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an58 Change of editors

Sean Becketti, Stata Technical Bulletin

This, the thirtieth issue of the Stata Technical Bulletin, is my last as editor. I am pleased to report that H. Joseph Newton
is the new editor of the STB starting with the next issue. Professor Newton is a distinguished statistician and the head of the
statistics department at Texas A&M University. He has extensive experience in time series analysis and time series computing,
and he is the author of TIMESLAB: A Time Series Analysis Laboratory, a time series text and computer software package. He is
also the current President of the Interface Foundation of North America, the organizing body of the annual Symposium on the
Interface of Computing Science and Statistics, the largest annual meeting in the area of computational statistics. Under his able
guidance, I am confident the STB will grow even more useful and interesting to the community of Stata users than it is now.

In my three years as editor, I have tried to remain as invisible as possible in order to let the readers and contributors
determine the character of the STB. For instance, I have never listed my professional affiliation in the STB. As it happens, my
professional training is as an economist and econometrician, but I hope and believe that this fact could not be discerned from
the list of articles I have chosen to include in the STB (although it is fairly obvious from the examples in my own inserts). In
addition, I subscribe to and read all the messages sent to the Stata listserver, but, except in special circumstances, I have not
sent messages myself, again to avoid influencing the direction of debate and comment.

Now I would like to break with precedent. Since this is my last issue as editor, I feel it is appropriate to share with you
some of my personal views about the past, present, and future of Stata and the STB.

I had the good fortune to be present at the birth of Stata. As a graduate student, I supported myself by working as a
programmer on another commercial statistics package. As an assistant professor at UCLA, I had worked with Stata’s creators
on research projects unrelated to statistical software, but my previous programming experience was common knowledge. As a
consequence, when they decided to create a new statistical package for PCs, I was asked to help test the early versions and to
write a bit of the documentation.

I have to confess that I began the project with a skeptical attitude. PCs were just emerging from the toy stage, and their
capabilities were limited. Also, my prior experience convinced me that I knew the right way to design statistical software and
user interfaces. In my first meetings with Stata’s development team, it became clear that we disagreed on the entire design of
Stata.

Fortunately for you, the development team ignored my prejudices and produced the Stata you know and use. Instead of
designing a pale imitation of a mainframe package, they completely rethought the interface between the statistician/data analyst
and the software. New Stata users are sometimes confused initially—the most common question on the listserver seems to be
“Why doesn’t Stata implement procedure X the same way as package Y?”—but experienced users appreciate that Stata removes
the barriers between you and your data. When Stata is at its best, it almost seems to disappear. You feel as if you are operating
directly on your data. In my career, I have used more statistical programs than almost anyone alive, and I sincerely believe
that Stata is the most convenient and most powerful package for the sophisticated user. Moreover, Stata’s logical design and
extensibility guarantee that it will never become outdated.

When the STB was introduced, I was skeptical again. I wasn’t convinced that enough Stata users would invest the time
and effort to produce high-quality Stata programs and readable, informative articles. Again, I was wrong. I was hooked as a
reader with the first issue, and, by STB-7, I was a contributor. Every year, the variety, utility, and sophistication of STB inserts
has increased noticeably. A key contribution of the STB has been its role in accelerating the development cycle. Many inserts
have stimulated other users to contribute extensions and refinements of the initial program. In several of these cases, the high
level of user interest and involvement convinced the development team at StataCorp to build these new functions into the next
version of Stata.

After three years as editor of the STB, I can see changes in the Stata community that are changing the character and role of
the STB. Three years ago, the STB was the primary channel for user communication. There was no Stata listserver, nor was there
a Stata Web site. (In fact, there was no Web.) These innovations have increased the amount and quality of interaction within the
Stata community far beyond anything imaginable at the time.

The STB has evolved, and will continue to evolve, in response to these changes. Early in the life of the STB, the pages were
filled with questions from readers; these now are handled almost entirely by the listserver, the Web site, and StataCorp’s EMAIL
and help line services. The listserver also provides many of the “quick-and-dirty” Stata programs that comprised a large share
of the inserts in the first few volumes.

The STB now specializes in programs of increasing sophistication, programs that would be difficult to distribute, explain
and document via EMAIL. Many of the inserts are much longer, reflecting the complexity of these programs.

Another sign of the growing sophistication of STB submissions is the number that integrate Stata programs with scripts and
programs in other languages: C, Pascal, Awk, Perl, and so on. This approach breaks down the boundaries between Stata and the
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rest of the computing environment, eliminates any limits on what Stata (properly assisted) can do and emphasizes the relative
strengths of Stata vis-a-vis other common software tools. I expect this trend to accelerate in the future.

Despite the increasing power and complexity of some of the programs published in recent issues, the simpler data management
programs we publish continue to be the most popular contributions. Regardless of one’s field of research, data still have to be
prepared for estimation and reporting, and programs that make this chore easier will always play a prominent role in the STB.

In closing, I want to thank the many contributors who have made my job as editor interesting and fulfilling. You ultimately
are responsible for the STB. I have simply helped to communicate your programs and your ideas to the wider Stata community.
Without you, there is no STB and no Stata. I regret that I have been unable to meet most of you in person. Nonetheless, I feel I
know several of you well. Thank you for help.

dm41 Online documentation for _result() contents

John R. Gleason, Syracuse University, 73241.717 @compuserve.com

Stata programs often save useful results in either S_# objects, or in _result (). The latter possibility is available only to
built-in commands (for example, correlate), and not directly to programs (such as alpha) which are loaded from ado-files. On
occasion, a user may wish to know whether _result () contains saved values from an operation just performed—for example,
to capture some result to greater precision than shown on the screen. (The command disp_res will display the current contents
of _result (), but without any explanation.) More commonly, a program author wants to invoke a built-in command to perform
some necessary calculation, and needs to know which command(s) will deposit the required value in _result(), and at which
position.

In either case, one will generally need to consult the Saved Results section of (possibly many) entries scattered through
Volumes 2 and 3 of the Reference Manual. The search can be tedious, partly because about 50 commands are acknowledged to
save in _result (), directly or by invoking other commands that do so. And, while the contents of S_# macros can be divined
by examining ado-files, this technique fails for _result() because a built-in command has no ado-file. Only the Reference
Manual has the required information, and it may not be close at hand.

This insert offers a solution, namely, online documentation for the contents of _result (). The Saved Results section of
the Reference Manual entry for each command that saves in _result () has been entered into one of 16 Stata help files. These
.hlp files are formatted, and used, exactly as though they contained help for ado-files named fi.ado, where fn is some filename.
In particular, these files should be copied to a directory somewhere in the S_ADO path, just as one might install a new command
and its help file; see [2] ado. Having done so, typing ‘help fi’ displays the contents of fn.hlp on the screen, but there are
several other ways to use the 16 .hlp files.

If you want to know what a specific command saves in _result (), there is the program _result, with syntax
_result { cmdname | _all }
where cmdname is the name of a Stata program or built-in command. If cmdname deposits in _result (), then _result finds

and displays the appropriate help file; otherwise, it reports that the Reference Manual does not document cmdname as saving in
_result (). For instance, to learn what the command correlate saves,

. _result corr

_result( ) for correlate

no. of observations

(not used)

1 or variance of 1st variable
correlation or covariance

1 or variance of 2nd variable

G WN e

Thus, for example, correlate deposits the correlation or covariance that it computes in _result (4). On the other hand, canon
is a command that does not save in _result().

. _result canon
_result() contents not documented for canon
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Note that for certain matrix commands, cmdname consists of two words; for example,

. _result mat ml

_result( ) for matrix mlout

1  no. of observations
3 degrees of freedom (if specified)

In all cases, cmdname may be abbreviated exactly as if it were itself the command being executed. Finally, note that ‘_result
_all’ will display all of the help files, with command names appearing in quasi-alphabetical order.

Another way to examine the help files for _result () is to use the index in the file _res_idx.hlp. This index lists each
command that, according to the Reference Manual, saves in _result (), and beside it, the filename of the .hlp file pertinent
to that command. The index can be viewed with help:

. help _res_idx

_result() Help File Index
Manual Command Help File

Section Name <fn>.hlp
[54] count _resb5dcn
[5d] describe _resbdds
[5d] inspect _resbdin
[5s] _qreg _resbsqr
[5s] anova _resbsrg

(etc.)

In this display, commands that save in _result () are listed in the second column, with the filename fnn of the relevant help file
shown in the third column. The commands are sorted alphabetically within Reference Manual sections, which are displayed in
the first column. Thus, to learn what describe saves in _result (), you could type

. help _resbdds

_result( ) for describe

1 no. of observations
2 no. of variables
3 width

(etc.)

Better still, in Stata for Windows, you can view _res_idx.hlp—or any other .hlp file—with winhelp: Click on Help at
the top of the Stata window, type _res_idx in the edit box, click the button next to Stata command (if necessary), and then
click on OK. The contents of _res_idx.hlp will then be displayed in a scrollable window, with both command names and help
filenames highlighted in green, indicating Windows hypertext links to other help files. Thus, if you click on the anova item,
Stata’s help file for the anova command will be displayed. If instead you click on the _resb5srg item, the help file explaining
the contents of _result() following the anova command will be displayed. (See [1] help and Getting Started with Stata for
Windows for additional detail.)

