration

2. Conditional logistic regression
2.1 Derivation of model
2.2 Interpreting clogit output
2.3 Actions of predict after clogit
2.4 Equivalency of conditional and ordinary logistic regression

3. Ordered logistic regression
3.1 Odds ratios
3.2 Demonstration
3.3 Calculating confidence intervals for the odds ratios
3.4 Actions of predict after ologit
3.5 Equivalency of ordered and ordinary logistic regression

4. Multinomial logistic regression
4.1 Relative Risk Ratio (RRR) interpretation
4.2 Conditional Odds Ratio (COR) interpretation
4.3 Demonstrations
4.4 Interpreting mlogit output
4.5 Actions of predict after mlogit
4.6 Equivalency of multinomial and ordinary logistic regression

5. References

1. Ordinary (binary-outcome) logistic regression

The logistic regression or logit model is

odds(yj 6= 0) = exp(xjb + b0)

The Stata commands logit and logistic both report binary-outcome (ordinary) logistic regression estimates. Exponentiated
coefficients have the interpretation of odds ratios (ORs). logit reports coefficients and logistic reports the exponentiated
coefficients. For instance, logit might report a coefficient of .5 and logistic would correspondingly report exp(.5) = 1.6487,
labeling that result an odds ratio.

logit will report exponentiated coefficients (specify option or) and logistic will report unexponentiated coefficients
(specify option coef), which command you use to estimate your model makes no difference.

1.1 Odds

Let p be the probability of an event. o = p=(1 � p) is called the odds of the event. Either way of expressing likeliness
works equally well:
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Probability p Corresponding odds o

.0 .00

.1 .11

.2 .25

.3 .42

.4 .67

.5 1.00

.6 1.50

.7 2.33

.8 4.00

.9 9.00
1.0 1

When probabilities are small, p=(1 � p) approximately equals p because 1 � p is approximately 1. For unlikely events,
epidemiologists often ignore that formal definition of the odds and talk about “risk” as if o = p. That works reasonably well for
p < .1:

Probability p Corresponding odds o

.1 .11...

.01 .0101...

.001 .001001...

.0001 .00010001...

1.2 Odds ratios

The exponentiated coefficient in an ordinary logistic regression has the interpretation

odds(if the corresponding variable is incremented by 1)

odds(if variable not incremented)

or, equivalently,
P(event jx+ 1) =

�
1� P(event jx+ 1)

�
P(event jx) = �1� P(event jx)�

For instance, consider the model

. logit outcome female age

If the exponentiated coefficient on female is 1.5, then the odds of the event are 50 percent greater when female == 1 than when
female == 0.

If the exponentiated coefficient on age is .5, then the odds of the event halve as age increases by 1 and they halve at every
age. If age is measured in years, the odds halve for each yearly increase in age. If age is measured in 5-year spans (variable
age is true age divided by 5), then the odds halve for each 5-year increment in age.

For unlikely events, epidemiologists will sometimes speak about odds ratios as if they were relative risks (risk ratios), just
as they sometimes speak about odds as if they were risks. The approximation is reasonably accurate for p < .1:

Table of actual Risk Ratios given
Odds Ratios and P(event)

P(eventjx) .25 .50 .75 1.00 1.50 2.00 4.00

.2 .2941 .5556 .7895 1.000 1.364 1.667 2.500

.1 .2702 .5263 .7692 1.000 1.429 1.818 3.077

.01 .2519 .5025 .7519 1.000 1.493 1.980 3.883

.001 .2502 .5003 .7502 1.000 1.499 1.998 3.988

.0001 .2500 .5000 .7500 1.000 1.500 2.000 3.999

Note: Let p = P(eventjx) and q = P(eventjx+ 1).
The odds ratio is then o = (q=(1� q))=(p=(1� p)).
Thus, given p and o, the value of q can be solved for:
q = c=(1 + c) where c = op=(1� p).
The risk ratio is then q=p.
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1.3 Constancy of the odds ratios

It is a remarkable property of logistic regression that the odds ratio of an effect is constant regardless of the values of the
covariates. For instance, say you estimate the following logistic regression model:

�13:70837 + :1685x1 + :0039x2

The effect on the odds of a 1-unit increase in x1 is exp(.1685) = 1.18, meaning the odds increase by 18 percent. Incrementing
x1 increases the odds by 18 percent regardless of the value of x2—it does not matter whether x2 = 0 or x2 = 1000. For every
observation in the dataset, incrementing x1 has the same multiplicative effect on the odds.

1.4 Interpreting logit output

Do not confuse coefficients with exponentiated coefficients. Look at the headers above the coefficient table. If it says Coef,
then coefficients are being reported:

Logit estimates Number of obs = 74

LR chi2(2) = 35.72

Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966

------------------------------------------------------------------------------

dom | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | .1685869 .0919174 1.834 0.067 -.011568 .3487418

weight | .0039067 .0010116 3.862 0.000 .001924 .0058894

_cons | -13.70837 4.518707 -3.034 0.002 -22.56487 -4.851864

------------------------------------------------------------------------------

If it says Odds Ratio, then exponentiated coefficients are being reported:

Logit estimates Number of obs = 74

LR chi2(2) = 35.72

Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966

------------------------------------------------------------------------------

dom | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | 1.183631 .1087963 1.834 0.067 .9884987 1.417283

weight | 1.003914 .0010156 3.862 0.000 1.001926 1.005907

------------------------------------------------------------------------------

When exponentiated coefficients are reported, Stata does not report the intercept (labeled cons in the prior output). A coefficient
for the intercept is nonetheless estimated.

After seeing the output one way, you can see it the other if you wish. Learn about logit’s or and logistic’s coef

options.

1.5 Actions of predict after logit and logistic

If you use predict after logit or logistic, you obtain probabilities, not odds. If you want the odds, you can calculate
them for yourself:

. predict p

. gen odds = p/(1-p)

1.6 Demonstration

It is well worth demonstrating that you can obtain the same odds ratios that Stata reports. Try the following experiment:

. use auto, clear

. logistic foreign mpg weight

. predict double p

. replace mpg = mpg + 1

. predict double q

. gen double or = (q/(1-q)) / (p/(1-p))

. summarize or

You will observe that or has the same value reported by logistic as the odds ratio for mpg, namely .8448578. You will observe
that the variance of variable or is zero (except for roundoff error), meaning or is constant regardless of the value of variable
weight.
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It is also instructive to compare the odds ratio to the risk ratio:

. gen double rr = q/p

. summarize or rr

The risk ratio will be .8879504, a little larger than the odds ratio of .8448578. Moreover, the risk ratio will not be constant,
varying in this dataset between .8450 and .9816. In this dataset, the average probability of the event is .2973, which you can
obtain by typing summarize foreign.

2. Conditional logistic regression

The conditional logistic regression model is

odds(yj) are proportional to exp(xjb)

and notice that this definition includes, as a special case, the definition of ordinary logistic regression,

odds(yj) = exp(xjb + b0)

The exponentiated conditional logistic regression coefficients have the same odds-ratio interpretation as ordinary logistic estimates.

Stata’s clogit command estimates conditional logistic regressions. Specify option or to obtain the exponentiated coefficients.

Conditional logistic regression differs from ordinary logistic regression in that the data are divided into groups and, within
each group, the observed probability of positive outcome is either predetermined due to the data construction (such as matched
case–control) or in part determined because of unobserved differences across the groups. Thus, the likelihood of the data
depends on the conditional probabilities—the probability of the observed pattern of positive and negative responses within
group conditional on that number of positive outcomes being observed. Terms that have a constant within-group effect on the
unconditional probabilities—such as intercepts and variables that do not vary—cancel in the formation of these conditional
probabilities and so remain unestimated.

2.1 Derivation of model

Models are typically asserted and it is their properties that are derived, but conditional logistic regression really is ordinary
logistic regression applied to a particular data problem.

In the conditional logistic problem, the data occur in groups:

group 1:

obs. 1 outcome=1 x1 = ... x2 = ...

obs. 2 outcome=0 x1 = ... x2 = ...

group 2:

obs. 3 outcome=1 x1 = ... x2 = ...

obs. 4 outcome=0 x1 = ... x2 = ...

obs. 5 outcome=0 x1 = ... x2 = ...

group 3:

...

.

.

Group k:

...

We wish to condition on the number of positive outcomes within group. That is, we seek to fit a logistic model that explains why
observation 1 had a positive outcome in group 1 conditional on one of the observations in the group having a positive outcome.

In biostatistical applications, this arises, for example, because researchers collect data on the sick and infected (the so-called
“positive” outcomes) and then match those cases with controls who are not sick and infected. Thus, the number of positive
outcomes is not a random variable. Within each group, there had to be the observed number of positive outcomes because that
is how the data were constructed.

Economists refer to this same model as the McFadden choice model. In this model, an individual is faced with an array of
choices and must choose one.

The estimator is also known as the fixed-effects logistic regression estimator for reasons that will become more obvious
shortly.

Regardless of the justification, we are seeking to fit a model that explains why observation 1 had a positive outcome in
group 1, observation 3 in group 2, and so on.
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We assume the unconditional probability of a positive outcome is given by the standard logistic equation,

odds(yj) = exp(xjb + b0)

or equivalently,
P(positive outcome) = exp(xjb + b0)=(1 + exp(xjb + b0)) (1)

Equation (1) is not the appropriate probability for our data because it does not account for the conditioning. In the first group,
for instance, we want

P(obs. 1 positive and obs. 2 negative j one positive outcome)

and that is easy enough to write down in terms of the unconditional probabilities. It is

P(1 positive) P(2 negative)

P(1 positive) P(2 negative) + P(1 negative) P(2 positive)
(2)

From now on, when we write P(1 positive) and P(2 negative), etc., we will mean the probability that observation 1 had a
positive outcome, the probability that observation 2 had a negative outcome, and so on.

Substituting equation (1) into (2), we obtain

P(1 positive and 2 negative j one positive outcome) =
exp(x1b)

exp(x1b) + exp(x2b)
(3)

So that is the model we seek to fit or, at least, that is the term for group 1 and there are similar terms for all the other groups.
(We have ignored the possibility of multiple positive outcomes within group, but that just adds complication.)

What is important to note in comparing equations (1) with (3)—in comparing ordinary logistic regression with conditional
logistic regression—is that the logistic intercept b0 cancelled. Whatever the value of b0, it makes no difference in terms of the
conditional outcomes that were observed and so cannot be estimated. Also note that b0 could vary by group and it would still
cancel. Thus, the conditional logistic estimator is often used to estimate the fixed-effects logistic model.

Finally note that, in equation (3), any variable that is constant within group will similarly cancel from both the numerator
and denominator and so its effect cannot be estimated.

For a more thorough discussion of the conditional logistic derivation and its implications, see Gould (1999).

Groups that contain all-positive or all-negative outcomes provide no information because the conditional probability of
observing such groups is 1 regardless of the values of the parameters b. Thus, when Stata encounters such groups, it reports
that so many groups were dropped “due to all positive or negative outcomes”.

2.2 Interpreting clogit output

By default, clogit reports coefficients. Specify option or if you want exponentiated coefficients (odds ratios) reported.
Do not confuse coefficients with exponentiated coefficients. Look at the headers above the coefficient table. If it says Coef.,
then coefficients are being reported. If it says Odds Ratio, then exponentiated coefficients are being reported. In neither case
is an intercept reported because the intercept remains unestimated.

2.3 Actions of predict after clogit

The default calculation by predict following clogit estimation is the conditional probability of a positive outcome given
a single positive outcome within group. This is not the same probability that predict calculates following estimation by logit

or logistic. The overall probability of a positive outcome cannot be calculated because the intercepts of the logit model remain
unestimated.

2.4 Equivalency of conditional and ordinary logistic regression

Ordinary and conditional logistic regression produce the same result when there is only one group, however, conditional
logistic regression still leaves the intercept unestimated.

Try the following experiment:

. use auto, clear

. gen grp = 1

. logit foreign mpg weight

. clogit foreign mpg weight, group(grp)
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The coefficient reported by logit and clogit will be the same. logit, however, will report an intercept and clogit will not.

Results are similarly the same in the exponentiated coefficient (odds ratio) metric:

. logistic foreign mpg weight

. clogit foreign mpg weight, group(grp) or

3. Ordered logistic regression

In ordered logistic regression, there are multiple outcomes and we will label them 1, 2, 3, : : : , k. The outcomes are ordered
from weak to strong, mild to severe, etc. The model is

odds(outcome more severe than i) = exp(xjb + b0i)

Exponentiated ordered-logistic regression coefficients can be interpreted as odds ratios. In the ordered logistic case, it is the ratio,
given a one-unit increase in the covariate, of the odds of being in a higher rather than a lower category.

Stata’s ologit command estimates ordered-logistic regression. There is currently no option to report exponentiated coeffi-
cients; you must exponentiate the coefficients for yourself.

3.1 Odds ratios

Let there be k ordered outcomes, numbered 1, 2, 3, : : : , k.

In ordered logistic regression, the exponentiated coefficients are the ratios, for a one-unit increase in the covariate, of the
odds of outcome k to outcomes below k, and simultaneously for outcomes k � 1 and above to outcomes below k � 1, and
simultaneously for outcomes k � 2 and above to outcomes below k � 2, and so on.

