STATA

TECHNICAL

BULLETIN

nage

September 1996 STB-33

A publication to promote communication among Stata users

Editor

H. Joseph Newton Department of Statistics Texas A & M University College Station, Texas 77843 409-845-3142 409-845-3144 FAX stb@stata.com EMAIL

Associate Editors

Francis X. Diebold, University of Pennsylvania Joanne M. Garrett, University of North Carolina Marcello Pagano, Harvard School of Public Health James L. Powell, UC Berkeley and Princeton University J. Patrick Royston, Royal Postgraduate Medical School

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC, fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the ideas, including communication of the ideas to other parties, even if the material is never published in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets, and help files) are copyright \bigcirc by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered trademark of Stata Corporation.

Contents of this issue

		P=-9=
an62.	Stata 5.0	2
an63.	Updates available on the Stata web site	2
sed10.1.	Update to pattern	2
sg42.1.	Extensions to the regpred command	3
sg49.1.	An improved command for paired t tests: Correction	6
sg57.	An immediate command for two-way tables	7
sg58.	Mountain plots	9
sg59.	Index of ordinal variation and Neyman-Barton GOF	10
sg60.	Enhancements for the display of estimation results	12
sg61.	Bivariate probit models	15
sg62.	Hildreth-Houck random coefficients model	21
snp12.	Stratified test for trend across ordered groups	24

an62	Stata 5.0				
------	-----------	--	--	--	--

Stata Corp., FAX 1-409-696-4601, stata@stata.com

Stata 5.0 is now shipping. You should have already received information from us on the upgrade but, if not, call or fax us, or email stata@stata.com and we will send the information to you. Stata 5.0 has many new statistical features that the user community has requested.

The new release is an opportune time to ask the readers of the STB to contribute suggestions for the next version of Stata. As we are under continual development, your requests strongly affect what new commands and features receive the attention of the technical staff. Feel free to send in your suggestions to the Technical Support staff at their email address tech@stata.com.

Note that there are no official updates in this issue, because Stata 5.0 has just been announced and no updates have accumulated yet. Starting with the next issue of the STB, the stata directory will contain official updates for Stata 5.0. Do not install these updates if you have not upgraded. Also notice that the directory name that we use for the official updates has changed from the old crc name.

an63 Updates available on the Stata web site
--

Stata Corp., FAX 1-409-696-4601, stata@stata.com

A new service provided by Stata Corporation in conjunction with the release of version 5.0 is the Updates page on our web site: http://www.stata.com. In the past, when we wanted to add functionality to the Stata executable, we were forced to wait for a new release in order to create new diskettes. With this service, we are pleased to be able to offer more immediate responses to these needs.

From our home page, click first on User Support and then on Updates. From this page, you can click on the appropriate operating system. We recommend that you check this page periodically to see if the executable has been updated. If it has, you may download the new executable by clicking on the appropriate file. Detailed instructions are available on the web page.

sed10.1 Update to pattern	
---------------------------	--

Richard Goldstein, Qualitas, Inc., richgold@netcom.com

One option, detail, has been added to the program (which was introduced as sed10 in STB-32). The new syntax is

```
pattern varlist [if exp] [in range] [, detail]
```

Use of the detail option provides a list giving the number of missing values for each variable:

```
. pattern make-rep78, detail
    0 missing values for variable make
    0 missing values for variable price
    0 missing values for variable mpg
   5 missing values for variable rep78
     COUNT
             PCT
                     PATTERN
  1.
         5
            6.76
                        XXX.
  2.
        69
            93.24
                        XXXX
Total: 74
```

This may be useful for (1) reminding you of the order of the variables, and (2) helping decide in what order to impute values. Imputing the values of variables with fewer missing values first is generally better, though this can be affected by the pattern of missing values.

Reference

Goldstein, R. 1996. sed2: Patterns of missing data. Stata Technical Bulletin 32: 12-13.

sg42.1	Extensions to the regpred command
5	

Mead Over, World Bank, aover@worldbank.org

regpred2 is a superset of Joanne Garrett's useful regpred command which appeared in STB-26, July 1995, as entry sg42. regpred2 does everything that regpred does and adds four additional options: inst, one, zero, and level.

The syntax for regpred2 is

The inst option adds the capability to perform instrumental variable estimation. If the inst option is specified with a list of instrumental variables, regpred2 feeds that list to the regress command which uses it to produce instrumental variable estimates in the conventional manner, which is documented in the Stata manual. The predictions and forecast interval are then calculated and presented using the instrumental variable (or two-stage least squares) estimates instead of the ordinary least squares estimates.

Examples of the one() and zero() options

The regpred command includes the option adjust(*covlist*) which allows the user to specify a list of covariates which will be set to their means in computing the predicted values. In applications where some of the right-hand-side variables are dummy variables to represent categorical variables, it is interesting to compute predictions for specific values of those dummy variables. Using one of the examples supplied in *sg42*, suppose that the regression is of serum cholesterol on age and race. The command

. regpred2 chl age, adj(race) from(40) to(80) poly(2)

will present predictions of the (quadratic) relationship between age and cholesterol for the person of average race in the data just as would the original regpred. However, for various reasons this may be of less interest than the separate curves for race==0 and race==1. These separate curves can be produced by the commands:

> . regpred2 chl age, adj(race) from(40) to(80) poly(2) zero(race) . regpred2 chl age, adj(race) from(40) to(80) poly(2) one(race)

It might be instructive to superimpose the two graphs in the same figure. regpred2 will not superimpose the two separate graphs, but the user can do this with the Stata Graphics Editor (STAGE) program available separately from Stata. Alternatively, the predicted values from the two executions of regpred2 can be retained and assembled using an explicit graph command.

A categorical variable might have more than two values. For example, there might be three "races" in the data. In this case the three would be represented by two categorical variables such as

	Value dummy v	e of variable
Race of subject	racew	raceb
white	1	0
black	0	1
asian	0	0

The third dummy, racea, must be omitted from the regression in order to avoid perfect multicollinearity. With this arrangement of the data, regpred2 can be used to predict the values of each of the three races by these commands:

For the variable white the command would be

. regpred2 chl age, adj(race) from(40) to(80) one(racew) zero(raceb)

For the variable black:

. regpred2 chl age, adj(race) from(40) to(80) one(raceb) zero(racew)

And for the variable asian:

. regpred2 chl age, adj(race) from(40) to(80) zero(racew raceb)

regpred2 will not permit the user to specify the same variable to be set to both one and zero. The attempt to do so will generate an "error 198".

Examples of the level() and inst() options

Another change introduced in regpred2 is to allow the confidence intervals displayed in the graphs and presented in the predictions to differ from 95%. regpred2 implements the standard Stata convention of defaulting to a confidence level set by the S_level macro. The S_level macro can be overridden by including among the regpred2 options, the option level(#), where # is the desired confidence interval expressed as a percentage.

Here are examples of the application of the level(#) and the inst(*ivlist*) options. The data used is that in Garrett's insert in STB-26. First, apply regpred2 as regpred could have been applied, only adding the level(#) option to demonstrate how it works. Here is the output, including the predicted values and 90% intervals in Figure 1.