As an alternative, the entire set of 16 .hlp files has been collected into a single file named _res_all.hlp. The entries
in this file are in quasi-alphabetical order—quasi-, because in some cases one entry serves for several commands. Here, for
example, is the entry for commands related to [7] maximize; it is also the help file _res7max.hlp:

_result( ) for blogit bprobit clogit cnreg cox dprobit
logistic logit mlogit ologit oprobit  probit
swcnreg — SWCOX swlogis swlogit swologit swoprbt

swprobit swtobit  tobit

[ury

no. of observations
log-likelihood value
3 chi-square degrees of freedom

N

(etc.)

Note that typing ‘help _res_all’ is equivalent to the command ‘_result _all’.

The program author trying to decide how to place a necessary value in _result() might type ‘help _res_all’. But a
better way is to load _res_all.hlp into a text editor, and allow the editor’s Find or Search command to do most of the work.



Stata Technical Bulletin 5

For this reason, the contents of _res_all.hlp have also been stored in an ASCII text file named _res_all.txt. The only
difference between the two files is that, in _res_all.txt, all highlighting characters (= and @) have been removed, and each
occurrence of ‘.-’ has been expanded to a string of 79 ‘=’ characters—which makes _res_all.txt easier to read. To use, load
_res_all.txt into an editor, choose a word or phrase describing the computed result that is required, and tell the editor to find
text containing that word or phrase.

To illustrate, suppose your program needs to know how many observations on some float variable happen to be integer-
valued. You are about to program that calculation when it occurs to you that a command may already be available for this task.
You make an inspired guess and tell your editor to search for the word ‘integer’ in _res_all.txt. A popular shareware editor
for the Windows environment produced this result:

Searching for: integer
_res_all.txt(73): 5 no. of negative, integer observations

_res_all.txt(74): 6 no. of positive, integer observations
Found 2 occurrence(s)

(The numbers in parentheses after _res_all.txt are line numbers.) Moving to lines 73—74 reveals that they are part of the entry
for the command inspect, and that following inspect, the information you require will be saved in _result(3), _result(5),
and _result(6).

ip8.1 An even more enhanced for command

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011) 44 181 740 3119

Royston’s (1995) for2 command overcame certain limitations of Stata’s for command, but it is still limited in that only
one forlist is allowed. for3 allows multiple forlists, which significantly increases its potential applications.

As a simple artificial, but instructive, example, suppose I have three variables called a1, a3 and a5 whose means I wish to
compare in a paired sense with those of three other variables, va, vb and vc. That is, I want to compare al with va, a3 with
vb and a5 with ve. I could of course type

. ttest al = va
. ttest a3 = vb

. ttest ab = vc

to perform the three paired Student ¢ tests, which is acceptable if somewhat tedious to key in. A compact version using for3 is

. for3 al a3 ab \ va vb vc : ttest @=0@Q

If the two sets of three variables were stored in the right order then

. for3 al-ab \ va-vc : ttest ©=@Q

would achieve the same result, as would

. for3 1-5/2 \ va-vc, ltype(numeric varlist) : ttest a@=0@
. for3 1-5/2 \ va-vc, ltype(n) : ttest a@=0@

The principle is that the forlist(s) which follow for3 are matched with the @ symbols which follow the colon and the Stata
command (in this case, ttest). In the first example, the items in the first forlist (a1l a3 ab) are substituted for the single @ and
those in the second forlist (va vb vc) for @@. There is no upper limit to the number of forlists allowed.

The forlists are separated by a backslash (\).

for3 has a new option not found in for2: 1type(typelist). This defines the type of each forlist in the same order as
the forlists appear. Permissible types are varlist (the default), any and numeric. The last two of these are identical to the
any and numeric options in for2—see the help file for3.hlp for details. In the third example above, 1-5/2 is a numeric
forlist and is expanded by for3 to 1 3 5, whereas va-vc is of type varlist and is expanded to va vb vc. Items varlist,
any and numeric in 1type() may be abbreviated to v, a and n respectively.
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The syntax of for3 is

for3 list] [ \list2 [ \list3 ]] [ , noheader ltype(rype [ type [ type ...]]) pause nostop ] 1 stata_cmd
The other options are described in the help file for3.hlp.

Special characters

You may occasionally wish to include a comma or a colon in a forlist of type any. To avoid being mistaken for part of
the syntax of the for3 command itself, these characters must be repeated, so :: will be interpreted as : and ,, as , . If a
forlist of type any is to contain embedded space(s), they must be entered as #’s. For example, the forlist item if#x==1 will be
interpreted as if x==1 when stata_cmd is executed.

The examples given above are very simple; there are many other possible uses of for3. As always, this is work in progress,
and I would be happy to have feedback from users regarding improvements, limitations, etc.

Acknowledgment

I am grateful to Tony Tam for suggesting the idea behind for3.

References
Royston, P. 1995. ip8: An enhanced for command. Stata Technical Bulletin 26: 12.

sg49 An improved command for paired t tests

John R. Gleason, Syracuse University, 73241.717 @compuserve.com

Stata’s ttest command offers two ways to perform the classic matched-pairs (repeated measures) t-test; see [5s] ttest. One
possibility is that the sample pairs (say, y; and y2) are stored as two distinct variables. The other approach requires that the
difference between paired observations (say, d = ya — y1) be stored as a variable. However, it often happens that y; and ys are
stored as values of a single response variable, corresponding to different levels of a blocking or within-subjects factor. In this
case, one would need to create one of the two situations assumed by the ttest command. While this is not an insurmountable
problem, it does require a bit of data manipulation that can be inconvenient and perhaps error-prone, especially for a novice
Stata user. One could, of course, obtain the correct p-value and the squared ¢ statistic by using the anova command. This would
require no data manipulation, but the resulting output would not include means and standard deviations (or standard errors), and
would likely be unhelpful to many novice users.

This insert presents a command rmttest that performs the repeated measures (or, matched-pairs) ¢ test when pairs y; and
yo are stored as values of a single response variable y. In addition to automatically manipulating the data as required, rmttest
offers options not available from ttest, including confidence intervals for the population means, and a scatterplot of the paired
samples to help visualize the results of the ¢ test and confidence intervals.

The syntax of rmttest is

rmttest depvar [ if exp ] [ in range ] [ ,
by (byvar [ vall val2 |) ci graph id(idvar) level(cilevel) graph_options ]

depvar is the dependent variable (y) among whose values the paired samples are to be found. by (byvar) and id(idvar) are not
in fact optional: byvar is a variable (typically, a within-subjects factor) two of whose values select the samples to be compared.
idvar is a variable (typically containing subject identifiers) that defines the pairings of values in the two samples. The option
ci requests confidence intervals for each mean; level (cilevel) sets the confidence level. (The default value of cilevel is .95.)
The option graph requests a scatterplot of the sample pairs. graph_options stands for most of the options allowed with graph,
twoway; such options are ignored unless graph is present. The following examples explain these items in greater detail.

To illustrate, consider some results on maze learning in rats, given in Table 11.26 of Bliss (1967, p. 327), who attributed
these data to an earlier unpublished report by Kaplan et al. (1951). The data also appear in the file maze.dta included with this
insert:
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. use maze
(Maze learning in rats)

. describe

Contains data from maze.dta

Obs: 50 (max= 30486) Maze learning in rats
Vars: 4 (max= 99) 27 Jan 1996 12:50
Width: 8 (max=  200)

1. rt int %8.0g Running time (sec.)

2. rat byte %9.0g Rat no.

3. trial byte %9.0g Trial no.

4. 110_rt float %9.0g log10(Running time)
Sorted by:

The basic response variable (rt) is the time, in seconds, required for a rat to run through a certain maze, measured for each of
10 rats on five non-consecutive trials of a learning experiment:

. tabulate trial, sum(rt)
| Summary of Running time (sec.)

Trial no. | Mean Std. Dev. Freq.
2 | 216.4 124.2839 10

5 | 105 68.071857 10

8 | 50.3  31.552602 10

11 | 39.3 23.967802 10

14 | 19 9.2376043 10

Total | 86  95.694667 50

However, Bliss chose (with good reason) to analyze the logarithm of the running times (110_rt).
The usual within-subjects ANOVA for 110_rt is easily performed,

. anova 110 rat trial

Number of obs = 50 R-squared = 0.8923
Root MSE = .178866 Adj R-squared = 0.8534
Source | Partial SS daf MS F Prob > F
Model | 9.54356043 13 .734120033 22.95 0.0000
I
rat | 3.03461679 9 .337179644 10.54 0.0000
trial | 6.50894364 4 1.62723591 50.86 0.0000
|
Residual | 1.15175391 36 .031993164

Total | 10.6953143 49 .218271721

and M SRegidual = 0-032 can be used as a variance estimate to compare individual trials. One might prefer instead to use paired
t-tests, perhaps to avoid the sphericity assumption on which the foregoing ANOVA is based.