That is, you have ordered outcomes

1 2 3 4 5 ...

and, just to fix ideas, let’s pretend we have exactly 5 outcomes. If you were to calculate the particular odds ratio comparing
outcome 5 to all the outcomes below it,

1 2 3 4 5

----------------------------- ---

| |

+---------------------+

|

or = odds ratio for a 1-unit increase in x

you would obtain the same value as if you calculated the odds ratio comparing outcomes 4 and 5 to all outcomes below them,

1 2 3 4 5

-------------------- -----------

| |

+--------------------+

|

or = odds ratio for a 1-unit increase in x

which would be the same value as the odds ratio comparing outcomes 3, 4, and 5 to the outcomes below that,

1 2 3 4 5

------------ --------------------

| |

+---------------------+

|

or = odds ratio for a 1-unit increase in x

and so on.

3.2 Demonstration

To demonstrate this, use the auto data and estimate the model

. ologit rep78 mpg weight

Variable rep78 takes on 5 (ordered) outcomes, 1 = Poor through 5 = Excellent.

Try the following:

. use auto, clear
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. keep if rep78!=.

. ologit rep78 mpg weight

. predict double(p1 p2 p3 p4 p5)

. replace mpg = mpg + 1

. predict double(q1 q2 q3 q4 q5)

. gen double o5 = (q5/(q1+q2+q3+q4))/(p5/(p1+p2+p3+p4))

. gen double o4 = ((q5+q4)/(q1+q2+q3))/((p5+p4)/(p1+p2+p3))

. gen double o3 = ((q5+q4+q3)/(q1+q2))/((p5+p4+p3)/(p1+p2))

. gen double o2 = ((q5+q4+q3+q2)/(q1))/((p5+p4+p3+p2)/(p1))

. summarize o5 o4 o3 o2

. display exp(_b[mpg])

To explain,

1. First, we estimate the model ologit rep78 mpg weight.

2. We predict p1 p2 p3 p4 p5, obtaining the 5 predicted probabilities, observation by observation, of being in each of the
rep78 categories. Of course, p1+ p2+ p3+ p4+ p5 = 1.

3. We add 1 to mpg and predict q1 q2 q3 q4 q5, thus obtaining the predicted probabilities when mpg is incremented by 1.

4. We gen o5 = (q5/(q1+q2+q3+q4)) / (p5/(p1+p2+p3+p4)). The numerator, q5/(q1+q2+q3+q4), are the odds of being
in the group rep78 == 5 given mpg is incremented by 1. The denominator, p5/(p1+p2+p3+p4), are the same odds when
mpg is not incremented. New variable o5 is the odds ratio.

5. We gen o4 = ((q5+q4)/(q1+q2+q3))/((p5+p4)/(p1+p2+p3)). This is just like the calculation above except now we
are taking ratios for outcomes rep78 � 4.

6. We gen o3 and gen o2, taking ratios of outcomes rep78 � 3 and rep78 � 2.

7. We summarize all the o variables. We will discover that each is a constant and that they are all equal to each other!

We will also find that they are equal to exp( b[mpg]) from the ologit output. In this case, we will have to calculate exp()

for ourselves because ologit does not have an odds-ratio option (although it should).

3.3 Calculating confidence intervals for the odds ratios

ologit does not report exponentiated coefficients. In the demonstration above, we obtain the following ologit output:

. ologit rep78 mpg weight

Iteration 0: log likelihood = -93.692061

Iteration 1: log likelihood = -86.794936

Iteration 2: log likelihood = -86.513907

Iteration 3: log likelihood = -86.513267

Iteration 4: log likelihood = -86.513267

Ordered logit estimates Number of obs = 69

LR chi2(2) = 14.36

Prob > chi2 = 0.0008

Log likelihood = -86.513267 Pseudo R2 = 0.0766

------------------------------------------------------------------------------

rep78 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | .1170693 .0712216 1.644 0.100 -.0225224 .2566611

weight | -.0003287 .0004849 -0.678 0.498 -.001279 .0006217

---------+--------------------------------------------------------------------

_cut1 | -2.300255 2.918117 (Ancillary parameters)

_cut2 | -.5423416 2.85169

_cut3 | 1.794106 2.830686

_cut4 | 3.410261 2.872927

------------------------------------------------------------------------------

Obtaining the odds ratio is easy enough:

For mpg, OR = exp(.1170693) = 1.124.

For weight, OR = exp(�.0003287) = .99967.

One way to obtain the 95% confidence intervals is to exponentiate the reported coefficient confidence intervals:

For mpg, OR = exp(.1170693) = 1.124, and the 95% confidence interval is [exp(�.0225224); exp(.2566611)] =

[ .978; 1.293 ].
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For weight, OR = exp(�.0003287) = .99967, and the 95% confidence interval is [exp(�.001279); exp(.0006217)] =
[ .99872; 1.0006 ].

We could also obtain a standard error for the odds ratio using the delta rule—see Sribney and Wiggins (1999) for a description—
which in this case results in SE(OR) = exp(b)� SE(b):

For mpg, OR = exp(.1170693) = 1.124, and the standard error is 1.124� .071226 = .0800.

For weight, OR = exp(�.0003287) = .99967, and the standard error is .99967� .0004849 = .0004847.

An easy way to obtain these results is to use lincom with the or option:

. lincom mpg, or

( 1) mpg = 0.0

------------------------------------------------------------------------------

rep78 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | 1.124197 .0800671 1.644 0.100 .9777293 1.292607

------------------------------------------------------------------------------

. lincom weight, or

( 1) weight = 0.0

------------------------------------------------------------------------------

rep78 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | .9996714 .0004847 -0.678 0.498 .9987218 1.000622

------------------------------------------------------------------------------

3.4 Actions of predict after ologit

predict after ologit calculates probabilities, not odds. If you want the odds, you can calculate them for yourself:

. predict p1 p2 p3 p4 p5

. gen odds5 = p5/(p1+p2+p3+p4)

. gen odds4 = (p5+p4)/(p1+p2+p3)

. gen odds3 = (p5+p4+p3)/(p1+p2)

. gen odds2 = (p5+p4+p3+p2)/(p1)

3.5 Equivalency of ordered and ordinary logistic regression

When there are two outcomes, both ordered and ordinary logistic regression will produce the same results except for a
confusing sign reversal. Try the following experiment:

. use auto, clear

. logit foreign mpg weight

. ologit foreign mpg weight

The coefficients on mpg and weight will be the same in both sets of output. logit, however, will report a coefficient for cons

of 13.70837 while ologit will report the ancillary parameter cut1 being �13.70837.

This difference is caused by how the parameters are used in their respective models. In logit, the interpretation is

P(foreignj) = P(xjb + b0 + noise > 0)

and in ologit, the interpretation is
P(foreignj) = P(xjb + noise > cut1)

Thus, cut1 = �b0.

4. Multinomial logistic regression

In multinomial logistic regression there are k outcomes 1, 2, : : : , k. One of the outcomes is arbitrarily chosen as the “base
outcome” as we will choose outcome k. The model is

odds(yj = 1 j yj = 1 or yj = k) = exp(xjb1 + c1)

odds(yj = 2 j yj = 2 or yj = k) = exp(xjb2 + c2)

...

odds(yj = k � 1 j yj = k � 1 or yj = k) = exp(xjbk�1 + ck�1)

odds(yj = k j yj = k or yj = k) = 1
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Note that if there are k = 2 outcomes, the model reduces to ordinary logit.

Exponentiated coefficients have two interpretations, that of (1) relative risk ratios (RRR) and (2) conditional odds ratios
(COR). Both interpretations are relative to the base group, which in our case, we arbitrarily set to k. Had we chosen a different
base group, the coefficients and their interpretations would change but the predictions of the model would not change.

Stata’s mlogit command estimates multinomial logistic regressions. mlogit chooses a base group on its own—not
necessarily k—but its choice may be overridden using its basecategory() option.

Specify option rrr to obtain the exponentiated coefficients, which will be labeled RRRs.

4.1 Relative Risk Ratio (RRR) interpretation

Relative risk is defined
r1 = P(y = 1) = P(y = base category)

r2 = P(y = 2) = P(y = base category)

and so on. Remember that odds are defined as

o1 = P(y = 1) = (1� P(y = 1))

o2 = P(y = 2) = (1� P(y = 2))

and so on. In the case of two outcomes, 1 � P(y = 1) = P(y = base category) and odds and relative risks are equal. If there
were more than two categories, however, they would differ. For instance,

Rel. Risk
Category Probability Odds rel. to category 3

1 .3 .429 1.5
2 .5 1.000 2.5
3 (base) .2 .250 1.0

Exponentiated coefficients in ordinary logit are odds ratios—the ratio of the odds for a one-unit increase in x to the odds
when x is unchanged:

OR =
P(y = 1 jx+ 1) = (1� P(y = 1 jx+ 1))

P(y = 1 jx) = (1� P(y = 1 jx))

Exponentiated coefficients in multinomial logistic regression are relative risk ratios—the ratio of the relative risk for a
one-unit increase in x to the relative risk when x is unchanged:

RRR =
P(y = 1 jx+ 1) = P(y = base category jx+ 1)

P(y = 1 jx) = P(y = base category jx)

The RRR = OR when P(base category) = 1� P(y = 1), that is, when there are two outcomes. When there are more than
two outcomes, ORs and RRRs are different. For instance, let’s pretend

Category i P(y = ijx) P(y = ijx+ 1)

1 .3 .4
2 .5 .3
3 (base) .2 .3

Then the ORs and RRRs are

Category OR RRR

1 1.56 .89
2 .43 .40
3 (base) 1.71 1.00

Note how difficult RRRs can be to interpret. The probability of y = 1 increases and yet the RRR falls because the probability of
the base category increases, too, and it increased even more.
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4.2 Conditional Odds Ratio (COR) interpretation

(The author of this insert thanks Roland Perfekt of the Southern Swedish Regional Tumour Registry in Lund, Sweden, for
pointing out this interpretation.)

The exponentiated coefficients from multinomial logistic regression can just as well be given the interpretation of Conditional
Odds Ratios, which are defined as

COR1 =
odds(y = 1 jx+ 1 and (y = 1 or y = base category))

odds(y = 1 jx and (y = 1 or y = base category))

COR2 =
odds(y = 2 jx+ 1 and (y = 1 or y = base category))

odds(y = 1 jx and (y = 1 or y = base category))

and so on. Although we listed RRR ahead of COR, CORs are perhaps a more natural interpretation. Since CORs and RRRs are both
equal to the same exponentiated coefficients, whether one uses CORs or RRRs is just a matter of taste.

In the description of RRRs, we offered the following hypothetical set of results

Category i P(y = ijx) P(y = ijx+ 1)

1 .3 .4
2 .5 .3
3 (base) .2 .3

Category OR RRR

1 1.56 .89
2 .43 .40
3 (base) 1.71 1.00

The RRRs in this table could just as well be labeled CORs and, if we do that, the interpretation is easier. We previously noted
that the probability of y = 1 increases and yet the RRR falls because the probability of the base category increases and the base
increased even more.

Said in the COR way, we would merely note the odds of being in 1 versus the base (category 3) fall when x increases.

4.3 Demonstrations

Try the following:

. use auto, clear

. drop if rep78==. | rep78==1 | rep78==2

. gen outcome = 1 if rep78==3

. gen outcome = 2 if rep78==4

. gen outcome = 3 if rep78==5

So far, we have just created a 3-outcome problem (and we will ignore its ordered nature). Next, we estimate our model:

. mlogit outcome mpg foreign, base(3) rrr

We can now obtain the probabilities p1, p2, and p3. We will then increment mpg by 1 and obtain in q1, q2, and q3 the
probabilities associated with a 1-unit increase in the mpg.

. predict double(p1 p2 p3)

. replace mpg = mpg + 1

. predict double(q1 q2 q3)

Now we will obtain the RRR for outcome == 1:

. gen double rrr = (q1/q3) / (p1/p3)

We will next obtain the COR for outcome == 1, first obtaining the conditional probabilities:

. gen double p1g13 = p1/(p1+p3)

. gen double q1g13 = q1/(q1+q3)

. gen double cor = (q1g13/(1-q1g13)) / (p1g13/(1-p1g13))

Finally, we can compare results

. summarize rrr cor
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You will obtain a mean of .8422838 for both RRR and COR, both with standard deviations 0 save for roundoff error. (The
standard deviation being zero is important; that’s what demonstrates that RRRs and CORs are independent of the other values of
the covariates.)

mlogit will have reported .8422838 for the RRR in its original output.

4.4 Interpreting mlogit output

mlogit reports coefficients or, if you specify option rrr, exponentiated coefficients (RRRs or CORs). Do not confuse
coefficients with exponentiated coefficients. Look at the headers above the coefficient table. If it says Coef., then coefficients
are being reported. If it says RRR, then exponentiated coefficients are being reported.

4.5 Actions of predict after mlogit

predict after mlogit calculates probabilities, not odds or relative risks:

. predict p1 p2 p3 p4 p5

If you want other values, you can calculate them from the probabilities.

