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ani.i STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an  announcements ip  instruction on programming

cc  communications & letters os  operating system, hardware, &
dm  data management interprogram communication

dt data sets gs  questions and suggestions

gr  graphics tt  teaching

in instruction zz  not elsewhere classified
Statistical Categories:

sbe biostatistics & epidemiology srd  robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis

sg  general statistics ssi  simulation & random numbers
smv multivariate analysis sss  social science & psychometrics
snp  nonparametric methods sts  time-series, econometrics

sqc  quality control sxd experimental design

sqv  analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an47 New associate editors

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

This issue marks the debut of a new editorial board for the Stata Technical Bulletin. Before introducing the new associate
editors, though, I’d like to offer my thanks to the outgoing editorial board: J. Theodore Anagnoson, California State University,
Los Angeles; Richard DeLeon, San Francisco State University; Paul Geiger, University of Southern California School of Medicine;
Lawrence C. Hamilton, University of New Hampshire; and Stewart West, Baylor College of Medicine. Some of the editors are
familiar to you through their many STB inserts. Others have contributed in less visible, but no less significant, ways to creating
and sustaining the STB you are reading now. If you have found the STB useful, you owe these scholars a debt of gratitude. I
hope and expect to continue receiving inserts and other support from the outgoing editors.

The success of the STB in promoting communication among Stata users and in making new features available quickly has
far exceeded our original expectations. But even a venture as successful as the STB can benefit from new energy and new ideas.
Thus I am very pleased to introduce the new editorial board of the STB. These individuals will build on and extend the pioneering
efforts of our founding editorial board.

Francis X. Diebold is Associate Professor of Economics, University of Pennsylvania, and Faculty Research Fellow, National
Bureau of Economic Research. Professor Diebold has published widely in econometrics, macroeconomics and finance, and he
has served as a consultant to numerous organizations. Professor Diebold is on the editorial boards of Econometrica, International
Economic Review, Journal of Applied Econometrics, Journal of Business and Economic Statistics, Review of Economics and
Statistics, Journal of Forecasting, and Journal of Empirical Finance. His current research interests center on economic forecasting.

Joanne M. Garrett received a Master’s degree (M.S.P.H.) in Biostatistics and a Ph.D. in Epidemiology at the School
of Public Health at the University of North Carolina at Chapel Hill. From 1985 until 1990, she taught advanced quantitative
methods courses in the Department of Epidemiology in the School of Public Health at UNC. In 1990, Dr. Garrett was appointed
to the faculty of the Division of General Medicine and Clinical Epidemiology at UNC-CH, Adjunct Assistant Professor in the
Department of Epidemiology in the School of Public Health, and a Core faculty member for the Robert Wood Johnson Clinical
Scholars program. Her main activities have been teaching, consulting on study design and analysis issues, and working on several
research projects. In 1992, Dr. Garrett became the Associate Director for Quantitative Methods at the Cecil G. Sheps Center
for Health Services Research, where she was co-director of the NRSA fellowship program and a co-investigator on projects
concerning ethical and cost issues for treatment of patients at the end of life, outcomes of care for acute low back pain, and
improvement of childhood immunization rates. In addition, she has developed and presented an extensive set of short courses on
logistic regression and other quantitative methods in epidemiology, and will be offering a series of these courses internationally
for the International Clinical Epidemiology Network Program (INCLEN). This Fall, Dr. Garrett will begin a full-time faculty
appointment in the Department of Medicine.

Marcello Pagano is professor of statistical computing at the Harvard School of Public Health. His focus is on research and
teaching, and he has just written Principles of Biostatistics (Duxbury Press; available from Stata Corporation) which is based on
the introductory course in biostatistics at HSPH. He has long had an interest in the use of the computer in statistics and believes
that it is finally revolutionizing the practice of statistics.
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James L. Powell is professor of economics at Princeton University and visiting professor of economics at the University
of California at Berkeley. Professor Powell is on the editorial boards of the International Economic Review and the Journal of
Econometrics. Professor Powell’s research interests center on the application of semiparametrics to microeconometric problems,
especially those that involve censoring. His research has explored new uses of bootstrapping and nonparametric techniques. His
most recent work has considered problems of random censoring.

Patrick Royston, D.Sc., graduated as a mathematician but has worked as a medical statistician ever since. He currently
heads the Medical Statistics Unit at Hammersmith Hospital in London. He has a longstanding interest in solving the applied
statistical problems that continually arise in medical research, and especially in providing software which implements new or
important statistical techniques. He has published widely in statistical and medical journals.

an48 Updated CPS labor extracts available

Daniel Feenberg, National Bureau of Economic Research, feenberg@nber.harvard.edu

An updated version of the Current Population Survey Outgoing Rotation Group Annual Merge Files is now available on
CD-ROM from the National Bureau of Economic Research. For those who purchased the original extract (Feenberg 1992), this
update covers 15 years, 1979 through 1993, two more years of data than the original extract. For those unfamiliar with these
data, the annual files contain extracts from the monthly Current Population Surveys.

Interviews are included for all respondents 16 years of age or older who are in an outgoing CPS rotation group during the
year. This selection produces about 300,000 observations per year. These data can be, and have been, used in research on wage
determination, union wage effects, inter-industry wage differentials, wage inequality, and employment discrimination. There is
no copyright restriction on use of the data. New, unified hardcopy documentation is included with each CD.

The CD-ROM in ISO 9660 format is available for $100 postpaid ($115 overseas). Check, VISA, or MasterCard are accepted—no
purchase orders, please. Be sure to specify CPS Labor Extracts 1993 version.

Publications Department

National Bureau of Economic Research
1050 Massachusetts Avenue
Cambridge, MA 02138

617-868-3900 (voice)

617-868-2742 (fax)

Questions should be directed to me at feenberg@nber.harvard.edu.

Frequently asked questions

What is the CPS? This is the monthly household survey conducted by the Bureau of Labor Statistics to measure labor force
participation and employment. 50,000 to 60,000 households per month are surveyed.

Is this a panel survey? No.

What are the Outgoing Rotation Groups? Every household that enters the CPS is interviewed for 4 months, then ignored for 8
months, then interviewed again for 4 more months. Weekly hours/earning questions are asked only of households in their
fourth and eighth months in the survey. These are the only households included in the CD-ROM.

Is this the same as the March Annual Demographic Survey? No. The income and demographic questions asked in March are
not available on the CD-ROM.

How are the weights defined? The weights for all the persons in the sample sum to the total population 16 years of age or
older. Only one-fourth of the sample is in an outgoing rotation group, so twelve months of data sums to three times the
total population.

Is software included on the CD-ROM? No.

Can I use a spreadsheet to analyze these data? No. The files are much too large to fit in any spreadsheet. You will need a
statistical package or database language to use these data.



Stata Technical Bulletin

STB-21

What is the format of the files? The data are stored in Stata’s binary (.dta) format for ease of use. The Stata files are compact

and portable across operating systems and machine types. A year’s data can be read from the CD-ROM in only a few minutes.
If you use another statistical package, the program Stat/Transfer (available from StataCorp) will convert Stata files into

many other formats.

Variable list

Interview month

Month in sample

State

Central city status

MSA/PMSA FIPS code

PMSA ranking

CMSA/MSA ranking

MSA/CMSA size

CMSA code

Metropolitan status code

Central city code

Household ID

Sex

Veteran

Highest grade attended

Whether completed highest grade
What was doing most of last week
How many hours last week, all jobs
Usually works >=35 hours at this job
Why not at least 35 hours last week
Class of worker

Usual hours

Paid by the hour

Earnings per hour

Usual earnings per week

Union member

Covered by a union contract
Enrolled as a student full/part time
Relationship to reference person

Reference

Age

Marital status

Race

Major activity last week

How many hours last week?
Reason <=35 hours last week
Why absent from work last week?
3-digit industry code (1980)
3-digit occupation code (1980)
Class of worker one

Usual hours

Paid by the hour

Union member

Ethnicity

Labor force status recode MODE
Full-time or part-time status
Detailed industry code

Detailed occupation code

Earnings eligibility flag

Class of worker two

Earnings per hour

Earnings per week

Final weight

Earnings weight for all races
Usual hours (I25a) allocation flag
Paid by hour (I25b) allocation flag
Earnings/hr (I125¢) allocation flag
Usual Earn/hr (I25d) allocation flag

Feenberg, D. 1992. an23: CPS labor extracts available. Stata Technical Bulletin 9: 2-3.

an49 Stata listserver available

David W. Wormuth, Harvard Medical School, dwormuth@dsg.harvard.edu

Stata users who have access to Internet email can join an email service dedicated to using and enhancing Stata. The
STATALIST is a listserver that distributes mail to a list of subscribers. To use the list, mail your question or observation to
statalist@dsg.harvard.edu. The listserver then forwards the mail to all members of the STATALIST. There is no cost for the
listserver. The only source of mail is from Stata users. In order to receive the STATALIST mailings, you need to subscribe.
How to subscribe

Send a message to listproc@dsg.harvard.edu. The body of the message should say
subscribe statalist your-first-name your-last-name
For example, a user named Joe Smith would send the following in his message:
subscribe statalist Joe Smith

I moderate the list only to the extent of filtering misdirected messages (for subscription or unsubscription usually). Otherwise
all messages are re-sent as soon as they are received. Any questions can be sent to me at dwormuth@dsg.harvard.edu.

[ We welcome the establishment of a listserver for Stata users. We want to clarify, however, that this listserver is run by independent Stata users.
It is neither sponsored nor controlled by Stata Corporation or the Stata Technical Bulletin—Ed.]
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sbe11 Direct Standardization

Tim McGuire, Stata Corporation, FAX 409-696-4601
Joel A. Harrison, Houston, Texas

Syntax

dstndiz casevar popvar stratavars [if exp] [in range|, by(groupvars) | base (# | "string")
using (filename) saving(filename) print format ("%fimi") level (#) |

generates a summary measure of occurrence which can be used to compare prevalence, incidence, or mortality rates between
populations which may differ with respect to certain characteristics (for example, age, gender, race.) These underlying differences
may affect the crude prevalence, mortality, or incidence rates.

Options

by (groupvars) is not optional; it specifies the variables identifying the study populations. If base() is also specified, there
must be only one variable in the by () group. If you do not have a variable for this option, you can generate one using
something like gen newvar=1 and then using newvar as the argument to this option.

using() or base() may be used to specify the standard population. The options can be specified individually or not at all, but
not together. using(filename) specifies the name of a file containing the standard population. The standard population must
contain the popvar and the stratavars. If using() is not specified, the standard population distribution will be obtained from
the data. base (# | "string") specifies the value of groupvar which identifies the standard population. If neither base ()
nor using() are specified, the default is to use the entire data set to determine the standard population.

saving(filename) saves the standard population distribution computed in a Stata data set that can be used in further analyses.

print outputs a tabular summary of the standard population distribution before outputting the study populations specified in the
by () option.

format ("Yfmt") specifies the format in which to display the final summary table. The default is %10.0g.

level(#) specifies the significance level for the confidence intervals of the coefficients. The default is the current value of
Stata’s $S_level macro (initially set to 95.)

Description

A frequently recurring problem in epidemiology and other fields is the comparison of rates for some characteristic across
different populations. These populations often differ with respect to factors associated with the characteristic under study; thus,
the direct comparison of overall rates may be quite misleading.

The direct method of adjusting for differences among populations involves computing the overall rates that would result,
if, instead of having different distributions, all populations were to have the same standard distribution. The standardized rate is
defined as a weighted average of the stratum-specific rates, with the weights taken from the standard distribution.

Direct standardization may be applied only when the specific rates for a given population are available.

Example 1

It will be easiest to understand these commands if we start with a simple example. Suppose we have data (Rothman 1986,
42) on mortality rates for Sweden and Panama for the year 1962.

. use mortality
(1962 Mortality, Sweden & Panama)
. describe

Contains data from mortality.dta

Obs: 6 (max= 5117) 1962 Mortality, Sweden & Panama
Vars: 4 (max= 99)
Width: 156 (max=  200)

1. nation str6  %9s Nation

2. age_cat byte 78.0g age_1bl Age Category

3. pop float %9.0g Population in Age Category

4. deaths float %9.0g Deaths in Age Category
Sorted by:

. list
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nation age_cat pop deaths
1. Sweden 0-29 3145000 3523
2. Sweden 30 - 59 3057000 10928
3. Sweden 60+ 1294000 59104
4. Panama 0 - 29 741000 3904
5. Panama 30 - 59 275000 1421
6. Panama 60+ 59000 2456

When the total number of cases in the population is divided by the population, we obtain the crude rate:

. collapse pop deaths, sum(pop deaths) by(nation)

. list
nation pop deaths
1. Panama 1075000 7781
2. Sweden 7496000 73555
. gen crude = deaths/pop
. list
nation pop deaths crude
1. Panama 1075000 7781 .0072381
2. Sweden 7496000 73555 .0098126

If we examine the total number of deaths in the two nations, it is striking that the total crude mortality rate in Sweden is higher
than that of Panama. From the original data set, we see one possible explanation: Swedes are older than Panamanians. This
makes it difficult to directly compare the mortality rates.

Direct standardization gives us a means of removing the distortion caused by the differing age distributions. The adjusted
rate is defined as the weighted sum of the crude rates, where the weights are given by the standard distribution. Suppose we
wish to standardize these mortality rates to the following age distribution:

. use 1962
(Std. Pop. Distribution)
. list
age_cat pop
1. 0 - 29 .35
2. 30 - 59 .35
3. 60+ .3

. sort age_cat

. save 1962, replace

If we multiply the above weights for the age strata by the crude rate for the corresponding age category, the sum gives us the
standardized rate.