. regpred2	chl sbp, f(6	0) t(300) :	i(20) adj(ag	ge smk)	level(90) xlabel	ylabel
Source	SS	df	MS		Number of obs F(3 1214)	= 1218 = 0.37
Model Residual	1771.65999 1927027.32	3 590 1214 1587).55333 7.33716		Prob > F R-squared	= 0.7732 = 0.0009
Total	1928798.98	1217 1584	1.88001		Adj R-squared Root MSE	= -0.0016 = 39.841
chl	Coef.	Std. Err.	t	P> t	[90% Conf.	Interval]
sbp	.0404827	.0438582	0.923	0.356	0317128	.1126782
age	0632856	.131533	-0.481	0.631	2798034	.1532323
smk	-1.328942	2.399776	-0.554	0.580	-5.279237	2.621353
_cons	210.093	8.212943	25.581	0.000	196.5736	223.6124

Predicted Values and 90% Confidence Intervals

```
Outcome Variable:
                       Serum cholesterol -- chl
 Independent Variable: Systolic blood pressure -- sbp
 Covariates:
                       age smk
 Instruments:
 Variables set to Zero:
 Variables set to One:
 Total Observations: 1218
 Confidence interval:
                       90
          sbp
                              lower
                  pred_y
                                          upper
 1.
           60
                208.2786
                           201.8328
                                       214.7245
                           204.0052
 2.
           80
                209.0883
                                       214.1713
 3.
          100
                209.8979
                           206.1179
                                        213.678
 4.
          120
                210.7076
                           208.0801
                                       213.3351
                           209.5984
                211.5172
                                       213.4361
 5.
          140
 6.
          160
                212.3269
                           210.1766
                                       214.4772
 7.
          180
                213.1365
                           210.0174
                                       216.2556
 8.
          200
                213,9462
                           209.5876
                                       218.3048
                214.7558
                           209.0612
                                       220.4505
 9.
          220
10.
                215.5655
                           208,4927
                                       222.6383
          240
11.
          260
                216.3752
                           207.9027
                                       224.8476
12.
          280
                217.1848
                           207.3002
                                       227.0694
13.
          300
                217.9945
                             206.69
                                       229.2989
```


In this specification, neither age nor systolic blood pressure affects the cholesterol level. But suppose that the systolic blood pressure variable is jointly determined with the cholesterol level, ch1, such that each affects the other. In that case, the ordinary least squares estimator of the impact of sbp is biased and one must use two-stage least squares, also known as instrumental variable estimation. Suppose that the socioeconomic status of the subject (ses in the evans2.dta dataset) is thought to be correlated with sbp but not a function of chl and not a direct influence on chl. In that case, ses can be used as an instrument for sbp.

3.62

.

This revised specification of the model can be estimated as follows:

300 -235.2819 -459.0212

13.

regpred2 chl sbp, f(60) t(300) i(20) adj(age smk) inst(age smk ses) > level(90) xlabel ylabel (2SLS) Source SS df MS Number of obs = 1218 F(3, 1214) =Model | -7098941.09 3 -2366313.70 Prob > F0.0128 = Residual | 9027740.07 1214 7436.3592 R-squared = Adj R-squared = 86.234 Total 1928798.98 1217 1584.88001 Root MSE chl Coef. Std. Err. t P>|t| [90% Conf. Interval] _____ _____ _____ -2.892893 .8801326 -3.2870.001 -4.341687-1.444098sbp 2.751821 .8866685 3.104 0.002 1.292268 4.211375 age 8.58432 5.976911 1.436 0.151 -1.254331 18.42297 smk cons 479.3413 82.25801 5.827 0.000 343.9356 614.747 Predicted Values and 90% Confidence Intervals Outcome Variable: Serum cholesterol -- chl Independent Variable: Systolic blood pressure -- sbp Covariates: age smk Instruments: age smk ses Variables set to Zero: Variables set to One: Total Observations: 1218 Confidence interval: 90 sbp pred_y lower upper 1. 60 459.0124 335.2027 582.822 2. 80 401.1545 306.2782 496.0308 3. 100 343.2966 277.3359 409.2574 4. 120 285.4388 248.3339 322.5436 5. 140 227.5809 218.672 236.4899 6. 169.7231 148.3079 191.1383 160 7. 180 61.72051 162.01 111.8652 8. 200 54.00739 -25.03071 133.0455 -111.8143 9. 220 -3.850462 104.1134 -61.70831-198.6098 10. 240 75.19314 11. 260 -119.5662 -285.4109 46.27853 12. 280 -177.424 -372.2151 17.36707

-11.54249

In this example, using ses as an instrument for sbp has a dramatic effect on the results. Instead of having a weakly significant positive effect on cholesterol level, systolic blood pressure is estimated to have a strongly significant negative effect. Also, having instrumented sbp, the age variable works much better, having a strongly significant positive effect on ch1.

Whether this revised model makes sense is beyond my expertise as an economist to determine. My intuition is that ses might affect chl directly as well as indirectly through sbp. If that is true, ses should be included as a right-hand-side variable in the regression and becomes unavailable for use as an instrument. However, experiments with including ses in this way and then instrumenting sbp with the other variables in Garrett's dataset have the same dramatic sign-switching effect on the coefficient of sbp. So unless Garrett's dataset is just random numbers, there may be something going on here that deserves a second look by medical researchers.

Joanne Garrett's contributions to helping Stata users interpret estimated coefficients include three additional equally useful programs: logpred, presented with regpred in STB-26, and adjmean and adjprop, presented in STB-24. It would be desirable to extend all of these programs in the same directions as regpred2 extends the capabilities of regpred. Hopefully some other Stata user will do so and contribute the result to the STB or the statalist list server.

References

Garrett, J. 1995a. sg33: Calculation of adjusted means and adjusted proportions. Stata Technical Bulletin 24: 22-25.

-----. 1995b. sg42: Plotting predicted values from linear and logistic regression models. Stata Technical Bulletin 26: 18-23.

John R. Gleason, Syracuse University, 73241.717@compuserve.com

I have detected an error in the rmttest program described in sg49 in STB-30. Under certain conditions, the program could report incorrect results when one of the two elements in a sample pair was missing.

Reference

Gleason, J. R. 1996. sg49: An improved command for paired t tests. Stata Technical Bulletin 30: 6-9.

sg57	An immediate command for two-way tables

Nicholas J. Cox, University of Durham, UK, FAX (011)-44-91-374-2456, n.j.cox@durham.ac.uk

The syntax for the tab2i command is

tab2i #_{11} #_{12} [...] \setminus #_{21} #_{22} [...] [\setminus ...] [, replace]

where $\#_{11}$, $\#_{12}$, etc., are zeros or positive integers showing the frequencies in a two-way table, and backslashes separate rows of the table. There must be at least two rows and at least two columns in the table.

Option

replace indicates that the variables listed by the command are to be left as the current data in place of whatever data were there. These variables are row and column indices, observed and expected frequencies, and Pearson and adjusted residuals.