4.6 Equivalency of multinomial and ordinary logistic regression

When there are two outcomes, multinomial and ordinary logistic regression produce the same results. Try the following
experiment:

. use auto, clear

. logit foreign mpg weight

. mlogit foreign mpg weight

If you prefer results exponentiated, type

. logistic foreign mpg weight

. mlogit foreign mpg weight, rrr

This is perhaps one more reason to prefer the COR to RRR interpretation of exponentiated coefficients in the multinomial logistic
model; it is more obvious that the CORs are ORs when there are only two outcomes.
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sg125 Automatic estimation of interaction effects and their confidence intervals

Jokin de Irala-Estévez, University of Navarre, Pamplona, Spain, jdeirala@unav.es
Miguel Angel Martı́nez, University of Navarre, Pamplona, Spain

Interaction or effect modification refers to the biological situation where the effect of a putative causal factor under study is
modified by another factor; see Hosmer and Lemeshow (1989). Effect modification is identified in multivariate analyses by testing
the statistical significance of biologically sound interactions between the variables in a main-effects model. This is performed by
including and evaluating the significance of second or higher order terms involving the two or more variables that are postulated
to possibly modify their respective effects.

The consequence of the identification of variables as significant-effect modifiers is that the effect on the outcome of
one of those variables will depend on the values taken by the other variable(s) involved in the interaction. This implies that
the coefficients of the models obtained by any statistical packages cannot be directly interpreted without performing further
calculations. The only model coefficients that can be directly used to estimate odds ratios are those not included in interaction
terms. The remaining odds ratios and their corresponding confidence intervals have to be estimated across the different levels of
the other variables of the interaction term (across different categories if the variable is qualitative or across a series of values,
sometimes the minimum, mean, and maximum, if it is quantitative). The major difficulty in this process lies in the correct
estimation of the variance of each of these odds ratios.
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The variance (or its square root to obtain the standard error) has to be calculated from a linear sum of regression coefficients,
variances, and covariances of the estimated coefficients. The values of these variances and covariances are generally obtained
from a variance–covariance matrix after fitting the model, and this is not easy with all statistical packages. The estimation of
such point estimates and their confidence intervals can be cumbersome and authors such as Hosmer and Lemeshow (1989) and
Kleinbaum (1994) have suggested systematic procedures to avoid calculation errors. Most rely on carefully subtracting the logits
of the comparisons of interest to identify the relevant coefficients and variables needed for the estimation of the correct and final
odds ratio. However, the application of the formula used to estimate the variance remains tedious and deters many researchers
from describing interactions in their findings. When investigators fail to consider the testing of interactions they are implicitly,
but perhaps incorrectly, assuming that all effects are constant across levels of the other variables in the model.

In this note, we propose to use a combination of traditional procedures and Stata commands to easily estimate such odds
ratios. To illustrate the procedure we shall use a hypothetical model to predict coronary heart disease (chd with 0=no, 1=yes)
using variables such as gender (sex; 0=females, 1=males), age, and smoking status (smk; 0=no, 1=yes). The following logit
would result from the modeling process and we shall assume that coefficients are statistically significant and that the statistical
assumptions are correctly met.

log(odds chd) = �0 + �1*smk+ �2*age+ �3*sex+ �4*(age� sex)

If we were interested in estimating the effect of “being male” in coronary heart disease, we would have to estimate different
gender odds ratios (referent category being “females”) for a series of values of age because age and gender are involved in
a significant interaction. For example, the effect of being male in 30 year old subjects would traditionally be estimated by
subtracting the following two logits in order to identify the correct coefficients and variables to be used in the estimation of the
odds ratio:

log(odds males) = �0 + �1(1) + �2(30) + �3(1) + �4(30� 1)

�
log(odds females) = �0 + �1(1) + �2(30) + �3(0) + �4(30� 0)

=

log(odds ratio) = �3(1) + �4(30� 1)

The odds ratio of coronary heart disease on 30-year-old males compared to 30-year-old females is therefore the exponential
of �3 + 30�4 and the confidence interval would have to be subsequently estimated using the appropriate variance.

The procedure we propose to simplify these tasks has three steps:

1. Generate the needed interaction terms and fit the logistic regression model. For our example, we created the variable agexsex
by typing gen agexsex = age * sex. We then estimate the model logit chd smk age sex agexsex. Alternatively, we
could have fit the logistic regression model using Stata’s xi command. In either case, Stata will produce the coefficients
corresponding to the constant, to the variables smk, age, and sex and the coefficient corresponding to the age by sex
interaction (the four coefficients represented in the logit above); namely �1 for smk, �2 for age, �3 for sex, �4 for the age
by sex interaction, and �0 for the constant in the model.

2. Depending on the odds ratios of interest and using the simple procedure of subtracting logits described above, we take note
of the relevant information needed for Stata to compute our odds ratios. We shall use a spreadsheet display to obtain the
relevant model variables that should be used in further analyses using Stata commands and call this table the “logit table”.

Model variables logit sex=1 Model variables logit sex=0 Relevant variables

smk 1 smk 1 0
age 30 age 30 0
sex 1 sex 0 sex

agexsex 30� 1 agexsex 30� 0 30� agexsex

sex, 30� agexsex

Model variables that remain constant in compared groups (smk, age) have the same values in both logits (1 and 30 for smk
and age, respectively), the subtraction of logits results in the elimination of these variables and so we do not need their
coefficients to estimate the odds ratio. The main odds ratio of interest is males versus females and so we replace the values
1 and 0 where appropriate. The subtraction of both logits finally results in identifying the variables sex and 30*agexsex
as those relevant for estimating the odds ratio of chd in 30-year-old males compared to 30-year-old females.
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3. We finally obtain the correct odds ratios and their confidence intervals with no further calculation using Stata’s lincom

command (lincom estimates linear combinations of coefficients after any estimation command such as logit or logistic).
We would type lincom sex + 30*agexsex.

Step three can be repeated with as many values of age as the researcher is interested in. As an example and for graphical
purposes, one may display how the odds ratio changes with ages that range from 25 to 64 years. Subsequent Stata programming
commands could be used to store the results (odds ratios and their standard errors) as they are produced and they can be used
for tabulation or graphical purposes (graphs are very useful and recommended to better understand interactions). The lincom

command saves the point estimate and the estimate of the standard error in r(estimate) and r(se), respectively.

The above procedure has the advantage of easily obtaining correct odds ratios even in models with more complex interactions.
For example, suppose we also had an interaction between age and smoking status in the example described previously. The logit
table would have the following display and we could easily estimate odds ratios of chd for males versus females in subjects 30
years of age who are smokers:

Model variables logit sex=1 Model variables logit sex=0 Relevant variables

smk 1 smk 1 0
age 30 age 30 0
sex 1 sex 0 sex

agexsex 30� 1 agexsex 30� 0 30� agexsex

smkxsex 1� 1 smkxsex 1� 0 smkxsex

sex, 30� agexsex,
smkxsex

We would then repeat the following command with different values of age (replacing 30 by other values of age):

. lincom sex + 30*agexsex + smkxsex

The same procedure could be repeated for nonsmokers.

References
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sg126 Two-parameter log-gamma and log-inverse Gaussian models

Joseph Hilbe, Arizona State University, jhilbe@aol.com

This insert describes the new commands lgamma, gammalog, and ivglog which are implementations of a full-information
maximum-likelihood version of the two-parameter gamma (lgamma and gammalog) and inverse Gaussian (ivglog) family-log
link generalized linear model with standard errors produced using the observed information matrix.

Models estimated within the framework of Generalized Linear Models (GLM) are, strictly speaking, one parameter exponential
models. However, several traditional GLM models derive from distributions which have, in their base form, two parameters.
When these distributions are considered within the GLM framework, their respective scale parameters are fixed as constants.

Traditional GLM models which are based on distributions having two parameters include the Gaussian, Gamma, inverse
Gaussian, and negative binomial models. In addition to the glm implementation of the negative binomial, Stata has a full-
information maximum likelihood version for the negative binomial called nbreg. An alternative exists which allows modeling
of data which precludes counts of zero.

Stata’s ml routine estimates models using a modified Newton–Raphson algorithm which uses the observed information
matrix to calculate standard errors. The glm command uses an Iteratively Reweighted Least Squares (IRLS) algorithm to calculate
estimates. In the process, the IRLS method implements the expected information matrix to produce its standard errors. When
the canonical link is being modeled, no difference exists between the two methods. The standard errors are identical. However,
for noncanonical links, standard errors differ; especially when there are few observations in the model. Tests have demonstrated
that the use of the observed information matrix is preferable to the expected information matrix. The results are nearly the same,
even when the cases are small, but the former produce more accurate standard errors. Hence, if available, use of algorithms
which use the observed information matrix to produce standard errors is to be preferred.
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Standard GLM algorithms may be internally adjusted so that noncanonical links still produce standard errors based on the
observed information matrix. It typically necessitates two to three additional lines of code. I did this for a GLM-based negative
binomial algorithm I wrote; see Hilbe 1994. That particular implementation of the negative binomial also included an iterative
point estimation of the ancillary parameter. However, the simple use of Stata’s ml capability makes the exercise much easier.

With this insert I am providing programs which use Stata’s ml capabilities to estimate full-information maximum likelihood
models for both the two-parameter log-linked gamma and the two-parameter log-linked inverse Gaussian regression models.
Parameter estimates should be identical to those produced using Stata’s glm command, e.g., glm with a log link. Standard errors
will differ from those produced using glm because the log link is not the canonical link for either of the models.

The log-likelihoods for the models are

logL =
w

�

�
y

� �1
exp(xB)

�
� exp(xB)

�
+

�
w

�

log(wy=�)� log y � log �(w=�)
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for the inverse-Gaussian, where w is a prior weight and � is a scale parameter.

Both models estimate data having a continuous response which must be greater than zero, that is, y > 0. They may be used
to estimate most any type of positive response data. Moreover, they may also be used to estimate count response data in which
there are many different values for the response. For example, when dealing with hospital length-of-stay data, one typically
regards the counts as discrete. However, if there are many different lengths of stay, and the data are underdispersed or highly
peaked at initial stages, then using gamma or inverse Gaussian models may be preferable.

A log-gamma response takes a variety of shapes. It is the continuous correlate of the more familiar discrete negative
binomial distribution. Log inverse Gaussian responses typically have a high initial peak with a low long tail. This latter model
has a long history in reliability studies, but is rarely used in other domains; perhaps without justification.

Using the new commands

All three commands have standard ml-type syntax with the full range of ml capabilities and output, see [R] ml. Robust
standard errors, with or without clustering, may be used, together with the production of scores. The predict command yields
standard output. An eform or irr option may be called to transform parameter estimates to incidence rate ratios. Help files are
provided.

Three sets of files are associated with this insert. The first two are called lgamma.ado, lgamm ll.ado, lgamma.hlp and
ivglog.ado, ivgln ll.ado, and ivglog.hlp, and refer to the log-gamma and inverse Gaussian distributions, while the third
was written by Bill Sribney and was distributed over Statalist. It is a more sophisticated version of lgamma.ado, having been
based on it. The files are called gammalog.ado, gamlf lf.ado, and gammalog.hlp.

lgamma and gammalog yield identical output. The latter utilizes an analytic null likelihood. Stata users should feel free to
use either of the programs.

References
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sg127 Summary statistics for estimation sample

Jeroen Weesie, Utrecht University, Netherlands, j.weesie@fss.uu.nl

This insert describes the simple post-estimation utility estsumm that displays summary statistics of the variables involved
in estimating a model. Some of this information can be obtained via

. summarize varlist if e(sample)

but this requires retyping the relevant varlist. Also, information about clustering and weights are not easily shown.
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Syntax

estsumm

�
, eq

�

Options

eq specifies that the dependent variables and the independent variables in the equations are displayed equation-wise, repeating
the summary information on variables entered in more than one equation.

Example

We illustrate estsumm using the automobile data with an outright silly example of a weighted regression analysis, with
standard errors modified for clustering within the make of the car (the generation of a variable defined as the first word of a
string variable may be of some independent interest to some readers).

. gen str10 Make = substr(make,1,index(make+" "," ")-1)

. tab Make

Make | Freq. Percent Cum.

------------+-----------------------------------

AMC | 3 4.05 4.05

Audi | 2 2.70 6.76

BMW | 1 1.35 8.11

Buick | 7 9.46 17.57

Cad. | 3 4.05 21.62

Chev. | 6 8.11 29.73

Datsun | 4 5.41 35.14

Dodge | 4 5.41 40.54

Fiat | 1 1.35 41.89

Ford | 2 2.70 44.59

Honda | 2 2.70 47.30

Linc. | 3 4.05 51.35

Mazda | 1 1.35 52.70

Merc. | 6 8.11 60.81

Olds | 7 9.46 70.27

Peugeot | 1 1.35 71.62

Plym. | 5 6.76 78.38

Pont. | 6 8.11 86.49

Renault | 1 1.35 87.84

Subaru | 1 1.35 89.19

Toyota | 3 4.05 93.24

VW | 4 5.41 98.65

Volvo | 1 1.35 100.00

------------+-----------------------------------

Total | 74 100.00

. regress price weight trunk rep if foreign [aw=1/mpg], cluster(Make)

(sum of wgt is 8.7740e-01)

Regression with robust standard errors Number of obs = 21

F( 3, 10) = 15.82

Prob > F = 0.0004

R-squared = 0.7517

Number of clusters (Make) = 11 Root MSE = 1275.5

------------------------------------------------------------------------------

| Robust

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

weight | 5.427974 .8298632 6.541 0.000 3.578923 7.277025

trunk | 102.4539 104.6404 0.979 0.351 -130.6995 335.6072

rep78 | -508.2667 578.2695 -0.879 0.400 -1796.732 780.198

_cons | -5225.804 2274.803 -2.297 0.044 -10294.38 -157.226

------------------------------------------------------------------------------

(Example continued on next page)
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. estsumm

Estimation sample regress Number of obs = 21

Number of clusters = 11

Obs per cluster: min = 1

avg = 1.9

max = 4

Variable | Mean Std. Dev. Min Max Label

---------+--------------------------------------------------------------------

price | 6070.143 2220.984 3748 11995 Price

weight | 2263.333 364.7099 1760 3170 Weight (lbs.)

trunk | 11.28571 3.242574 5 16 trunk space (cu.ft.)

rep78 | 4.285714 .7171372 3 5 Repair Record 1978

---------+--------------------------------------------------------------------

__weight | .0417809 .0097754 .0243902 .0588235 weighted by = 1/mpg

Since estsumm displays variable labels, the screen may become rather crowded by wrapping of the labels. Therefore,
estsumm was written to be sensitive to the display linesize.

