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dm60 Digamma and trigamma functions

Joseph Hilbe, Arizona State University, hilbe@asu.edu

The digamma and trigamma functions are the first and second derivatives respectively of the log-gamma function. Several
numeric approximations exist, but the ones used in digamma and trigamma seem particularly accurate (see Abramowitz and
Stegun 1972).

I have prepared two versions of each program: one where the user specifies a new variable name to contain the calculated
values from those listed in an existing variable; the other, an immediate command for which the user simply types a number
after the command.

Syntax

digamma varname
�
if exp

� �
in range

�
, generate(newvar)

trigamma varname
�
if exp

� �
in range

�
, generate(newvar)

digami #

trigami #

Examples

We find the values of the digamma and trigamma functions for x = 1; 2; : : : ; 10 :

. set obs 10

obs was 0, now 10

. gen x=_n

. digamma x, g(dx)

. trigamma x, g(tx)

. list

x dx tx

1. 1 -.577216 1.645019

2. 2 .4227843 .6449341

3. 3 .9227843 .3949341

4. 4 1.256118 .283823

5. 5 1.506118 .221323

6. 6 1.706118 .181323

7. 7 1.872784 .1535452

8. 8 2.015641 .133137

9. 9 2.140641 .117512

10. 10 2.251753 .1051663

Reference
Abramowitz, M. and I. Stegun. 1972. Handbook of Mathematical Functions. New York: Dover.

dm61 A tool for exploring Stata datasets (Windows and Macintosh only)

John R. Gleason, Syracuse University, loesljrg@ican.net

Surely, describe is one of the first commands issued by new Stata users, and one of the first invoked by Stata veterans
when they begin to examine a new dataset. Simple forms of the list, summarize, tabulate, and graph commands enjoy
a similar status, and for good reason. These commands are central to the processes of learning about Stata (for new users)
and of understanding an unfamiliar dataset (for all users). This insert presents varxplor, a tool that might be viewed as an
interactive form of the describe command, in much the same sense that Stata’s Browse window is an interactive form of the
list command. varxplor resembles Stata’s Variables window, except that more information is available, a given variable can
be more easily located, and more can be done once a variable is located. (Note that varxplor uses the dialog programming
features new in Version 5.0, for Windows and Macintosh only, and so is restricted to those platforms.)

We begin by demonstrating some features of varxplor and delay presentation of its formal syntax. First, varxplor

provides much of the same information as describe. Most importantly, there is a Variables window that shows variable names,
variable labels, value label assignments, data types, and output formats. Unlike the describe command, only one of those
categories of information is visible at a time; but in return, one gains the ability to scroll about in the list of variables in either
dataset order or alphabetical order, to rapidly locate any variable, and, with a single mouse click, to execute commands such as
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summarize or list on that variable. The set of commands that can be so executed is configurable; better still, varxplor has
its own rendition of Stata’s command line, from which most Stata commands can be issued.

To illustrate, use the dataset presdent.dta (included with this insert), issue the command varxplor, and a dialog box
resembling Figure 1 will appear. The top portion of the dialog displays general information about presdent.dta: a count of
variables and observations, date last saved, how sorted, and so on. The Variables window is at the bottom. It is divided into
three sections: the middle one shows a list of current variable names; a multi-purpose display panel is located to the right of the
names; and to the left is a stack of six scroll buttons used to navigate the variable list. The contents of the multi-purpose display
are controlled by the radio buttons above it. To show the data types of variables rather than variable labels, for example, click
the Data Type button and then click any of the six scroll buttons, or the Refresh button (to avoid scrolling the variable list).

Figure 1.

If more than six variables are available, the scroll buttons traverse the variable list in an obvious manner. Clicking Dn, for
example, shifts downward one position in the variable list, that is, moves the variables one position upward in the Variables
window. Clicking PgDn shifts six positions downward in the variable list, and clicking Bottom shifts so that the last variable
appears in the bottom position of the Variables window. The topmost variable name also appears in the Locator window (actually,
edit box) beside the Locate button. Any variable can be located by typing its name into that window or by selecting its name
from the dropdown list triggered by the downarrow at the right edge of the window. Clicking Locate then shifts so that the
variable named in the Locator window appears in the Variables window below, in the top position if possible.

Immediately above the Locator window is a row of five launch buttons: By default, clicking a launch button issues the
command named on the button, for the variable whose name appears in the Locator window. In Figure 1, for example, clicking
the button marked (inspect) would issue the command inspect year so that

. inspect year

year: Election year Number of Observations

-------------------- Non-

Total Integers Integers

| # Negative - - -

| # # # # # Zero - - -

| # # # # # Positive 36 36 -

| # # # # # ----- ----- -----

| # # # # # Total 36 36 -

| # # # # # Missing -

+---------------------- -----

1856 1996 36

(36 unique values)

appears in the Results window. Clicking the (Notes) button would in this case have no effect, because the variable year has
no notes. But variable w age does have notes; that is why its name is suffixed by ‘*’ in the Variables window. So, placing the
name w age in the Locator window and clicking the (Notes) button prints the following in the Results window:

w_age:

1. Winner's ages taken from 1995 Universal Almanac

The parentheses on the launch buttons are meant to remind you that the command name between them is merely the
current assignment. Each launch button can be reconfigured as desired (see below). If the launch buttons prove to be inadequate,
varxplor has its own command line, the wide edit box positioned to the right of the Locator window. Most Stata commands
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can be issued from varxplor by typing them into that edit box and pressing the Enter key on the keyboard, or clicking the
Enter button at the right end of the edit box.

Customizing varxplor

The syntax of the varxplor command is

varxplor
�
varlist

� �
, alpha b1(cmdstr) b2(cmdstr) b3(cmdstr) b4(cmdstr) b5(cmdstr)

�
If a varlist is present, only those variables can be visited by varxplor; otherwise, all variables are available.

Figure 2.

If the alpha option is present, varxplor creates an alphabetized list of variable names when it is launched, and shows a
check box labeled abc... just below the Locator window (see Figure 2). Checking that box causes varxplor to begin traversing
the variable list in alphabetic order, rather than in dataset order. The change takes place at the next screen update, caused by
clicking a scroll button or the Refresh or Locate buttons. In Figure 2, for example, the variables are shown in dataset order, but
the abc... box has just been checked. Clicking the Locate button would switch to alphabetic order, with the variable w age

in the topmost position; Figure 3 shows the result. The alpha option also has a more profound, but less visible effect: Since
an alphabetic variable list is at hand, the Locate operation finds variables using binary search, rather than linear search starting
from the top of the list. As a result, locating a variable is much faster (whether or not the abc... box is checked) when the
alpha option is given. Alphabetizing the variable list makes startup slower but pays off in faster locate operations, especially
when there are many variables.

Figure 3.

The options b1(cmdstr) : : : b5(cmdstr) configure the five launch buttons, in left to right order. The argument cmdstr is
effectively just a string to be passed to Stata’s command processor; the first word of that string is used to decorate the button.
More precisely, when a launch button is clicked it is as though cmdstr has been entered on Stata’s command line, with the
variable name in the Locator window substituted wherever a certain placeholder appears in cmdstr; the default placeholder is
the character ‘?’. For example, to make Button 4 launch the list command with the nolabel option, start varxplor with
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. varxplor, b4(list ?, nolabel)

(The fourth button in Figures 2 and 3 reflects this startup option.) The character ‘?’ will be replaced with the variable name in
the Locator window when Button 4 is clicked. Note that the default setup for Button 4 is equivalent to either b4(summarize) or
b4(summarize ?)—they are the same because varxplor automatically appends ‘?’ when ‘cmdstr’ consists of a single word.
To force a null variable list, use (for example) b4(summarize ,); note the blank space preceding the comma.

Also note that certain commands cannot be assigned to a launch button. For example, an option such as b5(graph ?,

bin(20)) is unacceptable to Stata’s parser because of the embedded parentheses. However, the desired effect can be obtained
by typing ‘graph ?, bin(20)’ on varxplor’s command line and then clicking the Enter button. Still other commands are
unacceptable both on the command line and as launch button assignments. In particular, because of limitations in Stata’s macros,
the left-quote (‘`’) and double-quote (‘"’) characters must be avoided. The presence of either character can trigger a variety of
errors. See also Remark 2 below.

Remarks

1. varxplor creates its list of variable names at startup, and that list cannot be updated while varxplor is active. So, while
it is possible to use varxplor’s command line to create new variables, they will not appear on the variable list and cannot
be visited without exiting varxplor. The variables counter at the top of the dialog will however be updated appropriately.

2. For the same reason, deleting or moving a variable would render varxplor’s variable list invalid, without warning. Hence,
the Stata commands drop, keep, move, and order are forbidden in a button cmdstr and from varxplor’s command line.
There are ways to defeat this prohibition, but they cannot be recommended.

3. As mentioned above, the variables counter at the top of the dialog will be updated if a new variable is created. Similar
remarks apply to the other pieces of information shown there. For example, the Sorted by: item will respond to uses of
the sort command from a launch button or the command line.

4. The Locate command accepts wildcards. For example, placing ‘w *’ in the Locator window and clicking Locate will search
for variable names that begin with the characters ‘w ’.

5. The default launch button assignments are defined by a local macro near the top of the varxplor.ado file. Any other set
of five one word Stata commands can be used as the defaults. The default variable placeholder character is defined by a
nearby global macro; that too can be changed, if necessary.

6. One default button assignment is Notes, which displays notes associated with the variable in the Locator window. Observe
that Notes is not Stata’s notes command, but varxplor’s own internal routine for displaying notes. Also, it might seem
curious that another launch button defaults to the describe command. This is because the contents of varxplor’s Variables
window cannot be directly copied to the Results screen, and hence to a log file; invoking describe solves that problem.

7. Rather than typing varxplor from the command line, some users may prefer to click a menu item or press a keystroke
combination. The included file vxmenu.do arranges for that. Typing do vxmenu on Stata’s command line adds an item
named Xplor to Stata’s top-level menu. Afterward, one mouse click launches varxplor; Windows users can also use
the Alt-X keystroke shortcut. To make this arrangement permanent, add the line do vxmenu to the file profile.do;
alternatively, copy the contents of vxmenu.do into profile.do. (See [U] 5.7, 6.7, or 7.6 Executing commands every
time Stata is started.)

Acknowledgment

This project was supported by a grant R01-MH54929 from the National Institute on Mental Health to Michael P. Carey.

dm62 Joining episodes in multi-record survival time data

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

More complicated survival time data will usually contain multiple records (observations) per subject. This may be due to
changes in covariates, to gaps in observations, and to recurrent events. Sometimes, multiple records are used while a single
record could be used. Consider the following two cases:

entry survival failure/

id time time censor x1 x2

112 0 10 0 3 0

112 10 14 1 3 0

117 5 12 0 0 1

117 12 17 0 0 1

117 17 22 0 0 1
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The subject with id==112 is described with 2 observations. In her first episode, the subject was at risk from time 0 to time
10, and was then censored. She re-entered at time 10, i.e., immediately after the end of the first episode, and failed at time 14.
Note that her covariates x1 and x2 did not vary between the two episodes. This data representation is actually less economical
than one in which subject 117 is described by a single observation as shown below. Case 117 consisted of three records that
could also be joined into a single record.

entry survival failure/

id time time censor x1 x2

112 0 14 1 3 0

117 5 22 1 0 1

So, when is it possible to join two episodes E1 and E2? The following 4 conditions should be met:

1. The episodes E1 and E2 belong to the same subject; are to be counted as sequential.

2. they are subsequent, i.e., the ending time of E1 coincides with the entry time of E2;

3. E1 was censored, not ended by a failure; and

4. meaningful covariates are identical on E1 and E2.

These conditions are easily generalized for more than 2 episodes. Why should one want to join such episodes? The reasons
are practical, not really statistical. Using multiple records when only one suffices is a waste of computer memory. Using an
uneconomical data representation may cause you to use approximate analytical methods when better methods would have been
feasible with a more compact data representation. Second, most analytical commands require computing time that is proportional
to the number of records (observations), not to the number of subjects. Thus, a more economical data representation reduces
waiting time.

Syntax

The command stjoin implements joining of episodes on these 4 conditions. It should be invoked as

stjoin varlist
�
, keep eps(#)

�
varlist specifies covariates that are meaningful for some analysis. Unless keep is specified, all other variables in the data

(apart from the st key variables) are dropped. If keep is specified, all variables are kept in the data. Variables not included in
varlist may of course be different on episodes that meet the 4 conditions. It is safe to assume that the values of such variables
are chosen at random among the values of these variables on the joined episodes. eps(#) specifies the minimum elapsed time
between exit and re-entry so that subsequent episodes are to be counted as sequential. eps() defaults to 0.

gr29 labgraph: placing text labels on two-way graphs

Jon Faust, Federal Reserve Board, faustj@frb.gov

labgraph is an extension of the graph (two-way version) command that allows one to place a list of text labels at specified
(x; y) coordinates on the graph. Thus, one can label points of special interest or label lines on the graph. Labeling lines may
be especially useful in rough drafts; differing line styles and a legend are probably preferred for more polished graphs.

All graph options are supported, two new options are supplied, and one graph option is modified. The two new options
are for specifying labels and their locations:

labtext(string
�
;string

�
: : :) specifies a semicolon-delimited list of text labels.

labxy(real, real
�
; real, real

�
: : :) specifies a semicolon-delimited list of (x; y) coordinates for the labels.

You must state an (x; y) pair for each labtext string. The label will appear centered at (~x; y), where ~x is the value of the
x-axis variable in the labgraph command that is closest to the requested x coordinate.

The trim option of graph is modified. trim controls the size of text labels and defaults to 8 in graph. In labgraph,
trim defaults to 32, the maximum allowed by graph.

The psize option of graph controls the size of the text for all the labels. The default psize is 100, larger numbers give
larger text.

Example

The following commands produce the graph in Figure 1.
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. set obs 20

. gen x=_n +0.1*invnorm(uniform())

. gen y1=_n + 0.5*invnorm(uniform())

. gen y2=_n -5 + 0.5*invnorm(uniform())

. labgraph y1 y2 x, c(ll) s(..) t1ti(labgraph example) xlab ylab

> xline(7,10) yline(0,12) labtext(Line y1; Line y2) labxy(10,12;7,0)

labgraph example

x
0 5 10 15 20

-10

0

10

20

Line y2

Line y1

Figure 1. An example of using labgraph

The labels Line y1 and Line y2 will appear at approximately the requested coordinates, and the type size will be set to
100. The xline and yline options put cross hairs at the requested point for the labels, illustrating placement.

gr30 A set of 3D-programs

Guy D. van Melle, University of Lausanne, Switzerland, guy.van-melle@inst.hospvd.ch

Aside from William Gould’s needleplot representations, gr3, Stata has very little 3D-capabilities. gr3 appeared in STB-2
for Stata version 2.1 (Gould 1991) and was revisited and updated to version 3.0 in STB-12 (Gould 1993). It still works nicely if
you set the version number to 3.0 first.

This insert presents three programs, hidlin, altitude, and makfun. The former two produce two different representations
of a surface when you provide the equation of that surface, while the third one summarizes real data in a way suitable for use
by either of the 2 graphing routines (it “makes” the function they require).

hidlin is a genuine 3D-program with hidden line removal (hence the name), whereas altitude uses colors and changing
symbol-size to convey some sort of contour-plot appearance. The summary produced by makfun on real data is obtained from
Stata’s pctile and collapse commands. Counts are shown by default but you may request any of the statistics available for
collapse on any other numerical variable in the dataset.

The three programs use macros and matrices whose names are prefixed by hl. The two graphing routines share most of
their information and store in the same macros and matrices. These are kept after the graph completes, thus permitting a replay
any time later in the same Stata session.

An auxiliary program hltex is used to display texts on these graphs.

Syntax for hidlin

hidlin func xinfo(#
�
,
�

#
�
,
�

# ) yinfo(#
�
,
�

#
�
,
�

# )

eye(#
�
,
�

#
�
,
�

#)
�
, lines(

�
x
��
y
�
) box coo neg

xmargin(#) ymargin(#) text tmag(#) saving(filename)
�

where func stands for any name of your choosing (with a maximum of 6 characters). The function func is of the form z = f(x; y)
and must be declared in a separate ado-file (see the example below) whose name is hlfunc (the hl prefix will be stripped
away).

User data are cleared and the function is calculated on the grid defined by xinfo(xlow xhigh xstep), yinfo(ylow yhigh ystep)
and viewed from a position declared by eye(xpos ypos zpos); this is not a perspective view.
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The grid and the eye position are required. The object is presented such that the lowest 2D-corner (projection) is “in front.”

hidlin can only represent a function, not data. However, the program makfun may be used to generate a function summarizing
real data, with which hidlin may then produce a 3D representation.