. use mortality, replace
(1962 Mortality, Sweden & Panama)

. gen crude=deaths/pop
. drop pop
. sort age_cat

. merge age_cat using 1962

. list

nation age_cat deaths crude pop _merge
1. Panama 0-29 3904 .0052686 .35 3
2. Sweden 0 - 29 3523 .0011202 .35 3
3. Panama 30 - 59 1421 .0051673 .35 3
4. Sweden 30 - 59 10928 .0035747 .35 3
5. Sweden 60+ 59104 .0456754 .3 3
6. Panama 60+ 2456 .0416271 .3 3

. gen product = crude*pop
. egen adj_rate = sum(product), by(nation)
. drop _merge

. list, noobs nodisplay

nation age_cat deaths crude pop product adj_rate
Panama 30 - 59 1421 .0051673 .35 .0018085 .0161407
Panama 60+ 2456 .0416271 .3 .0124881 .0161407
Panama 0 - 29 3904 .0052686 .35 .001844 .0161407
Sweden 60+ 59104 .0456754 .3 .0137026 .0153459
Sweden 30 - 59 10928 .0035747 .35 .0012512 .0153459

Sweden 0 - 29 3523 .0011202 .35 .0003921 .0153459
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A comparison of the standardized rates indicates that the Swedes have a slightly lower mortality rate.

To perform the above analysis with dstndiz:

. use mortality, replace
(1962 Mortality, Sweden & Panama)

. dstndiz deaths pop age_cat, by(nation) using(1962.dta)

—> nation= Panama

————— Unadjusted----- Std.
Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] sxP
0 -29 741000 3904 0.689 0.0053 0.350 0.0018
30 - 59 275000 1421 0.256 0.0052 0.350 0.0018
60+ 59000 2456 0.055 0.0416 0.300 0.0125
Totals: 1075000 7781 Adjusted Cases: 17351.2

Crude Rate: 0.00724
Adjusted Rate: 0.01614
95%, Conf. Interval: [0.01614 0.01614]

-> nation= Sweden

————— Unadjusted----- Std.
Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P
0-29 3145000 3523 0.420 0.0011 0.350 0.0004
30 - 59 3057000 10928 0.408 0.0036 0.350 0.0013
60+ 1294000 59104 0.173 0.0457 0.300 0.0137
Totals: 7496000 73555 Adjusted Cases: 115032.5

Crude Rate: 0.00981
Adjusted Rate: 0.01535
95}, Conf. Interval: [0.01535 0.01535]
Summary of Study Populations:

nation N Crude Adj_Rate CI_Left CI_Right
Panama 1075000 0.007238 0.016141 0.016139 0.016143
Sweden 7496000 0.009813 0.015346 0.015346 0.015346

The summary table above allows us to make a quick inspection of the results within the study populations, and the detail tables
give the behavior among the strata within the study populations.

Example 2

For a larger example, consider the following small data set containing blood pressure information on individuals in four
cities. It is desired to use the entire data set as a standardized population. In this case, each observation represents an implied
population of one; thus, a population variable will be generated to fit the syntax of the command. The standardization will be
performed by city with the data stratified by age group.

. use hbp
. describe

Contains data from hbp.dta
Obs: 1130 (max= 5116)

Vars: 7 (max= 99)
Width: 17 (max=  200)
1. id stri0 %10s Record identification number
2. city byte 78.0g
3. year int %8.0g
4. sex byte 78.0g sexfmt
5. age_grp byte 78.0g agefmt
6. race byte 7%8.0g racefmt
7. hbp byte 78.0g yn high blood pressure
Sorted by:
. gen pop=1

. dstndiz hbp pop age_grp, by(city)
(5 observations deleted due to missing values)
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-> city=1
————— Unadjusted----- Std.
Pop. Stratum Pop.
Stratum Pop. Cases Dist. Ratel[s] Dst[P] s*P
15 - 19 91 3 0.257 0.0330 0.220 0.0072
20 - 24 103 2 0.291 0.0194 0.362 0.0070
25 - 29 95 4 0.268 0.0421 0.237 0.0100
30 - 34 65 4 0.184 0.0615 0.181 0.0112
Totals: 354 13 Adjusted Cases: 12.5
Crude Rate: 0.03672
Adjusted Rate: 0.03541
95} Conf. Interval: [0.03329 0.03754]
output omitted
-> city= 56
————— Unadjusted-—-—--- Std.
Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P
156 - 19 65 0 0.301 0.0000 0.220 0.0000
20 - 24 84 1 0.389 0.0119 0.362 0.0043
25 - 29 30 2 0.139 0.0667 0.237 0.0158
30 - 34 37 1 0.171 0.0270 0.181 0.0049
Totals: 216 4 Adjusted Cases: 5.4

Crude Rate: 0.01852
Adjusted Rate: 0.02503
957 Conf. Interval: [0.02063 0.02943]

Summary of Study Populations:

city N Crude Adj_Rate Confidence Interval

1 3564 0.036723 0.035415 [ 0.033293 0.037537]
2 340 0.023529 0.023044 [ 0.021270 0.024819]
3 2156 0.139535 0.124565 [ 0.118198 0.130933]
5 216 0.018519 0.025030 [ 0.020633 0.029427]

Example 3

Consider the data set of Example 2, with the desired strata being determined by age, sex, and race. We consider each year
within city as a study population. In addition, the standard population (created from the data set) is printed at the beginning of
the listing, the significance level is changed to 90, and the format of the summary table is modified.

. dstndiz hbp pop age race sex if year==1990 | year==1992, by(city year)
> format("%8.3f") print level(90)

Stratum Pop. Dist.
156 - 19 Black Female 35 0.077
15 - 19 Black Male 44 0.097
15 - 19 Hispanic Female 5 0.011
15 - 19 Hispanic Male 10 0.022
15 - 19 White Female 7 0.015
156 - 19 White Male 5 0.011
20 - 24 Black Female 43 0.095
20 - 24 Black Male 67 0.147
20 - 24 Hispanic Female 14 0.031
20 - 24 Hispanic Male 13 0.029
20 - 24 White Female 4 0.009
20 - 24 White Male 21 0.046
25 - 29 Black Female 17 0.037
25 - 29 Black Male 44 0.097
25 - 29 Hispanic Female 7 0.015
25 - 29 Hispanic Male 13 0.029
25 - 29 White Female 9 0.020
25 - 29 White Male 16 0.035
30 - 34 Black Female 16 0.035
30 - 34 Black Male 32 0.070
30 - 34 Hispanic Female 2 0.004
30 - 34 Hispanic Male 3 0.007
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30 - 34 White Female 5 0.011
30 - 34 White Male 23 0.051
Total: 455

(669 observations deleted)
(6 observations deleted due to missing values)

-> city year= 1 1990

————— Unadjusted---—— Std.
Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P
16 - 19 Black Female 6 2 0.128 0.3333 0.077 0.0256
15 - 19 Black Male 6 0 0.128 0.0000 0.097 0.0000
16 - 19 Hispanic Male 1 0 0.021 0.0000 0.022 0.0000
20 - 24 Black Female 3 0 0.064 0.0000 0.095 0.0000
20 - 24 Black Male 11 0 0.234 0.0000 0.147 0.0000
25 - 29 Black Female 4 0 0.085 0.0000 0.037 0.0000
25 - 29 Black Male 6 1 0.128 0.1667 0.097 0.0161
25 - 29 Hispanic Female 2 0 0.043 0.0000 0.015 0.0000
25 - 29 White Female 1 0 0.021 0.0000 0.020 0.0000
30 - 34 Black Female 1 0 0.021 0.0000 0.035 0.0000
30 - 34 Black Male 6 0 0.128 0.0000 0.070 0.0000
Totals: 47 3 Adjusted Cases: 2.0
Crude Rate: 0.06383
Adjusted Rate: 0.04176
90% Conf. Interval: [0.02582 0.05769]
output omitted
Summary of Study Populations:

city year N Crude Adj_Rate CI_Left CI_Right

1 1990 47 0.064 0.042 0.026 0.058

1 1992 56 0.018 0.009 0.004 0.013

2 1990 64 0.047 0.045 0.024 0.066

2 1992 67 0.030 0.014 0.007 0.022

3 1990 69 0.159 0.088 0.071 0.106

3 1992 37 0.189 0.046 0.036 0.057

5 1990 46 0.043 0.022 0.007 0.037

5 1992 69 0.014 0.051 0.051 0.051

Methods and Formulas
Standardized rate (Sg) is defined by
G — i (willi)
2 wi

(Rothman 1986, 44) where R; is the stratum-specific rate in stratum ¢, and w; is the weight for stratum ¢ derived from the
standard.

If n; is the population of stratum 4, the standard error se(Sg) in stratified sampling for proportions (ignoring the finite

population correction) is
’wi2R¢(l — Rl)
S = _—
se(Sr) \/ Ei .

(Cochran 1977, 108) from which the confidence intervals are calculated.
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sed8 Finding significant gaps in univariate distributions

Richard Goldstein, Qualitas, Inc., EMAIL richgold @netcom.com

One of the first steps in exploratory data analysis is to examine the univariate distributions of the variables being studied.
Unusual discontinuities, or gaps, in these univariate distributions may indicate the need for further analysis. A large gap in the
distribution may be evidence of nonrandom sampling or of data transcription errors. Gaps near the middle of the distribution are
most troubling because they are least likely under random sampling.

This insert implements an idea of Wainer and Schacht (1978) for measuring gaps in univariate distributions. Consider a
variable z, sorted in ascending order. Define the weighted gaps, g, as

g = \/(i — 1) (2 — 1)

N—-i+1

where IV is the number of observations on z. An approximate z-score can be defined as
zi = gi/n"

where p* is the mean of the middle 50 percent of the distribution. z-scores above 2.25 indicate observations that merit further
investigation. This cutoff can be adjusted upward if multiple gaps are analyzed.

wgap implements this technique. The syntax is
wgap varlist [if exp] [in range] , wgap (prefix) z(prefix)

wgap calculates and stores either or both of g and 2, depending on which of the options is specified. At least one of the
options, wgap () or z(), must be specified. If there is more than one variable in the varlist, the prefixes specified in the options
are suffixed with a number: 1 for the first variable in the varlist, 2 for the second variable, and so on.

This procedure is somewhat robust to heavy-tailed distributions, but it can be confused by very heavy-tails (uniform
distributions, for instance) or by numerous ties. We do not want to claim too much for this procedure, though. As its creators
note, “The scheme presented here for the determination of the significance of gaps in a univariate data string is of only modest
importance and usefulness” (Wainer and Schacht, p. 210). Nonetheless, wgap can help in finding areas of the data that are
surprisingly sparse. As a result, wgap can help identify questionable data elements and can signal when the the data is actually
a mixture of two or more distributions. But wgap can only raise these questions. Other techniques are needed to resolve them
definitely. wgap also can be helpful in later stages of data analysis in choosing grouping categories and in finding breaks and
cut-offs.

wgap was checked against the example in Wainer and Schacht (1978); it gives approximately the same answer; this is the
best that can be expected given the apparent typos in Wainer and Schacht’s Table 6.

Example
We use Stata’s automobile data to illustrate wgap:

. use auto
(1978 Automobile Data)

. generate lprice = log(price)
. wgap lprice, z(zlprice)

. count if zlprice>2.25 & zlprice!=.
4

. list make price if zlprice>2.25 & zlprice!=.

make price

1. Chev. Impala 5705

5. Olds 98 8814

20. Buick Electra 7827
67. Audi 5000 9690

wgap flags four observations that have prices that are surprisingly higher than the next cheaper model. wgap is applied to
the log of the price, so price changes are approximately percentage differences. The figure below graphs the z-scores against
the price (on a log scale), highlighting the four suspect observations. Note that the four observations are near the middle of the
price distribution and that the distribution is somewhat sparse in the neighborhood of these observations.
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References

Wainer, H. and S. Schacht. 1978. Gapping. Psychometrika 43: 203-212.

$g26 Using fractional polynomials to model curved regression relationships

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740-3119
Douglas G Altman, Imperial Cancer Research Fund, London, FAX (011)-44-71-269-3429

Fractional polynomial (FP) regression models (Royston and Altman, 1994) are intermediate between polynomial and nonlinear
models. The aim in using FP functions in regression is to keep the advantages of conventional polynomials, while eliminating
(most of) the disadvantages. Put briefly, FP functions are similar to conventional polynomials in that they include powers of X,
but non-integer and negative powers are also allowed. FP models usually give a better fit than conventional polynomials of the
same degree, and even than those of higher degree.

As the technique is new, we first describe it in some detail and give examples of its use. A description of the software is
deferred to the section Program fp. Here we only outline the two possible syntaxes of f£p, which are as follows:

fp yvar [nvar] xvar [if exp] [in mnge] [weight] [, major_options minor_options ]

fp [, summary comparison estimates ]

Background and motivation

Continuous variables are widely used in regression models. In most applications the variables are entered untransformed and
modeled as having straight-line relationships with the outcome variable. An alternative strategy, common in epidemiology for
example, is to group the continuous variables into ¢ categories which are then modeled by fitting ¢ — 1 binary “dummy” variables.
While these approaches are often effective, one frequently wishes to retain the full information in the measurements but not to
assume a straight-line relationship. This is especially so in situations where one wishes to use a model to make predictions for
future individuals, as is the case when constructing clinical reference intervals. Until recently the standard approach to modeling
curved relationships was polynomial regression. After fitting a linear term in the variable X, we fit a quadratic curve, then cubic,
and so on, by adding sequentially to the model terms in X2, X3, X*, etc. until no worthwhile (or significant) improvement in
fit is achieved.