Explanation

A chi-squared test for association of the row and column variables in a two-way table of frequencies is featured in most first courses in statistics. In Stata, this test is provided by the immediate command tabi or by the command tabulate. However, neither produces output of expected (fitted, predicted) frequencies or of residuals. Most data analysts wish to glance at least briefly at such results.

tab2i is an alternative to tabi that does produce this output. In a two-way table of frequencies, the observed frequency in row i and column j of the table y_{ij} is compared with the expected frequency \hat{y}_{ij} . Under the null hypothesis of independence, the expected frequencies are calculated from row totals y_{i+} , column totals y_{+i} , and the table total y_{++} by

$$\widehat{y}_{ij} = \frac{y_{i+} \ y_{+j}}{y_{++}}$$

The chi-squared statistic is then

$$\chi^2 = \sum \frac{(y_{ij} - \hat{y}_{ij})^2}{\hat{y}_{ij}}$$

The residuals produced by tab2i come in two flavors. First, Pearson residuals (also called standardized or chi-residuals) are the (appropriately signed) square roots of each cell's contribution to the Pearson chi-squared statistic. The Pearson residuals are thus

$$rac{y_{ij}-\widehat{y}_{ij}}{\sqrt{\widehat{y}_{ij}}}$$

Under the null hypothesis, the Pearson residuals approximately follow Gaussian (normal) distributions with mean 0 and variance less than 1. Consequently, one rough rule of thumb is to look especially carefully at any residual greater than 2 in magnitude.

Second, adjusted residuals are Pearson residuals divided by an estimate of their standard error

$$\sqrt{\left(1-\frac{y_{i+}}{y_{++}}\right)\left(1-\frac{y_{+j}}{y_{++}}\right)}$$

so that they are distributed more like Gaussians with mean 0 and variance 1.

Example

Jacqueline Tivers (1985) interviewed 400 women with young children in the London Borough of Merton in September 1977. In one analysis, she looked at the cross-tabulation of the age at which women finished full-time education and whether they used a library regularly. The table of frequencies did not come with a chi-squared statistic or residuals.

Age left full-time education	Re No	gular use o Yes	of library Total
Below 16 years	124	21	145
16 years	73	30	103
17-18 years	55	29	84
19 years or older	27	41	68
Total	279	121	400

Source of data: Tivers (1985, 173)

We type in the data just as for tabi, with backslashes separating the rows of the table:

. tab2i 124 21 \ 73 30 \ 55 29 \ 27 41

	· ·		•		
				res	iduals
row	col	observed	expected	Pearson	adjusted
1	1	124	101.138	2.273	5.177
1	2	21	43.862	-3.452	-5.177
2	1	73	71.843	0.137	0.288
2	2	30	31.157	-0.207	-0.288
3	1	55	58.590	-0.469	-0.959
3	2	29	25.410	0.712	0.959
4	1	27	47.430	-2.966	-5.920
4	2	41	20.570	4.505	5.920
	Pearson chi	2(3) = 46.	9646 Pr = 0	0.000	

The chi-squared statistic is overwhelmingly significant and the pattern of residuals, especially the adjusted residuals, clearly shows a monotonic relationship. In fact, Tivers gave a result for Goodman–Kruskal gamma, which might be thought more appropriate by some analysts than chi-squared for a relationship between variables on ordinal scales. (See the entry for tabulate in the Stata Reference Manuals for an explanation of gamma.)

tab2i has one option: replace indicates that the variables listed by the command are to be left as the current data in place of whatever data were there. These variables are row and column indices, observed and expected frequencies, and Pearson and adjusted residuals.

Discussion

There are several other possible definitions of residuals in the literature. For more information on this or other points, see a standard text on categorical data analysis. For example, Gilbert (1993) and Agresti (1996) assume a modest background in statistics, whereas Bishop, Fienberg, and Holland (1975) and Agresti (1990) are more advanced. Haberman (1973) is a key paper introducing adjusted residuals.

For more advanced work with two-way tables, use Judson's loglinear analysis command loglin from STB-6 and STB-8 (Judson, 1992a, 1992b) or the even more general glm command. These allow many models other than that of independence to be fitted and tested. On the other hand, students and others who may not be familiar with these methods might find tab2i more accessible for its own elementary task.

In short, tab2i is a minimal first look at a two-way table. Most of the code was gleefully cribbed from tabi. Such theft followed the observation that if there are no data in memory when tabi is invoked, then the data supplied in the table are left behind as three variables, row, col, and pop.

Acknowledgment

William Gould of Stata Corporation provided many useful suggestions for improvement of tab21, but he is not responsible for any of its deficiencies.

References

Agresti, A. 1990. Categorical Data Analysis. New York: John Wiley.

^{-----. 1996.} An Introduction to Categorical Data Analysis. New York: John Wiley.

Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland. 1975. *Discrete Multivariate Analysis*. Cambridge, MA: MIT Press. Gilbert, N. 1993. *Analyzing tabular data: loglinear and logistic models for social researchers*. London: UCL Press. Haberman, S. J. 1973. The analysis of residuals in cross-classified tables. *Biometrics* 29: 205–220. Judson, D. H. 1992a. smv5: Performing loglinear analysis of cross-classifications. *Stata Technical Bulletin* 6: 7–17. ______. 1992b. smv5.1: Loglinear analysis of cross-classifications, update. *Stata Technical Bulletin* 8: 18.

Tivers, J. 1985. Women Attached: The Daily Lives of Women with Young Children. Beckenham, UK: Croom Helm.

sg58 Mountain plots

Richard Goldstein, Qualitas, Inc., richgold@netcom.com

There are numerous options, both in Stata and in the literature, for graphically displaying univariate distributions. Examples in Stata include box plots, probability plots, histograms, stem-and-leaf plots, etc. One family of such plots display the empirical distribution function (EDF). The mountain plot presented here is a member of this family.

In effect, a mountain plot is a folded EDF curve (Monti 1995). A mountain plot for the price variable from Stata's auto.dta dataset is shown in Figure 1.

Monti points out that by examining such a plot it is easy to perform the following:

- 1. Determine the median.
- 2. Determine the range.
- 3. Determine the central or tail percentiles of any magnitude.
- 4. Observe outliers.
- 5. Observe unusual gaps in the data.
- 6. Examine the data for symmetry.
- 7. Compare several distributions.
- 8. Visually gauge the sample size (if plotting symbols are used).

(Note: the implementation here requires a little work on the part of the user to perform number 7 in the above list.)

Given the relationship between the mountain plot and the EDF plot, it is clear that they provide the same information; however, some of the information is much easier to see in the mountain plot, including the median (and other percentiles), and assessing symmetry. On the other hand, as Monti points out, there are limitations to the mountain plot (e.g., the density curve is obscured).

The syntax of mountain is

mountain varname [if exp] [in range] [, nograph graph_options]

Unless the nograph option is used, a plot will automatically be displayed. By default, the graph options used include ylabel, xlabel, yline(5) (so one can see the 5th and 95th percentiles), xline(*median*), and c(1).

As implemented, the command can only be used for one variable at a time. However, a new variable foldx is left in the dataset (which is quietly dropped on reuse of the command). If the user has more than one measure of something and wants to compare the plots, then rename foldx to something meaningful and rerun; then one can plot the two mountains against what each is measuring (be sure to sort on the x variable before graphing).

Note that a variant of egen rank is used with this command (and supplied on the disk as _grank2.ado) that does not give the average rank to tied values since this would give a misleading plot in many cases. Instead unique ranks are given to all values even if tied. Tied values can be seen in the plot because they are joined by absolutely vertical lines as long as they do not cross the median; if they cross the median, then they are joined by absolutely horizontal lines.

Reference

Monti, K. L. 1995. Folded empirical distribution function curves-mountain plots. The American Statistician 49: 342-345.

sg59	Index of ordinal variation and Neyman-Barton GOF

Richard Goldstein, Qualitas, Inc., richgold@netcom.com

What do you do when you have a variable with ordered categories? While there are numerous answers to this question when one has covariates, or other variables, there are few good answers in the univariate situation. This insert presents a measure, called the index of variation (iov), and test of statistical significance, of the amount of variation in an ordered variable. The closely related index of ordinal consensus is also presented. An associated program, nbgof, used in testing the significance of the iov is also presented.