Options

xinfo, yinfo, and eye must all be known. They define x (range and step) and y (range and step) for the grid as well as eye
(x- y- z- directions), i.e., the position from where the surface is viewed. All specified values may be separated by commas
and they may be expressions, e.g. x( - pi pi, pi/90 ) going from �� to � in 180 steps.

lines requests that only x-curves be drawn when x is specified, or only y-curves when y is specified. More precisely, lines(x)
asks to see the curves z = f(x; y0), where x varies at each successive level y0 of y. Similarly, lines(y) requests the
curves z = f(x0; y) where y varies at successive levels of x. When lines is omitted or when both x and y are specified,
the default is to draw both sets of curves.

box asks that the surface be represented as a chunk of a solid 3D object.

coo asks that the coordinates of the “corners” of the surface be displayed.

neg requests that �z be plotted rather than z (upside-down view).

xmargin and ymargin specify the sizes of the margins around the plot. They are expressed as a percentage of the graphing
area. Default margins are 10 for both x and y (i.e., 10%).

text requests that stored texts be displayed. This option invokes the auxiliary program hltex.

tmag asks for a text magnification, the default being 100. The magnification applies to all texts shown by hltex.

saving stores the graph in filename which must be a new file.

Example of a function declaration

Below is a program defining the bivariate normal density surface. It generates the data, not the graph. It is invoked by

hlbivnor x y z [in #/#]

where x and y are any two existing variables and z is created or replaced as necessary.

Note that the code in this program preceding the actual declaration should appear in any hlfunc and that any parameter you
wish to easily access should be declared in a global macro. In the present function, the correlation � between x and y is needed
and the program assumes independence (� = 0) if $rho is empty.

*----------------

prog def hlbivnor

*----------------

loc x `1'

loc y `2'

loc z `3'

cap confirm var `z'

if _rc qui gen `z'=.

mac shift 3

loc in "opt"

parse "`*'"

*--- actual start of function declaration ---

if "$rho"=="" glo rho 0

loc r = 1 - ($rho)^2 /* need parentheses !!! */

loc c = 2 * _pi * sqrt(`r')

#delimit ;

qui replace

`z'= exp( -(`x'^2 -2*$rho*`x'*`y'+`y'^2) / (2*`r') )/ `c' `in'

; #delimit cr

end

*----------------

Once the function is declared, the 3D representation may be obtained, for example by

. global rho=.9

. hidlin bivnor, x(-3 3 .2) y(-3 3 .3) e(2 -3 .5) b c

This is a coarse graph but gives a quick first look which is shown in Figure 1.
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Figure 1. The bivariate normal density.

Inspection of this graph can give you an idea of a useful eye location and good values of the step sizes. For example,

. hidlin bivnor, x(-3 3 .1) y(-3 3 .15) e(-2 -4 .3) b c l(y)

gives the graph in Figure 2, which is the same as that in Figure 1 except that the location of the viewing eye has been moved,
the grid is twice as fine, and only the y lines have been drawn.

  -3.00

  -3.00

   0.00

  -3.00

   2.94

   0.00

   2.94

  -3.00

  -0.00

   2.94

   2.94

   0.00

Figure 2. The bivariate normal density from a different view and using a finer grid.

Note that when the stepsizes are very small, that is, when the number of grid points becomes huge, graphing will become
annoyingly slow if your function is very wavy or bumpy. The maximum allowed is 500 by 500 but that is already visually much
too dense.

Details on the geometry for hidlin

In order to keep the number of drawing points reasonably low, it is required that the ratio of the x and y components of the
eye position be the same as the ratio of the xstep to the ystep. Thus it is required that: step

x
=step

y
= xeye=yeye (ignoring

signs). However, when the information provided by the user does not satisfy that condition the program adapts the x- and y-step
to meet the requirement, so that the user actually does not have to worry with this limitation.

The reason for implementing such a constraint is that all 2D-projected points now have fixed horizontal-axis coordinates
(i.e., all points on the screen align on verticals). As a consequence, the next point to be drawn is easily identified as visible
or invisible according to its position with respect to the current upper and lower edges of the graphed portion. These edges
are permanently updated as new points are computed and, because they have fixed horizontal coordinates, their storage is very
economical.

There are indeed Nx +Ny + 1 fixed coordinates, where Nx is the number of steps along x (i.e., rangex=stepx) and Ny

the number of steps along y. Thus, even on a 500 by 500 grid, there are only 1001 points to memorize for the lower edge and
1001 for the upper edge!

When a curve becomes invisible, a partial segment is drawn from the last visible point to the approximate position where
it disappears. This position is obtained, via linear interpolation, as the intersection of the previous visible edge and the segment
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joining the last point to the next (invisible) one. Naturally, a similar interpolation is performed when the curve goes from invisible
to visible. These details are exhibited in Figure 3 (which incidentally was created entirely in Stata!).

 Hidl in: example showing 3 l ines

 P

 curve 1
 visible

 curve 2
 visible

 curve 3
 part ly
 h idden

 d isappears

 may reappear

 INTERPOLATION

 P

 1

 2  curve 2

 3

 4  curve 3

 xP = x1 + al fa * (  x2-x1 )

 yP = y1 + alfa * ( y2-y1 )

 where alfa= ( y3-y1 ) /  (  y3-y1 + y2-y4 )

Figure 3. Some details of the hidden line algorithm.

Syntax for altitude

altitude func xinfo( #
�
,
�

#
�
,
�

# ) yinfo( #
�
,
�

#
�
,
�

# )�
, nquant(#) symb(#) neg

xmargin(#) ymargin(#) text tmag(#) saving(filename)
�

The function is calculated on the grid defined by xinfo(xlow xhigh xstep), yinfo(ylow yhigh ystep), which are required.

The computed z-value (altitude) is then divided into nquant quantiles, which are displayed on the grid using symbol symb. The
successive quantile levels are represented with different colors and increasing sizes of the symbol, so that the appearance
truly yields contour effects. The legend relative to quantile colors and sizes is shown in the right margin.

Options

Most options are the same as for hidlin. xinfo and yinfo are required, while two options are specific for altitude:

nquant declares the desired number of quantiles (with a maximum of 20). The default is set to 16 because 8 pens are used
(i.e., 8 colors), thus providing two full pen-color cycles.

symb specifies the choice of graphing symbol numbered as for gph (the default is 4):

0= dot
1= large circle 4= small circle
2= square 5= diamond (not translucid)
3= triangle 6= plus

The lowest quantile is always represented by a dot so you always know where the surface is at its minimum.

Example: hlbivnor

The contour graph for the bivariate normal distribution can be produced using

. altitude bivnor, x(-3 3 .06) y(-3 3 .12) s(5)

(graph not shown)

Usually, satisfactory stepsizes are 100 steps along x and 50 steps along y, with certainly no need for more. Using the ranges
of the example above, this might have been requested as x(-3 3 6/100) y(-3 .3 6/50) since expressions are permitted.

Note that the altitude representation provides a good indication of where to sit for viewing with hidlin. The x and y

directions for Figures 1 and 2 are respectively: 2 along x, �3 along y and �2 along x, �4 along y, which are easy to visualize
on the altitude plot. Only the z-direction of the eye may need repeated trials.
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Syntax for makfun

makfun x y
�
, x(#jmatname) y(#jmatname) z(zexpression) ground(#) smooth

�
where x and y are any two existing variables.

makfun generates a function z = f(x; y) on an
�
x,y
�
-grid based on specified cutpoints or on quantiles of existing data in

memory.

The data is preserved, but 3 matrices are created and left behind on exit; the x and y cutpoints are in hlXcut and hlYcut, and
the z values are in hlZfun.

The aim was to provide an interface to the 3D-programs hidlin or altitude which can only plot functions, not data, but it
turns out that makfun has general utility because hlZfun stores a nice 3D-summary of real data (smoothed if so desired) .

The graphical representation of this summary is obtained either from hidlin or altitude via the included hlmakfun

function-declaration program as: hidlin makfun, : : : or altitude makfun, : : : (see the example below).

This hlmakfun program should not be modified, it knows how to use the saved matrices to reconstruct the surface and has the
form of the hlfun required by hidlin or altitude.

Options

x(#jmatname) indicates how the x variable is to be cut. The argument is either a number of quantiles (with a default of
p

N=3
in which case xtile is used) or a matrix containing the desired x cutpoints. Note that intervals are half-open (low; high ]
as for xtile and with m intervals or quantiles there are m� 1 cutpoints.

y(#jmatname) is similar to the x option.

z(zexpression) indicates which summary is to be produced with choices being either freq or statistic varname (with a default
of freq) with choices for statistic being the same as with collapse).

ground(#) is the z value to be used when an
�
x,y
�

cell is empty and the zexpression cannot be evaluated. The default is 0.

smooth requests that computed z values be smoothed using surrounding cells, each with a weight of 1, and the target cell with
a weight of 2 as shown below.

1 1 1
1 2 1
1 1 1

For cells located outside the grid, or where a cell’s contents are unknown (ground) a weight of 0 is used. Thus, for a corner
cell at most 3 neighbors are available and for a cell elsewhere on an edge there are at most 5 neighbors. The original hlZfun
matrix is copied into matrix hlZfu1 and the smoothed summary is stored in hlZfun.

The bare call makfun x y uses qx = qy = min(
p

N=3; matsize) quantiles and produces counts on the grid.

Example

For the auto data we study mpg in the quartiles of price by foreign. We begin by summarizing the grid variables:

. use auto

(1978 Automobile Data)

. summarize price

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

price | 74 6165.257 2949.496 3291 15906

. tabulate foreign,nolabel

Car type | Freq. Percent Cum.

------------+-----------------------------------

0 | 52 70.27 70.27

1 | 22 29.73 100.00

------------+-----------------------------------

Total | 74 100.00

Next, we use a matrix to define our own choice of cutpoints for foreign and use four quartiles for price:

. mat A=(0)

. makfun for pri, x(A) y(4) z(mean mpg)

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

mpg | 8 22.5845 4.769106 16.45455 30.5
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This has generated 8 levels (2� 4) and we may want to inspect the matrices that have been generated:

. mat dir

hlZfun[2,4]

hlYcut[3,1]

hlXcut[1,1]

A[1,1]

A first plot of the surface is shown in Figure 4 which was obtained by typing

. hidlin makfun, x(-1 1 .2) y(3200 16000 200) e(1 -1000 -3) c

  -1.00

 16000.00

  16.45

  -1.00

 3200.00

  22.07

   1.00

 16000.00

  20.29

   1.00

 3200.00

  30.50

Figure 4. A first plot of the surface for the auto data.

The front (high quarter) is much too “long”; drawing from 3200 to 8000 should be adaquate. Now we adjust the grid and viewing
location, show the box and coordinates and only draw the x lines, giving Figure 5:

. global xye x(-1 1 .025) y(3200 8000 50) e(1 -2000 -5)

. hidlin makfun, $xye b c l(x)

  -1.00

 8000.00

  16.45

  -1.00

 3200.00

  22.07

   1.00

 8000.00

  20.29

   1.00

 3200.00

  30.50

Figure 5. A better view of the surface in Figure 4.

Adding texts

In the previous graph, we would like to add some details with the text option. We first clear any texts in memory.

. hltex clean

. mat li hlZfun

hlZfun[2,4]

c1 c2 c3 c4

r1 22.066668 22.214285 17.333334 16.454546

r2 30.5 27.25 24.571428 20.285715

Suppose we want to show the z levels on the graph. The utility mat2mac copies a row of a matrix into a global macro:

. mat2mac hlZfun 1 tx1 %6.1f /* copy row 1 into tx1, format 6.1 */

tx1: 22.1 22.2 17.3 16.5
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. mat2mac hlZfun 2 tx2 %6.1f /* copy row 2 into tx2, format 6.1 */

tx2: 30.5 27.2 24.6 20.3

Next we define a number of texts:

. global hltexl mag(80). . . . Domestic . $tx1

. global hltexr mag(80). . . . Foreign . $tx2

. hidlin makfun, $xye b l(x) xm(15) ym(22) t tm(70)

. global hltext1 mag(100)Average 'mpg' in the quartiles of 'price' by 'foreign'

. global hltexb2 hidlin makfun, $xye ...

. global hltexb1 ... box lines(x) xmar(15) ymar(22) tex tmag(70)

. global hltexc GvM

Finally, we get Figure 6 by

. hidlin makfun, $xye b l(x) xm(15) ym(22) t tm(70)

 Average 'mpg' in the quart i les of 'price' by ' foreign'

 ... box l ines(x) xmar(15) ymar(22) tex tmag(70)

 hidl in makfun, x(-1 1 .025) y(3200 8000 50) e(1 -2000 -5) ...

 Domest ic

 22.1
 22.2
 17.3
 16.5

 Foreign

 30.5
 27.2
 24.6
 20.3

 GvM

Figure 6. Using texts on graphs.

Stored Results

All results are stored in globals or matrices whose names start with hl.

hl-globals
hlprog progname for plotted function (func)
hlXli, hlYLi 0/1 indicating which curves are to be drawn
hlXma, hlYma 10 (default) or specified margin values (%)
hlMag 100 (default) or specified text magnification (%)
hlXfa, hlYfa gph scaling factors
hlXsh, hlYsh gph shifts
hlX, hlY, hlE xinfo, yinfo, eye
hlXn, hlYn, hln, hlNmax number of x-steps, y-steps, total, max
hlBox, hlCoo, hlNeg, hltex indicators for corresponding options

hl-matrices
hlCx, hlCy [1x4] gph-coordinates of the corners
hlCz [1x4] true z-value of the corners
hlWk [2x3] working xinfo and yinfo (these may differ from

the request because either the object has been oriented
differently or because of geometric considerations)

hlPj [2x3] projection matrix from 3D into 2D

Note that typing hidlin clean or altitude clean will remove all these stored results from memory. These commands
invoke the utility hlclean.

References
Gould, W. 1991. gr3: Crude 3-dimensional graphics. Stata Technical Bulletin 2: 6–8. Reprinted in Stata Technical Bulletin Reprints, vol. 1, pp. 35–38.

——. 1993. gr3.1: Crude 3-dimensional graphics revisited. Stata Technical Bulletin 12: 12. Reprinted in Stata Technical Bulletin Reprints, vol. 2,
pp. 42–43.
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gr31 Graphical representation of follow-up by time bands

Adrian Mander, MRC Biostatistical Research Unit, Cambridge, adrian.mander@mrc-bsu.cam.ac.uk

This command is a graphical addition to the lexis command introduced in STB-27 (Clayton and Hills 1995). The lexis

command splits follow-up into different time bands and is used for the analysis of follow-up studies. It is more informative
to draw the follow-up since all statistical analyses are incomplete without extensive preliminary analysis. Preliminary analysis
usually can be plotting data or doing simple tabulations or summary statistics.

This command has the same basic syntax as the lexis command with a few additions. Follow-up starts from timein to
timeout and is usually graphically represented by a straight line. With no additional information, follow-up is assumed to start
from the same point in time, graphically this is assumed to be time 0. This can be offset using the update() option by another
variable, e.g., date of birth perhaps or date of entry into the cohort.

For further information about Lexis diagrams, see Clayton and Hills (1993).

Syntax

grlexis2 timein fail fup
�
if exp

� �
, update(varname) event(evar) saving(filename) xlab(#,: : :,#)

ylab(#,: : :,#) ltitle(string) btitle(string) title(string) symbol(#) nolines numbers

noise box(#,#,#,#)
�

The variable timein contains the entry time for the time scale on which the observations are being expanded. The variable fail
contains the outcome at exit; this may be coded 1 for failure or a more specific code for type of failure (such as icd) may
be used; it must be coded 0 for censored observations. The variable fup contains the observation times.

Remarks

If there are missing values in the timein variable, that line is deleted. If there are missing values however in the update
variable, then the update variable is set to zero. Proper handling of missing data values requires additional editing of the dataset
or use of the if option.

On occasion, the command will be unable to cope with large x- or y-axis values and will overwrite the axis the label is
on. In this case it is suggested that the xlab or ylab options be used.