. set display linesize 100

. estsumm

Estimation sample regress Number of obs = 21

Number of clusters = 11

Obs per cluster: min = 1

avg = 1.9

max = 4

Variable | Mean Std. Dev. Min Max Label

---------+---------------------------------------------------------------------

price | 6070.143 2220.984 3748 11995 Price

weight | 2263.333 364.7099 1760 3170 Weight (lbs.)

trunk | 11.28571 3.242574 5 16 trunk space (cu.ft.)

rep78 | 4.285714 .7171372 3 5 Repair Record 1978

---------+---------------------------------------------------------------------

__weight | .0417809 .0097754 .0243902 .0588235 weighted by = 1/mpg

estsumm has only a single option eq that specifies that the output should be put in the multi-equation panel format. In this
format, summary statistics for a variable that is included in more than one equation, is repeated in each of the associated panels.
For example, for the seemingly unrelated regression model,

. sureg (price length trunk mpg rep) (rep for price)

Seemingly unrelated regression

------------------------------------------------------------------

Equation Obs Parms RMSE "R-sq" Chi2 P

------------------------------------------------------------------

price 69 4 2485.445 0.2610 29.66034 0.0000

rep78 69 2 .7979384 0.3407 41.15192 0.0000

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

price |

length | 42.88136 26.49298 1.619 0.106 -9.043919 94.80665

trunk | -33.11848 101.5098 -0.326 0.744 -232.074 165.8371

mpg | -163.3025 86.59608 -1.886 0.059 -333.0277 6.422679

rep78 | 1035.671 332.6344 3.114 0.002 383.7195 1687.622

_cons | -1517.422 5973.718 -0.254 0.799 -13225.69 10190.85

---------+--------------------------------------------------------------------

rep78 |

foreign | 1.301522 .2061204 6.314 0.000 .8975334 1.70551

price | .0000398 .0000327 1.219 0.223 -.0000242 .0001039

_cons | 2.764767 .2318625 11.924 0.000 2.310325 3.219209

------------------------------------------------------------------------------

we can display summary statistics of the estimation sample as

(Example continued on next page)
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. estsumm, eq

Estimation sample sureg Number of obs = 69

Variable | Mean Std. Dev. Min Max Label

---------+---------------------------------------------------------------------

depvar |

price | 6146.043 2912.44 3291 15906 Price

rep78 | 3.405797 .9899323 1 5 Repair Record 1978

---------+---------------------------------------------------------------------

price |

length | 188.2899 22.7474 142 233 Length (in.)

trunk | 13.92754 4.343077 5 23 trunk space (cu.ft.)

mpg | 21.28986 5.866408 12 41 Mileage (mpg)

rep78 | 3.405797 .9899323 1 5 Repair Record 1978

foreign | .3043478 .4635016 0 1 Car type

---------+---------------------------------------------------------------------

rep78 |

price | 6146.043 2912.44 3291 15906 Price

Remark

The command estsumm belongs to the library ICSLib, a collection of (primarily) Stata commands developed at the ICS, an
interuniversity graduate school of social science theory and methods, located at the sociology departments of the universities
of Groningen, Utrecht, and Nijmegen in the Netherlands. ICSLib is written largely by Jeroen Weesie and the late Albert
Verbeek, with contributions by other researchers in the ICS. A large part of the ICSLib is available for downloading at the URL

http://www.fss.uu.nl/soc/iscore/stata. Consult this site for updates of estsumm and other commands from ICSLib submitted to the
STB over the last couple of years.

sg128 Some programs for growth estimation in fisheries biology

Isaı́as Hazarmabeth Salgado-Ugarte, Juana Martı́nez-Ramı́rez, José Luis Gómez-Márquez, and Bertha Peña-Mendoza.
FES Zaragoza, UNAM Biologı́a, Mexico, isalgado@servidor.unam.mx

Introduction

It has become generally accepted that the purpose of fisheries management is to ensure sustainable production over time
from fish populations (stocks) through regulatory and enhancement actions without forgetting the promotion of economic and
social wellbeing of the fishermen and related industries. To achieve this purpose, management authorities must design, justify
politically, and administer (enforce) a collection of restraints on fishing activity (Hilborn and Walters 1992). These decisions
must rely on biological knowledge of the exploited populations and this activity is synonymous with stock assessment. It is
necessary to consider that once the assessment is complete, the choice among several management options may produce the same
biological yield. Finally, according to Hilborn and Walters (1992), stock assessment should provide estimates about the tradeoff
between average yield and its variability, making the choice of management alternatives on social and economic grounds.

The knowledge of fish age is one important biological characteristic that provides very useful information during the early
development of a commercial fishery. Fish that live a long time normally provide large yields at the beginning of a fishery
because of fishing down of the older age classes (Hilborn and Walters 1992).

The study of growth is the determination of the body size as a function of age. To assess the aquatic fisheries resources
several methods using age composition data have been developed (Sparre and Venema 1992).

In this insert we present programs to perform several procedures designed to estimate the parameters of the von Bertalanffy
growth function. Three of them are linear derivations from the basic growth equation, and the last one uses a nonlinear regression
approach. The programs are applied to data coming from hard parts reading and length frequency analysis described below
carried out by means of the application of kernel density estimation (KDE). The multimodal distributions are analyzed by means
of an updated version of the semigraphical determination of Gaussian components presented in sg23 in STB-18. This contribution
intends to introduce an alternative way to analyze length frequency data (by nonparametric and computing-intensive procedures)
in conjunction with automated versions of the traditional methods to obtain growth expressions from the estimated sizes. The
same computerized algorithms can be applied to ages estimated by fish hard parts reading.

Age estimation by length frequency analysis

When it is possible to measure the size of a large number of individuals sampled from a fish or invertebrate stock, the
distribution of these sizes may be analyzed. Traditionally, the histogram or frequency polygon have been employed for this
purpose, but recently, kernel density estimation has been proposed as being the statistical procedure best suited to analyze
distributions of animal size (Salgado-Ugarte et al. 1993, 1995a, 1995b, 1997). If the reproductive events of the species is of
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a discrete nature, it would be possible to follow the dominant size groups or classes as modes in the size distribution. If the
reproduction occurs at regular time intervals, it may be feasible to approximate ages to the various size groups (King 1995).

With the powerful set of procedures associated to the KDEs such as those to choose the best bandwidth, such as the
practical rules (optimal and oversmoothed), cross-validation (least squares and biased), and the bootstrap test for multimodality,
the number of groups can be estimated. Once a multimodal distribution has been obtained, the individual components in this
mixed distribution can be determined by using for example Bhattacharya’s method. These modes represent groups of fish with
similar ages (cohorts). With the means estimated for each cohort, and assuming or knowing the time period separating them, it
is possible to estimate the parameters of the VBGF.

Age estimation by hard parts reading

To estimate the age of fish from temperate waters it is possible to count year rings formed on hard parts such as scales
and otoliths. The rings are formed due to environmental seasonal fluctuations. In tropical locations, where the seasonal changes
are small, it could be very difficult to find seasonal marks in hard parts (Sparre and Venema 1992). Nevertheless, in these
environmental uniform areas the hard parts show daily increments, in other cases periodic marks are formed by biological events
such as reproduction. The best compromise for stock assessment of tropical species is therefore an analysis of a large number of
length-frequency data combined with a small number of age readings on the basis of periodic marks, daily rings or reproduction
marks (Sparre and Venema 1992, King 1995).

von Bertalanffy growth function parameter estimation

To describe quantitatively the growth of fish, several researchers developed mathematical expressions. In fisheries biology
the main model was proposed by von Bertalanffy (1938). The VBGF has been very useful as it follows closely the observed
growth of most fish species. Since then, several growth models have appeared in the literature, for example, Beverton and Holt
(1957), Ursin (1968), Ricker (1975) Gulland (1983), Pauly (1984), and Pauly and Morgan (1987). The VBGF has become one of
the cornerstones in fishery biology because it is used as a submodel in more complex models describing the dynamics of fish
populations (Sparre and Venema 1992).

The von Bertalanffy mathematical model expresses the length L as a function of the age of the fish t:

Lt = L
1
(1� exp(�K(t� t0)))

The right-hand side of this equation contains the age t and three parameters L
1

, K, and t0. Different species would have a
particular set of parameters. A biological interpretation for the parameters has been provided; L

1
is “the mean length of very old

(strictly speaking infinitely old) fish.” It is also called the “asymptotic length.” K is a “curvature parameter” which determines
how fast the fish approaches its L

1
. A high value for K indicates a short-lived species almost reaching their L

1
in a year or

two. A low K value results in a flat growth curve for species that need many years to approach their L
1

. The third parameter,
t0, sometimes called “the initial condition parameter,” determines the hypothetical point in time when the fish has zero length.
Of course, biologically this has no meaning, because at hatching (when the growth begins) the larva already has a certain length.
This length at hatch may be called L0 when we put t = 0 at the day of birth

L0 = L
1
(1� exp(�Kt0))

However, L0 may not be a realistic estimate of the length at birth because fish larvae would follow a different growth model as
the egg development is affected by different factors during its development. Nevertheless, the larger (exploited) fish usually do
follow the VBGF (Sparre and Venema 1992).

Ford–Walford graph

Using the single sample method, often called the “Petersen method,” a growth curve can be estimated from the relative
position of the modes in a single length-frequency sample. The crucial assumption is that the modes are equal time intervals
apart, typically one year. One of the simplest methods of estimating the parameters of the VBGF for data representing equal time
intervals is by means of a Ford–Walford plot (see Ford 1933, Walford 1946). The derivation of this plot is based on the growth
curve with t0 equal to zero:

Lt = L
1
(1� exp(�Kt)) (1)

Lt = L
1
� L

1
exp(�Kt)

L
1
� Lt = L

1
exp(�Kt) (2)

Subtracting Lt+1 from equation (1) we have

Lt+1 � Lt = L
1
(1� exp(�K(t+ 1)))� L

1
(1� exp(�Kt))

= �L
1
exp(�K(t+ 1)) + L

1
exp(�Kt)

= �L
1
exp(�Kt)(1� exp(�K)) (3)
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Substituting (2) in (3) gives

Lt+1 � Lt = (L
1
� Lt)(1� exp(�K))

= L
1
(1� exp(�K))� Lt + Lt exp(�K)

Lt+1 = L
1
(1� exp(�K)) + Lt exp(�K)

This is a linear equation, and suggests that length at age t, Lt, can be plotted against length at age one year later Lt+1. The
straight line fitting these data will have a slope of b = exp(�K) and an intercept of a = L

1
(1� exp(�K)). In this way it is

possible to estimate K and L
1

as (Gómez-Márquez 1994, King 1995):

K = � log(b); L
1

= a=(1� b)

Gulland plot

This method is a variation of the Ford–Walford plot and was proposed by Chapman (1961) and later by Gulland (1969).
It is based on the use of a constant time interval �t. It can be shown that the VBGF implies that

Lt+�t � Lt = L
1
(1� exp(�K�t))� Lt(1� exp(�K�t))

Thus, since K and L
1

are constants, (1 � exp(�K�t)) will remain constant and the equation becomes a linear function
y = a+ bx, where

a = L
1
(1� exp(�K�t)); b = �(1� exp(�K�t))

The growth parameters are derived from Sparre and Venema (1992):

K = �(1=�t) log(1 + b); L
1

= �a=b = a=(1� exp(�K�t))

Gulland–Holt plot

This procedure, proposed by Gulland and Holt (1959), takes into account that fish increase in length as they grow older,
but their “growth rate” (increment in length per time unit), decreases with age approaching zero in very old fish. Taking the
definition of the growth rate

�L

�t
=

Lt+�t � Lt

�t

and considering that the mathematical relationship between the length of a fish and the growth rate at a given time is a linear
function, we have

�L

�t
= a+ bLt

Using the VBGF we have
�L

�t
= K(L

1
� Lt) (4)

Equation (4) can be rewritten as
�L

�t
= KL

1
�KLt (5)

where Lt = (Lt+�t � Lt)=2. When �t is small, Lt may be a reasonable approximation to the mean length. An advantage
over other methods is that �t does not need to be a constant. Using Lt as the independent variable and �L=�t as the response
variable, equation (5) becomes a linear relationship allowing the estimation of parameters be performed by regression.