The syntax of iov is

```
iov varname [if exp] [in range] [, rows(#) actual ]
```

The program provides a measure of variability (and its complement) for ordinal variables. The complement measures lack of variability. Each variable can either have the same, fixed, number of categories, set by the user, or, by using the option actual, you can use the actually existing number of categories. If you don't use either option, the default number is 5. These options allow for the situation when the variable as defined has x categories, but the particular sample at issue does not use all the categories.

The iov is 0 (and ioc is 1) when all values fall into one category; the iov is 1 (and the ioc is 0) when extreme polarization is present. The *p*-value for a goodness-of-fit test (where the uniform distribution is the null hypothesis; see nbgof) is also presented. The Berry–Mielke (1994) article gives an algorithm for an exact test, and they also make FORTRAN code for this test available. The test that I have implemented here is not exact.

Note that the program expects data in the form of individual observations; if data are frequency weighted, they should be expanded prior to using this program.

Two options are allowed: rows(#) and actual. If you use neither, the program assumes that every variable called should be treated as though it has five categories. If you use both options, only the actual option will be used.

The default value for rows is 5, chosen simply because the most usual use for this in my own work is with 5-point Likert scales. Note that if your variable has other than 5 possible values you should definitely use this option as these calculations will be wrong if you have the wrong number of categories.

The use of actual tells the program to use the actually existing number of categories. Each user must decide whether to use the possible number of categories or the actual number in every case, but in my experience it is the possible number that usually, but not always, of interest. Note further that using this program with the possible number of rows given eases use on new datasets that are based on the same data collection form.

If you use the actual option, then the output tells you how many rows there are for each variable; if you use no option, or use the rows option, then this information is not supplied.

Note that the originators of this prefer a randomization test; the test here (see below) is offered as an approximation.

Examples

The first example is from the originators of this statistic (Berry and Mielke 1994):

. iov like	ert		
Variable	IOV	IOC	p-value
likert	0.6976	0.3024	0.0440

Next we use the same data, except that we have duplicated the above variable and then set all cases with a value of 5 to missing:

. replace	lik2 = . if	lik2==5		
(4 real cl	nanges made,	4 to missing)		
. iov lik	*, actual			
Variable	IOV	IOC	p-value	rows
	+			
likert	0.6976	0.3024	0.0440	5
lik2	0.8116	0.1884	0.0000	4

Next is a made-up example. There are two variables and 40 observations in the dataset. Variable x consists of just the numbers 1–40, while variable y has 10 each of the values 1, 2, 3, and 4. I start with a brief description of the two variables:

. su x y					
Variable	Obs	Mean	Std. Dev.	Min	Max
x y	+ 40 40	20.5 2.5	11.69045 1.132277	1 1	40 40
. iov x,	rows(40)				
Variable	IOV +	IOC	p-value		
x	0.6833	0.3167	0.9364		
. iov y,	rows(4)				
Variable	IOV	IOC	p-value		
у	0.8333	0.1667	0.0000		

Note the odd result for these two variables when the rows option is not used; the *p*-value is not affected, but the values of the statistics are

. iov x y			
Variable	IOV	IOC	p-value
x	0.0250	0.9750	0.9364
у	0.6250	0.3750	0.0000

The Neyman-Barton smooth goodness-of-fit test

The syntax of nbgof is

nbgof varname [if exp] [in range]

This program performs a Neyman–Barton smooth goodness-of-fit test of order 2. The test result is asymptotically distributed as chi-squared with 2 df. This is used for testing of uniformity (i.e., a uniform distribution). The test is valid for U(0, 1), so if the data are outside this range they are transformed to inside the range using a standard transformation (Stephens 1986).

The output consists of four pieces of information for each variable: (1) the value of the test statistic; (2) its *p*-value; (3) the value of \overline{U} , one of the two components of the test statistic and also a test statistic; (4) the value of S^2 , the other component of the test statistic, and also a test statistic. *p*-values are not given for \overline{U} and S^2 as I have been unable to find a reasonable approximation to the tables given in Stephens. (Each of these is asymptotically standard normal.) The Neyman–Barton test is equal to the sum of the squared values of the component tests.

The data are expected to be in unweighted form. If they are frequency weighted, use Stata's expand command.

No options are allowed.

Example

The following uses the example given in Stephens (1986):

. input u				
	u			
1004				
2304				
3612				
4748				
5771				
6806				
7850				
8885				
9906				
10977				
11. end				
. nbgof u				
	Neyman-Barton			
Variable	Smooth GOF Test	p-value	U-bar	S-squared
u	6.437	0.0400	2.041	1.507

References

Berry, K. J. and P. W. Mielke, Jr. 1994. A test of significance for the index of ordinal variation. Perceptual and Motor Skills 79: 1291-1295.

Stephens, M. A. 1986. Tests for the uniform distribution. In Goodness-of-Fit Techniques, eds. R. B. D'Agostino and M. A. Stephens. New York: Marcel Dekker.

sg60	Enhancements for the display of estimation results

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

The regular Stata output of estimation commands comprises parameter estimates, standard errors, z or t statistics, p-values, and confidence intervals. Clearly, there is a lot of redundancy in this information. For instance, z and t statistics are simply the ratios of the estimates and their standard errors. (Note that this is not fully correct: In exponentiated form, z and t statistics are not transformed by Stata.) Hypotheses testing is possible either via confidence intervals or via p-values.

In practice, many researchers only consider a few of these numbers, in particular the parameter estimates and the associated *p*-values. Thus, precious "display space" seems to be wasted. Indeed, at the same time, Stata's regular output does not contain pieces of information that I find quite useful.

First, Stata's variable names, as are all of its identifiers, are restricted to length 8. In many cases, this is hardly sufficient to produce meaningful names. For instance, in many surveys, variables are named V013aj, etc. Additionally, the names of variables produced and named automatically by programs such as xi are hardly more understandable than assembler mnemonics. Variable labels, even those produced automatically by xi, are usually easy to understand. These labels could simply be included in the output.

Second, to interpret the "size of effects" it is useful to see the location and scale of variables along with the parameter estimates. This practice is followed by many statistical programs including SPSS, BMDP, and LIMDEP.

This insert describes a program diest, that can be used after any Stata estimation command such as regress, logistic, or heckman. Note that diest also should work properly with multiple-equations models such as mvreg. diest redisplays the table with information about the parameter estimates (not the parts above and below the table, such as the number of observations, the log-likelihood, etc.). This table always includes the variable names, the variable labels of the dependent and independent variables, and the parameter estimates.

Via options, the user can select additional information, such as the standard deviations, confidence intervals, or summary statistics of the independent variables. In addition, to facilitate the inclusion of Stata output in reports that describe statistical analyses, we provide a series of options that specify display formats.