Options

update() specifies variables which are entry times on alternative time scales. These variables will be appropriately incremented,
thus allowing further expansion in subsequent calls.

event() If the subjects are followed up for the entire time but the events do not stop follow-up then the event option suppresses
the drawing of a symbol at the end of a line and instead uses the values in evar to draw the symbols.

saving(filename) this will save the resulting graph in filename.gph. If the file already exists it is deleted and the new graph
will be saved.

xlab() and ylab() have the same syntax as in the graph command. If these options are not specified, the labels will contain
the maximum and minimum values on the axes.

btitle() and ltitle() are titles for the bottom and top-left portions of the graph. The default is the variable name in brackets
followed by follow-up or timein depending on the axes.

title() adds a title at the top of the graph.

symbol() controls the plotting symbol of the failed events. The integer provided corresponds to

0 dot
1 large circle 4 small circle
2 square 5 diamond
3 triangle 6 plus

nolines omits the lines that represent the follow up time.

box is the bounding box parameters. As usual, the lexis diagram has all the follow-up lines at 45 degrees from the horizontal. This
can be achieved by setting up a square bounding box (for example, box(2500,20000,2500,20000)). The first number
is top y-coordinate; second is bottom y-coordinate; third is left x-coordinate; and fourth is right x-coordinate.
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numbers gives the option that instead of the failure codes, the line number will be plotted. For small datasets this may give
clarity.

noise gives a little information about the two variables on the x and y axes.

Examples

The simplest plot displays follow-up offset by some starting time/date in the y direction. The automatic labeling of axes is
between minimum and maximum points and they are labeled as time in and follow-up. In brackets the actual variables used are
displayed.

. grlexis2 timein fail fup

 LEXIS Diagram

 0  50

 (fup) Fol low-up

imein) Time in

 23

 88

Figure 1

Taking the same dataset, the follow-up lines can now be offset in the x direction. Previously time-in may be the age of the
person entering the cohort and datein may contain the dates that the subject entered the cohort. Now the follow-up times are
more meaningful.

. grlexis2 timein fail fup, up(datein)

 LEXIS Diagram

 1  60

 (fup) Fol low-up

imein) Time in

 23

 88

Figure 2

The following command just adds some of the options to improve the finished graph. xlab and ylab must have numbers
as arguments to these options and no best guess system is used as in all other Stata graphs. The numbers option allows the
drawing of text next to the events representing the line number in the dataset. The title options are similar to the usual graph
options.

. grlexis2 timein fail fup, up(datein) numbers xlab(0,30,60) ylab(0,20,40,60,10)

> ltitle(Time in) btitle(Follow-up) title(my graph)
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 my graph

 0  30  60

 Fol low-up

 Time in

 0

 20

 40

 60

 10

 1
 2

 3

 4

 5

 6

 7

 8

 9

Figure 3

Take the same dataset but this time timein are the event times and everyone entered the cohort at birth. This means that
the x-axis is time and the y-axis is age. The trick here is to generate a variable of zeroes. This insures all follow-up times will
start from the y-axis (y = 0). Then each subjects’ follow-up is offset in the x-direction by the entry time (in years).

. grlexis zero fail fup, up(timein) lti(Age) bti(Time) saving(gr3)

 LEXIS Diagram

 23  88

 (fup) Fol low-up

 T ime

 0

 50

Figure 4

One possible disadvantage of the previous example is that after an event the subject may still be followed-up until the end
of the study. However, previously if the follow-up is altered to the end of the study coverage time (in the command line this
new variable is fup2), then all the events will be assumed to be at the end of the study. If the event occurs at earlier times, then
a new variable is created that contains the amount of follow-up since study-entry until the first event that the subject had.

. grlexis zero fail fup2,up(timein) ev(event) lti(Age) bti(Time) saving(gr4)

 LEXIS Diagram

 23  88

 T ime

 Time

 0

 50

Figure 5
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References
Clayton, D. and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

——. 1995. ssa7: Analysis of follow-up studies. Stata Technical Bulletin 27: 19–26. Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 219–227.

ip14.1 Programming utility: numeric lists (correction and extension)

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

I recently encountered a bug in numlist (see Weesie 1997) that may occur in numeric lists with negative increments.
In this new version of numlist, this bug was fixed. In addition, I improved the formatting of output to reduce the need for
using explicit formatting. Finally, I replaced the relatively slow sorting algorithm with a Stata implementation of nonrecursive
quicksort for numbers (see Wirth 1976).

The sorting commands (qsort, qsortidx) are actually separate utilities that may be of some interest by themselves to
other Stata programmers. Some testing, however, indicated that a quicksort in Stata’s macro language becomes quite slow for
complex lists. For instance, sorting a macro with 1,000 random numbers took so long that I initially thought the main loop did
not terminate due to some bug in my code. This is clearly stretching Stata’s language beyond its design and purpose. I hope
that Stata Corporation will one day apply its very fast sorting of numbers in variables to numbers in strings and macros.

References
Weesie, J. 1997. ip14: Programming utility: Numeric lists. Stata Technical Bulletin 35: 14–16. Reprinted in Stata Technical Bulletin Reprints vol. 6,

pp. 68–70.

Wirth, N. 1976. Algorithms + Data Structures = Programs. Englewood Cliffs, NJ: Prentice–Hall.

ip26 Bivariate results for each pair of variables in a list

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Syntax

biv progname
�
varlist

� �
weight

� �
if exp

� �
in range

� �
, asy con echo header(header string)

hstart(#) own(own command name) pause quiet progname options
�

Description

biv displays bivariate results from a Stata command or program progname for each pair of distinct variables in the varlist.
For p variables there will be p(p� 1)=2 such pairs if the order of the variables is immaterial and p(p� 1) otherwise.

The simplest cases are

. biv progname

. biv progname varlist

In the first case, the varlist defaults to all.

Options

asy flags that the results of progname var1 var2 may differ from those of progname var2 var1 and that both sets are wanted.

con suppresses the new line that would normally follow the variable names echoed by echo. Thus other output (typically from
the user’s own program) may follow on the same line.

echo echoes the variable names to the monitor.

header(header string) specifies a header string that will be displayed first before any bivariate results.

hstart(#) specifies the column in which the header will start. The default is column 21.

own(own command name) allows users to insert their own command dealing with the output from progname.

pause pauses output after each execution of progname. This may be useful, for example, under Stata for Windows when
progname is graph.

quiet suppresses output from progname. This is likely to be useful only if the user arranges that output is picked up and shown
in some way through the own option.

progname options are the options of progname, if such exist.
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Explanation

biv displays bivariate results for each pair of distinct variables in the list of variables supplied to it. It is a framework for
some command or program (call it generically progname) that produces results for a pair of variables.

In some cases, perhaps the majority in statistical practice, the order of the variables is immaterial: for example, the correlation
between x and y is identical to the correlation between y and x. In other cases the order of the variables is important: for
example, the regression equation of y predicted from x is not identical to the converse. For the latter case, biv has an asy

option (think asymmetric) spelling out that results are desired for x and y as well as for y and x.

biv might be useful in various ways. Here are some examples:

1. Some bivariate commands, such as spearman and ktau, take just two variables: thus if you want all the pairwise correlations,
that could mean typing a large number of commands. (Actually, for spearman, there is another work-around: use for and
egen to rank the set of variables in one fell swoop, and then use correlate.)

2. To get a set of scatter plots, you could use graph, matrix, but that may not be quite what you want. Perhaps you want
each scatter plot to show variable names, or you would prefer a slow movie with each plot full size.

3. You write a program to do some bivariate work. biv provides the basic scaffolding of looping round a set of names to get
all the distinct pairs. Thus your program can concentrate on what is specific to your problem.

biv also allows the minimal decoration of a one-line header; pausing after each run of progname; and suppressing the
program’s output and processing it with the user’s own program.

Note that biv could lead to a lot of output if p is large and/or the results of progname are bulky. If p is 100, a modest
number of variables in many fields, there are 4,950 pairs if the order of the variables is immaterial and 9,900 pairs otherwise.
Users should consider the effects on paper and patience, their own and their institution’s.

Examples

In the auto dataset supplied with Stata, we have several measures of vehicle size. Scatter plots for these would be obtained
by

. biv graph length weight displ, xlab ylab

With Stata for Windows, the user may prefer

. biv graph length weight displ, xlab ylab pause

to allow enough time to peruse the graphs.

The patterns in these scatterplots are basically those of monotonic relationships, with some curvature. These might be
expected not only from experience but also on dimensional grounds. With monotonicity and some lack of linearity, the Spearman
correlation is a natural measure of strength of relationship.

. biv graph length displ weight

-> graph length displ

-> graph length weight

-> graph displ weight

. biv spearman length displ weight

-> spearman length displ

Number of obs = 74

Spearman's rho = 0.8525

Test of Ho: length and displ independent

Pr > |t| = 0.0000

-> spearman length weight

Number of obs = 74

Spearman's rho = 0.9490

Test of Ho: length and weight independent

Pr > |t| = 0.0000

-> spearman displ weight

Number of obs = 74

Spearman's rho = 0.9054

Test of Ho: displ and weight independent

Pr > |t| = 0.0000

Finally, we show how to take more control over the output from progname. concord (Steichen and Cox 1998) calculates
the concordance correlation coefficient, which measures the extent to which two variables are equal. This is the underlying
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question when examining different methods of measurement, or measurements by different people: when applied to the same
phenomenon, the ideal is clearly that they are equal. (Two variables can be highly correlated, and close to some line y = a+ bx,
but equality is more demanding, as a should be 0, and b should be 1.)

concord takes two variables at a time, so biv is useful in getting all the pairwise concordance correlations.

An example dataset comes from Anderson and Cox (1978), who analyzed the measurement of soil creep (slow soil movement
on hillslopes) at 20 sites near Rookhope, Weardale, in the Northern Pennines, England. The dataset is in the accompanying file
rookhope.dta. The general slowness of the process (a few mm yr�1) and the difficulty of obtaining a measurement without
disturbance of the process combine to make measurement a major problem.

Six methods of measurement give 15 concordance correlation coefficients. Left to its own devices, concord would produce
a fair amount of output for these 15, so we write a little program picking up the most important statistics from each run. The
documentation for concord shows that the concordance correlation is left behind in global macro S 2, its standard error in
global macro S 3 and the bias correction factor in global macro S 8. The brief program dispcon uses display to print these
out after each program run. The biv options used are quiet, to suppress the normal output from concord; echo, to echo
variable names; con, to suppress the new line supplied by default, so that the output from dispcon will continue on the same
line; and header, to supply a header string.

. program define dispcon

1. version 5.0

2. display %6.3f $S_2 %9.3f $S_3 %13.3f $S_8

3. end

. describe using rookhope

Contains data soil creep, Rookhope. Weardale

obs: 20 8 Jun 1998 12:53

vars: 6

size: 560

-------------------------------------------------------------------------------

1. ip float %9.0g inclinometer pegs, mm/yr

2. at float %9.0g Anderson's tubes, mm/yr

3. ap float %9.0g aluminium pillars, mm/yr

4. yp float %9.0g Young's pits, mm/yr

5. dp float %9.0g dowelling pillars, mm/yr

6. ct float %9.0g Cassidy's tubes, mm/yr

-------------------------------------------------------------------------------

Sorted by:

. biv concord ct dp yp ip at ap , qui echo con o(dispcon) he(rho_c se of rho_c

> bias correction)

rho_c se of rho_c bias correction

ct dp 0.708 0.116 0.935

ct yp 0.849 0.065 0.991

ct ip 0.836 0.073 0.963

ct at 0.819 0.079 0.965

ct ap 0.754 0.102 0.945

dp yp 0.857 0.064 0.957

dp ip 0.923 0.034 0.992

dp at 0.935 0.030 0.995

dp ap 0.901 0.040 0.981

yp ip 0.934 0.029 0.969

yp at 0.933 0.031 0.980

yp ap 0.867 0.056 0.944

ip at 0.977 0.010 0.997

ip ap 0.929 0.032 0.995

at ap 0.936 0.027 0.983

The pattern of agreement between different measures is generally good, although Cassidy’s tubes stand out as in relatively
poor agreement with other methods.

References
Anderson, E. W. and N. J. Cox. 1978. A comparison of different instruments for measuring soil creep. Catena 5: 81–93.

Steichen, T. J. and N. J. Cox. 1998. sg84: Concordance correlation coefficient. Stata Technical Bulletin 43: 35–39.
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ip27 Results for all possible combinations of arguments

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456; n.j.cox@durham.ac.uk

Various commands in Stata allow repetition of a command or program for different arguments. In particular, for repeats
one or more commands using items from one or more lists. The lists can be of variable names, of numbers, or of other items.
An essential restriction on for is that the number of items must be the same in each list.

Thus

. for price weight mpg : gen l@ = log(mpg)

log-transforms each of the named variables, as does

. for price weight mpg \ logp logw logm, l(va) : gen @2 = log(@1)

The items in the first list match up one by one with those in the second list.

This insert describes a construct cp (think Cartesian product) that takes between one and five lists and some Stata command.
With cp the number of items in each list is unrestricted, and cp executes the command in question for all combinations of items
from the lists. For example, it can tackle problems of the form: do such-and-such for all n1 � n2 pairs formed from the n1
items in list1 and the n2 items in list2.

The construct is designed primarily for interactive use. The underlying programming is simply that of nested loops.
Programmers should avoid building cp into their programs, as their own loops will typically work faster.

The restriction to five lists is not a matter of deep principle, but rather reflects a guess about what kinds of problems arise
in practice.

cp could lead to a lot of output. Consider the effects on paper and patience, your own and your institution’s.

Syntax

cp list1
�
\ list2

�
\ list3

�
: : :

� �
, noheader nostop pause

�
: stata cmd

Description

cp repeats stata cmd using all possible n-tuples of arguments from between one and five lists: each possible argument from
one list, each possible pair of arguments from two lists, and so forth.

In stata cmd, @1 indicates the argument from list1, @2 the argument from list2, and so forth.

The elements of each list must be separated by spaces.

If there are nj arguments in list j, k lists produce
Q

k

j=1 nj sets of results.

The name cp is derived from Cartesian product.

Options

noheader suppresses the display of the command before each repetition.

nostop does not stop the repetitions if one of the repetitions results in an error.

pause pauses output after each execution of stata cmd. This may be useful, for example, under Stata for Windows when cp is
combined with graph.

Examples

With the auto data,

. cp 2 4 6 : xtile mpg@1 = mpg, n(@1)

executes

. xtile mpg2 = mpg, n(2)

. xtile mpg4 = mpg, n(4)

. xtile mpg6 = mpg, n(6)

and is close to

. for 2 4 6, l(n) : xtile mpg@1 = mpg, n(@1)
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but

. cp length weight mpg \ 2 4 : xtile @1@2 = @1, n(@2)

which executes

. xtile length2 = length, n(2)

. xtile length4 = length, n(4)

. xtile weight2 = weight, n(2)

. xtile weight4 = weight, n(4)

. xtile mpg2 = mpg, n(2)

. xtile mpg4 = mpg, n(4)

(that is, two different numbers of quantile splits for three different variables) is more concise than the corresponding for

statement:

. for length weight mpg : xtile @12 = @1, n(2) // xtile @14 = @1, n(4)

Another example is

. cp mpg price \ length displ weight : regress @1 @2

which executes

. regress mpg length

. regress mpg displ

. regress mpg weight

. regress price length

. regress price displ

. regress price weight

As the number of combinations of items increases, so also does the benefit from the conciseness of cp become more evident.
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sbe18.1 Update of sampsi

Paul T. Seed, United Medical & Dental School, UK, p.seed@umds.ac.uk

The sampsi command (Seed 1997) has been updated. I have improved the error messages slightly. It now checks for
correlations outside �1 to +1, and correctly reports when correlation r1 is needed.

References
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sbe24.1 Correction to funnel plot

Michael J. Bradburn, Institute of Health Sciences, Oxford, UK, m.bradburn@icrf.icnet.uk
Jonathan J. Deeks, Institute of Health Sciences, Oxford, UK, j.deeks@icrf.icnet.uk

Douglas G. Altman, Institute of Health Sciences, Oxford, UK, d.altman@icrf.icnet.uk

A slight error in the funnel command introduced in STB-44 has been corrected.

sg84.1 Concordance correlation coefficient, revisited

Thomas J. Steichen, RJRT, FAX 336-741-1430, steicht@rjrt.com
Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Description

concord computes Lin’s (1989) concordance correlation coefficient, �c, for agreement on a continuous measure obtained
by two persons or methods and provides an optional graphical display of the observed concordance of the measures. concord
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also provides statistics and optional graphics for Bland and Altman’s (1986) limits-of-agreement, loa, procedure. The loa, a
data-scale assessment of the degree of agreement, is a complementary approach to the relationship-scale approach of �c.

This insert documents enhancements and changes to concord and provides the syntax needed to use new features. A full
description of the method and of the operation of the original command and options is given in Steichen and Cox (1998).
This revision does not change the implementation of the underlying statistical methodology or modify the original operating
characteristics of the program.