�L

�t
= a+ bLt

where K = �b and L
1

= �a=b (Sparre and Venema 1992, Gómez-Márquez 1994).

Beverton-Holt

This method, due to Beverton and Holt (1957), is used to estimate K and t0 for a given L
1

which may come from one
of the above presented methods. From the VBGF we can obtain

L
1
� Lt = L

1
exp(�K(t� t0)); log(L

1
� Lt) = logL

1
�Kt+Kt0
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Rearranging, we finally have
log(L

1
� Lt) = logL

1
+Kt0 �Kt

which is a linear function of t versus log(L
1
� Lt) and the parameters are recovered by (see Gómez-Márquez 1994):

K = �b; a = logL
1

+Kt0

Solving for t0, we have

t0 =
a� logL

1

K

Nonlinear regression

According to Sparre and Venema (1992), a nonlinear least squares regression is a superior method to the procedures
described so far to estimate the parameters of the VBGF from a theoretical and statistical point of view. The computational work
is considerable. The method estimates the growth parameters in such a way that the sum of squares of the deviations between
the model and the observations is minimized, that is, it minimizes the sum with respect to the parameters L

1
, K , and t0.

Syntax

bhataplt freqvar midpoivar
�
if exp

� �
in range

� �
, gen(logdivar) nograph graph options

�

bhatgauc freqvar midpoivar
�
if exp

� �
in range

� �
, gen(gaucovar) nograph graph options

�

fordwal msizevar
�
if exp

� �
in range

� �
, nograph graph options

�

gullplot msizevar
�
if exp

� �
in range

� �
, nograph graph options

�

gullholt msizevar agevar
�
if exp

� �
in range

� �
, nograph graph options

�

bevholt msizevar agevar
�
if exp

� �
in range

�
, linf(#)

�
gen(estsizevar) nograph graph options

�

nl vbgf sizevar agevar
�
weight

� �
if exp

� �
in range

� �
, nl options

�
fweights and aweights are allowed in nl vbgf.

Description

bhataplt calculates from the frequency and midpoint pair values in the freqvar and midpoivar variables, the logarithmic
differences and draws the Bhattacharya plot using the observation numbers as plotting symbols in order to define negatively sloped
lines, each one representing individual Gaussian components in mixed distributions. bhataplt is a new version integrating the
two previous simple programs diflogen (logarithmic differences generator) and bhatplot (Bhattacharya’s plot drawer) which
were presented in sg23 in STB-18.

bhatgauc calculates the parameters (mean and standard deviation) of the dominant Gaussian component in a specified
range. freqvar is the frequency variable, and midpoivar is the midclass interval variable. bhatgauc displays also the graphical
comparison of the observed frequencies and the estimated Gaussian component. This routine is a new version of the previous
simple program bhatmesd in sg23 in STB-18 but includes more versatile options.

fordwal estimates the L
1

and K parameters of the VBGF using mean-at-age data in the variable msizevar according to
the procedure proposed by Ford (1933) and Walford (1946). fordwal draws the lt versus lt+1 graph and provides a table with
the numerical results.

gullplot estimates the L
1

and K parameters of the VBGF using mean-at-age data in msizevar according to the procedure
proposed by Chapman (1961) and later by Gulland (1969). gullplot draws the lt versus lt+1 � lt plot and provides a table
with the numerical results.

gullholt estimates the L
1

and K parameters of the VBGF using mean-size (length) at-age data in msizevar and an age
variable in agevar according to the procedure proposed by Gulland and Holt (1959), draws the linear relationship used for the
estimation, and provides a table with the estimated parameters of the VBGF.

bevholt estimates the K and t0 (for a given L
1

) parameters of the VBGF using mean-size (length) at-age data in msizevar
and an age variable in agevar according to the procedure proposed by Beverton and Holt (1957), draws the log(L

1
� lt) age

graph, and provides a table with the estimated parameters in addition to the estimated VBGF.
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nl vgbf uses Stata’s nl program to fit a VBGF to the dependent variable sizevar which is size or mean size as a function of
the age variable agevar by least squares. The VBGF is in the separate program nlvbgf. As an application of the nl procedure
included in Stata, the nl vbgf program shares all the options for nl.

Options

nograph suppresses displaying the graph.

graph options are any of the options allowed with graph, twoway; see [G] graph options.

gen(logdivar) creates the variable logdivar containing the logarithmic differences of frequencies.

gen(gaucovar) creates the variable gaucovar containing the frequencies of the estimated Gaussian component.

gen(estsizevar) creates the variable estsizevar containing the estimated sizes of the growth function determined.

linf(#) is not optional. The L
1

value can be retrieved from fordwal or gullplot.

nl options are the options in Stata’s nl command.

Case 1. Length frequency analysis

To illustrate the analysis of length frequency, we use the data from catfish length of 641 fish collected in November, 1980
from a coastal lagoon of Mexico reported in Salgado-Ugarte (1985). A brief summary is provided by

. use catfilen

. tab sex, sum(bodlen)

| Summary of bodlen

sex | Mean Std. Dev. Freq.

------------+------------------------------------

1 | 164.9633 34.039173 109

2 | 184.38554 36.332419 83

3 | 75.77951 9.6996377 449

------------+------------------------------------

Total | 105.0078 49.5904 641

The length data were subjected to the Silverman test for multimodality using the programs included in Salgado-Ugarte, et al.
(1997) obtaining the results in Table 1.

Table 1. Critical bandwidths and estimated significance levels for catfish length data, n = 641.

Number of modes Critical bandwidth p-values

1 23.36 0.0000
2 19.43 0.0000
3 9.64 0.1750
4 3.88 0.7330
5 3.23 0.7750
6 3.09 0.6000

Notice that the p-values were obtained from B = 120 bootstrap replications of size 641.

These data clearly have four modes. Because four modes can be obtained from 9.63 to 3.88 we use an intermediate
bandwidth value for the density estimation (9.63 + 3.88)=2 � 6.7:

. warpdenm bodlen, b(6.7) m(10) k(6) gen(den6p7 mid6p7)

To transform the density (den6p7) to frequency values we have

. gen sumden=sum(den6p7)

. gen freq=den6p7*641/sumden[_N]

Then we apply the Bhattacharya method of Gaussian decomposition (Bhattacharya 1967). To achieve this, we employ the
following updated versions of the programs included in Salgado-Ugarte et al. (1994). The program bhataplt calculates from
frequency and midpoint pair values, the logarithmic differences and draws the Bhattacharya plot using the observations numbers
as plotting symbols in order to define negatively sloped lines, each one representing individual gaussian components in mixed
distributions.
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It requires frequency and midpoint variables being possible to generate the logarithmic differences variable if desired. We
can adjust a Gaussian distribution to the observed frequencies employing bhatgauc.

This program calculates the parameters (mean and standard deviation) of the dominant Gaussian component in a specified
range. For the first component we used we have

. bhatgauc freq mid in 13/22

R-squared = 0.9945 Adj R-squared = 0.9939

Mean = 75.6083

s.d. = 11.9029

component size = 441

The results are summarized in Table 2 and displayed graphically in Figure 1.

Table 2. Estimated Gaussian components with parameters.

Component Mean SD Size

1 75.6083 11.9029 441
2 137.5868 9.7123 75
3 174.8262 11.9622 42
4 215.9292 11.8713 66
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Figure 1. Observed smoothed frequency (from KDE) and estimated Gaussian components for catfish data.

The mean values are used to estimate the VBGF by preparing a file with the mean values only.

. input mblen

mblen

1. 75.6083

2. 137.5868

3. 174.8262

4. 215.9292

5. end

We can construct the Ford–Walford plot via fordwal which estimates the L
1

and K parameters of the VBGF using mean-at-age
data according to the procedure proposed by Ford (1933) and Walford (1946), draws the lt versus lt+1 graph (Figure 2), and
provides a table with the numerical results.

. fordwal m

Estimation of L_inf and K values by the Ford-Walford Method

------------------------------------------------------------

Intercept = 76.4705 Slope = 0.7704

R-squared = 0.9709 Adj R-squared = 0.9418

L_inf. = 333.0560 K = 0.2608

------------------------------------------------------------
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Ford-Walford graph,  L_inf = 333.0560,  K = 0.2608
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Figure 2. Ford–Walford plot for the mean values estimated by the Bhattacharya method for catfish data.

The same estimation for L
1

can be obtained with the Gulland plot given by gullpolt. This program estimates the L
1

and K parameters of the VBGF using mean-at-age data according to the procedure proposed by Chapman (1961) and later by
Gulland (1969), draws the lt versus lt+1 � lt graph (Figure 3) and provides a table with the numerical results.

. gullplot mblen

Estimation of L_inf and K values by the Gulland Method

------------------------------------------------------------

Intercept = 76.4705 Slope = -0.2296

R-squared = 0.7477 Adj R-squared = 0.4953

L_inf. = 333.0560 K = 0.2608

------------------------------------------------------------

Gulland graph,  L_inf = 333.0560,  K = 0.2608
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Figure 3. Gulland plot for the mean values estimated by the Bhattacharya method for catfish data.

Each mode represents a group of fish with similar age (cohorts). Assuming yearly cohorts and an initial age of one, we
can generate an age variable by typing gen age = n. With this “age” variable we can employ the Gulland–Holt method for
VBGF parameter estimation via the gullholt program. This program estimates the L

1
and K parameters of the VBGF using

mean size (length) at age data according to the procedure proposed by Gulland and Holt (1959). It draws the linear relationship
used for the estimation (Figure 4) and provides a table with the estimated L

1
and K parameters of the von Bertalanffy growth

function. Applied to the catfish data we have

. gullholt mblen age

Estimation of L_inf and K values by the Gulland-Holt Method

------------------------------------------------------------

Intercept = 84.4403 Slope = -0.2466

R-squared = 0.6798 Adj R-squared = 0.3596

L_inf. = 342.3808 K = 0.2466

------------------------------------------------------------
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Gulland-Holt graph,  L_inf = 342.3808,  K = 0.2466
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Figure 4. Gulland–Holt plot for VBGF parameter estimation for catfish data.

With the estimation of L
1

and assuming an annual age we can get the estimation for t0 with the Beverton and Holt method
given in the bevholt program. bevholt estimates K and t0 for a given L

1
using mean size (length) at age data according

to the procedure proposed by Beverton and Holt (1957). It draws the log(L
1
� Lt) versus age graph (Figure 5) and provides

a table with the estimated K and t0 parameters in addition to the estimated VBGF. Figure 6 shows the adjusted curve with the
observed points as well as an indication of the asymptotic length.

. bevholt mblen age, linf(333.06) gen(mblest)

Estimation of K and t_0 values by the Beverton-Holt Method

------------------------------------------------------------

Intercept = 5.8069 Slope = -0.2574

R-squared = 0.9960 Adj R-squared = 0.9940

K = 0.2574 t_0 = -0.0055

------------------------------------------------------------

Estimated von Bertalanffy Growth Function

------------------------------------------------------------

l_t = 333.0600 * (1 - exp( -0.2574 *(t + 0.0055 )))

------------------------------------------------------------

Beverton-Holt graph,  K = 0.2574,  t_0 = -0.0055
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Figure 5. Beverton–Holt plot for estimating the K and t0 parameters of the VBGF for the catfish data.

(Figure 6 on next page)
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age

 mblen  mblest
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75.6083

333.06

Figure 6. Observed mean-at-age points and estimated VBGF curve for the catfish data.

We can employ a nonlinear regression approach by using nlvbgf.ado, which uses Stata’s nl program to fit a VBGF to the
dependent variable which is size (individual or mean value) versus age by least squares. The VBGF is in the separate program
nlvbgf which sets the objective function and the parameters. The initial values in nlvbgf are 500, 1, and 0.01 for L

1
, K ,

and t0, respectively. As an application of the nl procedure included in Stata, the nl vbgf program shares all the options for nl.

. nl vbgf mblen age

(output omitted )
Source | SS df MS Number of obs = 4

---------+------------------------------ F( 3, 1) = 998.30

Model | 101802.373 3 33934.1242 Prob > F = 0.0233

Residual | 33.9918952 1 33.9918952 R-squared = 0.9997

---------+------------------------------ Adj R-squared = 0.9987

Total | 101836.365 4 25459.0911 Root MSE = 5.830257

Res. dev. = 19.91082

von Bertalanffy growth function, mblen=b0*(1-exp(-b1*(age-b2)))

------------------------------------------------------------------------------

mblen | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

b0 | 342.2139 100.7661 3.396 0.182 -938.1413 1622.569

b1 | .2435344 .1303093 1.869 0.313 -1.412203 1.899272

b2 | -.0406671 .272883 -0.149 0.906 -3.507975 3.42664

------------------------------------------------------------------------------

(SE's, P values, CI's, and correlations are asymptotic approximations)

As we can see, the estimated parameters are almost identical, but the nonlinear approach gives additional information such as
confidence intervals and t-values for the parameters and their probabilities.

Case 2. Length at age data from hard part reading

To illustrate the application of these programs to estimated age data we use the Japanese sea bass “suzuki” (Lateolabrax
japonicus) data from Salgado-Ugarte (1995). From these we present the results of estimated age from scale reading during the
spring months (beginning of the growth season).