Polynomial models are both parametric and global, in the sense that all the data are used to derive all the fitted values.
Recent developments have introduced various local nonparametric smoothing techniques that allow curved relationships to be
modeled. These enable the relationship of Y with X to be visualized and may suggest an appropriate functional form. Local
regression models include regression splines, smoothing splines, and kernel methods. The Stata program ksm can fit some models
of this type, including the well-known lowess. Generalized additive models (Hastie and Tibshirani 1990) offer even greater scope,
but are not yet implemented in Stata.
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The main advantages of local regression models are their flexibility and their ability to reveal the “true” curve shape. They
have some disadvantages too: they do not provide a simple expression for the model (so that individual predictions are not
obtained simply), the curves are not necessarily smooth, and statistical inference (significance tests for inclusion of model terms,
etc.) is not properly worked out.

Disadvantages of conventional polynomials

Despite its ubiquity, polynomial regression has long been recognized to have some serious weaknesses, notably lack of
flexibility (in low order models such as quadratics), a propensity to produce artifacts (waviness and “end-effects”, making them
useless for extrapolation) in higher order fitted curves, and an inability to model relations which have asymptotes.

15 3
50 7 i
40 7
10
30 7 =
O]
(=]
20 7 -
5
10 7
0 ! T T T T 0 ! T T T T
0 5 10 15 0 2 4 6
Hardwood concentration (%) Age (years)
Figure 1: Hardwood concentration in pulp and tensile Figure 2: I1gG and age for 298 children

strength of paper (Psi) (Montgomery and Peck, 1992)

Figure 1 shows some data relating the tensile strength of paper to the proportion of hardwood in the pulp. These data
were used by Montgomery and Peck (1992) to illustrate the technique of quadratic regression. The data show clear asymmetry,
however, and the quadratic curve (solid line) is not a good fit. For comparison, also shown is a smooth curve (dashed line)
obtained from ksm, using bwidth(0.3). The quadratic model does not reflect the asymmetric curvature. Among conventional
polynomials, a quintic curve is needed to get a satisfactory fit to the data.

Figure 2 shows data relating serum immunoglobulin IgG level in children to their age (Isaacs et al. 1983). Also shown are
the quartic curve (solid line) and a curve from ksm (dashed line), again using bwidth(0.3). The quartic curve shows artifactual
waves, and the apparent downturn at the upper ages (which appears in both fits) is clinically implausible.

For each of these two data sets, the fit of the nonparametric curves derived from ksm is similar to that of conventional
high-order polynomials. We show how to find simple parametric models that also fit the data sets well.

Fractional polynomials

FP functions can be used with any generalized linear model and with Cox proportional hazards regression models for survival
data. Examples are normal errors regression (multiple linear regression), (multiple) logistic regression and log-linear modeling
of contingency table data which have ordered categories. In all of these a response variable Y is regressed on a single covariate
X, or on several covariates Xy, ..., X. Note that, for reasons explained below, we require X > 0. We initially concentrate
on the single covariate case, and mention multiple covariates later. Fuller details and further examples are given in Royston and
Altman (1994).

We define the degree of an FP model as the number of terms in powers of X in the model and denote it m. Thus, for
example, Y = by +b; X! has degree m = 1 and Y = by + by X 1 + by X2 has m = 2. We call the powers in the FP model py,
D2, etc., and denote the vector of powers as p. In the two examples just given we have p = —1 and p = (—1,2) respectively.
Models with m = 1 or m = 2 provide a wide range of curve shapes—some examples are given in Figure 3. It is uncommon to
need models with m > 2, and so fp concentrates on models with m = 1 or m = 2. However, f£p can also be used to fit models
with m > 2; we show these later.
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(-2, 1) (-2, 2)

(-2, -2) (-2, -1)

Figure 3: Examples of fractional polynomials with
p=(=2,1), (=2,2), (=2,-2) and (-2,-1)

Models are chosen by including m powers from a predefined set P. We suggest using
P={-2-1,-1,0,1,1,23},

which is rich enough to cover many practical cases adequately. When m > 3 we add to P integer powers up to m. Note that
the power O corresponds to In X. We use round bracket notation for powers of X, such as X ®), to signify the Box—Tidwell

transformation .
xo _ X7 ifpFEO
In(X), if p=0,
not the more familiar Box—Cox transformation, (X? — 1) /p.

Certain combinations of powers from the specified PP correspond to quadratics (that is, functions of the form b+b; XP+by X 2P)
in X~ X -3 , X 3 and X , as well as a cubic in X and all degree-m conventional polynomials.

An interesting feature of FP models with m > 1 is that duplication of powers, such as p = (1, 1), does not result in models
with reduced degree. Rather, by finding the mathematical limit of the expression

bo + by X PV 4 p, X (P2)
as po tends to pj, the limiting FP model turns out to be
bo + biX®Y) 4 pi X (P In X

a three-parameter family of curves (i.e. retaining degree m = 2, rather than m = 1). For example, p = (1, 1) defines the
function by + b1 X + b2 X In X, and p = (0,0) leads to a quadratic in In X. A similar result applies for more than two repeated
powers (see Formulae at end).

Model choice (with fixed m)

To fit a model with m = 1 we simply take each power from P in turn. For m = 2 we fit models corresponding to each
possible pair of powers from P. The deviance (—2 times log-likelihood) for each model is noted (further information about
deviances is given in the Technical Note below). The p associated with the model with the lowest deviance we denote p.

Often, for a given m, several values of p correspond to models with similar deviances. Models whose deviance is “much
higher” than that of the p model are discarded. In general, we suggest deviance thresholds based on the 90th centile of x? with
m degrees of freedom (DF); see Royston and Altman (1994) for explanation. The thresholds are thus 2.7 (for m = 1) and 4.6
(for m = 2). For normal-errors models, we use appropriate critical points of the F' distribution instead of those of x2.

There may be several candidate models which are indistinguishable according to these criteria. We do not recommend
automatic choice of the p model. Rather, the “best” model is chosen from the candidates by criteria which include the visual
appearance of the fitted curve, the science of the problem and the plausibility of the curve when extrapolated.
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As with conventional univariate polynomial regression, the number of terms in the model is determined by increasing m
until no worthwhile improvement in fit occurs. We would not usually increase m unless the deviance was reduced by more than
4.6, this value being the 90th centile of X2 with 2 DF.

As we are interested in modeling curvature it is convenient to use the deviance for the straight line model (i.e. with
m =1, p = 1) as a baseline for calculating the deviances of other models. We can convert deviance to gain, G, defined as the
deviance for the straight-line model minus the deviance for the FP model. A bigger gain means a better fit. £p gives deviances
and gains for various models, as illustrated in the following examples. The P-values for differences between models reported
by £p are obtained from differences in deviances using the x? or F distributions; generally they are conservative (slightly too
large compared with the true Type I error probability).

Degrees of freedom of an FP model

Since each estimated power, p, must belong to the set P, it does not use up a full DF, as it would do if p was allowed to
be any real number. However, for practical purposes we assume (as a worst case) that it does consume 1 DF. So, apart from the
constant term, o, an m = 1 model uses 2 DF and an m = 2 model uses 4 DF; in general, an FP of degree m uses 2m DF.
One might ask whether there are models with odd DF (3, 5, etc.). For each m, there is in fact a submodel of the full degree-m
model which has 2m — 1 DF. For m = 1 it is the straight line, 3y 4+ 1 X. For m > 1, it comprises a linear term, 3; X, and a
full FP component of degree m — 1; for m = 2 the 3 DF family is of the form By + 3, X + 32X ). The £p program allows
you to fit these odd-DF models (see Program fp below).

Example 1: Fetal mandible length

Figure 4 shows 158 observations of fetal mandible length in relation to gestational age. Nine further measurements with
X > 28 were excluded from the analysis as the clinician considered that they were unreliable. It is clear that both the mean
and SD of mandible length increase as age increases, a typical pattern with measurements of fetal size. Log transformation of
mandible length makes the SD approximately constant (the boxcox command will sometimes find a successful variance-stabilizing
transformation of this kind). Thus in the analysis Y is log mandible length and X is gestational age.

. use mandible

. generate lmand = log(mand)

. fp lmand gest, comparison estimates

MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) for Y = lmand, X = gest.

(*) Base model Linear Quadratic Cubic BoxTid df (2) df (4)
P - 1 1, 2 1, 2, 3 1, 1 -1 -2, 1
D 113.358 -215.671 -285.916 -294.477 -289.352 -293.178 -293.736
G 0.000 70.245 78.806 73.681 77.506 78.065

MODEL COMPARISONS (Note: P-values for df(2) and df(4) are conservative.)

Model comparison DF Dev. diff. P Model comparison DF Dev. diff. P

|
Linear vs base 1 329.030 0.000 | Quad vs linear 1 70.245 0.000
Cubic vs quad 1 8.561 0.004 | BoxTid vs linear 1 73.681 0.000
|
df (2) vs base 2 406.536 0.000 | df(2) vs linear 1 77.506 0.000
|
df (4) vs base 4 407.095 0.000 | df(4) vs linear 3 78.065 0.000
df(4) vs quad 2 7.820 0.023 | df(4) vs df(2) 2 0.558 0.763

(*) Base model = [none] (158 obs.)
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Source | SS df MS Number of obs = 158

} F( 2, 165) = 941.75

Model | 17.5156355 2 8.75781773 Prob > F = 0.0000
Residual | 1.44141936 155 .00929948 R-square = 0.9240
+ Adj R-square = 0.9230

Total | 18.9570548 157 .120745572 Root MSE = .09643
Imand | Coef. Std. Err. t P>t [95% Conf. Intervall
X_1 ] -191.3771 19.22988 -9.9562 0.000 -229.3636 -153.3907

X_2 | .0257281 .0059736 4.307 0.000 .013928 .0375283
_cons | 3.129596 .1721908 18.175 0.000 2.789453 3.46974

Fractional power(s) of X used: -2 1

fp produces three types of output, two of which arise from using options comparison and estimates. The default output
is titled MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) and summarizes the fractional powers, deviances and gains for the
seven different models that fp fits to the data. The Base model comprises the variables specified in the base () option (see the
description of Program fp below). If no variables are specified, the base model is just the constant. All the other models include
the base variables. Linear, Quadratic and Cubic are conventional polynomials in X (here gest). BoxTid is the Box—Tidwell
function (itself a fractional polynomial with p = (1, 1)), namely

E(Y)=po+ X+ BXInX

df (2) and df (4) refer to fractional polynomial models with 2 DF (m = 1) and with 4 DF (m = 2) respectively.

The second type of output (comparison), titled MODEL COMPARISONS, performs significance tests of the fit of various pairs of
models. From the point of view of FP modeling, the most important comparisons are df (2) vs linear, which tells us whether
an m = 1 model fits significantly better than a straight line, and df (4) vs df (2), which tests whether m = 2 is significantly
better than m = 1. It may be of interest to compare the m = 2 model with a quadratic; this test is also given. The comparison
BoxTid vs linear gives a test of nonlinearity that is sensitive to non-monotonic relationships between Y and X, that is,
whether Y has a maximum or minimum within the range of the data. df (2) vs linear, also a test of nonlinearity, is likely to
be insensitive to non-monotonicity since all m = 1 models are monotonic.

The third type of output (estimates) comprises the regression results for the best-fitting FP model.

The interpretation of the output for the mandible example is as follows. There is minimal reduction in deviance (0.558, see
entry df (4) vs df (2)) for m = 2 (df (4)) compared with m = 1 (d£(2)), so we prefer the simpler model (p = —1), with Y’
linear in 1/X. Figure 5 shows that this model is an excellent fit to the data. Note that we need a cubic curve to get as good
a fit with a conventional polynomial. Figure 5 shows, however, that while the two fits are indistinguishable for the 158 points
analyzed, the FP model behaves sensibly beyond the range of X analyzed, passing through the cloud of extra points that had
been omitted, whereas the cubic shoots upwards rapidly and implausibly.

The state of the data revealed by describe after using the fp command is shown below.

Contains data from mandible.dta
Obs: 158 (max= 32766)

Vars: 6 (max= 99)
Width: 24 (max=  200)
1. mandible float %9.0g Mandible (mm)
2. gest float %9.0g Length of gestation (weeks)
3. 1lmand float %9.0g
4. X float %9.0g gest
5. X_1 float %9.0g X~-2
6. X_2 float %9.0g X

Note also that £p has quietly added three new variables to the data: X, X_1 and X_2. X is a copy of the X variable, here
gest. X_1 and X_2 are X raised to the best m = 2 fractional powers. Stata needs these variables in order to “replay” the best
FP model and to produce graphs of the fit (see the descriptions of programs fp and fpgraph below). If variables X, X_1, X_2,
etc. exist before fp is used, they are overwritten without warning. X raised to the best m = 1 fractional power is only saved if
the models are restricted to m = 1 by using the df (2) option.
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Figure 4: Fetal mandible length and gestational
age (n=158) (Chitty et al. 1993)

Figure 5: Mandible length data, showin

Gestational age (weeks)

(dashed line) and the chosen FP model (solid line).

the cubic spline

Extra 9 points excluded from analysis are shown as +.

Example 2: Serum IgG in 298 children

The IgG data were shown in Figure 2. Although the variance does not change markedly with age, taking the square root
of IgG improves the normality of the data and stabilizes the variance. Thus Y is /IgG and X is age.

. generate rigg = sqrt(igg)

. fp rigg age

MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) for Y = rigg, X = age.