Syntax

concord var1 var2
�
weight

� �
if exp

� �
in range

� �
, summary graph(cccjloa)

snd(snd var
�
, replace

�
) noref reg by(by var) level(#) graph options

�
New and modified options

noref suppresses the reference line at y = 0 in the loa plot. This option is ignored if graph(loa) is not requested.

reg adds to the loa plot a regression line that fits the paired differences to the pairwise means. This option is ignored if
graph(loa) is not requested.

snd(snd var
�
, replace

�
) saves the standard normal deviates produced for the normal plot generated by graph(loa). The

values are saved in variable snd var. If snd var does not exist, it is created. If snd var exists, an error will occur unless
replace is also specified. This option is ignored if graph(loa) is not requested.

graph options have been modified slightly. To accommodate the optional regression line, the default graph options for graph(loa)
now include connect(lll.l), symbol(...o.) and pen(35324) for the lower confidence interval limit, the mean difference,
the upper confidence interval limit, the data points, and the regression line (if requested) respectively, along with default
titles and labels. (The user is still not allowed to modify the default graph options for the normal probability plot, but
additional labeling can be added.)

Explanation

Publication of the initial version of concord resulted in a number of requests for new or modified features. Further, a few
deficiencies in the initial implementation were identified by users. The resulting changes are embodied in this version.

First, the initial implementation did not allow special characters, such as parentheses, to be included in the labels on the
optional graphs. Such characters are now allowed when part of an existing label string (i.e., those labels created via Stata’s
label command). Because of parser limitations, special characters are not allowed, and will result in an error, when included
in a passed option string.

Second, Bland and Altman (1986) suggested that the loa confidence interval would be valid provided the differences follow
a normal distribution and are independent of the magnitude of the measurement. They argued that the normality assumption
should be valid provided that the magnitude of the difference is independent of the magnitude of the individual measures. They
proposed that these assumptions be checked visually using a plot of the casewise differences against the casewise means of the
two measures and by a normal probability plot for the differences. In a 1995 paper they proposed an additional visual tool that
was not implemented in the loa plot in the initial release of concord: that is, a regression line fitting the paired differences to
the pairwise means. This additional tool is provided now when option reg is specified. As indicated above, the default graph
options were changed to accommodate the regression line.

Third, as a direct result of adding the regression line, the reference line at y = 0 in the loa plot was made optional.
Specification of option noref will suppress this reference line and reduce potential visual clutter.

Fourth, option snd() has been added to allow the user to save the standard normal deviates produced for the normal plot
generated by graph(loa). As indicated above, the values can be saved in either a new or existing variable. Following Stata
convention, option modifier replace, which cannot be abbreviated, must be provided to overwrite an existing variable.

Lastly, it has come to our attention that two of the p values printed in the output were not explained in the initial insert.
These p values are for the test of null hypothesis Ho: �c = 0. The first of these p values results when the test is performed
using the asymptotic point estimate and variance. The second occurs when Fisher’s z-transformation is first applied. While not
particularly applicable to the measurement question at hand, failure to reject this hypothesis indicates serious disconcordance
between the measures. The more interesting hypothesis, Ho: �c = 1, is not testable. The user is advised to use the confidence
intervals for �c to assess the goodness of the relationship.
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Saved Results

The system S # macros are unchanged.
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sg89.1 Correction to the adjust command

Kenneth Higbee, Stata Corporation, khigbee@stata.com

The adjust command (Higbee 1998) has been improved to handle a larger number of variables in the variable list.
Previously it would produce an uninformative error message when the number of variables was large.

Reference
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sg90 Akaike’s information criterion and Schwarz’s criterion

Aurelio Tobias, Institut Municipal d’Investigacio Medica (IMIM), Barcelona, atobias@imim.es
Michael J. Campbell, University of Sheffield, UK, m.j.campbell@sheffield.ac.uk

Introduction

It is well known that nested models, estimated by maximum likelihood, can be compared by examining the change in the
value of �2log-likelihood on adding, or deleting, variables in the model. This is known as the likelihood-ratio test (McCullagh
and Nelder 1989). This procedure is available in Stata using the lrtest command. To assess the goodness comparisons between
nonnested models, two statistics can be used: the Akaike’s information criterion (Akaike 1974) and Schwarz’s criterion (Schwarz
1978). Neither are currently available in Stata.

[Editor’s note: A previous implementation of these tests was made available in Goldstein 1992.]

Criteria for assessing model goodness of fit

Akaike’s information criterion (AIC) is an adjustment to the �2log-likelihood score based on the number of parameters
fitted in the model. For a given dataset, the AIC is a goodness-of-fit measure that can be used to compare nonnested models.
The AIC is defined as follows: AIC = �2log-likelihood + 2� p, where p is the total number of parameters fitted in the model.
Lower values of the AIC statistic indicate a better model, and so, we aim to get the model that minimizes the AIC.

Schwarz’s criterion (SC) provides a different way to adjust the �2log-likelihood for the number of parameters fitted in the
model and for the total number of observations. The SC is defined as SC = �2log-likelihood + p � ln(n), where p is, again,
the total number of parameters in the model, and n the total number of observations in the dataset. As for the AIC, we aim to
fit the model that provides the lowest SC.

We should note that both the AIC and SC can be used to compare disparate models, although care should be taken because
there are no formal statistical tests to compare different AIC or SC statistics. In fact, models selected can only be applied to the
current dataset, and possible extensions to other populations of the best model chosen based on the AIC or SC statistics must be
done with caution.

Syntax

The mlfit command works after fitting a maximum-likelihood estimated model with one of the following commands:
clogit, glm, logistic, logit, mlogit, or poisson. The syntax is

mlfit
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Example

We tested the mlfit command using a dataset from Hosmer and Lemeshow (Hosmer and Lemeshow 1989) on 189 births
at a US hospital with the main interest being in low birth weight. The following ten variables are available in the dataset:

low birth weight less than 2.5 kg (0/1)
age age of mother in years
lwt weight of mother (lbs) last menstrual period
race white/black/other
smoke smoking status during pregnancy (0/1)
ptl number of previous premature labours
ht history of hypertension (0/1)
ui has uterine irritability (0/1)
ftv number of physician visits in first semester
bwt actual birth weight

We will fit a logistic regression model. The first model includes age, weight of mother at last menstrual period (lwt), race and
smoke as predictor variables for the birth weight (low). As we can see, age is a nonstatistically significant variable.

. xi: logit low age lwt i.race smoke

i.race Irace_1-3 (naturally coded; Irace_1 omitted)

Iteration 0: Log Likelihood = -117.336

Iteration 1: Log Likelihood =-107.59043

Iteration 2: Log Likelihood =-107.29007

Iteration 3: Log Likelihood =-107.28862

Iteration 4: Log Likelihood =-107.28862

Logit Estimates Number of obs = 189

chi2(5) = 20.09

Prob > chi2 = 0.0012

Log Likelihood = -107.28862 Pseudo R2 = 0.0856

------------------------------------------------------------------------------

low | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

age | -.0224783 .0341705 -0.658 0.511 -.0894512 .0444947

lwt | -.0125257 .0063858 -1.961 0.050 -.0250417 -9.66e-06

Irace_2 | 1.231671 .5171518 2.382 0.017 .2180725 2.24527

Irace_3 | .9432627 .4162322 2.266 0.023 .1274626 1.759063

smoke | 1.054439 .3799999 2.775 0.006 .3096526 1.799225

_cons | .3324516 1.107673 0.300 0.764 -1.838548 2.503451

------------------------------------------------------------------------------

. mlfit

Criteria for assessing logit model fit

Akaike's Information Criterion (AIC) and Schwarz's Criterion (SC)

------------------------------------------------------------------------------

AIC SC | -2 Log Likelihood Num.Parameters

----------------------------+-------------------------------------------------

226.57724 246.02772 | 214.57724 6

------------------------------------------------------------------------------

Now, we drop age from the model and include history of hypertension (ht) and uterine irritability.

(Continued on next page)
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. xi: logit low lwt i.race smoke ht ui

i.race Irace_1-3 (naturally coded; Irace_1 omitted)

Iteration 0: Log Likelihood = -117.336

Iteration 1: Log Likelihood =-102.68681

Iteration 2: Log Likelihood =-102.11335

Iteration 3: Log Likelihood =-102.10831

Iteration 4: Log Likelihood =-102.10831

Logit Estimates Number of obs = 189

chi2(6) = 30.46

Prob > chi2 = 0.0000

Log Likelihood = -102.10831 Pseudo R2 = 0.1298

------------------------------------------------------------------------------

low | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lwt | -.0167325 .0068034 -2.459 0.014 -.0300669 -.003398

Irace_2 | 1.324562 .5214669 2.540 0.011 .3025055 2.346618

Irace_3 | .9261969 .4303893 2.152 0.031 .0826495 1.769744

smoke | 1.035831 .3925611 2.639 0.008 .2664256 1.805237

ht | 1.871416 .6909051 2.709 0.007 .5172672 3.225565

ui | .904974 .4475541 2.022 0.043 .027784 1.782164

_cons | .0562761 .9378604 0.060 0.952 -1.781897 1.894449

------------------------------------------------------------------------------

. mlfit

Criteria for assessing logit model fit

Akaike's Information Criterion (AIC) and Schwarz's Criterion (SC)

------------------------------------------------------------------------------

AIC SC | -2 Log Likelihood Num.Parameters

----------------------------+-------------------------------------------------

218.21662 240.90885 | 204.21662 7

------------------------------------------------------------------------------

Although both models are nonnested, we should use the AIC and/or SC statistics to compare them. As we can see from
the results, the second model presents considerably lower AIC and SC values (AIC = 218.22, SC = 240.91) than the first model
(AIC = 226.58, SC = 246.03). As we said earlier, there is no way to test if the difference between the two AICs is statistically
significant.

The correctness of the implementation of calculation methods of AIC and SC statistics was assessed by doing the example
with S-PLUS and SAS, respectively, and identical results were obtained.

Saved results

mlfit saves the following results in the S macros:

S E aic AIC statistic
S E sc SC statistic
S E ll log-likelihood value
S E ll2 �2 log-likelihood value
S E np number of parameters fitted in the model
S E nobs number of observations
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sg91 Robust variance estimators for MLE Poisson and negative binomial regression

Joseph Hilbe, Arizona State University, hilbe@asu.edu

Poisson and negative binomial regression are two of the more important routines used for modeling discrete response data.
Although the Poisson model has been the standard method used to model such data, researchers have known that the assumptions
upon which the model are based are rarely met in practice. In particular, the Poisson model assumes the equality of the mean
and the variance of the response. Hence, the Poisson model assumes that cases enter each respective cell count in a uniform
manner. Although the model is fairly robust to deviations from the assumptions, researchers now have software available to
model overdispersed Poisson data. Notably, negative binomial regression has become the method of choice for modeling such
data. In effect, the negative binomial assumes that cases enter each count cell with a gamma shape defined by �, the ancillary or
heterogeneity parameter. Note that the variance of the Poisson model is simply �, whereas the variance for the two parameter
gamma is �2=�. Since the variance of the negative binomial is �+k�2 where k = 1=�, the negative binomial can be conceived
as a Poisson-gamma mixture model with the assumption of log-likelihood criterion of case independence still retained.

The use of the Huber–White robust standard error sandwich estimator allows one to model data which may otherwise violate
the log-likelihood assumption of the independence of cases. Essentially, the method adjusts the standard errors to accommodate
extra correlation in the data. The parameter estimates are left unadjusted. Because the robust estimator can be used in such a
manner for correlated data, it has been the standard method used by GEE programs to display standard errors.

Stata has implemented the robust and cluster options with many of its regression routines, but they have not yet been
made part of Stata’s poisson and nbreg ado-files. I have written programs which otherwise emulate the poisson and nbreg

commands, but add the robust, cluster, and score options. The programs, called poisml and nbinreg, were written using
Stata’s ML capabilities. poisml calls mypoislf.ado and nbinreg calls nbinlf.ado for log-likelihood calculations.

Robust estimators are themselves calculated using the so-called score function. In Stata, this is defined as the derivative of
the log-likelihood function with respect to B, the parameter estimates. When determining the score for an ancillary parameter,
such as is the case with the negative binomial, one must calculate the derivative of the LL function with respect to that parameter,
here termed �. For the negative binomial LL function, which includes � in two of its log�
 functions, the derivative necessitates
the use of the digamma function  . The latter is not one of Stata’s built-in functions; hence, a good approximation is needed. I
have used a simple numerical approximation to the derivative; it appears to work quite well over the region of values used in
calculating scores.

If we define � = exp(xb+ o), the scores used for the Poisson and negative binomial with offset (log exposure) o are given
by

Poisson y � �

Negative binomial
y � �

1 + a�

(�1=a)
�
a(� � y)

1 + a�
� ln(1 + a�) +  (y + 1=a)�  (1=a)

�
Unlike Stata’s nbreg command, nbinreg initializes values using Poisson estimates. This takes a little longer, but it may

be worth it.

Example

We illustrate the use of poisml and nbinreg commands on the 1996 Arizona Medpar data on DRG 475 (the dataset is
included on the diskette in the file medpar.dta).

. poisml los hmo died white age80 type2 type3, nolog irr

Poisson Estimates Number of obs = 1495

Model chi2(6) = 947.07

Prob > chi2 = 0.0000

Log Likelihood = -6834.6053315 Pseudo R2 = 0.0648

------------------------------------------------------------------------------

los | IRR Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

hmo | .9316981 .0223249 -2.953 0.003 .8889537 .9764978

died | .784677 .0143389 -13.270 0.000 .7570707 .81329

white | .8731055 .0239723 -4.942 0.000 .8273626 .9213775

age80 | .9826527 .0201582 -0.853 0.394 .9439271 1.022967

type2 | 1.270891 .0268037 11.366 0.000 1.219427 1.324526

type3 | 2.105107 .0553468 28.312 0.000 1.999377 2.216429

------------------------------------------------------------------------------
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Using the glm command confirms there is overdispersion; the deviance-based dispersion is nearly six times greater than it
should be for an appropriate Poisson model.

. glm los hmo died white age80 type2 type3, nolog f(poi)

Residual df = 1488 No. of obs = 1495

Pearson X2 = 9244.928 Deviance = 7954.061

Dispersion = 6.212989 Dispersion = 5.345471

Poisson distribution, log link

------------------------------------------------------------------------------

los | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

hmo | -.0707465 .0239615 -2.953 0.003 -.1177102 -.0237828

died | -.2424831 .0182736 -13.270 0.000 -.2782986 -.2066675

white | -.1356989 .0274563 -4.942 0.000 -.1895123 -.0818855

age80 | -.0174995 .0205141 -0.853 0.394 -.0577064 .0227073

type2 | .2397179 .0210905 11.366 0.000 .1983814 .2810545

type3 | .7443665 .0262917 28.312 0.000 .6928358 .7958972

_cons | 2.391268 .0275976 86.648 0.000 2.337177 2.445358

------------------------------------------------------------------------------

Next we accommodate overdispersion by the robust and cluster options in poisml and nbinreg. Clustering by provider
may account for some of the overdispersion.