Syntax

```
diest [weight] [if exp] [in range] [, { <u>ci</u> | <u>mean</u> | <u>sezp</u> } <u>level(#) tdf(#) eform(name) lv fi</u>rst
    fb(fmt) fse(fmt) fzt(fmt) fp(fmt) fci(fmt) fm(fmt) fsd(fmt) ]
```

Options

sezp, ci, mean select the display mode. Only one of these options may be specified. sezp is the default.

sezp displays estimates, standard errors, z or t statistics, and 2-sided p-values.

ci displays estimates and confidence intervals.

mean displays estimates, 2-sided p-values, and the mean and standard deviation of the variables.

level(#) specifies the confidence level, in percent, for confidence intervals of coefficients. The default is level(95) or as set by set level.

tdf(#) specifies the degrees of freedom of the t distribution used to estimate p-values and confidence intervals. Noninteger values are permitted. tdf(.) specifies that the normal rather that the t distribution should be used. The column header shows whether the normal(z) or t distribution is used.

Most estimation commands define the global macro S_E_tdf as the appropriate degrees of freedom for a t distribution, or to missing if the normal distribution should be used. If the option tdf has not been specified, diest checks whether S_E_tdf can be used. If S_E_tdf is not available, the normal distribution is used.

eform(name) specifies that the parameter estimates should be exponentiated. In accordance with Stata's regular behavior, the standard errors are transformed accordingly; z and t statistics and p-values values are unchanged; and the confidence interval is exponentiated. The argument of eform specifies the name to be displayed above the column with transformed coefficients.

1v specifies that variable labels are displayed (right-aligned) before, instead of after, the variable names.

first specifies that only estimation results pertaining to the first equation are displayed.

Formats

The format of the columns can be specified via options. A format should be a legal Stata display format, though the leading percentage sign (%) may be omitted. Examples of display formats: %9.4f, 8.3g, and %9.0g.

Option	Description	Default	Display mode
fb	parameter estimates	%9.0g	sezp, ci, mean
fse	standard errors of estimates	%9.0g	sezp
fzt	t or z statistics	%7.3f	sezp
fp	p-values	%6.3f	sezp, mean
fci	confidence intervals	%9.0g	ci
fm	mean of variables	%8.0g	mean
fsd	standard deviation of variables	%8.0g	mean

Remarks

diest requires that estimation commands post all relevant information for post-estimation commands. Estimates and estimated covariance matrices are indeed readily available via matrix get. Variable names associated with parameters can usually be obtained from the names of columns in the matrix of estimates (exception: mlogit). The dependent variables are usually available via the global macro S_E_depv (there are exceptions; e.g., mvreg). The degrees of freedom for approximate t distributions of estimates are often made available via the global macro S_E_tdf (there are exceptions; e.g., regress and anova).

diest tries to deal with these inconsistencies as far as I was interested in running the exceptional commands myself.

The display mode mean requires that the estimation sample (if, in) and the weighting are available as to post-estimation commands in order to compute the summary statistics for the right sample and weight. Unfortunately, only a few estimation

commands (e.g., logistic, fit, glm) make this sample information available. Thus, if you use the mean option of diest after sample selection, you should restate the if and/or in clauses and the weighting information. The two other display modes, sezp and ci, ignore this information.

Examples

We illustrate the command diest via some output from a regression analysis of the repair record of cars using Stata's standard dataset auto.dta. First, we consider the regular Stata output.

. regress	rep78 price	length mp	og foreign	1			
Source	SS	df	MS		Number of o	bs =	69
	+			-	F(4,6	4) =	10.92
Model	27.0380695	546	.75951737	7	Prob > F	=	0.0000
Residual	39.5996117	764.	618743933	3	R-squared	=	0.4057
	+			-	Adj R-squar	ed =	0.3686
Total	66.6376812	268.	979965899	Ð	Root MSE	=	.7866
rep78	Coef.	Std. Er	r.	t P>	t [95% Con	f. In	terval]
price	.0000242	.000039	07 0.	611 0.5	44 –.000055		0001035
length	.0125744	.00833	1.	509 0.1	0040687		0292174
mng	1			100 0 0			400004
mpg	.0674953	.02782	4 2.	426 0.0	18 .0119106	•	1230801
foreign	.0674953 1.25691	.02782	4 2. 8 4.	426 0.0 517 0.0	18 .0119106 00 .7009899	•	1.81283
foreign _cons	.0674953 1.25691 .9302744	.02782 .278275 2.01136	4 2. 8 4. 33 -0.	426 0.0 517 0.0 463 0.6	18 .0119106 00 .7009899 45 -4.948433	3	1.81283 .087884

The default output of diest replaces variable labels for the confidence intervals.

Repair Record 1978	Coef.	Std. Err.	t	P> t
Price	.0000242	.0000397	0.611	0.544
Length (in.)	.0125744	.008331	1.509	0.136
Mileage (mpg)	.0674953	.027824	2.426	0.018
Car type	1.25691	.2782758	4.517	0.000
	9302744	2.011363	-0.463	0.645
	Repair Record 1978 Price Length (in.) Mileage (mpg) Car type	Repair Record 1978 Coef. Price .0000242 Length (in.) .0125744 Mileage (mpg) .0674953 Car type 1.25691 9302744	Repair Record 1978 Coef. Std. Err. Price .0000242 .0000397 Length (in.) .0125744 .008331 Mileage (mpg) .0674953 .027824 Car type 1.25691 .2782758 9302744 2.011363	Repair Record 1978 Coef. Std. Err. t Price .0000242 .0000397 0.611 Length (in.) .0125744 .008331 1.509 Mileage (mpg) .0674953 .027824 2.426 Car type 1.25691 .2782758 4.517 9302744 2.011363 -0.463

On a color monitor, the numbers are in yellow, variable labels are in white, and the rest is in green. Some formatting produces more readable output. Note that diest can be called after an estimation command as often as desired. It is also still possible to recall the regress output by issuing the regress command without arguments.

```
. diest, fb(%9.3f) fse(%9.3f)
```

rep78	Repair Record 1978	 	Coef.	Std. Err.	t	P> t
price	Price	+ 	0.000	0.000	0.611	0.544
length	Length (in.)	1	0.013	0.008	1.509	0.136
mpg	Mileage (mpg)		0.067	0.028	2.426	0.018
foreign	Car type	1	1.257	0.278	4.517	0.000
_cons	•-	I	-0.930	2.011	-0.463	0.645

Confidence intervals can be obtained via the ci display mode.

. drest, cr ib(%3.51) ici(%3.51		diest,	ci	fb(%9.3f)	fci(%9.3f
---------------------------------	--	--------	----	-----------	-----------

rep78 Repair Record 1978	Coef.	[t 95% Conf.	Interval]
	+		
price Price	0.000	-0.000	0.000
length Length (in.)	0.013	-0.004	0.029
mpg Mileage (mpg)	0.067	0.012	0.123
foreign Car type	1.257	0.701	1.813
_cons	-0.930	-4.948	3.088

Note in this example how misleading fixed format output may be. Due to limited precision, it can become impossible to say something about the effect of the price of a car on its repair record. Thus, display formating should only be used after inspection of results.