Suppose we wish to compare the mean of the log running times on trials 2 and 5 using a paired ¢ test :

. rmttest 110 if trial==2 | trial==5, by(trial) id(rat)

trial | Obs Mean Std. Err.
2 | 10 2.2563779 .0952236
5 | 10 1.947757 .0824908
Diff | 10 -.3060223 .082314

Ho: mean(Diff) = 0 af = 9 t = -3.72 Pr > |t| = 0.0048

Thus, there was a significant decrease in mean log running time between trials 2 and 5. Notice that in this example, the 20
observations are paired in terms of the idvar rat, the two samples correspond to two levels of the byvar trial, and that those
two trials are selected by the if clause. Both the by and id options must be present.

It may seem awkward to select values of the byvar with an if clause, and more natural to simply name the byvar and the
relevant pair of its values; rmttest also permits that syntax. Suppose we wish to compare trials 5 and 11 of the experiment,
and obtain a 95% confidence interval for the mean log running time on each trial, as well as for the difference in those means:
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. rmttest 110, by(trial 5 11) id(rat) ci

trial | Obs Mean Std. Err. [95% Conf. Intervall
5 | 10 1.947757 .0824908 1.76115 2.134364
11 | 10 1.487385 .1132231 1.231256 1.743513
Diff | 10 -.4603722 .1165071 -.7239294 -.1968149

Ho: mean(Diff) = 0 df = 9 t = -3.95 Pr > |t| = 0.0033

In this style, by (byvar vall val2) serves both to name the byvar and to confine the analysis to cases where byvar = vall or
byvar = val2. An if or in clause can still be used to select observations with respect to other criteria.

Graphing the data for a paired ¢ test

A scatterplot of the data used to perform a paired ¢ test may be helpful in several ways—for example, to serve as a quick
check for bivariate outliers, or to visualize the confidence intervals produced by the ci option. The graph option produces
such scatterplots after performing the ¢ test . To illustrate, suppose we wish to compare the rats’ performance on trials 11 and
14, and to examine the data both with respect to the observed running times (rt) and their log transforms (110_rt). First, the
comparison in terms of rt:

. rmttest rt, by(trial 11 14) id(rat) gr xlab ylab

trial | Obs Mean Std. Err.
11 | 10 39.3 7.579285
14 | 10 19 2.921187
Diff | 10 -20.3 5.587784

Ho: mean(Diff) = 0 df = 9 t = -3.63

Pr > It

= 0.0055

80

60

14)

40

rt (trial

20

0 20 40 60 80
rt (trial == 11)

Figure 1

Figure 1 shows the 10 running times from trial 11 on the horizontal axis, and trial 14 times on the vertical axis. Note that both
axes are automatically labeled with the appropriate values of byvar (although each label can be suppressed with titles). The
diagonal line is the line of equality (ordinate = abscissa); under the null hypothesis of the paired ¢ test, the sample pairs should
scatter randomly about that line. It is clear from Figure 1 that each of the 10 rats ran the maze in less time on trial 14 than on
trial 11.

Secondly, here is the comparison of trials 11 and 14 on the log scale, along with 97.5% confidence intervals:

. rmttest 110, by(trial 11 14) id(rat) gr xlab ylab ci 1(.975)

trial | Obs Mean Std. Err. [97.5% Conf. Intervall
11 | 10 1.487385 .1132231 1.18338 1.79139
14 | 10 1.222252 .078611 1.011181 1.433323
Diff | 10 -.2651327 .0534877 -.4087478 -.1215176
Ho: mean(Diff) = 0 df = 9 t = -4.96 Pr > |t| = 0.0008
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(trial == 14)

110_rt
1

T T T
5 1 1.5 2
110_rt (trial == 11)

Figure 2

Figure 2 displays an additional feature that is activated by supplying both the graph and ci options. The three tick marks on
the top axis correspond to the sample mean log running time on day 11 (1.487) and the 97.5% confidence limits (1.183 and
1.791) for the population mean. Similarly, the tick marks on the right axis represent the sample mean on day 14 and associated
97.5% confidence limits.

Remarks

1. As noted in the examples above, observations may be selected by combinations of if and in clauses and the required
by option. However accomplished, the selection must result in a set of observations in which byvar assumes exactly two
distinct values.

2. Typically, byvar and idvar will be integer-valued variables. It is possible to use a variable of type float as the byvar, but
because of precision problems, some care must be taken; see [2] precision. For example, when selecting two byvar values
with an if clause, use if x==float(1.5) | x==float(2.5) rather than if x==1.5 | x==2.5. If the byvar values are
selected with the by option, the float function is automatically applied when byvar is of type float. That is, if x is
a float variable, typing by(x 1.5 2.5) has the same effect as if you had typed by(x float(1.5) float(2.5)) —
which, by the way, is not permitted.

3. rmttest uses its own level option, rather than Stata’s S_level parameter, to set confidence intervals. The default, as
with S_level, is for 95% confidence. The level option argument can be supplied either as a fraction or as a percentage;
that is, 1level(.975) and level(97.5) both request 97.5% confidence intervals.

4. Most options available with Stata’s graph, twoway command may be supplied along with rmttest’s graph option. Here
are the exceptions: the ttick and rtick options are unavailable when the ci option is in effect, as is the connect option
in any case. The symbol option may be used to set the plot symbol for the data (the default is o), but the line of equality
is always drawn with an invisible symbol. If the pen option is supplied, its first and second arguments select the pens for
plotting the data, and drawing the line of equality, respectively.

References
Bliss, C. I. 1967. Statistics in Biology, Vol. 1. New York: McGraw—Hill.

Kaplan, S. J., C. D. Tait, P. D. Wall, and R. B. Payne. 1951. Behavioral changes following radiation: 1. Study of retention of a partially learned maze
habit. U.S. Air Force School of Aviation Medicine unnumbered project, Report 1.

sg50 Graphical assessment of linear trend

Joanne M. Garrett, Division of General Medicine and Clinical Epidemiology,
University of North Carolina, FAX 919-966-2274, EMAIL garrettj@med.unc.edu

This insert presents a simple method of graphing log odds of a binary outcome or means of a continuous outcome by
categories of a continuous predictor variable.
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Background

A scatter plot can be useful to examine the relationship between a continuous predictor, X, and a continuous outcome,
Y. Visual patterns may suggest a linear positive (or negative) relationship, a curvilinear relationship, or no relationship at all.
However, when Y is binary, scatter plots become ineffective due to the excessive number of ties on Y. It would be helpful to
have a graphical method to examine this relationship as an exploratory step before modeling. A suggested approach is to group
X into intervals and calculate the proportion of observations where Y = 1 within each interval (Harrell 1985, Hosmer 1989).

The logistic regression model can be written in a linear form by using a logit (i.e., ”log odds”) transformation
logitp(Y =1|X) = a+ X

where
logitp = In[p/(1 — p)]

It follows that if the proportions of Y = 1 calculated within defined intervals of X are transformed to log odds, and the log
odds are plotted against midpoints of the X intervals, we have a graphical method of assessing the relationship between Y
and X. Graphs such as these can be useful for examining whether a linear relationship exists. If the relationship is linear, it is
appropriate to model X in its original form. If a linear relationship does not exist, the graph may suggest a nonlinear alternative
(for instance, a quadratic or logarithmic transformation) or natural groupings of X to recode into categories.

How to categorize X and then what values of X to use for the X-axis category midpoints needs to be determined. Below
are three possible choices:

1. Divide X using some meaningful cut point. For example, round age into 5 year increments, e.g., 20, 25, 30, etc. These
values become the midpoints of the categories. Although this method is intuitively appealing, some of the categories may
have small sample sizes, making the calculation of proportions within a category unstable.

2. Divide X into some specified number of groups (categories) with an equal number of observations in each group. For
example, suppose age ranges from 20 to 60 years and there are 500 observations. The data could be divided into 10 groups
of 50 observations in each. The age ranges would tend to vary from group to group. These age categories may not make
as much intuitive sense as rounding, but with near equal sample sizes, the calculated proportions would tend to be more
stable. Next we need to decide what values of X to use for the X-axis midpoints. A logical choice would be the mean.
For instance, suppose the first group consists of 50 observations with a minimum value for age of 20, a maximum value
of 27, and a mean age for the 50 observations of 25.5. This mean would represent the first age category on the X-axis.
The second group of 50 observations might include ages 28 to 31 with a mean age of 29.7, etc.

3. If X consists of only a few possible values with many observations for each value, using the original values as categories
may be appropriate. For instance, age might already be grouped into 5-year increments and coded as 20, 25, 30, etc. Or
an ordinal variable, such as severity of symptoms (none, mild, moderate, severe) might be coded as the integer values 1,
2, 3, and 4.

This insert presents lintrend, a program that graphically examines the relationship between the log odds of a binary
outcome, Y, by categories of an ordinal or interval independent variable, X. Alternatively, if the outcome is continuous,
lintrend will calculate means of Y rather than proportions and log odds. X is divided into categories using any of the three
methods described above. The idea and methods for this ado file come from Harrell and Lee (1985).

Syntax and options

lintrend yvar xvar [ if exp ] , { groups (#) | integer | round(#) } [ plot (plot-type) graph-options ]

xvar can be an interval or ordinal independent variable. yvar can be either a binary (0,1) outcome, resulting in the calculation
of proportions and log odds by categories of xvar, or a continuous outcome, resulting in the calculation of means by categories
of xvar.