. poisml los hmo died white age80 type2 type3, nolog robust cluster(provnum) irr

Poisson Estimates Number of obs = 1495

Model chi2(6) = 947.07

Prob > chi2 = 0.0000

Log Likelihood = -6834.6053315 Pseudo R2 = 0.0648

(standard errors adjusted for clustering on provnum)

------------------------------------------------------------------------------

| Robust

los | IRR Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

hmo | .9316981 .0480179 -1.373 0.170 .8421819 1.030729

died | .784677 .0510591 -3.726 0.000 .6907216 .8914128

white | .8731055 .0620901 -1.908 0.056 .7595114 1.003689

age80 | .9826527 .0620691 -0.277 0.782 .8682285 1.112157

type2 | 1.270891 .079558 3.829 0.000 1.124146 1.436791

type3 | 2.105107 .4528658 3.460 0.001 1.380886 3.209156

------------------------------------------------------------------------------

. nbinreg los hmo died white age80 type2 type3, nolog irr

Negative Binomial Estimates Number of obs = 1495

Model chi2(6) = 151.20

Prob > chi2 = 0.0000

Log Likelihood = -4780.8947983 Pseudo R2 = 0.0156

------------------------------------------------------------------------------

los | IRR Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

los |

hmo | .9352302 .0494308 -1.267 0.205 .843197 1.037309

died | .7917555 .0323761 -5.710 0.000 .7307758 .8578237

white | .8854497 .060065 -1.793 0.073 .775215 1.01136

age80 | .9840357 .0458491 -0.345 0.730 .8981542 1.078129

type2 | 1.272802 .06397 4.800 0.000 1.1534 1.404564

type3 | 2.069855 .1562708 9.636 0.000 1.785153 2.399961

---------+--------------------------------------------------------------------

lnalpha |

------------------------------------------------------------------------------

alpha .4339545 [lnalpha]_cons = ln(alpha)

(LR test against Poisson, chi2(1) = 4107.417 P = 0.0000)

Now we look at negative binomial regression with robust and clustering effect of provider. Note that in this case the p-values
are quite similar to that of the robust Poisson model likewise adjusted by the clustering effect

. nbinreg los hmo died white age80 type2 type3, nolog irr robust clust(provnum)

Negative Binomial Estimates Number of obs = 1495

Model chi2(6) = 151.20

Prob > chi2 = 0.0000

Log Likelihood = -4780.8947983 Pseudo R2 = 0.0156
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(standard errors adjusted for clustering on provnum)

------------------------------------------------------------------------------

| Robust

los | IRR Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

los |

hmo | .9352302 .0477849 -1.311 0.190 .8461103 1.033737

died | .7917555 .0474362 -3.897 0.000 .7040335 .8904076

white | .8854497 .0641497 -1.679 0.093 .7682374 1.020545

age80 | .9840357 .0629949 -0.251 0.802 .8679997 1.115584

type2 | 1.272802 .0785426 3.909 0.000 1.127806 1.436439

type3 | 2.069855 .4302092 3.500 0.000 1.377278 3.110699

---------+--------------------------------------------------------------------

lnalpha |

------------------------------------------------------------------------------

alpha .4339545 [lnalpha]_cons = ln(alpha)

(LR test against Poisson, chi2(1) = 4107.417 P = 0.0000)
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sg92 Logistic regression for data including multiple imputations

Christopher Paul, RAND, Santa Monica, California, cpaul@rand.org

One of the factors limiting the use of more sophisticated (and less biased) methods for dealing with missing data is sheer
practicality. Here I hope to help decrease the entry cost for the use of multiple imputation by providing code that allows the
use of multiple imputation data for logistic regression. Note that this program does not do the imputations; it just automates the
combination and correction of coefficients and standard errors for multiply imputed data in the logistic regression context. For
a complete discussion of multiple imputation, see Rubin (1987).

Logistic regression for data including multiple imputations

implogit depvar varlist
�
weight

� �
if exp

� �
in range

�
, impvars(no. of vars) impno(no. of imputations)�

robust cluster(varname) level(#) or
�

depvar may not contain multiple imputation data.

varlist may contain multiple imputation data, with the following conditions: variables containing imputed data must be the last
variables in varlist; and imputed variables must have variable names following special conventions; that is, they must have
fewer than 5 characters, and have 01– xx appended to them, where xx is the number of imputations done. Even though an
imputed variable may have many individual variables to repres ent it, include it only once in varlist. For example, suppose
the variable incom was imputed 5 times. It should be labeled incom 01 incom 02 incom 03 incom 04 incom 05. In the
command, list only one, say, incom 01. The program will iterate through the numbers and take care of the rest. If you r
variables are not named properly, the program will not work!

fweights and pweights are allowed.

implogit does not share features with all estimation commands. Because of the external variance adjustments implicit in the
corrections to the standard errors and the programmer’s limited skill in matrix algebra, this program does not post a
full variance-covariance estimate. Post-estimation commands that rely solely on b and se are available. Any commands
requiring the off-diagonal elements of the variance–covariance estimate either will not work or will be wrong. Try matrix

get(vce), and you will see what is missing.

implogit, typed without argument, does not replay the previous results.

Description

implogit uses the Rubin (1987) corrections of coefficients and standard errors for logistic regressions with data that contain
multiple imputations. Multiple imputation variables must be ordered in a specific way and named in a special fashion; see varlist
above.

implogit proceeds by performing k logistic regressions (where k is the number of imputations done), cycling through the
different imputations in each regression. Results are saved, and, when done, coefficients are averaged and standard errors are
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corrected. Results are then reported. Standard errors are corrected based on the following formula, in which k is the number of
imputations done, and i runs from 1 to k:

Var(b�) = SE(�) +

�
1 +

1

k

� P
(b�2 + ��i)

2

k � 1

In most regards, implogit behaves as the standard Stata logit command. The procedure reports unexponentiated coefficients
and their corrected standard errors.

Options

impvars(no. of vars) indicates the number of variables included that contain multiple imputations. They must be the last
variables specified in varlist. If your model contains 2 variables for which data have been imputed, impvars(2) should be
specified, and they should be the last 2 variables in varlist. impvars default is 1.

impno(no. of imputations) is the number of imputations done for each imputed variable and thus the number of iterations of
regressions (k) that will be required. If there is more than one variable with multiple imputations, they all must have the
same number of imputations.

robust specifies the Huber/White/sandwich estimator of variance is to be used in place of the traditional calculation; see [U] 26.10
Obtaining robust variance estimates. robust combined with cluster() allows observations which are not independent
within cluster.

cluster(varname) specifies that the observations are independent across groups (clusters) but not necessarily within groups.
varname specifies to which group each observation belongs; e.g., cluster(personid) in data with repeated observations
on individuals. See [U] 26.10 Obtaining robust variance estimates. cluster() can used with pweights to produce
estimates for unstratified cluster-sampled data, but see help svylogit for a command especially designed for survey data.
Specifying cluster() implies robust.

or reports odds ratios (exponentiated coefficients) and their standard errors, etc., rather than unexponentiated coefficients.

Examples

Data for these examples are from the RAND/UCLA Los Angeles Mammography Promotion in Churches Program baseline
survey, conducted in 1995. Data were sampled in clusters, based on churches (chid). The outcome of interest is respondent
compliance with AMA cancer screening guidelines for breast cancer (comply). More than 18% of respondents failed to report
income. Income was imputed using a Bayesian bootstrap method (not shown or discussed here). In this example, all variables
are (0/1) indicator variables. Income greater than $10,000 (inc10) is imputed 10 times and stored as inc10 01–inc10 10.

. use stbimp, clear

. implogit comply partner dr_enthu hisp dropout dr_hisp dr_asian dr1_more noinsr

> inc10_01,impvars(1) impno(10) cluster(chid)

Iteration no. 1 complete.

Iteration no. 2 complete.

(output omitted )
Iteration no. 9 complete.

Iteration no. 10 complete.

Logistic Regression using imputed values.

Coefficients and Standard Errors Corrected

N = 1141

Log Likelihood for component regression no.1= -650.85724.

Log Likelihood for component regression no.2= -650.95298.

(output omitted )
Log Likelihood for component regression no.9= -650.91123.

Log Likelihood for component regression no.10= -651.05008.

------------------------------------------------------------------------------

comply | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

partner | .3343246 .1163444 2.874 0.018 .0711354 .5975138

dr_enthu | .8877968 .1437799 6.175 0.000 .5625442 1.21305

hisp | -.4692397 .2663255 -1.762 0.112 -1.07171 .1332306

dropout | -.5092944 .2159917 -2.358 0.043 -.9979015 -.0206872

dr_hisp | -.5585531 .2153716 -2.593 0.029 -1.045758 -.0713486

dr_asian | -.3505409 .1724349 -2.033 0.073 -.7406157 .0395339

dr1_more | .4855365 .1842637 2.635 0.027 .068703 .9023701

noinsr | -.8983906 .2974062 -3.021 0.014 -1.57117 -.2256111

inc10_01 | .1070703 .2001414 0.535 0.606 -.3456811 .5598216

------------------------------------------------------------------------------
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Here is the same regression with odds being reported.

. implogit comply partner dr_enthu hisp dropout dr_hisp dr_asian dr1_more noinsr

> inc10_01,impvars(1) impno(10) cluster(chid) or

Iteration no. 1 complete.

Iteration no. 2 complete.

(output omitted )
Iteration no. 9 complete.

Iteration no. 10 complete.

Logistic Regression using imputed values.

Coefficients and Standard Errors Corrected

N = 1141

Log Likelihood for component regression no.1= -650.85724.

Log Likelihood for component regression no.2= -650.95298.

(output omitted )
Log Likelihood for component regression no.9= -650.91123.

Log Likelihood for component regression no.10= -651.05008.

------------------------------------------------------------------------------

comply | Odds Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

partner | 1.396997 .1625327 2.874 0.018 1.073727 1.817594

dr_enthu | 2.429771 .3493521 6.175 0.000 1.755132 3.363727

hisp | .6254777 .1665807 -1.762 0.112 .3424225 1.142513

dropout | .6009195 .1297936 -2.358 0.043 .3686522 .9795253

dr_hisp | .5720362 .1232004 -2.593 0.029 .3514255 .9311373

dr_asian | .704307 .1214471 -2.033 0.073 .4768203 1.040326

dr1_more | 1.625047 .2994372 2.635 0.027 1.071118 2.465439

noinsr | .4072245 .1211111 -3.021 0.014 .2078019 .7980284

inc10_01 | 1.113012 .2227599 0.535 0.606 .7077381 1.75036

------------------------------------------------------------------------------

Saved Results

All typical S E global macros are available, as are b and se vectors. S E ll, S E l0 and S E prs2 are based on the
unadjusted results of the last of the k component logistic regressions, as the programmer is not aware of the consequence to
log-likelihood from multiple imputation.
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sg93 Switching regressions

Frederic Zimmerman, Stanford University, zimmer@leland.stanford.edu

Introduction

Consider the following system, in which observed values of the dependent variable come from one of two regression
regimes, but where it is unknown a priori which regime produced any given observation. Here a third equation (a classification
equation) determines whether a given observed dependent variable comes from regression regime 1 or regression regime 2:

yi1 =xi�1 + ui1 u1 � N
�
0; �21

�
yi2 =xi�2 + ui2 u2 � N

�
0; �22

�
yi3 =xi�3 + ui3 u3 � N

�
0; �23

�
yi =

�
yi1 if yi3 < 0
yi2 if yi3 � 0

Where the outcomes y are observed; y1, y2, and y3 are latent. The task then is to use the independent data X and the
observed outcome variables y to estimate the unknown parameters for all three equations. Call the first two equations component
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equations and the third equation a classification equation. switchr produces estimates of �1, �2, and �3, and of �1 and �2,
which may be equal or different. The classification variance, �23 , is unidentified, and assumed to be 1. Such models have been
used to explore dual labor markets, the effects of school lunch programs (some kids eat them; some don’t), and unobserved
cultural differences in gender bias.

Syntax

switchr eq1 eq2
�
weight

� �
if exp

� �
, cluster(string) strata(string)

sigequal tol(real) itout(integer) noisyn(integer)
�

pweights are allowed.

Description

The user defines the two component equations (eq1), which must be identical; and the classification equation (eq2), which
is different.The dependent variable in the classification equation is the classification variable. An initial guess of the classification
variable must be provided by the user for each observation. switchr returns the estimated classification vector (y3) with the
same name as the initial guess of the classification vector. Since the estimated probabilities of observations belonging to the first
component regime are not generally just zero or one, the elements of y3 fall throughout the interval [ 0; 1 ].

Options

cluster and strata invoke the robust variance calculations by using svyreg.

sigequal forces the variance of the two component regressions to be the same.

tol specifies a threshold such that, when the largest relative change among the coefficients from one iteration to the next is less
than tol(), estimates are declared to have converged. The default is tol(1e-4).

itout() and noisyn() control reporting of progress on the iterations and of intermediate output. itout(#) specifies that
every # iterations, the convergence criterion, the mean and mean change of the classification vector, and the time taken
for that iteration be reported. The default is itout(20). noisyn(#) specifies that every # iterations, the regression results
on the two component regressions be reported. In addition, results for a modified version of the classification vector are
reported. These classifications results are accurate up to a constant (across coefficients) scaling parameter. The default is
noisyn(16000).

Remarks

To obtain these estimates, switchr maximizes the likelihood function through the EM algorithm of Dempster, Laird,
and Rubin (1977), as further articulated by Hartley (1978). This iterative method first estimates the classification vector, i.e.,
the probability that a given observation is in the first component regression. This estimate is obtained by reweighting the
probabilities based on the errors of the observations in the two component regressions. The updated probabilities are then used
to weight observations in each of the two separate component regressions. This iterative procedure eventually converges to the
maximum-likelihood estimates of the above three-equation regression model.

Exact standard errors in a switching regression are not available. This addition provides good approximate standard errors.
The program can be used iteratively to obtain bootstrapped standard errors. See Douglas (1996).

Because the likelihood surface is not globally concave, several local maxima are possible. switchr can be used iteratively
to find the local maximum with the highest likelihood value, by searching from different starting values of the classification
vector. If �1 and �2 are allowed to differ (the default), problems can arise in which one variance is driven to zero, with a
very small number of observations sorted into the corresponding component regime. One solution to this problem is to use the
sigequal option to force the two variances to be the same.

Users should be aware of several caveats in using this method. First, estimation of switching regressions with unobserved
regime separation is valid only when errors are independent, and identically distributed. The independence of errors across
equations can be a strong assumption. Second, standard errors are not exact, and will in general be biased downward. Finally,
convergence is not monotonic in the convergence criterion measure (relative change in the coefficient estimates). Therefore, it
is prudent to be conservative in the convergence criterion.

This program uses elapse to help with the timing of the iterations; see Zimmerman (1998).

The full complement of programs needed for switchr is switchr.ado, switchr.hlp, elapse.ado, elapse.hlp,
sw lik.ado, and sw lik2.ado.
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Saved Results

S E ll log-likelihood value of the joint likelihood function

Example

In this example, we calculate a switching regression model of child height-for-age z scores on a number of variables.
Children’s height-for-age is hypothesized to depend on the explanatory variables in different ways according to unobservable
cultural factors and time constraints in the household.

. gen double Guesprob = 0

. quietly summarize lnpce, detail

. replace Guesprob = 1 if lnpce > _result(10)

. eq main : haz docdist nursdist phardist father mother gender lnpce crop_siz urban rural

. eq regime : Guesprob lnpce members maxfe1 maxfe2 highfe urban rural KZN Ecape NorP reticul elect

. switchr main regime [pweight=rsweight] , cl(clustnum) noisyn(200) sige

Here is the regression for the switching equation:

On iter 1250 the mean absolute change in the probability vector is : 0.00001

Average of the probability vector is: 0.194

On iteration 1250 greatest diff is: -0.000192 on phardist in the second main eq n

Log-likelihood is : -5562.2071

Note: subpop() subpopulation is same as full population

subpop() = 1 indicates observation in subpopulation

subpop() = 0 indicates observation not in subpopulation

Survey linear regression

pweight: rsweight Number of obs = 2864

Strata: <one> Number of strata = 1

PSU: clustnum Number of PSUs = 191

Population size = 2623753

F( 12, 179) = 53542.88

Subpopulation no. of obs = 2864 Prob > F = 0.0000

Subpopulation size = 2623753 R-squared = 0.9852

------------------------------------------------------------------------------

Guesprob | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lnpce | -.173144 .0084625 -20.460 0.000 -.1898365 -.1564514

members | .0150417 .001121 13.418 0.000 .0128304 .017253

maxfe1 | -.004693 .0054297 -0.864 0.389 -.0154031 .0060172

maxfe2 | -.0027249 .0004576 -5.954 0.000 -.0036276 -.0018223

highfe | .1936183 .0198772 9.741 0.000 .15441 .2328265

urban | -3.940108 .0110183 -357.596 0.000 -3.961842 -3.918374

rural | -4.789063 .0144696 -330.973 0.000 -4.817605 -4.760521

KZN | -.9713577 .0119679 -81.164 0.000 -.9949648 -.9477507

ECape | -.4252319 .0162149 -26.225 0.000 -.4572162 -.3932476

NorP | -.6130657 .0163161 -37.574 0.000 -.6452496 -.5808817

reticul | -.2623947 .0136669 -19.199 0.000 -.2893531 -.2354364

elect | -.0620349 .0084462 -7.345 0.000 -.0786953 -.0453744

_cons | 4.361922 .0535379 81.474 0.000 4.256317 4.467527

------------------------------------------------------------------------------

Here is the first component regression (header omitted):

------------------------------------------------------------------------------

haz | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

docdist | .1222716 .0129649 9.431 0.000 .0966979 .1478452

nursdist | -.0472442 .0111013 -4.256 0.000 -.0691419 -.0253466

phardist | -.010398 .007309 -1.423 0.156 -.0248153 .0040192

father | -.1235845 .1454306 -0.850 0.397 -.4104505 .1632815

mother | .0475992 .1847994 0.258 0.797 -.3169228 .4121212

gender | .2337818 .1124614 2.079 0.039 .0119485 .4556151

lnpce | .630567 .1122685 5.617 0.000 .4091142 .8520198

crop_siz | .3970924 .2174543 1.826 0.069 -.0318424 .8260272

urban | -.6485643 .1608106 -4.033 0.000 -.9657677 -.3313609

rural | 3.369163 .3003281 11.218 0.000 2.776758 3.961569

_cons | -4.69402 .6332944 -7.412 0.000 -5.943211 -3.444829

------------------------------------------------------------------------------
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And now the second component regression (header omitted):

------------------------------------------------------------------------------

haz | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

docdist | -.0020019 .0034663 -0.578 0.564 -.0088392 .0048354

nursdist | .0020252 .0033815 0.599 0.550 -.0046449 .0086953

phardist | .0008634 .0019992 0.432 0.666 -.0030801 .004807

father | -.0394215 .0750347 -0.525 0.600 -.1874295 .1085865

mother | .21741 .1089093 1.996 0.047 .0025832 .4322368

gender | .1480176 .0693646 2.134 0.034 .0111939 .2848413

lnpce | .3266183 .0553563 5.900 0.000 .2174265 .4358102

crop_siz | -.0409482 .0330227 -1.240 0.217 -.1060864 .02419

urban | 6.306667 .2095572 30.095 0.000 5.893309 6.720024

rural | 5.946315 .2007892 29.615 0.000 5.550253 6.342377

_cons | -9.339175 .3630126 -25.727 0.000 -10.05523 -8.623123

------------------------------------------------------------------------------
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svy7 Two-way contingency tables for survey or clustered data

William M. Sribney, Stata Corporation, wsribney@stata.com

The syntax for the svytab command is

svytab varname1 varname2
�
weight

� �
if exp

� �
in range

� �
,

strata(varname) psu(varname) fpc(varname) subpop(varname) srssubpop

tab(varname) missing

cell count row column obs se ci deff deft�
proportion j percent	 nolabel nomarginals format(% fmt) vertical level(#)

pearson lr null wald llwald noadjust
�

pweights and iweights are allowed. See [U] 18.1.6 weight in the Stata User’s Guide.