Table 3. Number of individuals by sampling date and estimated age.

Sample number

Age 6 7 8 9 Total (mean)

0 14 3 0 0 17 (168.18)
1 4 4 2 1 11 (257.10)
2 0 5 2 7 14 (361.29)
3 0 2 0 2 4 (462.00)

11 0 0 1 0 1 (760.00)

Total 18 14 5 10 47
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Notice that the mean body length by age is included in the totals column, and that samples numbers correspond to the following
dates (1994): 6 = 19/02; 7 = 16/03; 8 = 14/04; 9 = 13/05.

This time, having age data we try the nonlinear approach first:

. drop _all

. input mlen age

mlen age

1. 168.18 0

2. 257.1 1

3. 361.29 2

4. 462 3

5. 760 11

6. end

. save suzmada

. nl vbgf mlen age

(output omitted )
Source | SS df MS Number of obs = 5

---------+------------------------------ F( 3, 2) = 1183.25

Model | 1015387.3 3 338462.435 Prob > F = 0.0008

Residual | 572.088616 2 286.044308 R-squared = 0.9994

---------+------------------------------ Adj R-squared = 0.9986

Total | 1015959.39 5 203191.879 Root MSE = 16.91284

Res. dev. = 37.88867

von Bertalanffy growth function, mlen=b0*(1-exp(-b1*(age-b2)))

------------------------------------------------------------------------------

mlen | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

b0 | 862.244 44.04351 19.577 0.003 672.7401 1051.748

b1 | .1766637 .0257078 6.872 0.021 .0660518 .2872756

b2 | -1.150208 .2169301 -5.302 0.034 -2.083583 -.2168328

------------------------------------------------------------------------------

(SE's, P values, CI's, and correlations are asymptotic approximations)

age

 mlen  Fitted values

0 11

158.554

862.2

Figure 7. Nonlinear regression VBGF fit for “suzuki” mean length at age data.

The time interval from the estimated ages is not uniform. Thus we can use the Gulland–Holt method to try an alternative
fit:

. gullholt mlen age

Estimation of L_inf and K values by the Gulland-Holt Method

------------------------------------------------------------

Intercept = 138.0650 Slope = -0.1432

R-squared = 0.6190 Adj R-squared = 0.4285

L_inf. = 964.0516 K = 0.1432

------------------------------------------------------------
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Gulland-Holt graph,  L_inf = 964.0516,  K = 0.1432
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Figure 8. Gulland–Holt plot for “suzuki” mean length at age data.

Using this L
1

value in the Beverton–Holt procedure we arrive at

. bevholt mlen age, l(964) gen(mleghbh)

Estimation of K and t_0 values by the Beverton-Holt Method

------------------------------------------------------------

Intercept = 6.6535 Slope = -0.1229

R-squared = 0.9946 Adj R-squared = 0.9929

K = 0.1229 t_0 = -1.7702

------------------------------------------------------------

Estimated von Bertalanffy Growth Function

------------------------------------------------------------

l_t = 964.0000 * (1 - exp( -0.1229 *(t + 1.7702 )))

------------------------------------------------------------

Beverton-Holt graph,  K = 0.1229,  t_0 = -1.7702
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Figure 9. Beverton–Holt graph to estimate the K and t0 parameters of the VBGF for the suzuki mean length at age data.

(Figure 10 on next page)
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Figure 10. Alternative VBGF fitting to the “suzuki” mean length at age data.

Apparently, the nonlinear regression approach fits closer the observed mean length at age values.

We have found that these programs, though simple, provide a useful set of tools (saving a lot of time and effort) for
fisheries data analysis including classical and modern approaches. The growth expressions determined with the assistance of
these programs and additional biological information may be used as input for more complex simulation algorithms such as those
from Hilborn and Walters (1992) or King (1995). We invite users to try our programs and let us know about any experience
they may have.

Final notes

There are several other computerized procedures to estimate growth from age estimated by length-frequency analysis or hard
part reading. In particular, we can mention those included in the FAO–ICLARM Stock Assessment Tools. Each of the included
programs has the corresponding help file.
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sg129 Generalized linear latent and mixed models
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This insert describes the command gllamm6 which fits generalized linear latent and mixed models (GLLAMM). These models
include a large variety of latent variable models, e.g., multilevel, item-response, ordered latent class, and error-in-covariate
models. We assume that the dataset is hierarchical with level-one units nested within level-two units that are nested within
level-three units, and so on, a typical example being pupils in classes in schools. However, the level-one units may also be
different variables observed on the same unit. Goldstein (1995) represents multivariate responses in this way and the approach
is not unusual if the variables are repeated measures.

The GLLAMM models are defined by the conditional densities of the observed response variables given the latent and
explanatory variables and the hierarchical structure and distribution of the latent variables.

The conditional densities of the responses given the latent and explanatory variables are generalized linear models with
linear predictors given by

� =

LX
l=1

�lxl +

NX
n=2

K(n)
�1X

k=0

u

(n)

k

L
(n)

kX
l=1

�

(n)

lk x

(n)

lk

where xl is the lth explanatory variable associated with the “fixed” effect �l and u(n)k is the kth random effect (or latent variable)

at level n. Each random effect is multiplied by a linear combination of L(n)k explanatory variables x(n)lk with coefficients �(n)lk .

In order for the model to be identified, the coefficient �(n)1k of the first explanatory variable for each random effect is fixed at 1
and the (co)variances of the random effects are freely estimated. The latent variables have zero means.

Here we have omitted subscripts denoting membership of the observations in the clusters or levels of the hierarchy to
simplify the notation required for the general n-level model. For a two-level model, we can use subscripts i and j to index the
level-2 and level-1 units, respectively, giving

�ij =

LX
l=1

�lxlij +

K(2)
�1X

k=0

u

(2)

ki

L
(2)

kX
l=1

�

(2)

lk x

(2)

lkij (1)

The conditional densities of the responses are specified by this linear predictor together with the link and family. Most
of the links and families available for Stata’s glm command are also available for gllamm6. If the level-1 units are different
variables, different links and families may be specified for different “observations”.

The structure of the latent variables is specified by the number of levels N (and the variables defining these levels, e.g.,
pupil, school, and so on) and the number of random effects at each level. Random effects at the same level are assumed to be
correlated with each other whereas random effects at different levels are assumed to be independent.
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The latent variables at a level-n may be assumed to have a multivariate normal distribution. Alternatively, the latent variables
may be assumed to be discrete, having nonzero probability on a finite number of points (of dimensionality equal to the number
of latent variables, K(n), at level n). If the number of points, or masses, is chosen to maximize the likelihood, the nonparametric
maximum likelihood estimator (NPML) can be achieved (Lindsay et al. 1991).

The simplest example of a generalized linear latent and mixed model is a two-level random intercept model given by

�ij =

LX
l=1

�lxlij + ui

where ui is assumed to have a normal distribution with zero mean (we will drop subscripts and superscripts wherever possible).
This model may be fitted using Stata’s xt functions, for example xtreg, xtlogit and xtpois. The program gllamm6 allows
five extensions to this model, (1) multilevel models, (2) random coefficients, (3) discrete random effects, (4) factor loadings, and
(5) mixed responses. These extensions are illustrated by the following models that correspond to the worked examples presented
later. (The examples do not exhaust the list of possible model types.)

Three-level model

Subjects j in families i have measurements on several occasions k. The measurements yijk may be modeled by a generalized
linear mixed model with linear predictor

�ijk = �0 + �1x1ijk + � � �+ u

(2)

ij + u

(3)

i (2)

where the random effects u(2)ij for subject j in family i and u(3)i for family i are assumed to be independently normally distributed.

Random coefficient model

Pupils j in schools i take an exam at two time points. The performance at time 2 may be modeled as a linear regression on
the result at time 1, where both the slopes and intercepts differ between schools. The mean performance at time 2 is therefore
modeled as

�ij = �0 + �1xij + u0i + u1ixij (3)

Here xij is the time 1 result and u1i is the corresponding random coefficient. The two random effects u0 and u1 are assumed
to have a bivariate normal distribution.

Discrete random effects

Instead of assuming a bivariate normal distribution of the random effects in the above example, we may assume a bivariate
discrete distribution, i.e., we assume that the random effects u0, u1 take on a number of discrete values z0r, z1r, with probabilities
�r, r = 1; : : : ; R. This corresponds to assuming that the population falls into a finite number of latent classes or types or can be
approximated in this way. When the maximum number of classes is used, the distribution may be interpreted as a nonparametric
distribution.

Item response model (factor loadings)

Item response models may be used to model the (binary) responses of subjects to a number of exam questions, or items.
The log odds of subject i giving a correct answer to item j may be modeled using a Rasch model as

�ij = �j + ui (4)

where ��j represents the difficulty of question j and ui represents the ability of subject i. This is a simple two-level model
and may be fitted using xtlogit. If we introduce a further parameter �j , we obtain a two parameter Rasch model

�ij = �j + ui�j

where �j represents the extent to which question j discriminates between subjects of different abilities. Here we are modeling
a multivariate dataset by using the second index j for different variables. If the data are in long form with the responses to all
the questions stacked into a single response vector, we can use dummy variables

xlij =

�
1; if l = j

0; otherwise
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to write the model in the form of Equation (1), giving

�ij =
X
l

�lxlij + ui

X
�lxlij (5)

Errors in covariates model (mixed responses)

Consider the problem of modeling how disease status depends on an explanatory variable which is subject to measurement
error. This exposure may have been measured a number of times on a subset of subjects to estimate its reliability. We therefore
have a number of responses per subject, disease status, yi1, and one or more measures of exposure yi2, yi3; : : :

We assume that the exposure measurements yi2 and yi3, etc., are independently normally distributed with means given by

�ij = �ij = 0 + fi; j = 2; 3; : : : (6)

where fi is a latent variable representing the difference between subject ith’s exposure and the mean exposure 0 in the population.
This difference in exposure may depend on a covariate, for example, age, as follows

fi = 1 + �1xi + ui (7)

where ui is another latent variable. We now specify a disease model by assuming that yi1 is binomial with the logit of the
probability �i1 given by

�i1 = logit(�i1) = 2 + 3xi + �fi (8)

This model is shown in the path diagram below (where boxes denote observed variables, circles denote latent variables and
vectors point from explanatory variables to dependent variables):
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Figure 1. Path diagram for an errors in covariates model.

Substituting the model for fi in (7) into the measurement and disease models (6) and (8) gives

�ij = �0 + �1xi + ui; j = 2; 3; : : :

where �0 = 0 + 1, and
�i1 = �2 + �3xi + �ui

where �2 = �1 + 2 and �3 = ��1 + 3.

These two models can be written as a single mixed response model in the form of Equation (1) by using dummy variables
E and D for “observations” corresponding to exposure and disease status, respectively:

�ij = �0Eij + �1Eijxi + �2Dij + �3Dijxi + ui(Eij + �Dij) j = 1; 2; 3 (9)
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Implementation

The program uses ml with method d0 to maximize the likelihood. For a 2-level model, the likelihood is given by

Y
i

Z
f
Y
j

f(yij jxi; ui)gg(ui)dui (10)

where f(yij jxi; ui) is the conditional density of the response variable given the latent and explanatory variables and g(ui) is
the prior density of the latent variables. When the latent variables are discrete, the integral becomes a sum of the form

Y
i

X
r

�r

Y
j

f(yij jxi; ui = zr)

where the locations zr and masses �r are freely estimated. For a single normally distributed latent variable, the same expression
is used to approximate the likelihood, where locations and masses are given by Gaussian quadrature.

If there are K(n)
> 1 correlated (multivariate normal) latent variables, at level n, we express them as a linear combination

of uncorrelated random effects v, u = Lv where L is a lower triangular matrix. The multiple integral is then approximated by
summing over v = zr using K

(n) nested sums. The elements of L are estimated by gllamm6 and the covariance matrix of the
random effects is given by L0L so that L is simply the Cholesky decomposition of the covariance matrix.

In (10), the contribution to the likelihood from the ith level-2 unit is found by integrating the product of the contributions
from the level-1 units inside the level-2 unit over the level-2 random effects distribution. In a three-level model, the contribution
from a 3-level unit is found by integrating the product of contributions from the level-2 units inside the level-3 unit over the
level-3 random effects distribution. The likelihood for an n-level model is therefore computed using a recursive algorithm.

The parameters are transformed to ensure that they lie within their permitted ranges. For the normal (or gamma) density,
the log of the standard deviation (or coefficient of variation) at level 1 is estimated to ensure a positive estimate on the natural
scale. When quadrature is used, the Cholesky decomposition of the covariance matrix of the random effects at each level is
estimated to ensure a positive definite covariance matrix. When there are no correlations, this corresponds to estimating the
standard deviations directly. The sign of these estimates is arbitrary. When R discrete mass-points are specified for the random
effects at a level, R� 1 log odds are estimated to give the R probabilities and R� 1 locations are estimated directly for each
random effect. The last location is determined by constraining the mean of the discrete distribution to zero. The variance of
the random effects distribution is not estimated directly but follows from the locations and masses. Approximate standard errors
for the back-transformed estimates are obtained using the delta method (except for the variance of the discrete random effects
distributions).