The first option—which is a choice of one of three options—indicates how xvar is to be categorized and must be specified.
The choices are

groups (#) divides xvar into # of categories of the same sample size. Ties on xvar at group cut points are placed in the lower
category. Therefore, sample sizes may vary depending on the number of ties. The mean values of xvar by category are
used as the values for X.

round (#) divides xvar into categories rounded to the nearest # The rounded values of xvar are used for X.
integer uses the original values of xvar for X.

plot (plot-type), an optional option, requests a graph. The available plot types are
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Example 1

plot-type Meaning

mean graph of means (continuous yvar) by xvar categories
prop graph of proportions (binary yvar) by xvar categories
log graph of log odds (binary yvar) by xvar categories
both graph of both proportions and log odds categories

We wish to examine the relationship between age and hypertension (hbp) in data taken from a study of 1784 adults between
the ages of 24 and 51 years (James 1992). Using 1intrend, we divide the sample into ten groups of approximately equal size,
calculate the proportions and log odds of being hypertensive (1=hypertensive, O=normal) within each age group, and request
both a graph of proportions and a graph of log odds.

. use hyperten

. describe

Contains data from hyperten.dta

Obs: 1784 (max= 74936)
Vars: 4 (max= 99)
Width: 7 (max=  200)
1. sbpavg float
2. age byte
3. ses byte
4. hbp byte

%9.0g
%8.0g
%8.0g
%8.0g

26 Jan 1996 15:36

Average Systolic Blood Pressure
Current Age

seslbl  Socioeconomic Status

yesno High Blood Pressure

. lintrend hbp age, groups(10) plot(both) xlab ylab

The proportion and log odds of hbp by categories of age

(Note: 10 age categories of equal sample size;
Uses mean age value for each category)

age

26.
28.
30.

32

34.

36

39.
41.
45.
49.

O o Uugd oo

o

o

min
24
28
30
32
34
36
38
41
44
48

max
27
29
31
33
35
37
40
43
47
51

(graph appears, see Figures 1 and 2)

d total hbp logodds
24 246 0.10 -2.22
27 166 0.16 -1.64
26 169 0.15 -1.70
34 179 0.19 -1.45
43 151 0.28 -0.92
44 164 0.27 -1.00
70 220 0.32 -0.76
66 152 0.43 -0.26
86 200 0.43 -0.28
65 137 0.47 -0.10

The mean (age), minimum (min), and maximum (max) values for each age category are reported, as well as the number of
hypertensives (d), the total sample size (total), proportion of hypertensives (hbp=d/total), and log odds of the proportion.
A table like this is always printed, whether or not a graph is requested. Note that the ranges for the age categories differ. The
sample sizes are not equal, although they are divided as evenly as possible without splitting the tied values for age. We can see
that the proportion of hypertensives is increasing as age increases. The first graph (Figure 1) plots the proportion of hypertensives
versus the mean age for each category, and the second graph (Figure 2) plots the log odds versus the mean age for each category,
with a “best fit” linear regression line. The graph suggests a positive linear relationship between age and hypertension.

(Graphs on next page)
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Example 2

Using the same data and variables, our second example rounds age into groups of five-year increments. Again, both graphs
of proportions and log odds are requested.
. lintrend hbp age, round(5) plot(both) xlab ylab
The proportion and log odds of hbp by categories of age

(Note: age in categories rounded to nearest 5)

age min max d total hbp 1logodds
25 24 27 24 246 0.10 -2.22
30 28 32 72 436 0.17 -1.62
35 33 37 102 391 0.26 -1.04
40 38 42 117 323 0.36 -0.57
45 43 47 105 249 0.42 -0.32
50 48 51 65 137 0.47 -0.10

(graph appears, see Figures 3 and 4)

The rounded value for age is used for the category midpoint and each category range is five years. Note that the minimum
possible age value for the category age==25 is 23, but, since there was no one in the sample of that age, the actual lowest value
(24) is used for the minimum. The same is true for the maximum value for age==50 (51 rather than 52). Once again the graph
of the log odds (Figure 4) suggests a linear trend, although hypertension may be increasing more rapidly before the age of 40,
and less rapidly over 40.
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age rounded to nearest 5 age rounded to nearest 5
Assessing Linearity Assumption -- Proportions Assessing Linearity Assumption -- Log Odds

Figure 3 Figure 4
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Example 3

Another variable in the hypertension data set is a measure of socioeconomic status (ses). This is an ordinal variable grouped
into three categories: low socioeconomic status (1), middle socioeconomic status (2), and high socioeconomic status (3). This
example requests the proportion and log odds of hypertension for each of the categories of ses, and a graph of the log odds.
From the table and graph, we see that hypertension decreases as ses increases.

. lintrend hbp ses, integer plot(log) xlab(1,2,3) ylab
The proportion and log odds of hbp by categories of ses

(Note: ses in categories using original values)

ses d total hbp 1logodds
1:Low 215 670 0.32 -0.75
2:Middle 138 537 0.26 -1.06
3:High 117 512 0.23 -1.22
-0.60
o
. 080
°
3
o
3 -1.00
o
-1.20 o

T T T

Categorized by values of ses
Assessing Linearity Assumption -- Log Odds

Figure 5

Example 4

The previous examples examined a binary outcome. Had Y been continuous, 1intrend would have calculated means rather
than proportions and log odds. Suppose that in the first example the outcome had been average systolic blood pressure (sbpavg)
instead of hypertension. We divide the sample into ten groups of approximately equal size, calculate the mean systolic blood
pressure within each age category, and request a graph of the mean systolic blood pressures by the mean age for each category.

. lintrend sbpavg age, groups(10) plot(mean) xlab ylab
The mean of sbpavg by categories of age

(Note: 10 age categories of equal sample size;
Uses mean age value for each category)

age min max total sbpavg
26.0 24 27 246 120.83
28.5 28 29 166 119.07
30.6 30 31 169 120.27
32.4 32 33 179 122.30
34.5 34 35 151 124.16
36.5 36 37 164 124.79
39.0 38 40 220 123.96
41.9 41 43 152 129.62
45.5 44 47 200 131.05
49.0 48 51 137 132.59

(graph appears, see Figure 6)

The age categories are the same as in Example 1. We see that systolic blood pressure increases with increasing age. There
are fluctuations around the line, but essentially the increase is linear.
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Example 5

This final example uses data from a study of low back pain (Carey 1995). A sample of 1552 patients with low back pain
were followed for six months to determine characteristics related to recovery. For this example, we examine the relationship
between a continuous measure of how disabling the back pain is at baseline (score: possible values from O=no disability
to 23=totally disabled) and the probability of recovery by eight weeks (better: 1=all better, O=not better). The variable for
disability, score, is grouped into twelve categories of like sample size. Since better is binary, proportions and log odds are

calculated. A graph of the log odds is requested.

. use backpain

. describe

Contains data from backpain.dta

Obs: 1552 (max= 749
Vars: 4 (max=
Width: 6 (max= 2
1. better byte
2. score byte
3. score_2 int
4. score_3 int

36)

99)

00)
%8.0g
%8.0g
%9.0g
%9.0g

yesno

Recovery from back pain

6 Feb 1996 16:30

Better at 8 Weeks

Disability Score

Disability Score Squared
Disability Score Cubed

. lintrend better score, groups(12) plot(log) xlab ylab

The proportion and log odds of better by categories of score

(Note: 12 score categories of equal sample size;
Uses mean score value for each category)

n
2]
o
1
o

10.
12.
15.
17.
18.
20.
22.

OO R oo oo O

[é)]

10
12
14
17
18
20
22

max
1
3
5
7
9
11
13
16
17
19

21
23

(graph appears, see Figure 7)

d
151
100

69
67
75
60
57
96
33
49
40
24

total
170
136
105
119
139
128
118
197
79
147
121
93

better

0.
.74
.66
.56
.54
.47
.48
.49
.42
.33
.33
.26

(oo lNeNeNeoNo NoNoNo Ro e

89

logodds

.07
.02
.65
.25
.16
.13
.07
.05
.33
.69
.71
.06

Patients with lower baseline disability scores were much more likely to have recovered by eight weeks (86 percent in the
lowest category) than were patients with high scores (24 percent in the highest category). The graph shows this decreasing trend.
However, there is a very sharp drop in recovery as disability scores increase from 0 to about 10, a leveling off with scores
from about 10 to 15, and then another sharp drop as scores increase above 15. A shape such as this might suggest a polynomial
transformation of score. The following logistic regression model, which allows the probability of recovery to be a cubic function
of disability level (score_2 = score*score; score_3 = score_2*score), confirms the relationship suggested by the graph.
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. logistic better score score_2 score_3
Logit Estimates Number of obs = 1552
chi2(3) = 207.17
Prob > chi2 = 0.0000
Log Likelihood = -969.56991 Pseudo R2 = 0.0965
better | Odds Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
score | .6429993 .0497393 -5.709 0.000 .5525425 . 7482649
score_2 | 1.032048 .008033 4.053 0.000 1.016423 1.047913
score_3 | .9991876 .0002237 -3.631  0.000 .9987493 .9996261