When any of se, ci, deff, or deft are specified, only one of cell, count, row, or column can be specified. If none of se,
ci, deff, or deft are specified, any or all of cell, count, row, and column can be specified.

svytab typed without arguments redisplays previous results. Any of the options on the last three lines of the syntax diagram
(cell through noadjust) can be specified when redisplaying with the following exception: wald must be specified at run time.

Warning: Use of if or in restrictions will not produce correct statistics and variance estimates for subpopulations in many cases.
To compute estimates for a subpopulation, use the subpop() option.

[Editor’s note: The ado-files for this command can be found in the stata directory on the STB-45 diskette.]

Introduction

This command produces two-way tabulations with tests of independence for complex survey data or for other clustered data.

Do not be put off by the long list of options for svytab. It is a simple command to use. Using the svytab command is
just like using tabulate to produce two-way tables for ordinary data. The main difference is that svytab will compute a test
of independence that is appropriate for a complex survey design or for clustered data. Here is an example:
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. svyset strata stratid

. svyset psu psuid

. svyset pweight finalwgt

. svytab race diabetes

------------------------------------------------------------------------------

pweight: finalwgt Number of obs = 10349

Strata: stratid Number of strata = 31

PSU: psuid Number of PSUs = 62

Population size = 1.171e+08

------------------------------------------------------------------------------

----------+--------------------------

| Diabetes

Race | no yes Total

----------+--------------------------

White | .851 .0281 .8791

Black | .0899 .0056 .0955

Other | .0248 5.2e-04 .0253

|

Total | .9658 .0342 1

----------+--------------------------

Key: cell proportions

Pearson:

Uncorrected chi2(2) = 21.3483

Design-based F(1.52,47.26) = 15.0056 P = 0.0000

The test of independence that is displayed by default is based on the usual Pearson �
2 statistic for two-way tables. To

account for the survey design, the statistic is turned into an F statistic with noninteger degrees of freedom using the methods
developed by Rao and Scott (1981, 1984). The theory behind this correction is quite advanced, and I will only sketch out a little
of it later in this article. But understanding the theory behind the correction is not necessary to use and interpret the statistic. Just
interpret the p-value next to the “Design-based” F statistic as you would the p-value for the Pearson �2 statistic for “ordinary”
data; i.e., data that are assumed independent and identically distributed (iid).

Complicating this “simple” command is the fact that I did not just implement one statistic for the test of independence, but
rather four statistics with two variants of each, for a total of eight statistics. This was done because the literature on the subject
has not indicated that there is a single superior choice. However, I evaluated these eight in simulations, along with several other
variants of these statistics, and every statistic except the one chosen for the default of this command had a black mark against
it. So it made the choice of a default very easy. Based on these simulations, I would advise a practical researcher to just use
the default statistic and never bother with any of the others.

The options that give these eight statistics are pearson (the default), lr, null (a toggle for displaying variants of the
pearson and lr statistics), wald, llwald, and noadjust (a toggle for displaying variants of the wald and llwald statistics).
The options wald and llwald with noadjust yield the statistics developed by Koch et al. (1975), which have been implemented
in the CROSSTAB procedure of the SUDAAN software (Shah et al. 1997, Release 7.5). Based on simulations, which are detailed
later in this article, I recommend that these two unadjusted statistics only be used for comparative purposes.

Other than the survey design options (the first row of options in the syntax diagram) and the test statistic options (the last
row of options in the diagram), most of the other options merely relate to different choices for what can be displayed in the
body of the table. By default, cell proportions are displayed, but it is likely that in many circumstances, it makes more sense to
view row or column proportions or weighted counts.

Standard errors and confidence intervals can optionally be displayed for weighted counts or cell, row, or column proportions.
The confidence intervals are constructed using a logit transform so that their endpoints always lie between 0 and 1. Associated
design effects (deff and deft) can be viewed for the variance estimates. The mean generalized deff (Rao and Scott 1984) is also
displayed when deff or deft is requested; this deff is essentially a design effect for the asymptotic distribution of the test
statistic; see the discussion of it below.

Options

The survey design options strata(), psu(), fpc(), subpop(), and srssubpop are the same as those for the svymean

command; see [R] svyset and [R] svymean in the Stata Reference Manual for a description of these options.

tab(varname) specifies that counts should instead be cell totals of this variable and proportions (or percentages) should be
relative to (i.e., weighted by) this variable. For example, if this variable denotes income, then the cell “counts” are instead
totals of income for each cell, and the cell proportions are proportions of income for each cell. See the Methods and
formulas section at the end of this article.
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missing specifies that missing values of varname1 and varname2 are to be treated as another row or column category, rather
than be omitted from the analysis (the default).

cell requests that cell proportions (or percentages) be displayed. This is the default if none of count, row, or column are
specified.

count requests that weighted cell counts be displayed.

row or column requests that row or column proportions (or percentages) be displayed.

obs requests that the number of observations for each cell be displayed.

se requests that the standard errors of either cell proportions (the default), weighted counts, or row or column proportions be
displayed. When se (or ci, deff, or deft) is specified, only one of cell, count, row, or column can be selected. The
standard error computed is the standard error of the one selected.

ci requests confidence intervals for either cell proportions, weighted counts, or row or column proportions.

deff or deft requests that the design-effect measure deff or deft be displayed for either cell proportions, counts, or row or
column proportions. See [R] svymean for details. The mean generalized deff is also displayed when deff or deft is
requested; see the following discussion for an explanation of mean generalized deff.

proportion or percent requests that proportions (the default) or percentages be displayed.

nolabel requests that variable labels and value labels be ignored.

nomarginals requests that row and column marginals not be displayed.

format(% fmt) specifies a format for the items in the table. The default is %6.0g. See [U] 19.5 Formats: controlling how data
is displayed.

vertical requests that the endpoints of confidence intervals be stacked vertically on display.

level(#) specifies the confidence level (i.e., nominal coverage rate), in percent, for confidence intervals. The default is
level(95) or as set by set level; see [U] 26.4 Specifying the width of confidence intervals.

pearson requests that the Pearson �2 statistic be computed. By default, this is the test of independence that is displayed. The
Pearson �

2 statistic is corrected for the survey design using the second-order corrections of Rao and Scott (1984) and
converted into an F statistic. One term in the correction formula can be calculated using either observed cell proportions or
proportions under the null hypothesis (i.e., the product of the marginals). By default, observed cell proportions are used. If
the null option is selected, then a statistic corrected using proportions under the null is displayed as well. See the following
discussion for details.

lr requests that the likelihood-ratio test statistic for proportions be computed. Note that this statistic is not defined when there
are one or more zero cells in the table. The statistic is corrected for the survey design using exactly the same correction
procedure that is used with the pearson statistic. Again, either observed cell proportions or proportions under the null can
be used in the correction formula. By default, the former is used; specifying the null option gives both the former and
the latter. Neither variant of this statistic is recommended for sparse tables. For nonsparse tables, the lr statistics are very
similar to the corresponding pearson statistics.

null modifies the pearson and lr options only. If it is specified, two corrected statistics are displayed. The statistic labeled
D-B (null) (D-B stands for design-based) uses proportions under the null hypothesis (i.e., the product of the marginals) in
the Rao and Scott (1984) correction. The statistic labeled merely Design-based uses observed cell proportions. If null
is not specified, only the correction that uses observed proportions is displayed. See the following discussion for details.

wald requests a Wald test of whether observed weighted counts equal the product of the marginals (Koch et al. 1975). By default,
an adjusted F statistic is produced; an unadjusted statistic can be produced by specifying noadjust. The unadjusted F
statistic can yield extremely anticonservative p-values (i.e., p-values that are too small) when the degrees of freedom of the
variance estimates (the number of PSUs minus the number of strata) are small relative to the (R � 1)(C � 1) degrees of
freedom of the table (where R is the number of rows and C is the number of columns). Hence, the statistic produced by
wald and noadjust should not be used for inference except when it is essentially identical to the adjusted statistic; it is
only made available to duplicate the results of other software.
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llwald requests a Wald test of the log-linear model of independence (Koch et al. 1975). Note that the statistic is not defined
when there are one or more zero cells in the table. The adjusted statistic (the default) can produce anticonservative p-values,
especially for sparse tables, when the degrees of freedom of the variance estimates are small relative to the degrees of
freedom of the table. Specifying noadjust yields a statistic with more severe problems. Neither the adjusted nor the
unadjusted statistic is recommended for inference; the statistics are only made available for pedagogical purposes and to
duplicate the results of other software.

noadjust modifies the wald and llwald options only. It requests that an unadjusted F statistic be displayed in addition to the
adjusted statistic.

Note: svytab uses the tabdisp command (see [R] tabdisp) to produce the table. As such, it has some limitations. One is that
only five items can be displayed in the table. If you select too many items, you will be warned immediately. You may have to
view additional items by redisplaying the table while specifying different options.

Examples of display options

The example shown earlier is from the Second National Health and Nutrition Examination Survey (NHANES II) (McDowell
et al. 1981). The strata, psu, and pweight variables are first set using the svyset command rather than specifying them as
options to svytab; see [R] svyset for details.

The default table displays only cell proportions, and this makes it very difficult to compare the incidence of diabetes in
white versus black versus “other” racial groups. It would be better to look at row proportions. This can be done by redisplaying
the results (i.e., the command is reissued without specifying any variables) with the row option.

. svytab, row

------------------------------------------------------------------------------

pweight: finalwgt Number of obs = 10349

Strata: stratid Number of strata = 31

PSU: psuid Number of PSUs = 62

Population size = 1.171e+08

------------------------------------------------------------------------------

----------+--------------------

| Diabetes

Race | no yes Total

----------+--------------------

White | .968 .032 1

Black | .941 .059 1

Other | .9797 .0203 1

|

Total | .9658 .0342 1

----------+--------------------

Key: row proportions

Pearson:

Uncorrected chi2(2) = 21.3483

Design-based F(1.52,47.26) = 15.0056 P = 0.0000

This table is much easier to interpret. A larger proportion of blacks have diabetes than do whites or persons in the “other” racial
category. Note that the test of independence for a two-way contingency table is equivalent to the test of homogeneity of row
(or column) proportions. Hence, we can conclude that there is a highly significant difference between the incidence of diabetes
among the three racial groups. We may now wish to compute confidence intervals for the row proportions. If we try to redisplay
specifying ci along with row, we get the following result:

. svytab, row ci

confidence intervals are only available for cells

to compute row confidence intervals, rerun command with row and ci options

r(111);

There are limits to what svytab can redisplay. Basically, any of the options relating to variance estimation (i.e., se, ci, deff, and
deft) must be specified at run time along with the single item (i.e., count, cell, row, or column) for which one wants standard
errors, confidence intervals, deff, or deft. So to get confidence intervals for row proportions, one must rerun the command. We
do so below requesting not only ci but also se.
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. svytab race diabetes, row se ci format(%7.4f)

------------------------------------------------------------------------------

pweight: finalwgt Number of obs = 10349

Strata: stratid Number of strata = 31

PSU: psuid Number of PSUs = 62

Population size = 1.171e+08

------------------------------------------------------------------------------

----------+--------------------------------------------------

| Diabetes

Race | no yes Total

----------+--------------------------------------------------

White | 0.9680 0.0320 1.0000

| (0.0020) (0.0020)

| [0.9638,0.9718] [0.0282,0.0362]

|

Black | 0.9410 0.0590 1.0000

| (0.0061) (0.0061)

| [0.9271,0.9523] [0.0477,0.0729]

|

Other | 0.9797 0.0203 1.0000

| (0.0076) (0.0076)

| [0.9566,0.9906] [0.0094,0.0434]

|

Total | 0.9658 0.0342 1.0000

| (0.0018) (0.0018)

| [0.9619,0.9693] [0.0307,0.0381]

----------+--------------------------------------------------

Key: row proportions

(standard errors of row proportions)

[95% confidence intervals for row proportions]

Pearson:

Uncorrected chi2(2) = 21.3483

Design-based F(1.52,47.26) = 15.0056 P = 0.0000

In the above table, we specified a %7.4f format rather than use the default %6.0g format. Note that the single format
applies to every item in the table. If you do not want to see the marginal totals, you can omit them by specifying nomarginal.
If the above style for displaying the confidence intervals is obtrusive—and it can be in a wider table—you can use the vertical

option to stack the endpoints of the confidence interval one over the other and omit the brackets (the parentheses around the
standard errors are also omitted when vertical is specified). If you would rather have results expressed as percentages, like
the tabulate command, use the percent option. If you want to play around with these display options until you get a table
that you are satisfied with, first try making changes to the options on redisplay (i.e., omit the cross-tabulated variables when you
issue the command). This will be much faster if you have a large dataset.

The standard errors computed by svytab are exactly the same as those produced by the other svy commands that can
compute proportions: namely, svymean, svyratio, and svyprop. Indeed, svytab calls the same driver program that svymean
and svyratio use. For instance, the estimate of the proportion of African-Americans with diabetes (the second proportion in
the second row of the preceding table) is simply a ratio estimate, which we can duplicate using svyratio:

. gen black = (race==2)

. gen diablk = diabetes*black

(2 missing values generated)

. svyratio diablk/black

Survey ratio estimation

pweight: finalwgt Number of obs = 10349

Strata: strata Number of strata = 31

PSU: psu Number of PSUs = 62

Population size = 1.171e+08

------------------------------------------------------------------------------

Ratio | Estimate Std. Err. [95% Conf. Interval] Deff

------------------+-----------------------------------------------------------

diablk/black | .0590349 .0061443 .0465035 .0715662 .6718049

------------------------------------------------------------------------------

Although the standard errors are exactly the same (which they must be since the same driver program computes both), the confidence
intervals are slightly different. The svytab command produced the confidence interval [ 0.0477; 0.0729 ], and svyratio gave
[ 0.0465; 0.0716 ]. The difference is due to the fact that svytab uses a logit transform to produce confidence intervals whose
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endpoints are always between 0 and 1. This transformation also shifts the confidence intervals slightly toward the null (i.e.,
0.5), which is beneficial since the untransformed confidence intervals tend to be, on average, biased away from the null. See the
Methods and formulas section at the end of this article for details.