Summary information of the independent variables is obtained via the mean option.

```
. diest, mean fb(%9.3f) fm(%8.3f) fsd(%8.3f)
```

rep78	Repair Record 1978	Coef.	P> t	Mean	Std Dev
price	Price	0.000	0.544	6165.257	2949.496
length	Length (in.)	0.013	0.136	187.932	22.266
mpg	Mileage (mpg)	0.067	0.018	21.297	5.786
foreign	Car type	1.257	0.000	0.297	0.460
_cons		-0.930	0.645		

Finally, we consider a more complicated example of a regression in which interaction effects are generated with xi.

i.foreign Iforei_0-1 (naturally coded; Iforei_0 i.foreign*length IfXlen_# (coded as above) i.foreign*mpg IfXmpg_# (coded as above)	omitted)
Source SS df MS Number	of obs = 69
F(6, Model 29.5749189 6 4.92915315 Prob > Residual 37.0627623 62 .597786488 R-squar Adi R-s	62) = 8.25 F = 0.0000 ced = 0.4438 squared = 0.3900
Total 66.6376812 68 .979965899 Root MS	SE = .77317
rep78 Coef. Std. Err. t P> t [95%	ζ Conf. Interval]
price .0000155 .0000396 0.393 0.696000	.0000947
Iforei_1 -2.841789 4.520248 -0.629 0.532 -11.8	37763 6.194057
length .0125723 .0109983 1.143 0.257009	94131 .0345576
IfXlen_1 .0263108 .0201156 1.308 0.196013	.0665213
Iforei_1 (dropped)	
mpg .0857285 .0465508 1.842 0.070007	73252 .1787822
If Xmpg_1 0163025 .0573871 -0.284 0.777131	.0984126
	4.683496

After issuing this command, one can easily obtain more readable output via the command

. diest, fb(%9.3f) fse(%9.3f)

70				 +	
rep/8	Repair Record 1978		Sta. Err.	τ 	P> t
price	Price	0.000	0.000	0.393	0.696
Iforei_1	foreign==1	-2.842	4.520	-0.629	0.532
length	Length (in.)	0.013	0.011	1.143	0.257
IfXlen_1	(foreign==1)*length	0.026	0.020	1.308	0.196
Iforei_1	foreign==1	(dropped)			
mpg	Mileage (mpg)	0.086	0.047	1.842	0.070
IfXmpg_1	(foreign==1)*mpg	-0.016	0.057	-0.284	0.777
_cons		-1.232	2.960	-0.416	0.679

sg61 Bivariate probit models

James W. Hardin, Stata Corp., FAX 1-409-696-4601, tech@stata.com

In this article, we discuss 3 different two-equation probit models that researchers may wish to estimate. They include

- **Bivariate probit regression** for models where the two dependent variables depend on the same list of independent variables and are correlated.
- Seemingly unrelated two-equation probit regression for models where the two dependent variables may not depend on the same list of independent variables, but are still correlated.

Nested probit regression for models where the outcome of one equation depends on the outcome of the other equation.

Interested readers may also find more information on these models in Greene (1993). Note also that although it is not discussed in this article, these two commands could be used to extend Heckman-type models to consider two participation equations.

Common derivations

Formulation of the models starts with the basic two-equation system

$$\mathbf{y}_{i1} = \mathbf{X}_{i1}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{i1}$$
$$\mathbf{y}_{i2} = \mathbf{X}_{i2}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{i2}$$
$$\begin{bmatrix} \boldsymbol{\epsilon}_{i1} \\ \boldsymbol{\epsilon}_{i2} \end{bmatrix} \sim \text{Bivariate Normal} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \sigma^2 \begin{bmatrix} \mathbf{I} & \rho \mathbf{I} \\ \rho \mathbf{I} & \mathbf{I} \end{bmatrix} \right)$$

The estimation sample is all of the observations for which all of the variables in the two equations are observed in the bivariate and seemingly unrelated models. For the nested model, the estimation sample is the sample defined by the containing equation—the contained equation is assumed to be missing for observations where the dependent variable of the containing equation is zero.

Throughout the next sections, we will use Φ to denote the standard normal cdf, Φ_2 to denote the standard bivariate normal cdf, ϕ to denote the standard normal pdf, and ϕ_2 to denote the standard bivariate normal pdf.

The bivariate and seemingly unrelated models summarize the 4 possible outcomes such that for a given observation we have

$$P_{i11} = P(y_{i1} = 1, y_{i2} = 1)$$

$$P_{i10} = P(y_{i1} = 1, y_{i2} = 0)$$

$$P_{i01} = P(y_{i1} = 0, y_{i2} = 1)$$

$$P_{i00} = P(y_{i1} = 0, y_{i2} = 0)$$

For these two models, we have that

$$P_{i11} = \Phi_2(\mathbf{x}_{i1}\boldsymbol{\beta}_1, \mathbf{x}_{i2}\boldsymbol{\beta}_2, \rho)$$

$$P_{i10} = \Phi(\mathbf{x}_{i1}\boldsymbol{\beta}_1) - \Phi_2(\mathbf{x}_{i1}\boldsymbol{\beta}_1, \mathbf{x}_{i2}\boldsymbol{\beta}_2, \rho)$$

$$P_{i01} = \Phi(\mathbf{x}_{i2}\boldsymbol{\beta}_2) - \Phi_2(\mathbf{x}_{i1}\boldsymbol{\beta}_1, \mathbf{x}_{i2}\boldsymbol{\beta}_2, \rho)$$

$$P_{i00} = \Phi_2(\mathbf{x}_{i1}\boldsymbol{\beta}_1, \mathbf{x}_{i2}\boldsymbol{\beta}_2, \rho) - \Phi(\mathbf{x}_{i1}\boldsymbol{\beta}_1) - \Phi(\mathbf{x}_{i2}\boldsymbol{\beta}_2)$$

where the bivariate probit has $\mathbf{X}_{i1} = \mathbf{X}_{i2}$ for all *i*.

For the nested model, we have that

$$P_{i11} = \Phi_2(\mathbf{x}_{i1}\boldsymbol{\beta}_1, \mathbf{x}_{i2}\boldsymbol{\beta}_2, \rho)$$

$$P_{i10} = \Phi_2(-\mathbf{x}_{i1}\boldsymbol{\beta}_1, \mathbf{x}_{i2}\boldsymbol{\beta}_2, -\rho)$$

$$P_{i01} = \Phi(-\mathbf{x}_{i2}\boldsymbol{\beta}_2)$$

$$P_{i00} = \Phi(-\mathbf{x}_{i2}\boldsymbol{\beta}_2)$$

where equation 1 is nested within equation 2; that is, the outcome for y_2 is only available when $y_1 \neq 0$.

Implementation

In fact, all of these models may be implemented with only one command, but two are provided. The only necessary command is suprob that takes two equations as arguments, but we provide biprob as a convenience so that you are not required to set up the appropriate equations and may instead use mvreg-type syntax.

The syntax for suprob and biprob are

Options

robust specifies that the Huber/White/sandwich estimate of variance should be calculated and robust standard errors reported.

- cluster(cluster_varname) specifies that the robust standard errors should be adjusted for clustering on the variable specified by cluster_varname.
- score (*score*₁ *score*₂) specifies that the scores from the two probit equations should be saved in the variables specified by $score_1$ and $score_2$. The scores have mean zero and are uncorrelated with the independent variable in their respective equations.
- nochi specifies that the constant-only model should not be fit (as this can take a long time for many models). Specifying this option means that there will be no statistics associated with the test of significance of the full model.
- level (#) specifies the confidence level, in percent, for confidence intervals. The default is level (95) or as set by set level.
- nested specifies for the suprob command that a nested probit should be fit. The score, robust, and cluster options are not available with this model.

Example: Bivariate probit regression

Using a subset of data given in Pindyck and Rubinfeld (1981), we wish to estimate a model the decision to send at least one child to private school and whether to vote yes on a new property tax on the number of years lived in the community, the log-income, and the log of property taxes paid. We will use this data again in a subsequent example (how it was originally used in their paper).