. test score_2 score_3
(1) score_2 =0.0
( 2) score_3 = 0.0

chi2( 2)
Prob > chi2

20.36
0.0000
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snp10 Nonparametric regression: Kernel, WARP and k-NN estimators

Isafas Hazarmabeth Salgado-Ugarte, Makoto Shimizu and Toru Taniuchi,
University of Tokyo, Faculty of Agriculture, Department of Fisheries, Japan
FAX (011) 81 3 3812 0529, EMAIL fesO1 @tzetzal.dcaa.unam.mx

Regression is undoubtedly the most used statistical procedure (Scott 1992). Moreover, many variations on linear least-squares
regression have been developed to model relationships that violate, in one or more ways, the assumptions of the classical model.
Stata provides a particularly complete set of regression-based tools: the regress and fit commands (with their associated
diagnostic commands), commands for quantile (median) regression, robust regression, logistic regression, and more. Moreover,
the addition of commands to estimate generalized linear models (Hilbe 1993, 1994a; Royston 1994a) extends Stata’s capabilities
to this modern and flexible regression-based approach (Royston 1994b, Hilbe 1994b).
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One technique missing from Stata’s collection is kernel regression, and it is the purpose of this insert to correct that oversight.
Among the nonparametric procedures, kernel estimators are recognized as important exploratory and analytical tools. Hardle
(1990) notes, for instance, that kernel estimators possess two characteristics that distinguish them from other nonparametric
estimators: they are straightforward to implement and understandable on an intuitive level. In previous inserts, we presented
some Stata programs to calculate kernel estimates for univariate data (Salgado-Ugarte et al. 1993, 1995a). This time we extend
this approach to bivariate data by presenting programs that calculate nonparametric regression estimators.

This insert presents three different commands for nonparametric regression:
1. kernreg: a kernel regression command that uses an interpolation algorithm;
2. warpreg: a command that approximates kernel regression using the WARP method; and
3. knnreg: a command to calculate k-nearest neighbor (k-NN) estimates.

In addition, we present gwarpreg, a program that aids in selecting the appropriate bandwidth for kernel regression.

Background

According to Silverman (1985), regression analysis aids in exploring and displaying bivariate relationships, provides
predictions, and enables one to uncover interesting properties of the resulting equation. In this context, a nonparametric estimator
is desirable because it does not force the model into a rigidly defined class, but, rather, lets the data “speak for themselves” in
choosing the form of the model. In some instances, the nonparametric estimate may suggest a suitable parametric model (such
as linear regression); in others, it may be the way to discover a very complex nonlinear mean function.

To illustrate the usefulness of nonparametric regression techniques, we examine three example data sets. The first contains
the familiar data on the Old Faithful geyser (Weisberg 1980, Silverman 1985, Hardle 1991). Figure 1 displays a scatterplot of
the waiting time until the next eruption against the duration of the previous eruption. Superimposed is the estimated, nonlinear
relationship calculated by our kernel regression program. At this stage, we note only the striking two-level pattern suggested by
the estimates, and we leave a fuller discussion until later in this insert.

100

80

60

Waiting time (minutes)

40

T T T T T
1 2 3 4 5

Duration time (minutes)

Figure 1. The geyser data with a kernel regression fit

The second example data set comes from an experiment on the efficacy of crash helmets during a simulated motorcycle crash
and presents a more complex modeling challenge (Silverman 1985). Figure 2 displays a scatterplot of accelerometer readings
against time, again with a smooth curve estimated by kernel regression. The estimated relationship gives a clear indication of
the general tendency of the data, although it does not follow the first bend accurately enough and it displays perhaps too much
variability at longer time values.
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Figure 2. The motorcycle data with a kernel regression fit

Finally, we consider a simulated data set that characterizes the growth cycle of fishes. We generated simulated data that
follow a modified von Bertalanffy growth function (VBGF) with error. This function, described by Pauly et al. (1992), uses a
combination of periodic functions to account for the seasonal cessation of growth in fishes. In other words, while fish grow larger
with age, the rate of growth ebbs seasonally. In our simulations, we used parameter values estimated by Pauly et al. from data
on the growth of the Atlantic salmon (Salmo salar) in a Scottish stream (Egglishaw 1970). The simulation ado file is available
from the first author upon request.

Figure 3 displays a scatterplot of fish length against age for these simulated data along with a smooth line that depicts the
true VBGF for these data and a dashed line that displays the kernel regression estimate of the VBGF. The kernel estimate is very
close to the functional response, although it deviates where the X values are scarce and where there are influential Y values.

_ VBGF accounting for seasonal o Simulated points

cessation of growth
140

120
100
80

60
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40
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T
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Figure 3. Simulated fish growth data with a kernel regression fit

The traditional approach

To motivate the nonparametric regression estimator, we apply the classical regression model to the geyser data. We begin
by reviewing some familiar features of the classical model.

The regression of Y; on X; can be written as
Yi =m(Xi) + e (1)

where m() is the unknown regression function and ¢; is the unobserved, random disturbance that causes Y; to deviate from
m(X;) (Hirdle 1990, 1991; Scott 1992). Under the usual assumptions, the regression function is the conditional mean of Y;,
that is,

m(z) = E[Y|X = z]
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This conditional mean curve may be represented by

BIY|X = o] = W 2)

where f(x,y) is the joint density of (X,Y") and f(z) is the marginal density of X. Of course, when the joint distribution is
Gaussian, the regression curve is linear (Hardle 1991).

In Figure 1, the scatterplot of the geyser data, we can readily discern not only the two clusters of points, but also a
proportional relationship between the waiting time until the next eruption and the duration of the previous eruption. We can use
classical regression to quantify this relationship. Following Cook and Weisberg (1982), Silverman (1985) and Hardle (1991), we
start with the linear model

Y=p+aX;+¢ (3)
. use geyser, clear
. describe
Contains data from geyser.dta
Obs: 272 (max= 71392)
Vars: 2 (max= 99)
Width: 8 (max=  200)
1. dura float %9.0g
2. wait float %9.0g
Sorted by:
r; t=0.06 12:27:33
. regress wait dura
Source | SS df MS Number of obs = 272
+ F( 1, 270) = 1162.17
Model | 40644 .437 1 40644 .437 Prob > F = 0.0000
Residual | 9442.68066 270 34.9728913 R-squared = 0.8115
+ Adj R-squared = 0.8108
Total | 50087.1176 271 184.823312 Root MSE = 5.9138
wait | Coef. Std. Err. t P>|t]| [95% Conf. Intervall
dura | 10.72958 .314737 34.091 0.000 10.10993 11.34923
_cons | 33.47437 1.154822 28.987  0.000 31.20077 35.74798

This listing reveals a significant regression with a high coefficient of determination. Figure 4 redisplays the data with the fit
from this regression shown as the long straight line. Cook and Weisberg noted some inconsistencies with this simple model (as
indicated by some curvature in a residual plot) and suggested that at large values of duration the predicted waiting times might
be too large. The fit from the kernel regression, displayed in Figure 1, clearly captures this feature and, in addition, suggests
an alternative parametric model that takes into consideration the observed clusters of points. This alternative model fits the two
clusters by separate regression lines. This model can be written as

Y, =p+aX;I(X; <3.3)+ 06X, I(X >33)+~I(X; >3.3)+¢ (4)
In this model, the clusters are separated by a partition of the z-axis at a duration of 3.3 minutes. In this parameterization, y is

the intercept and « is the slope of the relationship for the left-hand cluster, while p + =y is the intercept and [ is the slope for
the right-hand cluster.

(Graph on next page)
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Figure 4. The geyser data with two linear fits

To estimate this model in Stata, we create a dummy variable to mark each cluster and we divide the duration time variable

into two variables, one for each cluster.

. generate duralo = 0
. generate durahi = 0

. generate high = 0

. replace duralo = dura if dura <= 3.3

(98 real changes made)

. replace durahi = dura if dura > 3.3

(174 real changes made)

. replace high = 1 if dura > 3.3
(174 real changes made)

. regress wait duralo durahi high

Source | Ss df MS Number of obs = 272
+ F( 3, 268) = 442.34

Model | 41671.3234 3 13890.4411 Prob > F = 0.0000
Residual | 8415.79429 268 31.4022175 R-squared = 0.8320
+ Adj R-squared = 0.8301

Total | 50087.1176 271 184.823312 Root MSE = 5.6038
wait | Coef. Std. Err. t P>t [95% Conf. Intervall
duralo | 7.384168 1.99572 3.700 0.000 3.454885 11.31345
durahi | 5.247466 1.061537 4,943 0.000 3.157454 7.337478
high | 17.9808 6.167388 2.915 0.004 5.838112 30.1235
_cons | 39.51536 4.12751 9.574 0.000 31.38889 47.64183

Again, we have a highly significant regression, although the slopes of the separate regression lines are both shallower than the

slope of the regression line in the simpler model. The two, shorter lines in Figure 4 display these separate linear fits.

Since this alternative model nests the original model, it is straightforward to test the restrictions implied by the original
model. In this case, these restrictions specify that the intercepts and slopes of the two regression lines are equal. We use Stata’s

test command to calculate the F' test.