The Rao and Scott correction for chi-squared tests

Two statistics commonly used for iid data for the test of independence of R � C tables (R rows and C columns) are the
Pearson �2 statistic

X
2
P = n

RX
r=1

CX
c=1

(p̂rc � p̂0rc)
2
=p̂0rc (1)

and the likelihood-ratio �2 statistic

X
2
LR = 2n

RX
r=1

CX
c=1

p̂0rc ln (p̂rc=p̂0rc) (2)

where n is the total number of observations, p̂rc is the estimated proportion for the cell in the rth row and cth column of the
table, and p̂0rc is the estimated proportion under the null hypothesis of independence; i.e., p̂0rc = p̂r�p̂�c, the product of the row
and column marginals: p̂r� =

P
C

c=1 p̂rc and p̂
�c =

P
R

r=1 p̂rc. For iid data, both of these statistics are distributed asymptotically
as �2

(R�1)(C�1)
. Note that the likelihood-ratio statistic is not defined when one or more of the cells in the table are empty. The

Pearson statistic, however, can be calculated when one or more cells in the table are empty—the statistic may not have good
properties in this case, but the statistic still has a computable value.

One can estimate the variance of p̂rc under the actual survey design. For instance, in Stata, this variance can be computed
using linearization methods using svymean or svyratio. With this variance estimate available, the question then becomes how
to use it to estimate the true distribution of the statistics X2

P and X2
LR. Rao and Scott (1981, 1984) showed that, asymptotically,

X
2
P and X2

LR are distributed as

X
2 �

(R�1)(C�1)X
k=1

�kWk (3)

where the Wk are independent �21 variables and the �k are the eigenvalues of

� = (eX0

2Vsrs
eX2)

�1(eX0

2V
eX2) (4)

where V is the variance of the p̂rc under the survey design and Vsrs is the variance of the p̂rc that one would have if the design
were simple random sampling; namely, Vsrs has diagonal elements prc(1� prc)=n and off-diagonal elements �prcpst=n.eX2 takes a bit of explaining. Rao and Scott do their development in a log-linear modeling context. So consider [1 jX1 jX2 ]
as predictors for the cell counts of the R�C table. The X1 matrix of dimension RC � (R+C � 2) contains the R� 1 “main
effects” for the rows and the C�1 “main effects” for the columns. The X2 matrix of dimension RC� (R�1)(C� 1) contains
the row and column “interactions.” Hence, fitting [ 1 jX1 jX2 ] gives the fully saturated model (i.e., fits the observed values
perfectly) and [ 1 jX1 ] gives the independence model. The eX2 matrix is the projection of X2 onto the orthogonal complement
of the space spanned by the columns of X1, where the orthogonality is defined with respect to Vsrs; i.e., eX0

2VsrsX1 = 0.

I do not expect anyone to understand from this brief description how this leads to equation (3); see Rao and Scott (1984)
for the proofs. However, even without a full understanding, one can get a feeling for �. It is like a “ratio” (although remember
that it is a matrix) of two variances. The variance in the “numerator” involves the variance under the true survey design, and
the variance in the “denominator” involves the variance assuming that the design was simple random sampling. Recall that the
design effect deff for the estimated proportions is defined as deff = V (p̂rc)=Vsrs(p̂rc) (see the Methods and Formulas section
of the [R] svymean entry in the Stata Reference Manual). Hence, � can be regarded as a design effects matrix, and Rao and
Scott call its eigenvalues, the �k’s, the “generalized design effects.” Simplistically, one can view the iid statistics X2

P and X2
LR

as being “too big” by a “factor” of � for true survey design.

It is easy to compute an estimate for � using estimates for V and Vsrs. But, unfortunately, equation (3) is not practical
for the computation of a p-value. However, one can compute simple first-order and second-order corrections based on it. A
first-order correction is based on downweighting the iid statistics by the average eigenvalue of b�; namely, one computes

X
2
P(�̂�) = X

2
P=�̂� and X

2
LR(�̂�) = X

2
LR=�̂�
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where �̂
�

is the mean generalized deff

�̂
�
=

1

(R� 1)(C � 1)

(R�1)(C�1)X
k=1

�k

These corrected statistics are asymptotically distributed as �2
(R�1)(C�1)

.

A better second-order correction can be obtained by using the Satterthwaite approximation to the distribution of a weighted
sum of �21 variables. Here the Pearson statistic becomes

X
2
P(�̂�; â) =

X
2
P

�̂
�
(â2 + 1)

(5)

where â is the coefficient of variation of the eigenvalues:

â
2 =

P
�̂
2
k

(R� 1)(C � 1)�̂2
�

� 1

Since
P
�̂k = tr b� and

P
�̂
2
k
= tr b�2, equation (5) can be written in an easily computable form as

X
2
P(�̂�; â) =

tr b�
tr b�2

X
2
P (6)

These corrected statistics are asymptotically distributed as �2
d

with

d =
(R� 1)(C � 1)

â2 + 1
=

(tr b�)2

tr b�2
(7)

i.e., a �2 with, in general, noninteger degrees of freedom. The likelihood-ratio X2
LR statistic can also be given this second-order

correction in an identical manner.

Two wrinkles in the Rao and Scott correction formula

We would be done if it were not for two outstanding issues. First, how should one compute the variance estimate bVsrs,
which appears in equation (4) and in the computation of eX0

2? This may seem like a stupid question, since as we said earlier, Vsrs

has diagonal elements prc(1� prc)=n and off-diagonal elements �prcpst=n; but note that here prc is the true, not estimated,
proportion. Hence, the question is, what to use to estimate prc: the observed proportions p̂rc or the proportions estimated under
the null hypothesis of independence p̂0rc = p̂r�p̂�c? Rao and Scott (1984, p. 53) write “In practice, [the asymptotic significance
level of X2(�

�
; a)] is estimated by using bV for V and �̂ (or ^̂�) for �.” In our notation, �rc is prc , �̂rc is the observed p̂rc ,

and ^̂�rc is the estimate under the null, p̂0rc . So Rao and Scott leave this as an open question.

Because of the question of whether to use p̂rc or p̂0rc to compute bVsrs, svytab can compute both corrections. By default,
when the null option is not specified, only the correction based on p̂rc is displayed. If null is specified, two corrected
statistics and corresponding p-values are displayed, one computed using p̂rc and the other using p̂0rc . Simulations evaluating
the performance of each of these correction methods are discussed later in this article.

The second wrinkle to be ironed out concerns the degrees of freedom resulting from the variance estimate bV of the cell
proportions under the survey design. The customary degrees of freedom for t statistics resulting from this variance estimate are
� = nPSU � L, where nPSU is the total number of PSUs and L is the total number of strata. Hence, one feels that one should
use something like � degrees of freedom as the denominator degrees of freedom in an F statistic.

Thomas and Rao (1987) explore this issue, not for two-way contingency tables, but for simple goodness-of-fit tests. They
took the first-order corrected X2

P(�̂�) and turned it into an F statistic by dividing it by its degrees of freedom d0 = (R�1)(C�1).
The F statistic was taken to have numerator degrees of freedom equal to d0, and denominator degrees of freedom equal to
�d0. This is much more liberal than using just � as denominator degrees of freedom. Rao and Thomas (1989) mention the
possibility of implementing a similar F statistic for two-way tables, but state that “its properties have not been studied.” Note
that Rao and Thomas’s discussion concerns F statistics produced from the first-order corrected X2(�̂

�
) statistics, and not from

the second-order corrected X
2(�̂

�
; â) statistics. But there is no reason that one should not consider similar transforms of the

second-order corrected X2(�̂
�
; â) statistics into F statistics.
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Fuller et al. (1986) in the PC CARP software take the stricter approach with the second-order corrected X2
P(�̂�; â) and turn

it into an F statistic with � denominator degrees of freedom. This strictness is partially balanced by the fact that rather than
d = (tr b�)2=tr b�2 numerator degrees of freedom, they use

d = minf(tr b�)2=t3; (R� 1)(C � 1)g where t3 = tr b�2 � (tr b�)2=� (8)

Hence, d becomes slightly bigger in this formulation—trivially so when � is large, but noticeably bigger when � is small. It
should also be noted that Fuller et al. use the null hypothesis estimates p̂0rc to compute bVsrs.

In a later section, we evaluate Fuller et al.’s variant along with the F statistic suggested by Rao and Thomas (1989) for
the second-order corrected statistic. The results were surprising—or at least, they surprised me.

Wald statistics

Prior to the work by Rao and Scott (1981, 1984), Wald tests for the test of independence for two-way tables were developed
by Koch et al. (1975). Two Wald statistics have been proposed. The first is similar to the Pearson statistic in that it is based on

Ŷrc = N̂rc � N̂r�N̂�c=N̂��

where N̂rc is the estimated weighted counts for the r; c th cell, and r = 1, : : : , R� 1 and c = 1, : : : , C � 1. The delta-method
can be used to estimate the variance of Ŷ (which is Ŷrc stacked into a vector), and a Wald statistic can be constructed in the
usual manner:

W = Ŷ0

�
JN
bV(N̂)JN

0

�
�1
Ŷ where JN = @Ŷ=@N̂

0

Another Wald statistic can be developed based on the log-linear model with predictors [ 1 jX1 jX2 ] that was mentioned
earlier. This Wald statistic is

WLL =
�
X

0

2 ln p̂
�
0

�
X

0

2Jp
bV(p̂)Jp

0

X2

�
�1�

X
0

2 ln p̂
�

where Jp is the matrix of first derivatives of ln p̂ with respect to p̂, which is, of course, just a matrix with p̂�1
rc

on the diagonal
and zero elsewhere. Note that this log-linear Wald statistic is undefined when there is a zero proportion in the table.

These Wald statistics can be converted to F statistics in one of two ways. One method is the standard manner: divide by
the �2 degrees of freedom d0 = (R� 1)(C� 1) to get an F statistic with d0 numerator degrees of freedom and � = nPSU�L
denominator degrees of freedom. This is the form of the F statistic suggested by Koch et al. (1975) and implemented in the
CROSSTAB procedure of the SUDAAN software (Shah et al. 1997, Release 7.5), and it is the method used by svytab when the
noadjust option is specified along with wald or llwald.

Another technique is to adjust the F statistic by using

Fadj = (� � d0 + 1)W=(�d0) with Fadj � F (d0; � � d0 + 1)

This is the adjustment that is done by default by svytab. Note that svytest and the other svy estimation commands produce
adjusted F statistics by default, using exactly the same adjustment procedure. See Korn and Graubard (1990) for a justification
of the procedure.

As Thomas and Rao (1987) point out, the unadjusted F statistics give anticonservative p-values (i.e., under the null, the
statistics are “significant” more often than they should be) when � is not large. Thomas and Rao (1987) explore the behavior
of the adjusted F statistic for the log-linear Wald test in simulations for simple goodness-of-fit tests, and they find that even
the adjusted statistic is anticonservative when � is small. This conclusion for the log-linear Wald statistic is borne out by my
simulations, which are detailed in the next section. The adjusted “Pearson” Wald statistic, however, behaves reasonably under
the null in most cases.

Evaluating the statistics via simulations

At this point in the article, you the reader are at the same point where I was after I read all the papers and coded up a
bunch of the possible statistics. I had a number of questions:

1. Should one use p̂rc or p̂0rc to compute bVsrs in the second-order Rao and Scott correction for X2
P and X2

LR?

2. It is next to certain that one should adjust for the degrees of freedom � = nPSU �L of the design-based variance estimatebV by converting the corrected �
2 statistic into an F statistic. But what should one use: the � denominator degrees of
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freedom as Fuller et al. (1986) have implemented in PC CARP or something like the more liberal �d degrees of freedom
suggested by Rao and Thomas (1989)?

3. How anticonservative are the unadjusted Wald statistics (Koch et al. 1975)? Just a bit or a lot? Is the adjustment really
necessary?

4. How powerful are the Wald statistics compared with the Rao and Scott corrected statistics? Are they about the same or are
some statistics clearly better than others?

5. There is yet another possibility for testing the independence of two-way tables, and that is to use svymlog. Indeed, this
was the suggestion that I made to Stata users while I worked on svytab. How good or bad was this recommendation?

6. Is one statistic clearly better than the others? Can researchers just use one statistic all the time and ignore all the others?

Since the theory behind all of these statistics is asymptotic, recourse to theory almost certainly will not help answer any of
these questions. Simulations are obviously the thing to do. I did several simulations that attempted to evaluate the statistics under
a variety of different conditions: for sparse tables and for nonsparse tables; for small and for large variance degrees of freedom
�; under the null hypothesis of independence to evaluate Type I error; and under an alternative hypothesis of nonindependence
to evaluate power.

There is one point about simulations for tests of independence I cannot emphasize strongly enough: It is essentially impossible
to do simulations that definitively prove anything in general. This is because there is an infinite number of distributions that one
could assume for the underlying true cell proportions. Contrast this to the case of, for example, a maximum-likelihood estimator
in which one can use the assumed likelihood function as the distribution for the simulations.

Hence, evaluation of the statistics should focus on failure. If a statistic shows undesirable properties (e.g., anticonservative
p-values under the null, or poor power under an alternative) for a particular simulation, then it would be reasonable to assume
that the statistic may fail in this manner in at least some similar situations with real data.

Another shortcoming of the following simulations must be mentioned. These statistics are intended for survey data. A
common paradigm for the theoretical development of many survey estimators is that of sampling from a fixed finite population.
Under this paradigm, the properties of an estimator are evaluated by considering repeated sampling from the same fixed finite
population under the same survey design. Hence, to do simulations following this paradigm, one should first generate a finite
population from an assumed distribution of the population (i.e., a “superpopulation”) , and then repeatedly draw samples from
the finite population. This whole process should then be repeated many times. This is clearly an arduous task that would require
weeks of computer time. I chose to do something much simpler.

Setting up the simulations

For the simulations, I generated clusters and observations within clusters using a simple parametric model. I did not simulate
stratified sampling or sampling weights. Hence, my simulations represent simple random sampling with replacement of clusters
from an infinite population of clusters.

To produce two categorical variables z1 and z2 for the tabulation, I first generated underlying latent variables y1 and y2
according to a “random-effects” model:

ykij = ui + eij where ui � N(0; �c) and eij j ui � N(0; 1� �c)

Hence, unconditionally, yk � N(0; 1) and the intra-cluster correlation is �c. To simulate the null hypothesis of independence,
y1 and y2 were independently generated. To simulate an alternative hypothesis of nonindependence, y1 and y2 were given
correlations of roughly �a by first generating independent y01 and y02 and then setting

y1 = y
0

1

y2 = �a y
0

1 +
p
1� �2a y

0

2

To generate zk with M categories, yk was categorized based on fixed normal quantiles. For the nonsparse tables simulations,
quantiles were derived from equally spaced probabilities:

zk = q if and only if ��1((q � 1)=M) < yk � ��1(q=M) where q = 1; 2; : : : ;M

where � is the standard cumulative normal. For sparse tables simulations, the quantile cut points were varied so that one category
was infrequent. This frequency was chosen so that zero cells were generated in tables roughly half of the time.



42 Stata Technical Bulletin STB-45

R�C tables were generated with 2 � R;C � 5. The intra-cluster correlation was �c = 0.25 for all reported simulations.
For the simulations representing small variance degrees of freedom, 20 clusters (� = 19) ranging in size from 30 to 70
observations where chosen, for a total of approximately 1,000 observations. The cluster sizes were randomly generated once,
and then left fixed for subsequent simulations. With � = 19 and table degrees of freedom d0 = (R� 1)(C � 1) ranging from 1
to 16, we should be able to see what happens when d0 approaches �. Note that � = 19 is not unrealistic. The NHANES II data
shown earlier have � = 31.

For the simulations representing large variance degrees of freedom, 200 clusters (� = 199) ranging in size from 3 to 10
observations where chosen, for a total of approximately 1300 observations.

The approximate correlation �a between the latent variables that was used to generate an alternative hypothesis was chosen
based on R and C and on the type of simulation (sparse or nonsparse, small or large �) to give power of around 0.5 to 0.9 for
most of the statistics. Because of this arbitrariness, only the relative power of the statistics can be assessed. That is, absolute
assessments of power across different simulations cannot be made.

For all simulations, 1,000 replications were run.

Simulations of the null for nonsparse and sparse tables for small �

Simulations of the null hypothesis of independence for small � should be a good trial of the denominator degrees of freedom
for the Rao and Scott corrected F statistics and also a good trial of the unadjusted versus adjusted Wald statistics.

Figure 1 shows the observed rejection rate at a nominal 0.05 level for four variants of the Rao and Scott corrected Pearson
statistic. Shown are the two second-order corrected �2 statistics X2

P(�̂�; â) from equation (5). The one labeled “null” is corrected

using p̂0rc to compute bVsrs in design effects matrix b�, and I refer to this as the null-corrected statistic. The other one uses
p̂rc , and I refer to this as the default-corrected statistic since it is svytab’s default.
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Figure 1. Variants of the Pearson statistic under null for nonsparse (left) and sparse (right) tables (variance df=19).