(*) Base model Linear Quadratic Cubic BoxTid df (2) df (4)
P - 1 1, 2 1, 2, 3 1, 1 0 -2, 2
D 427.539 337.561 333.884 327.687 331.294 327.436 319.448
G 0.000 3.677 9.874 6.267 10.125 18.113

The best FP model for m = 1 is p = 0 giving a gain of 10.13, but the best FP model with m = 2, p = (—2,2), has a gain of
18.11 and so is a significantly better fit.

As the output shows, the ordinary cubic is no better than the best FP model with m = 1. Among conventional polynomials
we need a quartic to get a fit whose gain (19.87) is similar to that of the best m = 2 model. However, the quartic is not
acceptable because of “end-effects” (see Figure 2). The FP model is clearly preferable; it is shown in Figure 6.

1gG (g/l)

Age (years)
Figure 6: FP model with p=(—2,2) fitted to IgG data
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Example 3: Automobile data

Using Stata’s auto.dta dataset, suppose we want to model a car’s economy (mpg) in terms of its engine size (displ).
The scatterplot in Figure 7 indicates a curved relationship. We try fitting FP models:

. fp mpg displ
MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) for Y = mpg, X = displ.

(%) Base model Linear Quadratic Cubic BoxTid df (2) df (4)
P - 1 1, 2 1, 2, 3 1, 1 -2 -2, 3
D 468.789 417.801 409.292 399.932 406.687 400.592 397.971
G 0.000 8.510 17.869 11.114 17.209 19.830

The results show that the best single power (i.e. the best model with m = 1) for displ is —2. The deviance is 400.59. The best
m = 2 model has powers (-2, 3) and a deviance of 397.97, which is only 2.62 lower and not statistically significantly better.
(Note that a cubic polynomial, with a deviance of 399.93, is required to give a fit as good as that of the best m = 1 model.)
Figure 8 shows the fitted model.

Preliminary stepwise regression analysis indicated that foreign and weight are also significant predictors of mpg, so we
include them in the model as base variables:

. fp mpg displ, base(foreign weight)
MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) for Y = mpg, X = displ.

(*) Base model Linear Quadratic Cubic BoxTid df (2) df (4)
P - 1 1, 2 1, 2, 3 1, 1 -2 -2, -1
D 388.366 388.327 381.517 377.588 379.854 376.525 374.622
G 0.000 6.810 10.739 8.474 11.803 13.705

The same m = 1 power (-2) is obtained. The deviance is now 376.53, a large reduction due to including foreign and weight.
The previous deviance was 400.59, so the reduction is 24.06 on 2 DF and is significant at the 0.001 level using a x? distribution
with 2 DF (which gives an approximate test). The m = 2 (or df (4)) model is virtually no better than the m = 1 model. The
deviance of the m = 1 model is lower than that of a cubic polynomial (377.59), which has two more terms. The m = 1 model
has an asymptote and is therefore likely to extrapolate better to very large engine sizes than a cubic polynomial, which does not
have an asymptote. However, we can’t be too confident about how well it will extrapolate to small engine sizes, where the FP
function is climbing steeply; for example, the estimated consumption for X = 60 cu in (about 980 cc) is 46 mpg, which may
be somewhat too high.

To find simultaneously the best FP functions for mpg for several covariates, such as displ, weight, gratio, etc., is beyond
the scope of £p. However, program swfp, to be released later, will have the necessary capability.

40’ 409 °
: g
30 - . . £ 30
EPTI ° )
° o (o]
o o ©
o " oo ° 0 o
207 C T as . s 207
10 A T T T T T 10 A T T T T T
100 200 300 400 500 100 200 300 400 500
Displacement (cu. in.) Displacement (cu. in.)
Figure 7: Relation between economy and engine size Figure 8: Data of Figure 7 with fitted FP model with p=—2.

Example 4: logistic regression—in vitro fertilization

The outcome variable (Y) is whether or not a woman undergoing in vitro fertilization becomes pregnant (coded 0 = no, 1
= yes) in relation to plasma oestradiol (E2) level (X) (Afnan et al. 1993). We cannot assess the shape of the relation by simply
plotting the raw data, but we can use a lowess smooth of Y, with bwidth(0.8), as in Figure 9.
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We use fp with logistic regression to model the relationship, using the comparison and estimates options to get the
complete output:

. fp outcome e2, cmd(logit) comparison estimates
MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) for Y = outcome, X = e2.

(*) Base model Linear Quadratic Cubic BoxTid df (2) df (4)
P — 1 1, 2 1, 2, 3 1, 1 -2 -1, -1
D 364.270 364.268 359.979 357.378 359.097 362.016 357.148
G 0.000 4,289 6.890 5.171 2.252 7.119

MODEL COMPARISONS

Model comparison DF Dev. diff. P |

(Note: P-values for df(2) and df(4) are conservative.)

Model comparison DF Dev. diff. P

Linear vs base 1 0.002 0.962 | Quad vs linear 1 4.289 0.038
Cubic vs quad 1 2.601 0.107 | BoxTid vs linear 1 5.171 0.023
|
df (2) vs base 2 2.255 0.324 | df(2) vs linear 1 2.252 0.133
|
df (4) vs base 4 7.122 0.130 | df(4) vs linear 3 7.119 0.068
df (4) vs quad 2 2.831 0.243 | df(4) vs df(2) 2 4.867 0.088

(*) Base model = [none] (268 obs.)

Logit Estimates Number of obs = 268
chi2(2) = 7.12
Prob > chi2 = 0.0284
Log Likelihood = -178.57425 Pseudo R2 = 0.0196
outcome | Coef. Std. Err. z P>|z| [95% Conf. Intervall
X_1 | -205075.2 87935.59 -2.332 0.020 -377425.8 -32724.64
X_2 | 26550.07 11479.38 2.313 0.021 4050.903 49049.24
_cons | -4.385136 1.925117 -2.278 0.023 -8.158296 -.6119765

Fractional power(s) of X used: -1 -1

The best model with m = 1, with p = —2, gives a non-significant gain of G = 2.25. However, the best model with m = 2,

with p = (—1,—1), gives G = 7.12. Thus we choose the latter FP model, corresponding to by + by X~ + b, X ~!In X, where
by = —4.385, by = —205075, by = 26550 (see above).

Figure 10 shows that this model is an excellent fit to the data as judged by its similarity to the curve from ksm. As noted
above, we would not automatically take the model corresponding to p. In this case p = (0,0) is almost as good a fit, with a
gain of G = 6.60. (This function is a quadratic in In X.) However, p = (1,2), a conventional quadratic in X, although giving

Pr(pregnant)

G =4.29, is a poor fit, as Figure 10 shows.
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Program fp
The syntax for fp is

fp yvar [nvar] xvar [if exp] [in range] [Weight] [, major_options minor_options ]

fp [, summary comparison estimates ]

The major_options (most used options), in alphabetic order, are
base (basevars) cmd (regression.cmd) comparison estimates df (#)

fixpowers (fixlist) log powers(powlistjnone) regression_cmd_options

The minor_options (less used options), in alphabetic order, are

addpowers (addlist) continuous (contvars) devthr (#) gpx(#|sd) fast Qlot(#)

name (newxvar) origin(#) norepeat saving(graph file [, replace]) zero

The first form of the fp command performs the analysis. The second form is used to (re)display results already obtained by
using the first form.

fp fits fractional polynomial (FP) models in xvar to yvar. A wide variety of model types is supported, including normal-errors
regression (the default), logistic, Cox, Poisson, and so on (see the cmd () option for further details).

nvar is required if “blocked” logit (blogit) or probit models are to be fitted; then yvar is the number of successes out of
nvar trials.

The degrees (m) of FP which fp fits are 1 (m = 1) or 2 (m = 2); to fit models with m > 2, use either the fixpowers()
option (see below) or the fpx command (see help fpx). The fractional powers of xvar are supplied by the program (but may be
altered by using the powers() and addpowers() options). “Base model” variables are defined as variables which are always
included in the model. By default, the base model consists only of the regression constant; other variables may be added by
using the base() option. The model actually fitted, therefore, consists of the base variables and the terms representing FPs in
xvar. The latter variables are calculated automatically.

£p also fits linear, quadratic and cubic polynomials, and the Box—Tidwell (BoxTid) model By + (31 X + (2 X In X. If BoxTid
fits significantly better than a straight line, there is evidence of curvature in the relation between yvar and xvar.

fp reports the deviances for all models it fits (see the Technical Note below for definitions and formulae).

If the comparison option is used, £p compares the fits of various pairs of models using P-values, which are approximate
(typically conservative) when FP models are compared with other models. The most important comparisons are between m = 1
and linear, and between m = 2 and m = 1. If the deviance of a cubic polynomial (for which m = 3) is much lower than that
of the best m = 2 model, you will need an m > 2 model in order to fit the data adequately.

fp also calculates the regression analysis of the best-fitting model. The output may be (re)displayed by repeating regres-
sion_cmd, or by using the estimates option, which gives slightly more information. You may also use predict, test, etc.
after £p; the results will depend on the regression_cmd you used.

Some options
We comment here on some of the major options; full details of all options can be found in the help file £p.hlp.

base () defines the variables in the base model. The default is none (depending on context, the base model is usually just
the constant term _cons).

cmd () determines the type of regression to be used. The default, equivalent to specifying cmd(regress), is ordinary
regression. Other possibilities that are known to work include anova, logit, probit, blogit, bprobit, cox, mlogit, poisson,
greg, and glmr. In addition, £p is written in such a way that you can supply any regression command to cmd (). Provided that
the command in question stores the log likelihood for the fitted model in _result (2), fp will work correctly with it.

df (#) specifies that the degrees of freedom of the highest-degree FP model to be fitted are #, and that comparison is to be
made between models with df = # and those with one fewer df. For example, df (3) compares m = 2 models in which one
power is always 1 with all m = 1 models. df (1) is equivalent to specifying powers(1). If df () is not specified (the default),
the best m = 2 model is found and its fit is compared with that of the best m = 1 model.
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fixpowers (fixlist) includes fractional power(s) of xvar corresponding to fixlist in every FP model fitted. This increases the
degree of the FPs by the number of values in fixlist. For example, with fixpowers(0,1), all FP models will include terms in
In(xvar) and xvar; the FP degree will then be 3 for m = 1 models and 4 for m = 2 models. In the reported results, the presence
of fixpowers() in the models is indicated by a plus (+) symbol.

log displays deviance differences from the base model and (for normal errors regression) residual standard deviations for
each FP model fitted. This option is valuable for seeing whether there are other models that fit almost as well as the best m = 1
and m = 2 models. See also the gplot () option, which plots the deviances for all the models against the first power.

powers () is the set of fractional polynomial powers to be used. The default set is powlist = {-2, -1, -0.5, 0, 0.5, 1, 2, 3}
(0 giving log). Note that specifying powers (none) in conjunction with fixpowers() (see above) prevents fp from searching
for the combination of powers with the lowest deviance, and fits only the model defined by fix/ist. This important combination
of options allows you to inspect particular models; you can plot the fit by using the fpgraph command (see below).

Choice of origin for X

As we have already noted, to fit an FP model we need all the values of xvar to be positive. In many cases xvar will contain
zeroes, usually as a result of rounding or of xvar being a discrete measurement (such as the number of cigarettes smoked per day
or the number of children in a family), or even negative values, such as a difference between two quantities. A simple strategy,
which usually works well, is to subtract the minimum of xvar from xvar and then to add the rounding or counting interval before
applying FP analysis. For example, if the lowest value of xvar is zero and xvar is measured to the nearest 0.1 units, we add
0.1 to all the xvar values (not just the zero values!) first. £p does this automatically: it determines the rounding interval as the
minimum positive distance between successive ordered values of xvar and adds this quantity minus the minimum of xvar (often
0, but it could be negative) to xvar before fitting FP models. The number actually added is stored in $S_23.

Sometimes it may be necessary to use a more sophisticated approach. origin(#) transforms xvar so that its maximum
is 1 and its minimum is # where 0 <#< 1. Specifically, we replace xvar by (xvar— ()/(xmax— (), where xmin and xmax
are the minimum and maximum respectively of xvar and where ¢ = (xmin — # x xmax)/(1 — #). This transformation is useful if
Xxvar contains negative values, or if its range is too narrow for effective FP modeling. # must be between 0 and 1 exclusive.
This option relates to work still in progress. Experience so far suggests that if # > 0.5 there is usually little advantage in using
FP models over conventional polynomial models. We can also use the transformation for strictly positive X's when we cannot
get a satisfactory fit otherwise.

We illustrate the use of this option by considering further the automobile data from Example 3. The scaled origin of displ
(its minimum divided by its maximum) is 0.186. We generally find that a value between about 0.05 and 0.2, typically 0.1, gives
good results in FP modeling. To check the effect on the fit of the m = 1 model, we reset the scaled origin to 0.1 using the
origin(0.1) option, and refit the m = 1 model (making use of the df (2) option). We then display the corresponding value
of the origin ({), in the same units as displ, that £p has calculated and used when transforming displ:

. fp mpg displ, base(foreign weight) df(2) origin(0.1)
MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) for Y = mpg, X = displ.

(*) Base model Linear Quadratic Cubic BoxTid df (2)
P - 1 1, 2 1, 2, 3 1, 1 -2
D 388.366 388.327 381.517 377.588 379.278 375.803
G 0.000 6.810 10.739 9.049 12.524
. display $S_23

40.555556

The deviance has changed from 376.53 to 375.80, a reduction of 0.73, indicating a slightly (but not statistically significantly) better
fit. The value of ¢ (which was stored in macro $S_23) is 40.55, so £p has transformed displ to (xvar—40.55)/(xmax—40.55)
before fitting. (See the help file for a full list of values saved in the $S_# macros.)