Syntax

gllamm6

�
varlist

� �
if exp

� �
in range

�
, i(varlist)

�
nrf(#,: : :,#) eqs(eqnames) nocorrel

noconstant offset(varname) weight(varname) family(families) fv(varname) denom(varname)

link(links) lv(varname) s(eqname) ip(str) nip(#,: : :,#) from(matrix) lf0(# #) gateaux(###)

search(#) maximize options nodifficult level(#) eform allc trace nolog noest

�
The data must be in long form with all responses stacked into a single variable.

Options

i(varlist) gives the variables that define the hierarchical, nested clusters, from the lowest level (finest clusters) to the highest
level, e.g., i(pupil class school).

nrf(#,: : :,#) specifies the number of random effects for each level, i.e., for each variable in i(varlist). The default is
nrf(1,: : :,1).

eqs(eqnames) specifies the equation names (defined before running gllamm6, see help eq) for the linear predictors multiplying
the latent variables. If required, constants should be explicitly included in the equation definitions using variables equal to
1. If the option is not used, the latent variables are assumed to be random intercepts and only one random effect is allowed
per level. The first lambda coefficient is set to one. The other coefficients are estimated together with the (co)variance(s)
of the random effect(s).

nocorrel may be used to constrain all correlations to zero if there are several random effects at any of the levels and if these
are modeled as multivariate normal.
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noconstant omits the constant term from the fixed effects equation.

offset(varname) specifies a variable to be added to the linear predictor without estimating a corresponding regression coefficient
(e.g., log exposure for Poisson regression).

weight(wt) specifies that variables wt1, wt2, and so on, contain frequency weights. The suffixes determine at what level each
weight applies. For example, if the level-1 units are subjects, the level-2 units are families, and the result is binary, we can
collapse dataset A into dataset B as follows:

A B

family subject result family subject result wt1 wt2

1 1 0 1 1 0 2 1

1 2 0 2 3 1 1 2

2 3 1 2 4 0 1 2

2 4 0

3 5 1

3 6 0

The level-1 weight, wt1, indicates that subject 1 in dataset B represents two subjects within family 1 in dataset A, whereas
subjects 3 and 4 in dataset B represent single subjects within family 2 in dataset A. The level 2 weight wt2 indicates that family
1 in dataset B represents one family and family 2 represents two families, i.e., all the data for family 2 are replicated once.
Collapsing the data in this way can make gllamm6 run considerably faster.

family(families) specifies the families to be used for the conditional densities. The default is family(gaussian). Also
available are binomial, poisson and gamma. Several families may be given, in which case the variable allocating families
to observations must be given using fv(varname).

fv(varname) is required if mixed responses requiring more than a single family of conditional distributions are analyzed. The
variable indicates which family applies to which observation. A value of one refers to the first family, and so on.

denom(varname) gives the variable containing the binomial denominator for the responses whose family is specified as binomial.
The default denominator is 1.

link(links) specifies the links to be used for the conditional densities (identity, logit, probit, log, reciprocal). If
a single family is specified, the default link is the canonical link. Several links may be given in which case the variable
allocating links to observations must be given using lv(varname). Numerically feasible choices of link depend upon the
distributions of the covariates and the choice of conditional error and random effects distributions.

lv(varname) is the variable whose values indicate which link applies to which observation.

s(eqname) specifies that the log of the standard deviation (or of the coefficient of variation) at level 1 for normally (or gamma)
distributed responses should be given by the linear predictor defined by eqname. This is necessary if the level-1 variance is
heteroscedastic. For example, if dummy variables for groups are used, different variances are estimated for different groups.

ip(string) if string is ‘g’, Gaussian quadrature points are used and if string is ‘f’, the mass-points are freely estimated. The
default is Gaussian quadrature.

nip(#,: : :,#) specifies the number of integration points or masses to be used for each integral or summation. When quadrature is
used, a value may be given for each random effect. When freely estimated masses are used, a value may be given for each
level of the model. If only one argument is given, the same number of integration points will be used for each summation.

from(matrix) specifies the matrix to be used for the initial values. Note that the column names and equation names have to be
correct (see help matrix). The matrix may be obtained from a previous estimation command using e(b). This is useful
if another explanatory variable needs to be added or the number of masses needs to be increased.

lf0(# #) gives the number of parameters and the log-likelihood for a likelihood ratio test to compare the model to be estimated
with a simpler model. A likelihood ratio chi-squared test is only performed if the lf0() option is used.

gateaux(# # #) may be used with method ip(f) to increase the number of mass points by one from a previous solution with
parameter estimates specified using from(matrix) and number of parameters and log likelihood specified by lf0(# #).
The program searches for the location of the new mass-point by placing a very small mass at the location given by the first
argument and moving it to the second argument in the number of steps specified by the third argument. (If there are several
random effects, this search is done in each dimension resulting in a regular grid of search points.) If the maximum increase
in likelihood is greater than 0, the location corresponding to this maximum is used as the initial value of the new location,
otherwise the program stops. When this happens, it can be shown that for certain models the current solution represents
the nonparametric maximum likelihood estimate.
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search(#) causes the program to search for initial values for the random effects at level 2 (in range 0 to 3). The argument
specifies the number of random searches. This option may only be used with ip(g) and when from(matrix) is not used.

maximize options control the maximization process; see [R] maximize. One useful option is iterate(#) since by default the
program does not limit the number of iterations. The skip option can be used if the matrix of initial parameter estimates
specified in from(matrix) has extra parameters.

nodifficult causes ml not to use the difficult option, see [R] maximize.

level(#) specifies the confidence level in percent for confidence intervals of the coefficients.

eform causes the exponentiated coefficients and confidence intervals to be displayed.

allc causes all estimated parameters to be displayed in a regression table (including the raw random effects parameters) in
addition to the usual output.

trace is one of the maximize options, see [R] maximize. In addition to displaying the details of the maximum likelihood
iterations, it displays details of the model being fitted.

nolog suppresses output for maximum likelihood iterations.

noest is used to prevent the program from carrying out the estimation. This may be used with the trace option to check that
the model is correct and get the information needed to set up a matrix of initial values. Global macros are available that
are normally deleted. Particularly useful may be M initf and M initr, matrices for the parameters (fixed part and random
part, respectively).

Example 1: Three-level model

Three groups of subjects, some of whom were related to each other, completed a neuropsychological test with three levels
of difficulty, resulting in 3 binary responses per subject (Rabe-Hesketh et al. 1999). These responses are stacked into a variable
called dtlm. The variables id, famnum and group are the subject, family, and group identifiers respectively and level codes
the levels of difficulty. A listing of these variables for observations 19 to 27 is given below.

. list id famnum group level dtlm in 19/27

id famnum group level dtlm

19. 7 6 1 0 0

20. 7 6 1 1 0

21. 7 6 1 -1 1

22. 8 15 1 0 0

23. 8 15 1 1 0

24. 8 15 1 -1 1

25. 9 10 1 -1 0

26. 9 10 1 0 0

27. 9 10 1 1 0

A two-level model with a random effect for subjects could be fitted using xtlogit with the following syntax:

xi: xtlogit dtlm i.group level, i(id) quad(20)

The syntax for the same model using gllamm6 is

xi: gllamm6 dtlm i.group level, i(id) fam(binom) link(logit) nip(20)

Introducing a random effect for families gives a three-level logistic regression model as in Equation (2) that may be fitted as
follows:

. xi: gllamm6 dtlm i.group level, i(id famnum) fam(binom) link(logit) nip(8)

gllamm model

log likelihood = -305.11873

------------------------------------------------------------------------------

dtlm | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

Igroup_2 | -.249 .3544871 -0.702 0.482 -.943782 .445782

Igroup_3 | -1.052334 .3999883 -2.631 0.009 -1.836297 -.2683717

level | -1.648503 .1932191 -8.532 0.000 -2.027206 -1.269801

_cons | -1.485952 .2848916 -5.216 0.000 -2.044329 -.9275745

------------------------------------------------------------------------------



Stata Technical Bulletin 53

Variances and covariances of random effects

-----------------------------------------------------------------------------

***level 2 (id)

var(1): 1.1345171 (.68948028)

***level 3 (famnum)

var(1): .57347062 (.53124401)

-----------------------------------------------------------------------------

The variance at level 2 is estimated as 1.134 with a standard error of 0.689, and the variance at level 3 is estimated as 0.573
with a standard error of 0.531. The output only shows the final results of the estimation. Since gllamm6 can take a while and
we would like to make sure it’s doing what we intend, we usually use the trace option which gives output on how the model is
parameterized, as well as a full iteration log. To check if 8 points were sufficient, we can use matrix a=e(b) followed by the
command above with the options nip(20) and from(a). Some of the parameter estimates change in the third decimal place.
Increasing the number of quadrature points by another 10 gives negligible changes. Issuing the command gllamm6, eform

gives the same output as above but with exponentiated parameters and confidence intervals in the fixed-effects table.

Example 2: Random coefficient model

We will now analyze the Junior School Project data from the MLN manual (1995). Math results are available on pupils from
different schools in the third and fifth years. We will fit a linear regression model of the year-5 results, math5, on the (mean
centered) year-3 results, math3, with a random intercept and a random coefficient of math3 for schools (see Equation (3)). A
listing of the variables for observations 87 to 95 is shown below.

. list school pupil math5 math3 wt1 in 87/95

school pupil math5 math3 wt1

87. 5 21 28 3.6 1

88. 5 22 30 -3.4 1

89. 5 23 25 -3.4 1

90. 5 24 37 6.6 2

91. 5 25 36 1.6 1

92. 6 1 28 -5.4 1

93. 6 2 26 4.6 1

94. 6 3 30 -6.4 1

95. 6 4 37 5.6 1

The weight variable wt1 is 1 for most pupils because there were only a few instances of two pupils in the same school having
the same result for math3 and math5.

Initially, we will assume zero correlation between the random slope and intercept by using the nocor option.

. gen cons = 1

. eq sch_c: cons

. eq sch_m3: math3

. gllamm6 math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nocor nip(8) w(wt)

gllamm model

log likelihood = -2763.3492

------------------------------------------------------------------------------

math5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

math3 | .6137155 .0443395 13.841 0.000 .5268117 .7006192

_cons | 30.68167 .2952554 103.916 0.000 30.10298 31.26036

------------------------------------------------------------------------------

Variance at level 1

-----------------------------------------------------------------------------

26.935556 (1.357001)

Variances and covariances of random effects

-----------------------------------------------------------------------------

***level 2 (school)

var(1): 4.0987663 (.99349649)

cov(1,2): fixed at 0

var(2): .03747035 (.01981001)

-----------------------------------------------------------------------------
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The equations sch c and sch m3 specify that, in the linear predictor, the first random effect is multiplied by the constant 1 and
the second random effect is multiplied by math3, so that the random effects represent a random intercept and a random slope,
respectively. The within-school (residual) variance is estimated as 26.94 with a standard error of 1.36, the random intercept
variance is estimated as 4.10 with a standard error of 0.99, and the random slope variance is estimated as 0.037 with a standard
error of 0.020.

We can now use these estimates as initial estimates for a model that allows the random intercept and slope to be correlated:

. matrix a=e(b)

. gllamm6 math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(8) w(wt) from(a)

gllamm model

log likelihood = -2757.0046

------------------------------------------------------------------------------

math5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

math3 | .6073703 .0424769 14.299 0.000 .5241172 .6906234

_cons | 30.65957 .3311764 92.578 0.000 30.01047 31.30866

------------------------------------------------------------------------------

Variance at level 1

-----------------------------------------------------------------------------

26.934402 (1.3527458)

Variances and covariances of random effects

-----------------------------------------------------------------------------

***level 2 (school)

var(1): 4.146341 (.95033595)

cov(1,2): -.31583363 (.09461675) cor(1,2): -.86904153

var(2): .03185449 (.01655591)

-----------------------------------------------------------------------------

The intercept and slope are highly negatively correlated (correlation is �0.869). Here the Cholesky decomposition of the
covariance matrix, L, was estimated and the covariance matrix and corresponding standard errors were computed from L and
its standard errors. To view the “raw” parameters, use the command gllamm6, allc.

Example 3: Discrete random effects

We will use the data from Example 2 and fit a random coefficient model with discrete random effects in two dimensions
(intercept, slope) using the ip(f) option.

. eq sch_c: cons

. eq sch_m3: math3

. gllamm6 math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(3) w(wt) ip(f)

gllamm model

log likelihood = -2753.4705

------------------------------------------------------------------------------

math5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

math3 | .6071688 .040136 15.128 0.000 .5285037 .6858338

_cons | 30.62458 .3660507 83.662 0.000 29.90714 31.34203

------------------------------------------------------------------------------

Variance at level 1

-----------------------------------------------------------------------------

27.002647 (1.3044172)

Probabilities and locations of random effects

-----------------------------------------------------------------------------

***level 2 (school)

prob: 0.539, 0.1851, 0.2759

loc1: -.32601, -3.4409, 2.9461

var(1): 4.643575

cov(1,2): -.3318127

loc2: .07632, .16678, -.26104

var(2): .02708799

-----------------------------------------------------------------------------
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The coordinates of the three points have intercepts and slopes of (�0.326, 0.076),(�3.441, 0.167), and (2.946, �0.261), with
probabilities of 0.539, 0.185, and 0.276, respectively.