. test high
(1) high = 0.0
FC 1, 268) = 8.50

Prob > F = 0.0039
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. test duralo=durahi, accum
(1) high = 0.0
( 2) duralo - durahi = 0.0

F( 2, 268) 16.35
Prob > F 0.0000

. test duralo=durahi
( 1) duralo - durahi = 0.0

F( 1, 268) 0.89
Prob > F 0.3454

These tests indicate that the joint restrictions on the slopes and intercepts are overwhelmingly rejected by the data. The
restriction of equal intercepts is also rejected at the 1 percent level, as can be seen directly by examining the ¢ statistic of high
in the regression output. However, the null hypothesis that the slopes of the two lines are equal is not rejected.

Silverman (1985) emphasizes that a nonparametric curve can be an important exploratory step towards the final model
choice. For the geyser data, the kernel regression fit clearly indicated the type of segmented model that the data appear to favor.
However, as the motorcycle and simulated growth data show, the leap from a sound nonparametric fit to an improved parametric
model is not always this easy.

Kernel regression: the Nadaraya—Watson estimator

The nonparametric approach to regression is related to the nonparametric approach to density estimation. In estimating
densities at a given x value, the points in a small neighborhood around z are considered (the neighborhood is defined by the
bin width of the histogram or the bandwidth h of the kernel density estimator). In estimating a regression, the response variable
Y is weighted in a neighborhood of x. Using a simplified notation, the general form of the nonparametric regression can be
written as

T?Lh(fl,‘) = n_l Z Whl((L‘)Y; (5)

This expression, applicable to most of the nonparametric regression methods, can be understood as a weighted average of the
response variable Y; where the weights, W;(z), depend on the particular procedure, on the distance between x and X; and on
the smoothing parameter, h.

Recall that the usual expression for the regression function is

_ Jyf(xz,y)dy

m(z) = E[Y|X = 2] = 5 (6)

The denominator of the expression on the right is a density which can be estimated nonparametrically by means of a kernel
density estimator. Similarly, the joint density in the numerator can be estimated using the multiplicative kernel (see Hardle 1991
for details). If we use the same bandwidth, h, for both estimates, we can substitute the kernel estimates for the densities. Thus
we arrive at the following general expression, proposed independently by Nadaraya (1964) and Watson (1964).

T?Lh(CC) =n1 Z?:l Kh(x - XZ)Y;
nt Y0 Kn(z — X;)

(7)

Hardle (1991) notes several points about this estimator:
. the weights depend on the entire X sample through the kernel density estimate f(z);
. observations on Y; are more influential where X; are sparse;
. when the denominator is zero, so is the numerator, and the estimate is defined to be zero as well;
as h — 0, X; converges to Y;, producing an interpolation of the data;

as h — oo, the weighting function converge to 1 for all values of x, and the estimate converges to the mean of Y

S N A W N =

. as in kernel density estimation, h determines the smoothness of the estimate.
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Calculating kernel regressions in Stata

In previous inserts (Salgado-Ugarte et al. 1993, 1995a, 1995b), we introduced some ado-files to estimate univariate densities
using kernel functions. It was straightforward to modify these programs to estimate the numerator and denominator of equation (7).
Our implementation is called kernreg.ado. The syntax for this command is

kernreg yvar xvar [ if exp ] [ in range ] , bwidth(#) kercode(#) npoint (#)

[ gen (fitvar gridvar) nograph graph-options ]

There are three required options. bwidth (#) specifies h, the smoothing parameter. npoint (#) specifies the number of equally
spaced points (the grid) to use for calculating the kernel estimates. kercode (#) specifies the kernel according to the following
codes:

Code Kernel

1 uniform

2 triangular

3 Epanechnikov

4 quartic (biweight)
5 triweight

6 Gaussian

7 Cosinus

The option gen (fitvar gridvar) allows the user to create two new variables containing the fitted values from the kernel
regression and their corresponding grid points, respectively. The nograph option suppresses the graph, produced by default, of
the fit against the x values. The appearance of this graph can be modified using the options of the graph command.

The kernel fits displayed in Figures 1 through 3 were calculated by kernreg. In each case, the quartic kernel was used
with a grid of 100 points. The bandwidths used were 0.8 for the geyser data, 2.4 for the motorcycle data, and 0.22 for the
simulated growth data.

Figures 5 through 7 display the effect on the fits of changes in the bandwidth. Figure 5 displays the geyser data with
three kernel regression fits. The line composed of long dashes is the fit calculated with h = 0.8, the line composed of short
dashes is the fit calculated with h = 0.4, and the solid line is the fit calculated with h = 0.1. Just as in univariate density
estimation, increases in the smoothing parameter reduce the noise in the kernel regression estimates. In this example, setting
h = 0.1 generates a very rough estimate with one missing value, indicated by the discontinuity in the graph. Nevertheless, all
three curves give the same qualitative message—a slightly increasing average response within each cluster of data.
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Figure 5. The geyser data with three kernel fits

It is worth remembering that the error increases as the grid becomes coarser. Therefore, the analyst must take care to employ
a grid that is fine enough. The suggested value of 100 grid points should be adequate in many instances, but if the range of
x values is very large, it may be necessary to try other values for npoint (). Linearly interpolating between fitted points also
produces more accurate results. (See Jones 1989 for a full discussion of this topic in the context of univariate density estimation.)
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Figure 6 displays the motorcycle data with three kernel fits (b = 1,2.4,5). In this instance, h = 2.4 produces a reasonable
fit, while smaller and larger bandwidths produce noisy and oversmoothed curves, respectively.
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Figure 6. The motorcycle data with three kernel fits

Figure 7 displays the simulated growth data with three kernel fits (h = 0.1,0.2,0.5). The fit with the highest bandwidth is
very close to the true, seasonally adjusted VBGF, while the fit with A = 0.22 exhibits cycles similar to those of the common
VBGF. The algorithm that calculates the adjusted VBGF is itself quite long and complex, thus it is notable that these relatively
simple kernel fits do such a good job of recovering the underlying function.
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Figure 7. The simulated growth data with three kernel fits

Approximating kernel regression with WARP regression

As we noted in our earlier inserts, the direct calculation of kernel estimates is computer-intensive. However, the WARP
technique provides an excellent approximation to kernel estimates with a substantial savings in computer time. Since the
Nadaraya—Watson regression estimator is a combination of kernel univariate densities, the gains from using the WARP are
substantial.

The outlines of applying the WARP approach to Nadaraya—Watson regression are straightforward. (The interested reader is
directed to Hardle 1991 and Scott 1992 for details.) Partition the z-axis into bins and define an index function that returns the
index of the bin to which each = belongs:

l(z)=j e xe((j—1/2)5(+1/2)0)
The sum of the observations on the response variable corresponding to X; in bin B, is

Y. = zn:m(xi € B,)

i=1
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Thus, for z € By(y) M—1 !
C K (L) Y,
Mk (@) = =AM (Nf) - )
—1-m K (M) M(z)+1

where M is the number of shifted histograms to average (see Salgado-Ugarte et al. 1995a for details).

We have implemented a WARP approach to kernel regression in a manner similar to the way we applied WARP to kernel
density estimation in snp6.1. As before, our programs are based on the algorithms and programs described in Hardle (1991) and
Scott (1992). We also consulted revised programs in C based on Hardle and obtained by EMAIL from Statlib. Also as before,
our Stata program, warpreg, embeds a system call to an executable Turbo Pascal program, warpregf .exe. As a consequence,
warpreg is currently available only for DOS-based platforms. However, the Pascal source code is supplied on the STB distribution
diskette to enable interested readers to adapt warpreg for use on other platforms.

The syntax of warpreg is
warpreg yvar xvar [ if exp ] [ in range ] , bwidth(#) kercode(#) mval (#)

[ gen(fitvar midvar) nograph sort graph-options ]

There are three required options. bwidth(#) specifies h, the smoothing parameter. mval (#) specifies M, the number of shifted
histograms averaged in calculating the density estimates. kercode (#) specifies the kernel using the same codes as kernreg,
although code 7 (cosinus) is not supported for warpreg.

The option gen(fitvar midvar) allows the user the create two new variables containing the fitted values from the WARP
regression and the corresponding midpoints from the bins, respectively. The sort option informs warpreg that the data are
already sorted by xvar and yvar. The graph, produced by default, can be modified with graph options or suppressed by the
nograph option.

Figure 8 displays the graph warpreg produces for the geyser data. In this example, h = 0.4, the mval (M) is 10, and the
quartic kernel is used. the qualitative appearance is similar to that produced by kernreg, although the details differ. The points
are connected by linear interpolation (the polygon version). Since the corresponding kernel estimate is displayed as a continuous
function, the polygon version is preferable (Hardle 1991). It has been shown that the interpolated version displayed by warpreg
is more accurate than a discretized, step representation (Jones 1989).

Nadaraya-Watson regression (WARP), bw = .4, M = 10, Kernel = 4

83.88

Conditional mean

53.1349
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Figure 8. A WARP fit to the geyser data

As in the WARP approach to density estimation, the WARP approximation to the kernel estimate improves as M, the number
of average shifted histograms, increases. Figure 9 displays three different WARP approximations (M = 1,5, 10) along with the
kernel regression. For the geyser data and M > 5, there is no appreciable difference between the WARP and the kernel estimates.
However, the WARP approximations are calculated much more quickly than the kernel estimate.