An alternate way of treating zeroes and negative values of X is provided by the zero option, which converts such values
to zero in the regression analysis. This option is described and explained in the help file fp.hlp

Models with m>2

In principle, we could fit models with m > 2 by including one or more powers of X specified using fixpowers(). To
investigate all models with m = 3, for example, we could include each single power in our set P (from —2 to 3) in turn in
fixpowers (), and then run fp. The best models with “rm = 2” would then be compared to identify the best m = 3 models. In
practice, it is more convenient to use the alternative program fpx, which is designed to fit all models with degree < m for any
m (see brief description below). A word of warning: because fpx carries out a large number of fits when m > 2, it can burn
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a lot of CPU time. Restricting the set of powers using the powers() option will reduce the time, usually at the cost of only a
minor loss of flexibility. For example, trying powers(-2,-1,0,1,2,3) or even powers(-1,0,1,2) is worthwhile.

We illustrate the fitting of a model with m = 3 on the hardwood data already shown in Figure 1. For these data the best
model with m =3 is p = (—2,2,3). The gain for this model is 67.86, compared with 55.68 for the best model with m = 2,
for which p = (2,2). The reduction in deviance is 12.18, which is much larger than the critical value of X%;O.QO =4.61. In fact
four other models have similar gains: (-1,3,3), (—%,3,3), (0,3,3), and (%,3,3). The powers in these five models are very similar,
and the curves they represent are similar too. Figure 11 shows the m = 3 model (solid line) with the greatest gain. The previous
lowess curve (dashed line) is also shown.

50 7

40 A

Tensile strength (Psi)

T T T T
0 5 10 15
Hardwood concentration (%)

Figure 11: Data from Figure 1 showing lowess curve
and best FP model with m=3

The best m = 4 model has p = (%, 1,1,2), and a deviance that is 3.10 lower than the best m = 3 model, which is not a
statistically significant improvement in fit.

Multiple covariates

Data analysts do not often seem to consider the possibility of curved relationships within multiple regression models, though
in reality curvature is probably common. Elsewhere we have suggested an iterative stepwise algorithm to find best-fit FP models
when there are several continuous covariates, and we have presented an example using Cox regression analysis (Royston and
Altman, 1994). This algorithm is not built into fp, but is under development as a separate program (see the entry for swfp
below).

Related programs: fpx, fpgraph, fpgen and swfp

fpx fits FP models of any degree. The syntax has many similarities to that of fp; see the help file fpx.hlp for further
details. fpx extends fp in two ways:

1. With fpx, you can fit an FP model with an arbitrarily large number of degrees of freedom (df ()), whereas fp is limited
to df (4). This permits a much wider family of models to be explored.

2. fpx outputs the value of the Akaike Information Criterion (AIC) for each model it fits. Some statisticians recommend
selecting as “best” the model which has the minimum AIC. The AIC is defined as —2 times the log likelihood plus 2 times
the number of parameters estimated; thus, overfitting tends to be penalized. Each additional degree (m) of FP model fitted
increases the DF by 2 and therefore adds 4 to the AIC.

The main omissions from fpx concern model comparisons: fpx does not separately fit and report on quadratic, cubic or
Box-Tidwell models, nor does it calculate P-values for comparing selected models.
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fpgraph (see help fpgraph) is available after using £p or £px to plot the best-fitting model. The syntax is
fpgraph [, dresid(dresvar) eta(etavar) nopts nograph graph_options ]

fpgraph plots the data and fit from the most recently fitted FP model. More precisely, it produces a component-plus-deviance-
residual plot. For constant-weight, normal-error models with a single covariate, this amounts to a plot of the observations with
the fitted line inscribed. For other normal-error models, (weighted) residuals are calculated in the usual way.

For models with base covariates (specified in £p by base()), the line is the partial linear predictor, obtained from the FP
part of the model only. In order to display sensible values, an adjustment is made so that the mean is the same as the mean of
the fitted values from the model which includes all the covariates.

For models with non-normal errors (e.g. logistic and Poisson regression), ordinary residuals have unsatisfactory properties
and deviance residuals are calculated instead. These are added to the (partial) linear predictor to give the component-plus-residual
values, which are plotted as small circles.

Limitations: fpgraph is work in progress and does not handle all the possible models that fp itself can. In particular, mlogit
produces a prediction equation for each level of the outcome variable and is not supported by fpgraph. The offset() and
exposure () offset variables, which are options of the poisson command, are not currently catered for. For Cox models, only
the fitted FP function is plotted.

The options are described in the help file (fpgraph.hlp).

fpgen generates arbitrary fractional powers of a variable using the formula given under Formulae. This can be useful if
you want to fit specific FP models directly, without using £p. The syntax is

fpgen xvar [if exp] [in range] , powers (powlist) [n_ame(pname) index (#) gpx(#|sd) origin(#) replace ]

fpgen creates powers of xvar according to the values in powlist. The new variables are labelled according to their associated
powers.

Positive or negative integer powers of xvar are defined in the usual way. A power of zero is interpreted as log, so
xvar’ = In(zvar). If xvar contains any non-positive values, it is transformed as described in the section Choice of origin for X.

The options are described in the help file (fpgen.hlp).

swfp implements a stepwise regression algorithm suggested by Royston and Altman (1994). The program will be released
in a future issue of the STB.

Final comments

There is no particular reason other than convention why regression models should include only positive integer powers of
covariates. The advantages of the FP approach are that it is a simple extension of existing methods, it is parametric, so we can
easily derive predicted values (and standard errors), and we can use standard regression software.

There is no right answer when we fit regression models. What we consider to be the “best” model will depend upon
many factors, including the purpose to which the model will be put. The need for a good fit to the data will vary according to
circumstances. We do not suggest that the FP approach should replace all others. In particular, nonparametric local smoothing
methods have considerable importance and are of much wider applicability. The best approach will vary for different sets of
data.

As the examples show, FP models often give a simple model that fits the data well. In fact, the FP approach usually leads
to a better fit than conventional polynomials, and usually with fewer terms in model. At least in terms of deviance, you cannot
do worse using FPs as standard polynomials are included in the family of models examined.

The IgG, hardwood, mandible and IVF data sets are supplied on the STB-21 diskette in files igg.dta, hardwood.dta,
mandible.dta and ivf.dta respectively.

Technical note: Deviances

For normal-errors models, suppose we have n observations Y7,...,Y,, each Y; being normally distributed with mean p;
and variance o2 /w;. The w; are weights, assumed to have been normalized in Stata fashion so that Y w; = n, and o2 is known
as the scale parameter. Twice the negative log-likelihood may be derived as

—2InL=n [ln(27r(72) — u_}] +(1/0?%) Zwi(Yi — 15)?,
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where w is the mean of the log of the weights. (If all the weights are equal, w is 0.) After obtaining maximum likelihood
estimates (MLE) of all the parameters, the expression becomes

—2InL =n[l+ In(27RSS/n) — @],

the definition of deviance used by fp for normal-errors models. Here RSS= > w;(Y; — ui)Q is the (weighted) residual sum of
squares and RSS/n is the MLE of o2, The definition differs from that used by McCullagh and Nelder (1989) and by well-known
packages such as Glim, Genstat, etc., in that (a) they assume the scale parameter to be known (fixed) in the deviance calculation,
(b) they subtract —2In L for the saturated model which has n parameters, one for every observation, and (c) they multiply
the resulting expression by the scale parameter, which disappears from the final expression for the deviance. This “unscaled”
deviance is simply the RSS as defined above.

For all models (notably logistic and Poisson regression) where the scale parameter is 1, fp uses the McCullagh/Nelder
definition of deviance. For Cox regression, it uses minus twice the maximized partial log likelihood. For other models where
the scale parameter is estimated from the data, it uses the scaled deviance.

The advantage of fp’s use of a scaled deviance as a measure of fit is that it makes it easy to interpret changes in deviance,
irrespective of the error structure of the observations: asymptotically (for very large n) the difference in scaled deviance between
two nested models, where the population values of extra parameters in the “larger” model are zero, has a x? distribution.

Formulae

The full definition of a fractional polynomial model is
¢m(X;B;P) = BoHo(X) + BiH1(X) + -+ + B Hm (X)),
where Hy(X) =1, po =0 and for j = 1,...,m,

(X):{X(pj)a %fpj #pj—ﬂ
H]‘_l(X)lnX, lfpj :pj—l-

Round bracket notation signifies the Box—Tidwell transformation, as described above.

Example: m =4, p=(-1,2,2,2):

j= 1 2 3 4
p; = ~1 2 2 2
H; = X1 X2 X’mX X?(nX)?
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ssi6.2 Faster and easier bootstrap estimation

William Gould, Stata Corporation, FAX 409-696-4601

The syntax of the bstrap and bs commands is

bstrap progname [, args(...) cluster(varnames) dots reps(#) size(#) ]

bs "emd" [exp\macro] exp [, dots eci leave level(#) reps(#) ]

bstrap and bs provide bootstrap resampling for standard errors, confidence intervals, and other measures of statistical accuracy
(Efron 1979, Efron and Stein 1981, Efron 1982, Efron and Tibshirani 1986; also see Mooney and Duval 1993 and Stine 1990).
bs is easy to use and provides an estimate of the standard error and confidence interval for a single statistic. bstrap is more
difficult and is intended for complex bootstrapping problems.

Beginning with bstrap, bstrap runs the user-defined program progname reps() times on bootstrap samples of size
size(). bstrap calls progname in two ways. At the outset, bstrap issues “progname ?” and expects progname to set the global
macro S_1 to contain a list of variable names under which results are to be stored. Thereafter, bstrap issues straight “progname”
calls, having first set memory to contain a bootstrap sample, and expects progname to perform the statistical calculation and
store the results using post. Details of post can be found in Gould (1994a), but enough information is provided below to use
post successfully. bstrap is a faster and more convenient variation on boot; see [5s] boot. For those wishing to implement
their own special-purpose bootstrapping routines, bstrap performs its resampling using bootsamp—also see [5s] boot—and
collects results using post.

bs provides an even faster and more convenient way to achieve bootstrap standard errors on single statistics. cmd may
be any Stata command, program, or ado-file—including user-written programs or ado-files—that calculates and saves a statistic
of interest. Although bs is limited to evaluating single statistics, it is not necessary that cmd calculate only one statistic. bs
allows any statistic calculated by cmd to be selected as the single one of interest. For instance, summarize calculates the mean,
standard deviation, various percentiles, skewness, and kurtosis. summarize would be a good candidate for use with bs.

Options

args(...), allowed only with bstrap, specifies any arguments to be passed to progname on invocation. The query call is then
of the form “progname 7 ...” and subsequent calls of the form “progname ...”

cluster (varnames), allowed only with bstrap, specifies the variable(s) identifying resampling clusters. The default is to treat
each observation as representing its own cluster. The sample drawn during a replication is actually a bootstrap sample of
clusters.

dots requests that a dot be placed on the screen at the beginning of each replication, thus providing entertainment if a large
number of reps() are requested.

eci, allowed only with bs, requests that, in addition to normal-distribution based confidence intervals, an empirically based
confidence interval be presented. eci is the default for reps () > 200; for fewer replications, noeci is the default. Empirical
confidence intervals, calculated by the percentile method, are the percentiles corresponding to /2 and 1 — /2 from the
bootstrap distribution of statistics. Adequately estimating the tails requires more replications than adequately estimating the
standard error; see reps() below. While you can specify eci to force presentation of the empirical confidence interval,
you should not.

leave, allowed only with bs, specifies that a data set of the bootstrapped statistic be left behind in place of the data currently in
memory. The default is to leave the original data undisturbed and to discard the bootstrapped statistics once the summary
table has been reported. If leave is specified, the data left behind contain a single variable named result with reps()
observations. (bstrap always leaves behind the data of bootstrapped statistics. The names of the variables are specified in
progname.)

level (#), allowed only with bs, specifies the significance level in percent for the confidence interval.

reps (#) specifies the number of bootstrap replications to be performed; reps(50) is the default. Since bootstrap estimates are
a result of randomly resampling the data, performing two bootstraps in a row on the same problem will not result in the
same answer. The difference between two runs, however, goes to 0 as the number of replications goes to infinity. How
many replications are enough? The conventional wisdom, summarized for instance in Mooney and Duval (1993, 11), is
that for estimates of the standard error, 50-200 replications is generally adequate; for estimates of empirical confidence
intervals, you should use at least 1,000 replications.
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Alternatively, you may wish to follow more the more liberal, specific, and questionable guidelines developed here. How
many is enough should be determined by your standards which, in turn, should be determined by the accuracy requirements
of the problem at hand. The formulas

.67 x 100 x L ~ ﬂ
Va2n  Vn
and
1.96 x 100 x ; ~ 1386

N

provide a crude measure of the maximum percentage variation in the estimated standard error that will be observed 50
and 95 percent of the time in sequential runs of bs or bstrap, where n is the number of replications. (In deriving these
formulas, the statistic is assumed to be normally distributed and the bootstrap samples are assumed to be drawn from the
underlying population rather than the observed sample. Relaxing the second assumption, I believe, would actually reduce
the variation and, if so, these formulas are too pessimistic.)

To use the formulas, imagine you used bstrap or bs with 50 replications and obtained an estimated standard error of 2.
If you ran it again, 50 percent of the time the new standard error would lie within 47.4//50 ~ 6.7 percent of the original
estimate and 95 percent of the time, within 138.6/ \/% ~ 19.6 percent. Thus, 50 percent of the time, the new estimate will
be between 1.9 and 2.1 and 95 percent of the time between 1.6 and 2.4.