. biprob p	oriv vote yrs	inc ptax				
Fitting co	onstant only n	nodel				
Iteration	0: Log Like	lihood = -82	.529057			
Iteration	1: Log Like	lihood = -82	.077824			
Iteration	2: Log Like	lihood = -82	.077005			
Iteration	3: Log Like	lihood = -82	.076978			
Fitting fu	ill model					
Iteration (output on	0: Log Likel nitted)	lihood = -75	.148912			
Iteration	4: Log Like	lihood = -74	.171253			
Bivariate	probit regres	ssion			Number of obs	= 80
					Model chi2(6)	= 15.81
					Prob > chi2	= 0.0148
Log Likeli	ihood = -74	4.1712526			Pseudo R2	= 0.0963
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
priv						
yrs	0146627	.0264237	-0.555	0.579	0664522	.0371268
inc	.3644543	.5588125	0.652	0.514	7307982	1.459707
ptax	0923143	.6922492	-0.133	0.894	-1.449098	1.264469
_cons	-4.040363	4.872901	-0.829	0.407	-13.59107	5.510349
vote						
yrs	008866	.0159737	-0.555	0.579	0401739	.0224419
inc	1.574388	.5638389	2.792	0.005	.4692842	2.679492
ptax	-2.054462	.7310163	-2.810	0.005	-3.487228	6216967
_cons	9732723	4.486987	-0.217	0.828	-9.767606	7.821061
rho						
_cons	3297288	.2252396	-1.464	0.143	7711903	.1117327

Note that we could have obtained these results using suprob:

. eq priv yrs inc ptax

. eq vote yrs inc ptax

. suprob priv vote

Example: Seemingly unrelated two-equation probit regression

In this example, we duplicate the original analysis using the previous data. Here there are two probit equations. In the first, whether a family places at least one child in private school depends on the log of the family income and the number of years that the family has resided in the neighborhood. Whether the family votes on a new property tax depends on the log of the family income and the log of the property tax currently paid.

. eq priv	inc yrs						
. eq vote	inc ptax						
. suprob p	priv vote						
Fitting co	onstant only n	nodel					
Iteration	0: Log Like	lihood = -82.	529057				
Iteration	1: Log Like	lihood = -82.	078668				
Iteration	2: Log Like	lihood = -82.	076956				
Iteration	3: Log Like	lihood = -82.	076955				
Fitting fu	ull model						
Iteration	0: Log Like	lihood = -75	5.29544				
Iteration	1: Log Like	lihood = -74.	350968				
Iteration	2: Log Like	lihood = -74.	333447				
Iteration	3: Log Like	lihood = -74.	333444				
Seemingly	unrelated pro	bit regressi	ion		Number of obs	=	80
0.1	-	0			Model chi2(4)	=	15.49
					Prob > chi2	=	0.0038
Log Likel:	ihood = -74	4.3334444			Pseudo R2	=	0.0943
	Coef.	Std. Err.	z	P> z	[95% Conf.	Int	terval]
priv	• 						
inc	.3067012	.4499467	0.682	0.495	5751781	1	1.18858
yrs	0161475	.0264445	-0.611	0.541	0679777	. (0356827
_cons	-4.091401	4.569771	-0.895	0.371	-13.04799	4.	.865184
vote	•						
inc	1.651935	.5529672	2.987	0.003	.5681397	2.	.735731
ptax	-2.028817	.7238308	-2.803	0.005	-3.447499	6	3101343
_cons	-2.007338	4.075971	-0.492	0.622	-9.996095	5	.981419
rho	• 						
_cons	3252008	.2240436	-1.452	0.147	7643183	. 1	1139166

Example: Robust bivariate probit regression

In this example, we will use the automobile dataset that ships with Stata. We have one binary variable foreign that denotes whether a car is domestic (foreign = 0) or foreign (foreign = 1). We will also assume for the sake of this example, that there is another variable guzzler that denotes whether a car is a gas guzzler (guzzler = 1) or not (guzzler = 0). The guzzler variable was created using gen guzzler = (mpg>=24).

Knowing that most foreign cars imported are smaller and that smaller cars usually get better mileage, we wish to model these variables with the length and weight of the car.

. biprob 1	foreign guzzle	er length wei	.ght, robus	st nolo	5	
Bivariate	probit regres	ssion			Number of obs	= 74
					Model chi2(4)	= 80.56
					Prob > chi2	= 0.0000
Log Likel:	ihood = -46	6.7432695			Pseudo R2	= 0.4629
	 	Robust				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
foreign	• 					
length	.0051157	.0272459	0.188	0.851	0482852	.0585166
weight	0016416	.0009073	-1.809	0.070	0034198	.0001366
_cons	3.111534	2.754162	1.130	0.259	-2.286524	8.509591
guzzler	•					
length	0622867	.0298606	-2.086	0.037	.0037609	.1208124
weight	0008044	.0008508	-0.945	0.344	0008631	.002472
_cons	12.87024	3.447198	3.734	0.000	-19.62662	-6.113856
rho	 					
_cons	5294745	.2323637	-2.279	0.023	. 07405	.984899

. biprob foreign guzzler length weight, robust nolog

Example: Robust cluster seemingly unrelated probit regression

.

+ 1

In this example, we use data collected as part of the NLSY study (Center for Human Resource Research 1989). We would like to model whether a person is part of a union by their age, race, the log of wages earned, and whether they live in the south. We would like to simultaneously model whether a person is a college graduate by the log of wages earned, age, race, and whether they are part of the SMSA.

Since we have data collected according to occupation codes, we would like to obtain standard errors that are robust to heteroscedasticity taking into account our clusters on occupation.

. eq unior	i age race in	wage south				
. eq collį	grad ln_wage a	age race not_	smsa			
. suprob u	union collgrad	d, robust clu	ster(occ_	code)		
Fitting co (output on Iteration	onstant only m nitted) 320: Log Lik	nodel xelihood = -	3361.815			
Fitting fu (output on Iteration	ull model nitted) 3: Log Likel	Lihood = -220	94.3038			
Seemingly	unrelated proi	bit regressi 4.3037683	on		Number of obs Model chi2(8) Prob > chi2 Pseudo R2	= 1819 = 2315.02 = 0.0000 = 0.3443
		(standard	errors ad	justed :	for clustering on	occ_code)
	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
union	•					
age	0188275	.0077825	-2.419	0.016	0340808	0035742
race	.2544691	.0683944	3.721	0.000	.1204186	.3885196
ln_wage	.0377699	.1608802	0.235	0.814	2775495	.3530893
south	3085786	.1216643	-2.536	0.011	5470361	070121
_cons	2690615	.2039192	-1.319	0.187	6687357	.1306127
collgrad	•					
ln_wage	.7299636	.2924354	2.496	0.013	.1568008	1.303126
age	0601856	.0130541	-4.610	0.000	0857711	0346
race	7237232	.129846	-5.574	0.000	9782167	4692296
not_smsa	.3649792	.1472153	2.479	0.013	.0764424	.653516
_cons	.3998985	.4502326	0.888	0.374	4825412	1.282338
 rho	+ 					
_cons	.0632956	.0682244	0.928	0.354	0704218	.197013

Note in the above that the constant-only model took 320 iterations! The likelihood for the constant only model is very flat so that this is not unusual. If you are willing to see only the output of the full model without the likelihood ration and pseudo R^2 of the model, you can use the nochi option to bypass fitting the constant only model.