(Figure 9 on next page)
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Figure 9. Kernel and WARP fits to the geyser data

Table 1 displays some relative timings for kernel regression and WARP regression. The first column of the table indicates
which data set was used. The second column indicates the smoothing parameter used. The final two columns report the execution
times, in seconds, for kernreg and warpreg, respectively. In these examples, warpreg is one to two orders of magnitude faster
than kernreg.

Table 1. Timing comparisons of kernel and WARP regression programs

Data set h kernreg warpreg
Geyser 0.40 388 11
0.65 410 11
0.80 420 11
1.75 475 10
Motorcycle 1.00 174 9
2.40 179 7
5.00 188 6

The speed of warpreg is particularly impressive since warpreg writes and reads several temporary files and calls an
external program for most of the calculations. Note that the execution time of kernreg increases with h, while warpreg tends
to speed up as h rises.

Bandwidth selection

A key step in nonparametric regression is the selection of a value for h, the smoothing parameter. Choosing this parameter
is closely related to the problems of selecting the degree of a polynomial regression or of selecting the variables to include in
a multiple regression. In all these cases, there is a trade-off between bias and variance; a good compromise must avoid both a
curve that follows every data point (overfitting) and a curve that misses important features of the data (oversmoothing) (Altman
1992).

As in the case of density estimation, several methods for choosing the bandwidth for kernel regression have been proposed.
The simplest is the subjective approach: the analyst tries several values for h and chooses the one that yields the most interesting
estimates. This procedure is highly flexible and is used with beginning students, but objective methods are preferred in automated
estimation systems. In addition, objective methods promote consistency of results among investigators (Altman 1992). Many
different objective methods have been suggested. Here, we present gwarpreg, a Stata program that combines penalty functions
with cross-validation to select a bandwidth. This program incorporates algorithms that are modifications of those in Hardle
(1991).

Before we demonstrate gwarpreg, it may be useful to review some of the motivation for this approach to bandwidth
selection. In density estimation, the basic approach is to consider a sequence of bandwidths and to choose the one that minimizes
the asymptotic mean integrated squared error (A-MISE) of the estimate. In regression, though, there are other potential measures
of the discrepancy between the estimator, m(X;), and the true regression curve, m(X;). Among these are the average squared
error, the integrated squared error, the conditioned square error, and the mean integrated squared error. It can be shown (Hardle
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and Marron 1986) that all of these measures lead asymptotically to the same bandwidth estimator. Thus, for convenience, it is
recommended to use the most easily-computed measure, the averaged squared error ASE (Hardle, 1990, 1991). However, due
to difficulties in minimizing this function, the technique usually employed is a combination of bias-correction terms and the
leave-one-out (cross-validation) estimate, 7mp;(X;). This technique employs one of the penalty functions listed in Table 2.

Table 2. Penalty functions used in bandwidth selection
(adapted from Hardle 1991)

Penalty function General form

Shibata’s model selector S(u) =14 2u
(Shibata 1981)

Generalized cross validation GCV(u) = (13u)2
(Craven and Wahba 1979)
(Li 1985)

Akaike’s information criterion AIC(u) = e
(Akaike 1970)

Finite prediction error FPE(u) = 1%
(Akaike 1974)

Rice’s T T(u) = 171%

(Rice 1984)

The purpose of the penalty function is to avoid overfitting by penalizing bandwidths that are too small. The adjusted
prediction error, G(h), is calculated as the sum of the prediction error (derived from the ASE) and a correction term (obtained
from the penalty function). Each penalty function gives different weights to the bias and variance of 7my,. For instance, Shibata’s
S places greater weight on reducing the bias, while Rice’s 1" emphasizes reducing the variance. Despite these differences, in
practice each of these penalty functions leads to substantially the same choice of optimal bandwidth. Convergence to the optimum
is known to be slow with this method, however, it is not possible to derive a more efficient approach, and the selected bandwidth
often works well even for moderate sample sizes (Hardle et al. 1988, Hardle 1990, Altman 1992).

An algorithm to calculate G(h) directly is easy to implement, but with the great disadvantage that the number of steps for
a specific h are quadratic in the number of observations, that is, the algorithm is O(n?) (Hirdle 1991). Fortunately, the WARP
approximation can be applied to this problem as well, and it provides a much more efficient algorithm for calculating h.

In the WARP setting, choosing the h that minimizes the ASE is equivalent to choosing the optimal M, that is, the optimal
number of shifted histograms to average. To do this, it is necessary to assume a tolerance, d, that measures the accuracy of the
data.

Defining Wyy;[z] and mpz[z] as the values of Wyy;[x] and mips[x] in bin z, and assuming that the weight function w(e)
is constant within each bin, we obtain

v2 = S V2I(X, € B.) o)

i=1

The general expression for G(M), the penalty function for WARP regression, is (Hirdle, 1991)

G(M)=n"t Y Y2 — 2y [e]Yes + iy lzlns } E(n™ W[ wl2] (10)

As in the cross-validation programs for optimal bandwidth selection for density estimation (Salgado-Ugarte et al. 1995b),
the algorithm contains the typical steps of the WARP method slightly modified: (1) bin the data, (2) generate the weights, and (3)
weight the bins. The main difference is that, after binning the data, there is an additional loop over a range of potential values
for M (§ is held constant). This loop includes the generation of weights and a modified version of weighting the nonempty bins
and their nonempty neighbors. This procedure, including the extra loop, is linear in the number observations, in contrast to the
direct algorithm which is quadratic in n (Hardle 1991).

gwarpreg, our program for carrying out this procedure for bandwidth selection, is a modification of the algorithm and
programs of Hardle (1991). As in warpreg, a system call to an executable Turbo Pascal program is embedded in gwarpreg.
As a consequence, gwarpreg is currently available only for DOS-based platforms. (See the discussion of this issue in the section
above on warpreg.) The syntax of gwarpreg is
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gwarpreg yvar xvar [ if exp ] [ in range ] , delta(#) kercode(#) select(#)

[ bound (#) Een(score M bandwidth) mstart (#) mend (#) ]

There are three required options. delta(#) specifies the tolerance for estimation. kercode (#) specifies the kernel using the

same codes as warpreg. select (#) specifies the penalty function according to the following codes

Code Penalty function

1 Shibata’s S

2 Generalized cross validation
3 Akaike’s information criterion
4 Finite prediction error

5 Rice’s T'

bound (#) specifies the proportion of the data to be trimmed prior to the calculations. The default is bound(.1), that is,
the most extreme 10 percent of the data is trimmed to reduce the influence of extreme observations. According to Hardle (1990),
adjusting this option generally has negligible results on the estimated bandwidth.

mstart (#) and mend(#) define the range of M values to try. By default, mstart is 5 and mend is the integer part of

0.3(maxz — minz)/d.

The gen() option allows the user to store the score G(M), M, and the corresponding bandwidth in three new variables.
This option is useful in creating customized graphs of the results.

gwarpreg produces two graphs. The first graph displays the score, G(M), as a function of M. The second graph displays
the score as a function of h, the bandwidth. These graphs allow the user to find the interval that contains the minimum score
(and, hence, the optimal bandwidth) by trial and error. After the graphs are displayed, gwarpreg lists the five smallest values of
the score along with the corresponding values of M and h. By varying the value of ¢ and the range for M, users can satisfy
themselves they have located the global minimum of the score.

As an example, we apply gwarpreg to the motorcycle data using the Shibata .S penalty function and the quartic kernel.

. gwarpreg accel time, delta(0.2) select(1l) kercode(4) mend(20)

(two graphs appear, not shown)

Adjusted Prediction error G(M) for WARPing Nadaraya-Watson regression
M-value = 8 Score value = 534.06671 Bandwidth = 1.6000
M-value = 9 Score value = 537.53998 Bandwidth = 1.8000
M-value = 7 Score value = 539.06793 Bandwidth = 1.4000
M-value = 10 Score value = 542.87994 Bandwidth = 2.0000
M-value = 11 Score value = 548.75659 Bandwidth = 2.2000

This example suggests setting h = 1.6. As

summarizes the results. Aside from §, all other inputs were held constant.

Table 3. Bandwidths suggested by different penalty functions

Penalty function ) h

Shibata’s S 0.2 1.6

Generalized cross validation 0.3 2.4
Akaike’s information criterion 0.2 1.8
Finite prediction error 0.3 2.1

Rice’s T' 0.3 2.7

a check on this result, we reran gwarpreg with each penalty function. Table 3

Figure 10 displays the score as a function of M for these data for each penalty function. The curves show similar trends

with one well defined minimum, except for Rice’s 7', which suggests the existence of a local minimum.
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Figure 10. Score versus M for the motorcycle data

We also applied gwarpreg to the geyser data and the simulated growth data. For the geyser data, gwarpreg identified two
local minima in the score function associated with bandwidths of 0.65 and 1.75. This result is consistent with findings of Hardle
for these data.

The results for the growth simulation data turned out to depend sensitively on the choice of penalty function. Shibata’s S
and Akaike’s information criterion did not identify a clear minimum in the score function. The other three penalty functions
indicated a minimum score with an associated bandwidth between 0.20 and 0.22.