If your interest is in the empirically determined 95 percent confidence interval, you should increase the number of replications
by 72 percent over the level you find acceptable based on the standard error but you should never use less than 50 replications
and probably not less than 200. (This recommendation is based on the same two assumptions—normally distributed statistic
and resampling from the population rather than the sample. In that case, the standard error of the 2.5th percentile is
approximately 1.93 times the standard error of the standard deviation. Variation still falls by a multiplicative factor of 1/4/n,
so increasing n by a factor of 1/1/1.93 & .72 offsets the increased variation. The second part of the recommendation deals
with ensuring that the 2.5th percentile point is in the interior of the sampled and resampled distributions.)

The table below provides evaluations of the percentage variation formulas at popular levels for rep():

replications 50% variation 95% variation

20 10.6% 31.0%
50 6.7 19.6
100 4.7 13.6
200 34 9.8
500 2.1 6.2
1000 1.5 44
10000 5 1.4
100000 .1 4

size(#), allowed only with bstrap, specifies the size of the samples to be drawn. The default is _N, meaning to draw samples
of the same size as the data. If cluster() is specified, the default N means to draw samples containing the same number
of clusters as the data. Unless all the clusters contain the same number of observations, resulting sample sizes will differ
from replication to replication. If size (#) is specified, # must be less than or equal to the number of clusters or, if not
clustered, the number of observations.

Remarks

With few assumptions, bootstrapping provides a way of estimating standard errors and other measures of statistical accuracy.
It provides a way of obtaining such measures when no formula is otherwise available, when available formulas make assumptions
that are not tenable, or when one merely wants to verify that the assumptions typically made do not affect results in this case.
Mechanically, the procedure is this: One has a data set containing /N observations and an estimator which, when applied to the
data, produces certain statistics. One draws, with replacement, N observations from the N observation data set. In this random
drawing, some of the original observations will appear once, some more than once, and some not at all. Using that data set, one
applies the estimator and estimates the statistics. One then does it again, drawing a new random sample and re-estimating, and
again, and keeps track of the estimated statistics at each step of the way (called a replication).
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Thus, one builds a data set of estimated statistics. From this data, one can calculate, say, the standard deviation using the
standard formula (/Y (z; — 2)2/(k — 1), where k is the number of replications). That number is your estimate of the standard
error of the statistic. Note that, while the average value of the observed statistic z is used in the calculation of the standard
deviation, it is not used as the estimated value of the statistic itself. The point estimate is obtained in the normal way using
the original N observation. (Many researchers new to bootstrapping think that this average is somehow a better estimate of the
parameter than the statistic obtained in normal ways. That is not true. What is true is that if the statistic is biased in some way,
Z exaggerates the bias. Denoting z as the statistic calculated over the entire sample, the amount of the bias can be estimated as
Z — z and, in fact, an unbiased statistic would be z — (2 — z) = 2z — z [Efron 1982, 33]. This adjustment, however, should

only be applied if there are strong theoretical reasons to believe the statistic is biased.)

The logic behind the bootstrap is this: All measures of accuracy come from a statistic’s sampling distribution. The sampling
distribution tells you, when the statistic is estimated on a sample of size N from some population, the relative frequencies of
the values of the statistic. The sampling distribution, in turn, is determined by the distribution of the population and the formula
used to estimate the statistic.

In some cases, the sampling distribution can be derived analytically. For instance, if the underlying population is distributed
normally and one calculates means, the sampling distribution for the mean is distributed ¢ with N — 1 degrees of freedom. In
other cases, deriving the sampling distribution is too hard and we than say it is unknown, as it is in the case of means calculated
from non-normal populations. Sometimes, as it in the case of means, it is not too difficult to derive the sampling distribution as
N — 00. The distribution of means converges to a normal. We will then use that “asymptotic” result to calculate some measure
of statistical accuracy on a finite sample of size N even though we know it is incorrect.

As a mechanical matter, if we knew the population distribution, we could obtain the sampling distribution by simulation:
we would draw samples of size N, calculate the statistic, and make a tally. Bootstrapping does precisely this, using the observed
distribution of the finite sample in place of the true population distribution. Thus, the bootstrap procedure hinges on the assumption
that the observed distribution is a good estimate of the underlying distribution. In return, the bootstrap produces not only an
estimate of the standard error, but any measure of accuracy desired because it produces an estimate of the sampling distribution.

The accuracy with which the sampling distribution is estimated, given the assumed population distribution, is a function of
the number of replications. A crudely estimated sampling distribution is quite adequate if one is only going to extract, say, the
standard deviation. A better estimate is needed if one is going to extract a 95 percent confidence interval and, if one is going
to extract many features simultaneously about the distribution, a quite good estimate is needed. It is generally believed that
replications on the order of a 1,000 produce quite good estimates and that, for measurements of standard errors, many fewer
replications are needed; see reps () under Options above.

Let us begin with the easier-to-use, and more convenient, bs command.

Example 1

We wish to obtain a bootstrap standard error and confidence interval for the median of miles per gallon (mpg) in the auto
data set that is supplied with Stata. summarize with the detail option calculates, among other things, medians and, according
to Saved Results in [5s] summarize, summarize stores the median in _result (10). Thus:

. bs "summarize mpg, detail" _result(10)

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall]
50 20 .8668498 18.30101 21.69899 (normal based)

(average) 19.94

The point estimate of the median (which bs obtained by performing summarize mpg, detail on the entire sample) is 20. bs
performed 50 replications to obtain a standard error. The standard deviation of the statistic across the resamples is .8668 and
this is an estimate of the standard error. The 95 percent confidence interval was obtained as 20 + (1.96)(.8668). In addition,
and merely for your reassurance, the average value of the statistic across the 20 resamples was 19.94.

Example 2

Problem: Obtain a bootstrap standard error for the coefficient on weight in a regression of mpg on weight and displ in
the auto data. Use 100 replications.

Solution: regress estimates regression models. _b[weight] is the coefficient on weight after a regression:
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. bs "regress mpg weight displ" _b[weight], reps(100)

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall
100 -.0065671 .0009789 -.0084857 -.0046486 (normal based)

(average) -.0067433

Example 3
Problem: Obtain a bootstrap standard error for the standard error of the mean of mpg in the auto data.

Solution 1: The standard error of the mean is defined as y/s2/n where s? is the estimated variance of the sample and n
is the number of observations. summarize saves s* in result(4) and n in result(1).

. bs "sum mpg" sqrt(_result(4)/_result(1))

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall
50 .6725511 .0785286 .5186379 .8264643 (normal based)

(average) .6607228

Solution 2: ci calculates the standard error of the mean. The standard error is saved in the global macro S_4.

. bs "ci mpg" macro S_4

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall
50 .6725511 .0610494 .5528964 .7922058 (normal based)

(average) .667007

Note the use of the word macro in the bs command. Without it, bs would assume that the expression following the command

is an ordinary expression. When the expression is a macro, you type the word macro followed by the macro name, omitting the
dollar sign.

More interesting is why we obtained an estimated standard error of .0785 in the first case and .0610 in the second. The
difference has nothing to do with having used summarize in one and ci in another. Bootstrapping involves randomly resampling
the data and two runs will not produce exactly the same answer. However,

e Two runs will produce exactly the same answer if you first set the random-number seed; see [5d] generate.

e Two runs will produce more nearly identical answers as the number of replications increases even if you do not set the
random-number seed; see reps() under Options above.

Example 3.1

Continuing with the previous example, let us calculate both a more accurate estimate of the standard error of the standard
error of the mean—we will use 1,000 replications—and an empirically based confidence interval:

. bs "ci mpg" macro S_4, reps(1000)

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall
1000 .6725511 .0695833 .5361703 .8089319 (normal based)
(average) .6613738 .5329553 .8018642 (empirical)

bs calculated the empirical confidence interval because we specified more than 200 replications. In this case, the empirical
confidence interval is virtually identical to the normal one, indicating that the distribution of the standard error of the mean of
mpg is approximately normally distributed.

We followed the conventional wisdom of using at least 1,000 replications when obtaining an empirical confidence interval,
although I would have been satisfied with fewer. Here are three runs in a row of the same command:

. bs "ci mpg" macro S_4, reps(250)

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Interval]
250 .6725511 .0694593 .5364134 .8086887 (normal based)
(average) .6723161 .5426767 .792872 (empirical)

. bs "ci mpg" macro S_4, reps(250)
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Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall]
250 .6725511 .0682854 .5387142 .806388 (normal based)
(average) .6732489 .5354373 .8017403 (empirical)

. bs "ci mpg" macro S_4, reps(250)

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall
250 .6725511 .0687151 .5378719 .8072303 (normal based)
(average) .658848 .5442142 .8149669 (empirical)

Example 3.2
In another data set, we obtain a standard error of the 90th percentile (stored in _result(12) by summarize, detail):

. bs "summarize d_time, detail" _result(12), rep(1000)

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall]
1000 29.78806 16.98772 -3.507259 63.08338 (normal based)
(average) 30.6736 6.6529 77.21201 (empirical)

d_time in this data is the time from the last treatment until death for 100 very sick patients and negative times are not possible;
the empirical interval is clearly preferred.

Example 4

Problem: Obtain an estimate of the 95 percent confidence interval of the difference in medians of mpg between foreign and
domestic cars in the auto data.

Solution: Stata has no command that presents difference in medians but we can write one. It is so short we will enter it
interactively and then estimate our result:

. program define diffmed

1. summarize mpg if foreign, detail

2. local mpgfor = _result(10)

3. summarize mpg if “foreign, detail

4. global S_1 = _result(10) - “mpgfor~”

5. end
. bs diffmed macro S_1, reps(100)

Bootstrap
Reps Pt. Est. Std. Err. [95% Conf. Intervall]
100 -5.5 1.37447 -8.193911  -2.806089 (normal based)

(average) -5.335

Speeding execution

Consider the command:

. bs "sum mpg, det" _result(10)

bs has no way of knowing that only mpg plays a role in the summary and is thus forced to make bootstrap samples that include
all the variables in the data set. bs will run faster if you keep only the variables relevant to the calculation:

. keep mpg
. bs "sum mpg, det" _result(10)

In practice, unless you have hundreds of variables in your data, keeping the relevant variables will make little difference.

Missing values

Data sets invariably have missing values for some variables. Since bs does not know which variables play a role in the
specified command, it has no way of excluding the missing values. That causes no problem in one sense because all Stata
commands deal with missing values gracefully.
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It does, however, cause a statistical problem. Bootstrap sampling is defined as drawing, with replacement, resamples of size
N from a sample of size N. bs determines N by counting the number of observations in the data set, not counting the number
of nonmissing observations on the relevant variables. The result is that too many observations are resampled and, moreover, the
resulting resamples, since drawn from a population with missing values, are of unequal sizes.

If the number of missing values relative to sample size is small, this will little difference. If you have a large number of
missing values, however, you should first omit the missing values:

. drop if mpg==.
. bs "sum mpg, d" _result(10)

Saved Results

bs saves in the global S_# macros:

S1 point estimate calculated over the entire data set

52 average estimate calculated over resamples

S.3 estimated standard error (standard deviation over resamples)
sS4 lower bound of empirical confidence interval

S5 upper bound of empirical confidence interval

The bstrap command
bstrap is more complicated to use than bs, slightly slower, and more flexible.
To use bstrap, you must first write a program, a program that follows the outline of the program required by simul (see

Gould 1994b):

program define progname

if "Nqn==non
global S_1 "variable name(s)"
exit

perform estimation on sample in memory
post results
end

There must be the same number of results following the post command as variable names following the global S_1 command.

Example 5

As in example 1, we will obtain a bootstrap standard error for the median of mpg in the auto data. Recall that summarize

with the detail option calculates, among other things, medians, and stores the median in _result (10). First, we must write
a program to calculate the statistic given a sample:

program define mpgmed
version 3.1
if ll\1’ll==ll?" {
global S_1 "median"
exit
}
summarize mpg, detail
post _result(10)
end

That done, we can

. bstrap mpgmed

Bootstrap:
Program: mpgmed
Arguments:
Replications: 50
Data set size: 74
Sample size: _N
Variable | Obs Mean Std. Dev. Min Max

median | 50 20.12 .9066647 19 22
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The reported standard deviation is the bootstrap estimate of the standard error of the median. The best estimate of the median
is still, however, the median reported by running summarize mpg, detail on the entire sample, which is 20. The estimate of
the standard error is .907.

After running bstrap, the data in memory contains the bootstrapped results:

. describe
Contains data

Obs: 50 (max= 5040) mpgmed bootstrap
Vars: 1 (max= 99)
Width: 4 (max=  200)

1. median float Sorted by:
. list in 1/4

median

1. 20

2. 21

3. 20.5

4. 20

Example 6

This example corresponds to example 2; we wish to obtain a bootstrap estimate of the standard error of the standard error
of the mean of mpg using the auto data. Our solution below corresponds to the previous solution 2:

program define sesemean
version 3.1

if "Nqot==men {
global S_1 "se"
exit
}
ci mpg
post $S_4
end
Then,
. bstrap sesemean
(output omitted )
Example 7

In our examples so far we have not exploited the power of bstrap and, as a result, by comparison to bs, bstrap seems
merely inconvenient. Let us obtain bootstrap estimates of the standard errors of the coefficients in a regression of mpg on weight
and displ using 75 replications:

program define myreg
version 3.1

if "~qt==me7n {
global S_1 "weight displ cons"
exit

}

regress mpg weight displ
post _blweight] _bldispl] _b[_cons]
end

We now estimate the regression on the entire sample and run the bootstrap to obtain the new estimates of the standard errors:

. use auto, clear

. regress mpg weight displ

Source | Ss df MS Number of obs = 74

+ F( 2, 71) = 66.79

Model | 1595.40969 2 797.704846 Prob > F = 0.0000
Residual | 848.049768 71 11.9443629 R-square = 0.6529
+ Adj R-square = 0.6432

Total | 2443.45946 73 33.4720474 Root MSE = 3.4561
mpg | Coef.  Std. Err. t P>|t] [95% Conf. Intervall
weight | -.0065671 .0011662 -5.631 0.000 -.0088925 -.0042417
displ | .0052808 .0098696 0.535 0.594 -.0143986 .0249602

_cons | 40.08452 2.02011 19.843 0.000 36.05654 44.11251
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. bstrap myreg, reps(75)

Bootstrap:
Program: myreg
Arguments:
Replications: 75
Data set size: 74
Sample size: _N
Variable | Obs Mean  Std. Dev. Min Max
weight | 75  -.0066732 .0010785 -.0115266 -.0043077
displ | 75 .0059866 .0086184 -.0154117 .0358489
cons | 75 40.26126 2.24061 36.15217  50.04395

We could have obtained standard errors from bs, but that would have required executing the bs command three times. bstrap
is faster in this case.