We can use the Gateaux-derivative method to check if introduction of a further mass point yields a larger maximized
likelihood. We need to move a small mass through a fine 2D grid of values of the random effects and check whether this
increases the likelihood anywhere. We can do this using the gateaux() option to specify the limits and number of steps for the
search in each dimension. In addition, we have to pass the current likelihood to gllamm6 using the lf0() option. After finding
the maximum Gateaux derivative point, the estimation of the extended model automatically starts.

. matrix a=e(b)

. local ll=e(ll)

. local k=e(k)

. gllamm6 math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(4) w(wt) ip(f)

> from(a) gateaux(-10 10 30) lf0(`k' `ll')

Gateaux derivative

maximum gateaux derivative is .54030611

gllamm model Number of obs = 887

LR chi2(3) = 4.62

Log likelihood = -2751.1611 Prob > chi2 = 0.2019

------------------------------------------------------------------------------

math5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

math3 | .6169166 .0457258 13.492 0.000 .5272957 .7065375

_cons | 30.65183 .3611123 84.882 0.000 29.94406 31.3596

------------------------------------------------------------------------------

Variance at level 1

-----------------------------------------------------------------------------

26.644576 (1.2922189)

Probabilities and locations of random effects

-----------------------------------------------------------------------------

***level 2 (school)

prob: 0.5334, 0.1597, 0.0316, 0.2753

loc1: -.34238, -3.3806, -2.6291, 2.9257

var(1): 4.4623696

cov(1,2): -.3474582

loc2: .06313, .08057, .88985, -.27123

var(2): .04845184

-----------------------------------------------------------------------------

A very small mass of 0.032 has been placed at (�2.629, 0.889) without affecting the other masses substantially.

Example 4: Item-response models

Data from five multiple choice questions of Section 6 of the Law School Admission Test (LSAT, Bock and Lieberman
1970) with the binary responses being correct/incorrect, will be used to illustrate how item-response models may be fitted using
gllamm6. The responses are stacked into the variable resp and the variables i1 to i5 are indicators for the five items. Here
we list some of these variables for observations 1 to 10.

. list id resp wt2 i1 i2 i3 in 1/10

id resp wt2 i1 i2 i3

1. 1 0 3 1 0 0

2. 1 0 3 0 1 0

3. 1 0 3 0 0 1

4. 1 0 3 0 0 0

5. 1 0 3 0 0 0

6. 2 0 6 1 0 0

7. 2 0 6 0 1 0

8. 2 0 6 0 0 1

9. 2 0 6 0 0 0

10. 2 1 6 0 0 0
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The variable wt2 is a level-2 weight and gives the number of subjects with the same response pattern across the five items. A
simple Rasch (or one parameter logistic) model (see Equation (4)) may be fitted using

. gllamm6 resp i1 i2 i3 i4 i5, nocons link(logit) fam(bin) i(id) nip(10) w(wt)

gllamm model

log likelihood = -2466.9376

------------------------------------------------------------------------------

resp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

i1 | 2.730013 .130441 20.929 0.000 2.474353 2.985673

i2 | .9986051 .0791772 12.612 0.000 .8434207 1.15379

i3 | .2398536 .0717746 3.342 0.001 .0991779 .3805292

i4 | 1.30645 .084638 15.436 0.000 1.140563 1.472338

i5 | 2.099404 .1054449 19.910 0.000 1.892736 2.306072

------------------------------------------------------------------------------

Variances and covariances of random effects

-----------------------------------------------------------------------------

***level 2 (id)

var(1): .57022544 (.10486119)

-----------------------------------------------------------------------------

(Note that the same model may be fitted using xtlogit resp i1-i5, nocons i(id) quad(10) if the data are not in “collapsed”
form.)

A two-parameter item-response model (see Equation (5)) may be fitted as follows:

. eq id: i1 i2 i3 i4 i5

. gllamm6 resp i1 i2 i3 i4 i5, nocons link(logit) fam(bin) i(id)/*

> */ eqs(id) nip(10) w(wt) lf0(6 -2466.9376252)

gllamm model Number of obs = 5000

LR chi2(4) = 0.57

Log likelihood = -2466.6534 Prob > chi2 = 0.9665

------------------------------------------------------------------------------

resp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

i1 | 2.773177 .2056814 13.483 0.000 2.370049 3.176305

i2 | .9902013 .0900178 11.000 0.000 .8137696 1.166633

i3 | .2491494 .0762736 3.267 0.001 .0996559 .3986429

i4 | 1.284759 .0990366 12.973 0.000 1.090651 1.478868

i5 | 2.053274 .1353578 15.169 0.000 1.787978 2.31857

------------------------------------------------------------------------------

Variances and covariances of random effects

-----------------------------------------------------------------------------

***level 2 (id)

var(1): .68158076 (.42601869)

loadings for random effect 1

i2: .87541533 (.36267279)

i3: 1.0790901 (.43509454)

i4: .83378413 (.36723665)

i5: .79561351 (.3805886)

-----------------------------------------------------------------------------

Using the lf0() option caused the likelihood ratio test to be shown. The two-parameter model does not fit the data significantly
better than the one-parameter model. The loading of item 1 was constrained to 1 and the variance of the random effect was
estimated freely. To obtain the parameters of the model where the standard deviation is constrained to 1 instead, we can interpret
the standard deviation

p
:68158076 as the first loading and multiply all other loadings by this value.

Example 5: Errors in covariate model

An epidemiological dataset with variables on diet and coronary heart disease (CHD) (Morris et al. 1977) will be used to
illustrate how the program may be used for logistic regression with errors in covariates. The aim is to estimate the relationship
between fiber intake and risk of CHD where fiber is subject to measurement error and has been measured twice on a subset
of subjects. The variable resp contains the responses for CHD and fiber and the variables diet and chd indicate whether the
observation in resp is fiber or whether it is CHD status, respectively. The variable var is 1 for diet measurements and 2 for CHD

measurements. A variable age, centered around 50, was multiplied by chd and diet to obtain agec and aged, respectively.
Some of the variables are listed below for observations 425 to 437.
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. list id resp diet var agec aged in 425/437, nolab

id resp diet var agec aged

425. 217 21.32756 1 1 0 -3.43

426. 217 0 0 2 -3.43 0

427. 218 23.10387 1 1 0 -7.21

428. 218 0 0 2 -7.21 0

429. 219 15.64263 1 1 0 -8.13

430. 219 0 0 2 -8.13 0

431. 219 14.87973 1 1 0 -8.13

432. 220 13.46374 1 1 0 -1.13

433. 220 0 0 2 -1.13 0

434. 220 14.73168 1 1 0 -1.13

435. 221 15.95863 1 1 0 3.67

436. 221 0 0 2 3.67 0

437. 221 17.28778 1 1 0 3.67

The model is given in Equation (9) where the dummy variables E and D are represented by diet (exposure) and chd (disease)
and Ex and Dx by aged and agec, respectively. The model is similar to the two-parameter Rasch model in that we have a
factor loading �. The coefficient of diet (Eij) in the linear term (Eij + �Dij) multiplying the latent variable is 1 and we
therefore specify diet first in the equation for the latent variable (the first lambda is always constrained to 1).

. eq id: diet chd

. gllamm6 resp diet t2 chd agec aged, nocons i(id) eqs(id) link(ident logit) /*

> */ fam(gauss binom) lv(var) fv(var) nip(20)

gllamm model

log likelihood = -1379.1556

------------------------------------------------------------------------------

resp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

diet | 17.21291 .3073353 56.007 0.000 16.61054 17.81528

chd | -1.97982 .1894402 -10.451 0.000 -2.351116 -1.608524

agec | .0250153 .0236923 1.056 0.291 -.0214207 .0714512

aged | -.102406 .0444538 -2.304 0.021 -.1895339 -.0152781

------------------------------------------------------------------------------

Variance at level 1

-----------------------------------------------------------------------------

7.1729268 (1.1464247)

Variances and covariances of random effects

-----------------------------------------------------------------------------

***level 2 (id)

var(1): 24.504317 (2.6165604)

loadings for random effect 1

chd: -.12655812 (.04962148)

-----------------------------------------------------------------------------

After adjusting for age, the measurement error variance is 7.17 and the variance of latent exposure is 24.50, giving a reliability
of 0.77. The odds ratio of CHD for unit increase in true fiber intake is given by

. disp exp(-.12655812)

.88112294

A semiparametric mixture model may also be fitted to this dataset using gllamm6 (see Rabe-Hesketh and Pickles, 1999).
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: IEM
Systems Consultants Address: P.O. Box 2222

Address: P.O. Box 1169 PRIMROSE 1416
17100 NAZERATH-ELLIT South Africa
Israel

Phone: +972 (0)6 6100101 Phone: +27-11-8286169
Fax: +972 (0)6 6554254 Fax: +27-11-8221377

Email: assc@netvision.net.il Email: iem@hot.co.za
Countries served: Israel Countries served: South Africa, Botswana,

Lesotho, Namibia, Mozambique,
Swaziland, Zimbabwe

Company: Axon Technology Company Ltd Company: MercoStat Consultores
Address: 9F, No. 259, Sec. 2 Address: 9 de junio 1389

Ho-Ping East Road CP 11400 MONTEVIDEO
TAIPEI 106 Uruguay
Taiwan

Phone: +886-(0)2-27045535 Phone: 598-2-613-7905
Fax: +886-(0)2-27541785 Fax: Same

Email: hank@axon.axon.com.tw Email: mercost@adinet.com.uy
Countries served: Taiwan Countries served: Uruguay, Argentina, Brazil,

Paraguay

Company: Chips Electronics Company: Metrika Consulting
Address: Lokasari Plaza 1st Floor Room 82 Address: Mosstorpsvagen 48

Jalan Mangga Besar Raya No. 82 183 30 Taby STOCKHOLM
JAKARTA Sweden
Indonesia

Phone: 62 - 21 - 600 66 47 Phone: +46-708-163128
Fax: 62 - 21 - 600 66 47 Fax: +46-8-7924747

Email: puyuh23@indo.net.id Email: sales@metrika.se
Countries served: Indonesia URL: http://www.metrika.se

Countries served: Sweden, Baltic States,
Denmark, Finland, Iceland,
Norway

Company: Dittrich & Partner Consulting Company: Ritme Informatique
Address: Kieler Strasse 17 Address: 34, boulevard Haussmann

5. floor 75009 Paris
D-42697 Solingen France
Germany

Phone: +49 2 12 / 26 066 - 0 Phone: +33 (0)1 42 46 00 42
Fax: +49 2 12 / 26 066 - 66 +33 (0)1 42 46 00 33

Email: sales@dpc.de Email: info@ritme.com
URL: http://www.dpc.de URL: http://www.ritme.com

Countries served: Germany, Austria, Italy Countries served: France, Belgium,
Luxembourg

(List continued on next page)
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International Stata Distributors

(Continued from previous page)

Company: Scientific Solutions S.A. Company: Timberlake Consulting S.L.
Address: Avenue du Général Guisan, 5 Address: Calle Mendez Nunez, 1, 3

CH-1009 Pully/Lausanne 41011 Sevilla
Switzerland Spain

Phone: 41 (0)21 711 15 20 Phone: +34 (9) 5 422 0648
Fax: 41 (0)21 711 15 21 Fax: +34 (9) 5 422 0648

Email: info@scientific-solutions.ch Email: timberlake@zoom.es
Countries served: Switzerland Countries served: Spain

Company: Smit Consult Company: Timberlake Consultores, Lda.
Address: Doormanstraat 19 Address: Praceta Raúl Brandao, n�1, 1�E

5151 GM Drunen 2720 ALFRAGIDE
Netherlands Portugal

Phone: +31 416-378 125 Phone: +351 (0)1 471 73 47
Fax: +31 416-378 385 Fax: +351 (0)1 471 73 47

Email: info@smitconsult.nl Email: timberlake.co@mail.telepac.pt
URL: http://www.smitconsult.nl

Countries served: Netherlands Countries served: Portugal

Company: Survey Design & Analysis Company: Unidost A.S.
Services P/L Rihtim Cad. Polat Han D:38

Address: 249 Eramosa Road West Kadikoy
Moorooduc VIC 3933 81320 ISTANBUL
Australia Turkey

Phone: +61 (0)3 5978 8329 Phone: +90 (216) 414 19 58
Fax: +61 (0)3 5978 8623 Fax: +30 (216) 336 89 23

Email: sales@survey-design.com.au Email: info@unidost.com
URL: http://survey-design.com.au URL: http://abone.turk.net/unidost

Countries served: Australia, New Zealand Countries served: Turkey

Company: Timberlake Consultants Company: Vishvas Marketing-Mix Services
Address: Unit B3 Broomsleigh Bus. Park Address: CnO S. D. Wamorkar

Worsley Bridge Road “Prashant” Vishnu Nagar, Naupada
LONDON SE26 5BN THANE - 400602
United Kingdom India

Phone: +44 (0)208 697 3377 Phone: +91-251-440087
Fax: +44 (0)208 697 3388 Fax: +91-22-5378552

Email: info@timberlake.co.uk Email: vishvas@vsnl.com
URL: http://www.timberlake.co.uk

Countries served: United Kingdom, Eire Countries served: India