In all three examples, the bandwidth chosen by gwarpreg seems to be a good choice, producing a smooth regression curve
that captures the main features of the original function. This estimated bandwidth can also be used as a reference for comparison
with noisier (smaller bandwidth) or smoother (larger bandwidth) alternatives.

Other methods: k-nearest neighbor estimates

Kernel regression is not the only type of nonparametric regression. Another approach is k-nearest neighbor (k-NN) regression.
Kernel regression calculates local averages of the observations Y; within a fixed neighborhood (bandwidth) of . In contrast,
k-NN regression holds the sample size (span) of each local average constant and allows the bandwidth to fluctuate.

The k-NN regression estimate is defined as
n
Mg(x) =n"1 Y Wii(2)Y; (11)
i=1

The weight sequence is defined, using Hardle’s (1991) notation, through the set of indices
{Whi(z)}!_, = J» = {i| X; is one of the k nearest observations to '} (12)
and the k-NN weight sequence defined from this set of neighboring observations is

n/k, ifie€ Jy

Wii(z) = { 0, otherwise. (13)

In this procedure the smoothing parameter is k, the number of neighbor points and, as in kernel regression, the choice of
k involves a tradeoff between bias and variance. A larger k& produces smoother estimates but at the cost of an increase in bias.
There are two interesting extreme cases. When k = n, the estimate is simply the average of the response variable. When k& = 1,
the estimate is a step function that matches every response value.

It is convenient to define symmetric k-NN estimates, that is, to use the averages of the k / 2 observations to the left and the
k/2 observations to the right of each Y;. If the data are sorted in the order of increasing X, the k-NN estimate can be computed
recursively using the following formula (Hardle 1990, 1991)

M (Xiv1) = me(Xs) + k71 (Y241 — Yio /21 (14)
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fori =[k/2]+1,...,n — [k/2], where [u] denotes the greatest integer less than or equal to u. This algorithm is linear in the
number of observations. This algorithm can also be used to update local polynomial fits. Therefore, it can be used to implement

locally weighted scatter plot smooths such as LOWESS at a very modest computational cost (Hardle 1990, Cook and Weisberg
1994).

knnreg is a simple implementation of the k-NN estimator that incorporates the suggestion to sort the data on X and Y
(XploRe Systems 1993). The syntax of knnreg is

knnreg yvar xvar [ if exp ] [ in range ] , knum(#) [ gen(mkvar) nograph graph-options ]

where knum(#) specifies the number of neighbors to use. The gen(mkvar) option creates a new variable that contains the
estimates. The new variable contains missing values corresponding to both extremes of the sorted response values, as it is based
on differences of lagged values for calculation, without endpoint adjustment.

By default, knnreg displays a scatterplot of the data along with the estimated regression. To illustrate knnreg, we present
the results obtained for each of the three example data sets using two different values for k. Figures 11-16 display these results.

k-NN regression, k = 11 k-NN regression, k = 31

wait

T T T T T T T T T

dura dura

Figure 11. Geyser data, k = 11 Figure 12. Geyser data, k = 31

Figures 11 and 12 display the geyser data along with k-NN regressions for £ = 11 and k = 31, respectively. These estimates

are more ragged than the kernel regressions. Both these estimates indicate the existence of two groups with a slightly increasing
slope.

k-NN regression, k = 5 k-NN regression, k = 15

75 7 ° o 75 - o o
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Figure 13. Motorcycle data, k = 5 Figure 14. Motorcycle data, k = 15

The motorcycle data are displayed in Figures 13 and 14 along with k-NN regressions for £ = 5 and k = 15, respectively.
In this instance, the k-NN regressions perform somewhat better than the kernel regressions, especially at the beginning of the
series and at the bends in the data.
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k-NN regression, k = 5 k-NN regression, k = 11
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Figure 15. Simulated growth data, kK = 5 Figure 16. Simulated growth data, k = 11

The simulated growth data are displayed in Figures 15 and 16 along with k-NN regressions for £ = 5 and k = 11,
respectively. For these data, the k-NN regressions do a good job of revealing the seasonal pattern of the original function, with
a close correspondence to the true number of cycles (three). One weakness of these estimates is the implication of intermittent
body shrinkage, an unrealistic implication for finfish or shellfish with a hard skeleton. Nevertheless, the estimates are quite good
at recovering important features of the simulated points.

These nonparametric regression estimators, both the kernel and k-NN versions, are important tools for the statistician.
Their flexibility make them useful for exploring complex bivariate relationships. Following estimation, analytic features of the
regression—such as derivatives, extrema, and roots—can be calculated. Moreover, nonparametric regressions can be used in
combination with parametric models in the iterative process of model building and checking (Altman 1992). In their role as
smoothers, nonparametric regressions can be used in the estimation of generalized additive models (Hastie and Tibshirani 1990)
in high-dimensional regression problems (Scott 1992, Cook and Weisberg 1994).

Additional nonparametric estimators
Stata provides additional nonparametric regression estimators.

Local location estimators. The simplest nonparametric regression procedures are local versions of location estimators. Stata’s
graph command allows you to connect cross-medians within fixed-width bands of scatterplots. The ksm command without
options (other than the bandwidth) calculates running mean smooths, while ksm with the weight option calculates running mean
smooths with tricube weighting.

Spline smoothing. A spline is a linear smoother, closely related to kernel regression. Stata’s graph command connects cross-
medians with a cubic spline. In addition, the STB has published at least two spline commands (type lookup spline for more
information).

Local regression smoothing. Stata’s ksm command calculates locally unweighted and weighted (LOWESS) regression estimators.
Resistant nonlinear smoothers. Stata’s smooth command calculates a variety of resistant, compound nonlinear smoothers.

For details on these commands, consult the Stata Reference Manual. The user is invited to compare these commands and
graphing options to the programs presented in this insert.

Some final notes

kernreg and knnreg can be used by all Stata users. As noted above, though, warpreg and gwarpreg can be used only on
DOS platforms because of these programs’ reliance on executable Pascal programs. Unix users can recompile the Pascal source
or convert the programs to C. The Windows versions of the ado files presented are available from the first author upon request.

Hardle’s (1991) algorithms and programs formed the basis of all the Pascal routines provided with this insert. As implemented,
these routines can handle 1000 observations and small bins.

When questions about the precise definitions of the algorithms arose, we used listings of S functions and C source code
obtained from Statlib as a guide.

The results of our programs were verified by comparison with the graphs and tables in Hardle (1991), the results from the
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S functions implemented on the mainframe of the University of Tokyo (those not requiring dynamic loading) and with listings
of the results of the S functions that require dynamic loading that were provided by Dr. Brian Ripley. We also made some
comparisons with the results obtained with XploRe (version 3.1).

We would be grateful to hear of any problems users may have in using our programs.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an  announcements ip  instruction on programming

cc  communications & letters os  operating system, hardware, &
dm  data management interprogram communication

dt data sets gs  questions and suggestions

gr  graphics tt  teaching

in instruction zz  not elsewhere classified
Statistical Categories:

sbe biostatistics & epidemiology srd  robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis

sg  general statistics ssi  simulation & random numbers
smv multivariate analysis sss  social science & psychometrics
snp  nonparametric methods sts  time-series, econometrics

sgc  quality control sxd experimental design

sqv  analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.
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International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company:
Address:

Phone:

Fax:

Email:

Countries served:

Company:
Address:

Phone:

Fax:

Email:

Countries served:

Company:
Address:

Phone:

Fax:
Email:

Countries served:

Company:

Address:

Phone:

Fax:
Email:

Countries served:

Applied Statistics &

Systems Consultants

14/26 Yizreel St., P.O. Box 1169
Nazerath-Ellit 17100, Israel

+972 6554254

+972 6554254
sasconsl@actcom.co.il

Israel

Dittrich & Partner Consulting
Prinzenstrasse 2

D-42697 Solingen

Germany

+49 212-3390 99

+49 212-3390 90

available soon

Austria, Germany, Italy

Metrika Consulting
Roslagsgatan 15

113 55 Stockholm

Sweden

+46-708-163128

+46-8-6122383

available soon

Baltic States, Denmark, Finland,
Iceland, Norway, Sweden

Ritme Informatique

34 boulevard Haussmann
75009 Paris

France

+33 142 46 00 42

+33 142 46 00 33

ritme.inf @applelink.apple.com
Belgium, France,
Luxembourg, Switzerland

Company:
Address:

Phone:

Fax:

Email:

Countries served:

Company:
Address:

Phone:

Fax:

Email:

Countries served:

Company:

Address:

Phone:

Fax:

Email:

Countries served:

Smit Consult
Scheidingstraat 1
Postbox 220

5150 AE Drunen
Netherlands

+31 416-378 125

+31 416-378 385
j-a.c.m.smit@smitcon.nl
Netherlands

Timberlake Consultants

47 Hartfield Crescent

West Wickham

Kent BR4 9DW, U K.

+44 181 462 0495

+44 181 462 0493
100412.2603 @compuserve.com
Ireland, U.K.

Timberlake Consultants
Satellite Office

Rua Jul#o Quintinha,

No. 5°-7° Esq.

1500 Lisbon Portugal

+351 1 7140009

+351 1 7140009

100412.2603 @compuserve.com
Portugal