Regardless of which we use, we obtain our best estimate of the coefficients from the regression on the entire sample. We
obtain our standard errors from the standard deviations reported by bstrap or bs.

In this case, we obtained our bootstrap estimates by resampling the entire data, which is appropriate if we believe both the
dependent and independent variables are random. In the classic case, however, the independent variables are considered fixed
and one should resample the residuals. That is, in the model,

yj =x;B +¢;

it is the €; that is the random component. An estimate e; of €; can be obtained by estimating the regression on the entire sample
to obtain

yj = xjb+e;

It is the e; that one wants to resample. Letting €} be a set of resampled residuals, one can then calculate

y; = x;b +¢;
One then re-estimates the model on y; and collects the resulting parameter estimates b* for the standard-error calculation.

We can do this with bstrap:

program define myreg2
version 3.1
if ll‘l’ll::ll?ll {
use auto, clear
regress mpg weight displ
predict yhat
save base, replace
predict e, resid
keep e
global S_1 "weight displ cons"
exit
}
merge using base
gen ystar = yhat + e
regress ystar weight displ
post _bl[weight] _b[displ] _b[_cons]
end

bstrap calls our program once at the outset to obtain the names of the parameters, which we store in the macro S_1. We can
use this initialization call for our own purposes as well. In myreg2, we load the data, estimate the overall regression, calculate
the predicted values and save the data, and finally calculate the residual and leave just that in memory. It is the residual that
bstrap will now resample. When we are subsequently called, we take the resampled residuals in memory and merge them back
with our estimation sample, form y;f, and re-estimate the regression. The result of doing this is

. bstrap myreg2, reps(75)

Bootstrap:
Program: myreg2
Arguments:
Replications: 75
Data set size: 74

Sample size: N
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Variable | Obs Mean Std. Dev. Min Max
weight | 75 -.0065262 .0011292 -.0096954 -.0042488
displ | 75 .0063092 .0089959 -.0154251 .0325636
cons | 75 39.69676 2.09894 35.60074 45.19046

Speeding execution and missing values

The same comments made above about bs concerning speeding execution and missing values apply to bstrap.

Performance

bstrap runs 36 percent faster and bs 45 percent faster than boot. bs is 15 percent faster than bstrap. The timings are

replications boot (secs.) bstrap (secs.) bs (secs.)
20 4.56 4.01 341
100 22.30 16.92 14.51
500 128.25 87.78 74.87
1000 278.26 178.07 152.15

Timings were performed on a DOS 25MHz 486 computer running Intercooled Stata. Example 1, the standard error of the median
of mpg in the auto data, was used. (20 and not 50 replications were included in the timings because, when these timings were
performed, 20 was the planned default number of replications.)

There is evidence of nonlinearity in replications for all three commands, but only at small numbers of replications. Between
100 and 1,000 replications, all three functions are linear. To minimize the effects of fixed-cost differences, the percentage changes
above were calculated using 1,000-replication timings. For a small number of replications, such as 20, these fixed costs are
significant. bstrap is only 20 percent and bs 25 percent faster than boot. All three commands, however, are absolutely fast
for small numbers of replications and performance comparisons are only important as the number of replications increases.

The increasing difference with number of replications is not unexpected. Both bstrap and bs are implemented in terms
of post and post employs a more complicated setting up process to speed subsequent replications.

The nonlinearity (which is small) was unexpected. Experimentation revealed it had to do with the computer’s buffering of
/0. With small numbers of replications, many I/Os could be avoided as requests were satisfied out of the computer’s buffers.

In terms of further decreasing execution times, simul (see Gould 1994b) provides a theoretical lower bound on what is
achievable with current Stata technology. bstrap is basically identical to simul except that it draws bootstrap samples before
calling the user-supplied program. This includes saving at the outset the data in memory and then, after each replication, reloading
the data and drawing a resample. The resampling is performed by bootsamp (see [5s] boot).

Thus, in order to get a timing of how long bstrap would take if drawing the resample took no time, I made timings
substituting a void bootsamp routine. To obtain a timing exclusive of bootstrap sampling and reloading the data, I made timings
with simul having it, over and over, recalculate the median of mpg. In the table below, columns (1) through (3) present the
timings; column (1) is just a repeat of bstrap’s timings from the table above. These timings allow estimating the execution
time of bootsamp, the time spent in reloading data, and the time spent doing everything else required to perform the bootstrap
estimation. All timings are in seconds and were performed on the same DOS 25MHz computer running Intercooled Stata:

1 (@) (€) “) (5 (6)

bstrap bstrap with (D-(2) 2)-3) (1)-(4)-(5)
replications total void bootsamp simul bootsamp 1/0 residual
20 4.01 2.03 1.15 1.98 .88 1.15
100 16.92 8.29 4.56 8.63 3.73 4.56
500 86.78 38.88 21.36 47.90 17.52 21.36
1000 178.07 78.11 43.12 99.96 34.99 43.12
percentages of (1)
20 49 22 29
100 51 22 27
500 55 20 25
1000 56 20 24

Columns (4), (5), and (6) present the decomposition of the total execution time (1). To wit: bstrap is spending over 50 percent
of its time in bootsamp drawing the resample, spending roughly 20 percent of its time thrashing the disk with files, and 25 percent
of its time in the machinations of post (and calculating the median of mpg, of course, but this takes virtually no time).
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There is little that can be done as a Stata programmer about column (6); I believe post is about as efficient as possible
given current Stata technology. This does suggest, however, that a new internal facility for posting results could speed bstrap
by 25 percent. post’s syntax was designed with an eye toward internalizing it but, as of now, we have no plans to do so.

The 20 percent spent in reloading the underlying data is probably not avoidable. Many Stata commands do allow frequency
weights and a bootsamp that left the data alone and merely set the weights would allow avoiding this cost, but this would make
the user program more complicated and, anyway, writing a program to create weights (as opposed to rearranging the data) is
difficult.

Attacking the 50-plus percent of time spent in bootsamp is likely to be the most profitable. bootsamp is an ado-file and
there is more than one way it could be coded.
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sts9 Johansen’s test for cointegration

Ken Heinecke and Charles Morris, Federal Reserve Bank of Kansas City, FAX 816-881-2199

Most time series techniques can be applied only to covariance stationary variables, that is, variables whose unconditional
means and variances are constant over time. Most variables encountered in empirical research, though, are nonstationary. For
example, both the mean and variance of gross domestic product (GDP) in the United States grow over time, driven by growth in
population, capital stock, and productivity. Techniques have been developed for transforming variables such as GDP to stationarity
for analysis, and for converting predictions of these stationary transformations back to the nonstationary form.

Cointegration is a relatively new and powerful approach to modeling nonstationary variables. Nonstationary variables like
GDP may grow without bound, but, they may also maintain a relatively constant relationship to other nonstationary variables. For
example, the relationship between GDP and its determinants, (population, capital, etc.) is fairly stable. If a linear combination of
two or more nonstationary variables is stationary, the variables in the linear combination are said to be cointegrated.

Stata has for some time offered commands for analyzing nonstationary and cointegrated variables. The Stata time series
library (sts7.4) offers graphical tests for nonstationarity (ac and pac), the Dickey—Fuller (dickey) and Phillips—Perron (ppunit)
tests for nonstationarity, the Engle—Granger limited-information test for cointegration (coint), and Hakkio’s implementation of
MacKinnon’s approximate asymptotic p-values for these tests (Hakkio 1994).

This insert describes mlcoint, an implementation of Johansen’s method for determining the number of cointegrating
relationships in a set of nonstationary variables. mlcoint also calculates Johansen’s maximum-likelihood estimates of the
cointegrating relationships (Johansen 1988; Johansen and Juselius 1990). Johansen’s method is a full-information technique
and is preferred to the Engle—Granger limited-information approach. This insert also describes lrcotest and wcotest, two
commands for testing restrictions on the estimated cointegrating relationships. The Johansen procedure requires the estimation
of vector autoregressions (VARs) and the calculation of eigenvalues of functions of residual matrices. As a consequence, our
implementation draws heavily both on the Stata time series library and on Stata’s matrix programming facility.
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The next section briefly explains cointegration and the Johansen procedure. The following section describes mlcoint—our
implementation of Johansen’s maximum-likelihood test. The next section is an application of mlcoint in a recent empirical
study. The final section illustrates 1rcotest and wcotest, the likelihood ratio and Wald tests, respectively, of restrictions on
the cointegrating relationships.

Cointegration and Johansen’s procedure

Nonstationary variables can often be transformed to stationary variables by differencing them. Thus, for example, the log of
GDP is nonstationary but the first difference of the log of GDP—that is, the growth rate of GDP—is stationary. In theory, it may
require several differences to induce stationarity, and the number of differences required is called the order of integration of the
original nonstationary variable, denoted by I(k) where k is the order of integration. (Integration is the inverse of differencing.)
In practice, most variables of interest are integrated of order 1.

When a linear combination of (1) variables is stationary, the variables are said to be cointegrated. Cointegrated variables
are bound together in the long run by one or more equilibrium relationships. Each of the variables is unbounded—is I(1)—but
the variables cannot drift indefinitely far apart.

It turns out (Engle and Granger, 1987) that variables are cointegrated if and only if they can be written in error correction
form, a particularly tractable and interpretable form. As an example, suppose that two I(1) variables, y; and z;, follow the
autoregressive distributed lag process

yr = p+a(L)y—1 + B(L)xi—1 + €,

where €; is an i.i.d. disturbance and «(L) and B(L) are pth order polynomials in the lag operator, L, that is,

Ly = yp-1,
Ly, = L(LF ty,)
=Ytk
and
a(L)=1—oyL — asl? — - — a,IP,
B(L)=1— 1L — Bol? — - — B,LP.

This equation is a very general specification; for instance, it could arise as one equation in a bivariate vector autoregression.
The terms in this equation can be rearranged to yield the error correction form

Ay = p+ a(L)Ays 1 + B(L)Axtfl — AYe—1 —y®1—1) + €8,

where (L) and (L) are (p — 1)-order polynomials in L. Ay, Az, and ¢ are stationary by assumption; thus the term
(yt—1 — yw¢—1) must also be stationary or A must be zero. If y; and x4 are not cointegrated, then there is no stationary linear
combination of the two variables, in which case A = 0. If, on the other hand, y; and z; are cointegrated, then (y¢—1 — yZt—1)
must be the unique stationary linear combination of these variables. A(y;_1 — yx;_1) is called an error correction mechanism
(ECM) and the vector (1,—y) is called the cointegrating vector for y; and ;.

The ECM represents an equilibrium relationship between y; and x;. Nonzero values of (y;_1 —yz_1) are errors—deviations
from the equilibrium relationship—and A is a speed-of-adjustment parameter that measures how rapidly these errors are corrected.

The notion of cointegration generalizes easily to a set of more than two (1) variables. Instead of a unique cointegrating
relationship, a set of n variables can have as many as n — 1 cointegrating vectors. Different cointegrating vectors may include
different subsets of the n variables.

The Johansen procedure is designed to test for the number of cointegrating relationships among a set of variables and to
estimate the error correction mechanisms. To explain the procedure, let y; be an n-vector of I(1) variables generated by the
process

Yt = A(L)Yyi—1 + €,

where A(L) is a pth-order matrix polynomial in L and €; is a vector of i.i.d. normal disturbances. As in our earlier example,
this VAR can be rewritten as the vector error correction model

Ay = A(L)Ayp—1 + Iyi—1 + €,
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where A is a (p — 1)-order polynomial in the lag operator. Johansen (1988) shows that the number of cointegrating vectors for
the elements of y; depends on the rank of II. There are three possibilities:

1. If II has full rank (rank(II) = n), there are no cointegrating vectors and the variables in y are stationary. To see this,
rewrite the error correction model as

Y1 = I YAy, — A(L)Ays—1 — ).

All the terms on the right-hand-side of this equation are stationary, thus y; 1 is stationary. Thus rank(II) = n contradicts
the assumption that the elements of y; are I(1), and we ignore this possibility in what follows.

2. If rank(H) = 0, then II = 0 and, again, there are no cointegrating vectors. In this case, each element of y has an
independent unit root, and the VAR can be consistently estimated in first differences.

3. If rank(IT) = k < n, the number of cointegrating vectors equals &, the rank of IL. In this case, I can be decomposed as
af' =TI,

where 3’ is a k X n matrix of cointegrating vectors and « is an n X k matrix of weights (speed-of-adjustment parameters)
on the cointegrating vectors (analogous to A in the two-variable model). Specifically, the rows of 3’ are the k cointegrating
vectors and the (4, j)-th element of « is the weight (speed-of-adjustment) of the jth cointegrating vector in the ith equation.