Also shown in Figure 1 are these two �2 statistics turned into F statistics with denominator degrees of freedom �d according
to the suggestion of Rao and Thomas (1989). The left graph of the nonsparse tables simulation shows that the corrected �

2

statistics are anticonservative (i.e., declare significance too frequently) for the smaller tables. It is surprising, however, how well
the �2 statistics do for the larger tables where d0 = (R � 1)(C � 1) approaches �. The corrected F statistics do better for
the smaller nonsparse tables. For the nonsparse tables, the null-corrected F statistic is noticeably more conservative than the
default-corrected statistic, except for the R = 2; C = 2 table.

The right graph of Figure 1 shows a sparse tables simulation for the same statistics. An anomaly appears for the null-
corrected statistics for the R = 2; C = 2 table: the rejection rate of the simulation is > 0.15 at a nominal 0.05 level. After the
R = 2; C = 2 table, the null-corrected statistics dive to levels more conservative than the default-corrected statistics.

Similar graphs (Figure 2) can be made for the corresponding four variants of the corrected likelihood-ratio statistics. The
graph for the nonsparse tables is essentially identical to the left graph of Figure 1. This is not surprising since the uncorrected
Pearson statistic is usually numerically similar to the uncorrected likelihood-ratio statistic when tables are not sparse.
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Figure 2. Variants of the likelihood-ratio statistic under null for nonsparse (left) and sparse (right) tables (variance df=19).

In the sparse tables simulations for the likelihood-ratio statistics (right graph of Figure 2), there are many instances in which
these statistics are not defined because of a zero cell. Of those sparse tables for which the statistics could be computed, the
null-corrected likelihood-ratio statistics display severe conservatism and the default-corrected likelihood-ratio statistics exhibit
unsatisfactory anticonservatism, especially for the smaller tables (e.g., rejection rates > 0.1 for R = 2; C = 2 and R = 2; C = 3).

The Fuller et al. PC CARP variant

Figure 3 compares the statistic implemented by Fuller et al. (1986) in the PC CARP software with the default-corrected
Pearson F statistic (svytab’s default statistic). The left graph of Figure 3 shows that the Fuller et al. statistic is quite conservative
for all except the smaller tables. Recall that the Fuller et al. statistic uses � denominator degrees of freedom, whereas the Pearson
F statistic uses �d.
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Figure 3. Fuller et al. (1986) correction vs. svytab’s default Pearson under null for nonsparse (left) and sparse (right) tables (variance df=19).

The right graph of Figure 3 shows the sparse tables simulation. Since the Fuller et al. variant is a null-corrected statistic, it
also exhibits the same anomalous anticonservatism for the R = 2; C = 2 table as do the null-corrected Pearson statistics in the
right graph of Figure 1. One could apply Fuller et al. formulas to the default correction (and I have done so in my simulations),
but this also leads to appreciable conservatism for the larger tables. The � denominator degrees of freedom of the Fuller et al.
variant simply appear to be too strict.

One could increase the denominator degrees of freedom of the Fuller et al. variant to �d, but since the numerator degrees
of freedom for the Fuller et al. variant (equation (8)) are larger than the numerator degrees of freedom calculated according to
Rao and Scott’s (1984) formulas, this leads to a uniformly anticonservative statistic.

So, although the theory behind the Fuller et al. (1986) variant appears compelling, simulations show it to be problematic.
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Unadjusted and adjusted Wald statistics

Figure 4 shows the behavior of the unadjusted Wald statistics (Koch et al. 1975) under the null hypothesis of independence
for nonsparse and sparse tables for � = 19. Note the scale of the left axis. As the table degrees of freedom d0 = (R�1)(C�1)
approach the variance degrees of freedom � = 19, the rejection rate approaches 1. Clearly, this behavior makes an unadjusted
Wald statistic unsuitable for use in these situations.
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Figure 4. Unadjusted Wald statistics under null for nonsparse (left) and sparse (right) tables (variance df=19).
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Figure 5. Adjusted Wald statistics under null for nonsparse (left) and sparse (right) tables (variance df=19).

The adjusted “Pearson” Wald statistic (Figure 5) behaves much better. For nonsparse tables, the observed rejection rate is
close to the nominal 0.05 level. For sparse tables, the statistic is very anticonservative for the R = 2; C = 2 table like the
null-corrected statistics, and also very anticonservative for some of the larger tables.

In agreement with the observations of Thomas and Rao (1987), the adjusted log-linear Wald statistic is almost uniformly
anticonservative, and is especially poor for sparse tables. Note that the simulation results for the log-linear Wald statistic are
effectively based on fewer replications for sparse tables (Figures 3 and 4, right graphs) since the statistic was often undefined
because of a zero cell in the table.

Using svymlog for a test of independence

The svymlog command can be used to conduct a test of independence for two-way tables. One merely does the following:

. xi: svymlog z1 i.z2

. svytest I*
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For those readers not familiar with xi, note that the I* variables are dummies for the z2 categories. Note also that svytest,
by default, computes an adjusted F statistic.

This command sequence using svymlog was included in all the simulations. The results are easy to describe: for every
nonsparse tables simulation, svymlog yielded the same results as the adjusted log-linear Wald statistic. For sparse tables, svymlog
was uniformly and seriously anticonservative.

Simulations of the null for nonsparse and sparse tables for large �

Since all of the theory for the various statistics is asymptotic as the number of PSUs (clusters) goes to infinity, one expects
that all the statistics should be well-behaved under the null—for nonsparse tables, at least. Simulations of nonsparse tables with
� = 199 bear this out for all statistics except for the unadjusted Wald statistics, which are surprisingly anticonservative for some
of the larger tables; see the left graph of Figure 6.
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Figure 6. Unadjusted and adjusted Wald statistics under null for large variance degrees of freedom (df=199) for nonsparse (left) and sparse (right) tables.

Sparse tables, however, are a different story; see the right graph of Figure 6. All of the Wald statistics exhibit severe
problems. The “Pearson” Wald statistic, both unadjusted and adjusted, is extremely anticonservative for the smaller tables.
Inexplicably, its behavior is worse here than it is when the variance degrees of freedom are small. The log-linear Wald statistic
is again uniformly anticonservative.

The null-corrected Rao and Scott statistics also exhibit some anomalies for these sparse tables simulations. The null-corrected
Pearson is extremely anticonservative for the R = 2; C = 2 table (rejection rate > 0.50 at a nominal 0.05 level), but conservative
for the other tables. The null-corrected likelihood-ratio statistic appears to be extremely conservative (rejection rate < 0.02) for
those sparse tables in the simulation that did not contain a zero cell. The default-corrected statistics, however, do much better.
The default-corrected Pearson has a rejection rate of 0.04–0.06 for all tables in the large variance degrees of freedom simulation
of sparse tables.

Power for nonsparse and sparse tables for small �

Figure 7 shows the relative power of the default- and null-corrected Pearson and likelihood-ratio F statistics for small
variance degrees of freedom (� = 19). Again, it must be kept in mind that only relative comparisons among the statistics can
be made, since the alternative hypothesis was changed as the table size changed. The left graph of Figure 7 shows that these
four statistics all have essentially identical power for nonsparse tables.
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Figure 7. Power of corrected Pearson and likelihood-ratio statistics for nonsparse (left) and sparse (right) tables (variance df=19).

For sparse tables, the null-corrected statistics exhibit extremely poor power for R = 2; C = 2. Indeed, the rejection rate
for the null-corrected Pearson F statistic was lower for this alternative hypothesis than it was under the null hypothesis for
an otherwise similar simulation (Figure 1, right graph). This is puzzling. I can only say that the behavior of the null-corrected
statistics appears to be very erratic for sparse R = 2; C = 2 tables in these simulations. The default-corrected statistics show
no such erratic behavior for sparse R = 2; C = 2 tables. The default-corrected Pearson, for example, has a slightly inflated
rejection rate under the null (0.07), but good power under this alternative (> 0.50).

Figure 8 compares the power of the adjusted Wald statistics with that of the default-corrected Pearson F statistic for small
variance degrees of freedom (� = 19). For nonsparse tables, the default-corrected Pearson is more powerful than the adjusted
Wald statistics, except for the R = 2; C = 2 table for which the powers are the same. The differences are particularly dramatic
for larger tables. Sparse tables (Figure 8, right graph) also show this fall-off for larger tables.
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Figure 8. Power of adjusted Wald statistics versus svytab’s default Pearson variant for nonsparse (left) and sparse (right) tables (variance df=19).

It is not reasonable to include unadjusted Wald statistics in power comparisons for small variance degrees of freedom since
they do such a bad job of controlling Type I error under the null (Figure 4) in this situation. However, it should be noted that
despite this fact, the power of the default-corrected Pearson F statistic is either better than or about the same as the power of
the unadjusted Wald statistics.

Power for nonsparse and sparse tables for large �

Power for all statistics was similar for nonsparse tables when the variance degrees of freedom were large (� = 199). All of
the Rao and Scott corrected statistics had essentially identical power for nonsparse tables. These statistics held a slight advantage
of about 5% over the adjusted Wald statistics for all but the smallest tables, where the power was the same.
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The sparse tables simulation again provoked erratic behavior for some of the statistics in the smaller tables. Again, the
default-corrected Pearson F statistic was superior. Its power was either about the same or significantly better than the other
statistics.

Conclusions

Rather surprisingly, the simulations yielded unequivocal answers to the questions that I posed earlier.

1. Should one use p̂rc (default-corrected) or p̂0rc (null-corrected) in the second-order Rao and Scott correction? The answer
appears to be p̂rc. Using p̂0rc results in some erratic behavior for sparse tables—at least in the simulations I ran. For
nonsparse tables, it does not matter which is used; they both yield similar statistics.

2. What should one use: the � denominator degrees of freedom as Fuller et al. (1986) have implemented in PC CARP or
something like the more liberal �d degrees of freedom suggested by Rao and Thomas (1989)? The Fuller et al. variant
is too conservative for all but the smallest tables. The Rao and Thomas suggestion appears better, although it produces
slightly anticonservative statistics for the smallest tables.

3. How anticonservative are the unadjusted Wald statistics (Koch et al. 1975)? They can be dangerously anticonservative. For
large tables and small variance degrees of freedom (i.e., a small to moderate number of PSUs), they can reject the null
hypothesis most of the time even though the null hypothesis of independence is true. Only when the variance degrees of
freedom are very large (> 1000) and the unadjusted and adjusted statistics are approximately equal would the use of the
unadjusted statistic be justified. The adjusted log-linear Wald statistics appear to be uniformly anticonservative for small to
moderate variance degrees of freedom. The “Pearson” Wald statistic (the wald option of svytab) appears to have reasonable
properties under the null hypothesis in this situation. However, like the Rao and Scott null-corrected statistics, it can exhibit
erratic behavior in small sparse tables.

4. How powerful are the Wald statistics compared with the Rao and Scott corrected statistics? The Rao and Scott corrected
statistics are significantly more powerful than the adjusted Wald statistics for small to moderate variance degrees of freedom,
especially for large tables.

5. How good is svymlog for a test of independence? At best, it is as good as the adjusted log-linear Wald statistic, which is
to say fairly bad.

6. Is one statistic clearly better than the others? All of the statistics except the default-corrected Pearson F statistic collected
black marks in the simulations. The default-corrected Pearson F statistic was slightly anticonservative for small tables
when the variance degrees of freedom were small, but other than that it did remarkably well. It exhibited reasonably true
Type I error for small sparse tables when other statistics behaved erratically. However, these simulations only used one
particular model of sparse tables, so it would be unwarranted to generalize this observation to all sparse tables. The corrected
likelihood-ratio F statistic is an equally good choice for nonsparse tables; but it is no better, so there is no reason to
ever use it over the corrected Pearson F statistic. Hence, I recommend the use of the default pearson statistic of svytab
in all situations. Conversely, I recommend ignoring all the other statistics in all situations, unless you have a particular
pedagogical interest in them.

Methods and formulas

We assume here that readers are familiar with the Methods and Formulas section of the [R] svymean entry of the Stata
Reference Manual.

For a table of R rows by C columns with cells indexed by r; c, let

y(rc)hij =
n
1 if the hijth element of the data is in the r; c th cell
0 otherwise

where h = 1, : : : , L, indexes strata; i = 1; : : : , nh , indexes PSUs; and j = 1, : : : , mhi , indexes elements in the PSU. Weighted
cell counts (the count option) are

N̂rc =

LX
h=1

nhX
i=1

mhiX
j=1

whij y(rc)hij

where whij are the weights, if any. If a variable xhij is specified with the tab() option, N̂rc becomes

N̂rc =

LX
h=1

nhX
i=1

mhiX
j=1

whij xhij y(rc)hij
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Let

N̂r� =

CX
c=1

N̂rc ; N̂
�c =

RX
r=1

N̂rc ; and N̂
��
=

RX
r=1

CX
c=1

N̂rc

Estimated cell proportions are p̂rc = N̂rc=N̂��
. Estimated row proportions are p̂row rc = N̂rc=N̂r�. Estimated column proportions

are p̂col rc = N̂rc=N̂�c.

N̂rc is a total and the proportion estimators are ratios, and their variances can be estimated using linearization methods as
outlined in [R] svymean. svytab computes the variance estimates using the same driver program that svymean, svyratio, and
svytotal use. Hence, svytab produces exactly the same standard errors as these commands would.

Confidence intervals for proportions are calculated using a logit transform so that the endpoints lie between 0 and 1. Let
p̂ be an estimated proportion and ŝ an estimate of its standard error. Let f(p̂) = ln(p̂=(1 � p̂)) be the logit transform of the
proportion. In this metric, an estimate of the standard error is f 0(p̂)ŝ = ŝ=p̂(1� p̂). Thus, a 100(1� �)% confidence interval
in this metric is ln(p̂=(1� p̂))� t1��=2;� ŝ=p̂(1� p̂), where t1��=2;� is the (1� �=2)th quantile of Student’s t distribution.
The endpoints of this confidence interval are transformed back to the proportion metric using f�1(y) = exp(y)=(1 + exp(y)).
Hence, the displayed confidence intervals for proportions are

f
�1

�
ln

�
p̂

1� p̂

�
� t1��=2;� ŝ

p̂(1� p̂)

�
Confidence intervals for weighted counts are untransformed and are identical to the intervals produced by svytotal.

The Rao and Scott (1984) second-order correction to the Pearson statistic X2
P (equation (1)) and the likelihood-ratio statistic

X
2
LR (equation (2)) is calculated by first estimating the design effects matrix

b� =
�
C

0

D
�1
p̂
bVsrsD

�1
p̂
C

�
�1�

C
0

D
�1
p̂
bVD�1

p̂
C

�
This formulation is different from that of equation (4), but it yields numerically identical results for the correction and is easier
to compute. Here C is a contrast matrix that is any RC � (R� 1)(C � 1) full-rank matrix that is orthogonal to [ 1 jX1] (i.e.,
C

0

1 = 0 and C0

X1 = 0), where X1 is a RC � (R + C � 2) matrix of row and column “main effects”; see the description
following equation (4). bV is the variance estimate for the cell proportions under the survey design (i.e., the same estimate that
would be produced by svyratio). bVsrs is the variance estimate assuming simple random sampling. Dp̂ is a diagonal matrix
with the estimated proportions on the diagonal.

The observed proportions p̂rc or the proportions under the null hypothesis of independence, p̂0rc = p̂r�p̂�c, can be used for
the computation of bVsrs and Dp̂. For the former choice, bVsrs becomes a matrix with diagonal elements p̂rc(1 � p̂rc)=n and
off-diagonal elements �p̂rcp̂st=n. The former choice is used by default for the pearson and lr statistics. The latter is used
when the null option is specified.

Note that when the p̂rc estimates are used and one of the estimates is zero, the corresponding variance estimate is also
zero; hence, the corresponding element for D�1

p̂
is immaterial for the computation of b�.

Rao and Scott’s (1984) second-order correction is used to produce F statistics:

FP =
X

2
P

tr b� with FP � F (d; �d) where d =
(tr b�)2

tr b�2
and � =

 
LX

h=1

nh

!
� L

The denominator degrees of freedom are based on a suggestion of Rao and Thomas (1989). The correction for the likelihood-ratio
statistic X2

LR is identical.

The Wald statistics computed by svytab with the wald and llwald options are detailed in the earlier section titled Wald
statistics.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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