Johansen proposes two likelihood ratio tests for determining the rank of II. The rank of II is equal to the number of
nonzero eigenvalues of II. Thus, the Johansen tests amount to tests for the number of nonzero eigenvalues. Johansen’s first
test, the maximal eigenvalue test, is really a sequence of tests. The estimated eigenvalues of II are sorted in descending order.
(The eigenvalues are guaranteed to be nonnegative real numbers.) The maximal eigenvalue statistics are simple functions of the
eigenvalues (see Johansen (1988) for details). The kth statistic provides a test of the null hypothesis that rank(II) = k against
the alternative that rank(H) = k + 1. Johansen’s second test, the eigenvalue trace test, is related to the first. The eigenvalue
trace statistics are the running sums of the maximal eigenvalue statistics. The kth eigenvalue trace statistic provides a test of the
null hypothesis that rank(II) < k against the alternative that rank(II) > k. Critical values for these tests for systems of up to
11 variables can be found in Osterwald-Lenum (1992).

In order to conduct the Johansen tests, the number of lags in A(L) must be known. The test is derived under the assumption
that €; is i.i.d. normal. One practical strategy is to estimate the vector error correction model for a variety of lag lengths, then
to select the smallest lag length that yields i.i.d normal residuals. In practice, it is simpler to estimate the original VAR of the
nonstationary variables than the error correction model. This procedure works because the estimated residuals from the two forms
are identical. Because the model is a VAR, the estimates and tests of the residuals can be conducted one equation at a time.

mlcoint: an implementation of the Johansen procedure

mlcoint uses Johansen’s (1988) method to calculate maximum-likelihood estimates of the matrix of cointegrating vectors,
(', and the matrix of weights, a, for a system of variables. mlcoint also reports the eigenvalues of IT and the two sequences
of test statistics for the number of cointegrating vectors: the maximal eigenvalue statistics and the trace statistics. The syntax of
mlcoint is

mlcoint varlist [if exp] [in range] [, noconstant lags(#) nonormal regress standard static(varlist) ]
noconstant suppresses the constant.
lags (#) specifies the number of lags in the VAR relating the levels of the variables in the varlist. The default is one lag.
normal suppresses the display of « and (.
regress displays the regressions in the VAR, which are normally suppressed.
standard displays the standardized versions of « and (3'. By default, the normalized versions are displayed.

static (varlist) specifies variables that enter the VAR but that are not part of the system of cointegrated variables. These are
typically static variables, such as dummy variables for particular time periods.
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Example: The demand for and supply of bank loans

Becketti and Morris (1993) consider whether nonbank sources of credit have become better substitutes for bank loans in
the United States. Because monetary policy operates, in part, by influencing the availability of bank credit, the answer to this
question has important implications for the conduct of monetary policy. Becketti and Morris estimate a reduced-form model for
bank loans and look for the shifts in the reduced-form parameters implied by an increase in the substitutability between bank
and nonbank loans.

As is frequently the case, theory provides no guidance on the dynamic specification of the demand for and supply of bank
loans. Becketti and Morris test for the cointegration of bank loans with related variables as part of their specification search. The
variables in the model are the log of commercial and industrial (C&I) loans made by banks, the log of business fixed investment,
the log of business inventories, the log of corporate net cash flow, the federal funds rate, a measure of the mortgage interest rate,
and the yield on 3-month Treasury bills. The model includes a dummy variable that is equal to one in the first quarter of 1973,
when credit controls temporarily inverted the normal relationship between the rate on bank loans and the commercial paper rate.
The data in this example cover the period from the fourth quarter of 1954 through the fourth quarter of 1974. (The data used in
the paper cover a longer period. See the paper for more details.)

. use test

(1954:Q4 to 1974:Q4)

. describe

Contains data from test.dta
Obs: 81 (max= 13576) 1954:Q4 to 1974:Q4

Vars: 11 (max=  250)

Width: 37 (max= 502)
1. year int %8.0g Year
2. quarter int %8.0g quarter Quarter
3. date float %9.0g Date
4. lci float %9.0g log of comm & industrial loans
5. 1lfinr float %9.0g log of bus. fixed investment
6. linvb float %9.0g log of business inventories
7. lcash float %9.0g log of corporate net cash flow
8. rff float %9.0g federal funds rate
9. rmort float %9.0g 2ndary mkt yld FHA mortgages
10. rtb3 float %9.0g 3-month T-bill rate

11. D731 byte 78.0g 1 if 1973:Q1, else 0

Sorted by: year quarter

We use mlcoint to test for cointegrating vectors and to estimate the standardized values of o and 3’. The decomposition
af’ =11 does not produce unique estimates of o and (3’; they are subject to normalization. By default, mlcoint displays the
normalization used by Johansen and Juselius. The standard option renormalizes (3’ so that the elements along the main diagonal
are set to 1. This standardization frequently makes the cointegrating vectors easier to interpret. (o and 3’ can be suppressed
entirely by specifying the nonormal option.)

. mlcoint lci 1lfinr linvb lcash rff rmort rtb3, lags(3) static(D731)

Maximal
eigenvalue Trace
Eigenvalues statistics statistics

.49810389 53.770247 143.20193
.35592582 34.315427 89.431685
.22690901 20.073965  55.116258
.20991048 18.377504  35.042293
.1361805 11.418533 16.664789
.05269449 4.2224233  5.2462557
.01304029 1.0238324 1.0238324

Normalized Beta”

lci 1finr linvb lcash rff rmort
vecl 8.2111169 2.3373851 9.9509562 -11.020102 141.8105 -131.8916
vec2 -35.152846 19.561222 2.5833305 22.152547 69.711541 -5.5859522
vec3 -18.066601 4.1278469 13.575604 7.8640453 -387.84061 135.15789
vec4 -8.0394895 1.8778115 -32.428552 25.31537 84.649501 464.31987
vecb -4.7748735 14.256283 -17.767234 -1.6379929 138.97698 199.25813
vec6 -21.506409 31.853869 8.7072734 -9.2866495 -47.326449 -63.608341
vecT 6.5176516 -22.299819 22.304887 -2.4118364 -36.796837 6.7258063
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rtb3
vecl -246.38517
vec2 54.039207
vec3 479.71214
vecd -342.99164
vecb -157.53091
vec6 35.270378
vecT 28.17488

Normalized Alpha

vecl vec2 vec3 vecd vech vec6

lci -.00103048 .00346921 -.00096933 .00109281 -.00289944 -.0001909
1finr .00522932 .00174119 -.00153536 .00072536 -.00378395 -.00274383
linvb .00300533 .00176897 .0012646 -.00075802 -.00122996 .00022439
lcash .01314884 .0005851 -.00232835 -.00249405 -.00692 -.00180451
rff -.00131544 -.00141552 -.00031901 -.00031189 -.00149853 .0001836
rmort -.00050176 -.0001966 -.0004696 -.00053419 -.00022372 .00005604

rtb3 .00027168 -.00090946

vecT

lci .00016255
1finr -.00018434
linvb .00011762
lcash .00224957
rff -.00015801
rmort -.00008605
rtb3 -.00014028

.00103893 .00011416 -.00100533 .00026513

The 5 percent critical values for the maximal eigenvalue and trace statistics (as reported by Osterwald-Lenum’s Table 1) are

Maximal
eigenvalue Trace
n—rank(II) statistic statistic
1 3.76 3.76
2 14.07 15.41
3 20.97 29.68
4 27.07 47.21
5 33.46 68.52
6 39.37 94.15
7 45.28 124.24
8 51.42 156.00
9 57.12 192.89
10 62.81 233.13
11 68.83 271.71

Comparing the maximal eigenvalue statistics and the trace statistics to these critical values suggests that this system has one
cointegrating vector. This vector is the first row of ', that is

B'11,.] = (8.21,2.34,9.95, —11.02, 141.81, —131.89, —246.39).

The corresponding weights are found in the first column of «. For example, the weight of the cointegrating vector (the first row
of ') in the fourth equation (the cash flow equation) is «[4,1] = .01.

Testing restrictions on elements of the cointegrating vectors

By assumption, II, o, and 3’ have rank less than n. But the maximum-likelihood estimates reported by mlcoint are
full-rank. (Note that all of the estimated eigenvalues are greater than zero.) The maximal eigenvalue and trace statistics indicate
the true rank of IT and, hence, the number of cointegrating vectors in 3’

It is also useful to know which elements in a cointegrating vector are truly nonzero. Since each cointegrating vector represents
a different equilibrium relationship among the variables in the system, theory sometimes suggests credible zero restrictions. For
instance, one cointegrating vector may represent an equilibrium relationship among the quantity variables in the system. Another
cointegrating vector may represent an equilibrium constraint across the prices in the system. Imposing credible zero restrictions
can improve the estimates of the nonzero parameters.

Johansen and Juselius (1990) propose likelihood ratio and Wald tests for restrictions on the cointegration vectors. lrcotest
and wcotest implement the likelihood ratio and Wald tests, respectively. These programs can be used to test the null hypothesis
that one variable or several variables jointly do not enter the cointegrating vectors. lrcotest and wcotest are less general
than the tests proposed by Johansen and Juselius because the programs cannot test restrictions on linear combinations of the
variables. 1lrcotest and wcotest can only be run after mlcoint.
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The syntax of these two programs is

lrcotest varlist [ , cirel(#) restrict ]

wcotest varlist [, cirel (#) ]

cirel (#) specifies the number of cointegrating relationships in the system. The default is one.

restrict requests the display of the restricted estimates. These include the restricted eigenvalues, normalized eigenvectors, and
normalized weights.

The likelihood ratio test estimates the restricted model and compares the likelihood of the restricted to the unrestricted
model. The Wald test does not require reestimation, hence wcotest cannot display the restricted estimates.

We illustrate lrcotest and wcotest by applying them to the data from the previous example. Looking back at the
estimated 3, note that the coefficients on the interest rate variables in the cointegrating vector are an order of magnitude larger
than the other coefficients, which multiplied quantity variables. This difference in coefficient size could reflect a difference in
the scaling or variability of the interest rate and quantity variables or it may indicate that this cointegrating vector captures an
equilibrium relationship that involves only the interest rates.

The likelihood ratio and Wald tests both indicate that the interest rate variables are included in the cointegrating vector.
The null hypothesis that the interest rate variables do not enter is rejected at the 1 percent level.

. wcotest rff rmort rtb3

Cointegration: Wald test chi2(3) = 46.08
Prob > chi2 =0

. lrcotest rff rmort rtb3, restrict

Eigenvalues from restricted model
.41480211
.22592182
.06388363
.01543231
Normalized restricted Beta“
lci 1finr linvb lcash rff rmort
vecl -18.156396 13.028547 10.753804  7.1382265 0 0
rtb3
vecl 0
Normalized restricted Alpha
vecl
lci .00029605
1finr .00401968
linvb .00351447
lcash .00871831
rff -.00197144
rmort -.00072726
rtb3 -.00074543

Cointegration: likelihood ratio test chi2(3) = 11.98
Prob > chi2 = .01

Each of the interest rate variables is individually significant as well. For example, here are the tests of the 3-month Treasury bill
yield.

. lrcotest rtb3

Cointegration: likelihood ratio test chi2(1) = 5.79
Prob > chi2 = .02

. wcotest rtb3

Cointegration: Wald test chi2(1) = 12.45
Prob > chi2 =0

The situation is less clear-cut with regard to the quantity variables. The four quantity variables—C&I loans, business fixed
investment, business inventories, and corporate cash flow—are jointly significant.
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. lrcotest lci 1lfinr linvb lcash, restrict

Eigenvalues from restricted model

.2948431
.21988827
.11002065
Normalized restricted Beta“
lci 1finr linvb lcash rff rmort
vecl 0 0 0 0 -108.2608 234.01531
rtb3

vecl -14.264512

Normalized restricted Alpha
vecl
lci -.00276866
1finr .00026379
linvb .00124703
lcash .0026014
rff -.00119857
rmort -.00077027
rtb3 -.00060523

Cointegration: likelihood ratio test chi2(4) = 26.52

Individually, however, all the variables except cash flow and possibly inventories are insignificant.

. wcotest lci

Cointegration: Wald test chi2(1) = 2.42
Prob > chi2 = .12

. wcotest 1lfinr

Cointegration: Wald test chi2(1) = .2
Prob > chi2 = .66

. wcotest linvb

Cointegration: Wald test chi2(1) = 3.
Prob > chi2 = .06

[}

. wcotest lcash
Cointegration: Wald test chi2(1) = 7.3

These results are analyzed in detail in Becketti and Morris.

Notes

The matrix formulas for II, the maximum-likelihood estimate of II, can be found in Johansen and Juselius. You must have
the Stata time series library installed in order to use mlcoint, lrcotest, and wcotest. You can install this library either by
copying it to your personal ado directory or by storing it in a separate directory that you add to your adopath. mlcoint calls

tsfit to estimate the VARs used to calculate II. The lagged variables created in this process are left in your data set. Finally,
as noted above, mlcoint must be run before lrcotest or wcotest can be used.
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zz3.5 Computerized index for the STB (Update) ‘

William Gould, Stata Corporation, FAX 409-696-4601

The STBinformer is a computerized index to every article and program published in the STB. The command (and entire
syntax) to run the STBinformer is stb. Once the program is running, you can get complete instructions for searching the index
by typing ? for help or 7?7 for more detailed help.

The STBinformer appeared for the first time on the STB-16 distribution diskette and included indices for the first fifteen
issues of the STB. The STB-21 distribution diskette contains an updated version of the STBinformer that includes indices for the
first twenty issues of the STB. As the original insert stated, I intend to include an updated copy of this computerized index on
every STB diskette. I encourage you to contact me with suggestions for changes and improvements in the program.
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