Example: Nested probit regression

In this example, we will simulate nested data by altering the data from Pindyck and Rubinfeld (1981). We altered the data using

. tab priv	vote			
	vote			
priv	1	1		Total
	+		+-	
0	1	46		46
1	1	5		5
	+		-+-	
Total	1	51		51

So, this data is such that we have data on whether a family places at least one child in private school only if they voted for the property tax. We then ran the nested model using

. eq priv	yrs inc					
. eq vote	inc ptax					
. suprob p	oriv vote, nes	ted				
Fitting co	onstant only m	odel				
Iteration	0: Log Likel	ihood = -69	.21916			
Iteration	1: Log Likel	ihood = -68.	746444			
Iteration	2: Log Likel	ihood = -68 .	745858			
(unproduct	tive step atte	mpted)				
Iteration	3: Log Likel	ihood = -68.	745858			
Fitting fu	ıll model					
Iteration	0: Log Likel	ihood = -60.	842838			
Iteration	1: Log Likel	ihood = -60.	627446			
Iteration	2: Log Likel	1hood = -60.	620643			
Iteration	3: Log Likel	ihood = -60.	620341			
Iteration	T. LOG LIKEI	111000 - 00.	020341			
Nested pro	bit regressio	n			Number of obs	= 80
					Model chi2(4)	= 16.25
		6000444			Prob > chi2	= 0.0027
LOG LIKEI:	1nood = -60	.6203411			Pseudo R2	= 0.1182
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
nriv	▶ 					
vrs	1581264	.1649214	-0.959	0.338	4813663	.1651136
inc	.2524879	1.192193	0.212	0.832	-2.084167	2.589142
_cons	-3.080772	12.47335	-0.247	0.805	-27.52809	21.36655
vote	▶ 					
inc	1.647283	.5560927	2,962	0.003	.5573614	2.737205
ptax	-1.989771	.7197887	-2.764	0.006	-3.400531	5790112
_cons	-2.236327	4.041494	-0.553	0.580	-10.15751	5.684856
	► 					
CODe	 _ 1816928	1 188396	-0 153	0 878	-2 510905	2 14752
_00110	.1010020	1.100000	0.100	0.010	2.010000	2.11.02

References

Center for Human Resource Research. 1989. National Longitudinal Survey of Labor Market Experience, Young women 14–24 years of age in 1968. Ohio State University.

Greene, W. H. 1993. Econometric Analysis. 2d ed. New York: Macmillan.

Pindyck, R. and D. Rubinfeld. 1981. Econometric Models and Economic Forecasts. New York: McGraw-Hill.

sg62	Hildreth–Houck random coefficients model

James W. Hardin, Stata Corp., FAX 1-409-696-4601, tech@stata.com

In Stata 5.0, we released a collection of panel data routines for analyzing cross-sectional time-series data. One of the new commands, xtgls, will estimate a linear model in the presence of heteroscedasticity, cross-sectional correlation, and within-panel autocorrelation. The command actually includes 9 different models depending on which options are chosen and will report either the GLS or OLS results. However, all of the models that the xtgls command will estimate assume that the parameter vector is constant for the panels.

In random coefficient models, we wish to treat the parameter vector as a realization in each panel of a stochastic process.

Remarks

Interested readers should see Greene (1993) for information on this and other panel data models. In a random coefficient model, the parameter heterogeneity is viewed due to stochastic variation. Assume that we write

$$\mathbf{y}_i = \mathbf{X}_i oldsymbol{eta}_i + oldsymbol{\epsilon}_i$$

where i = 1, ..., m, and β_i is the coefficient vector $(k \times 1)$ for the *i*th cross-sectional unit such that

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \boldsymbol{\nu}_i \qquad E(\boldsymbol{\nu}_i) = \mathbf{0} \qquad E(\boldsymbol{\nu}_i \boldsymbol{\nu}_i') = \mathbf{I}$$

where our goal is to find $\hat{\beta}$ and $\hat{\Gamma}$.

The derivation of the estimator assumes that the cross-sectional specific coefficient vector β_i is the outcome of a random process with mean vector β and covariance matrix Γ .

$$\mathbf{y}_i = \mathbf{X}_i oldsymbol{eta}_i + oldsymbol{\epsilon}_i = \mathbf{X}_i (oldsymbol{eta} + oldsymbol{
u}_i) + oldsymbol{\epsilon}_i = \mathbf{X}_i oldsymbol{eta} + (\mathbf{X}_i oldsymbol{
u}_i + oldsymbol{\epsilon}_i) = \mathbf{X}_i oldsymbol{eta} + oldsymbol{\omega}_i$$

where $E(\boldsymbol{\omega}_i) = \mathbf{0}$ and

$$E(\boldsymbol{\omega}_{i}\boldsymbol{\omega}_{i}') = E((\mathbf{X}_{i}\boldsymbol{\nu}_{i} + \boldsymbol{\epsilon}_{i})(\mathbf{X}_{i}\boldsymbol{\nu}_{i} + \boldsymbol{\epsilon}_{i})') = E(\boldsymbol{\epsilon}_{i}\boldsymbol{\epsilon}_{i}') + \mathbf{X}_{i}E(\boldsymbol{\nu}_{i}\boldsymbol{\nu}_{i}')\mathbf{X}_{i}' = \sigma_{i}^{2}\mathbf{I} + \mathbf{X}_{i}\boldsymbol{\Gamma}\mathbf{X}_{i}' = \boldsymbol{\Pi}_{i}$$

The covariance matrix for the panel-specific coefficient estimator β_i can then be written

$$\mathbf{V}_i + \boldsymbol{\varGamma} = (\mathbf{X}_i'\mathbf{X}_i)^{-1}\mathbf{X}_i'\boldsymbol{\varPi}_i\mathbf{X}_i(\mathbf{X}_i'\mathbf{X}_i)^{-1} \quad \text{where} \quad \mathbf{V}_i = \sigma_i^2(\mathbf{X}_i'\mathbf{X})^{-1}$$

We may then compute a weighted average of the panel-specific coefficient estimates as

$$\widehat{\boldsymbol{\beta}} = \sum_{i=1}^{m} \mathbf{W}_{i} \boldsymbol{\beta}_{i}$$
 where $\mathbf{W}_{i} = \left\{ \sum_{i=1}^{m} [\boldsymbol{\Gamma} + \mathbf{V}_{i}]^{-1} \right\}^{-1} [\boldsymbol{\Gamma} + \mathbf{V}_{i}]^{-1}$

such that the resulting GLS estimator is a matrix-weighted average of the panel-specific (OLS) estimators.

In order to calculate the above estimator $\hat{\beta}$ for the unknown Γ and V_i parameters, we may use the two-step approach suggested by Swamy (1970, 1971):

$$\begin{split} \widehat{\boldsymbol{\beta}}_{i} &= \text{OLS panel} - \text{specific estimator} \\ \widehat{\mathbf{V}}_{i} &= \frac{\widehat{\boldsymbol{\epsilon}}_{i} \,' \widehat{\boldsymbol{\epsilon}}_{i}}{n_{i} - k} \\ \bar{\boldsymbol{\beta}} &= \frac{1}{m} \sum_{i=1}^{m} \widehat{\boldsymbol{\beta}}_{i} \\ \widehat{\boldsymbol{\Gamma}} &= \frac{1}{m-1} \left(\sum_{i=1}^{m} \widehat{\boldsymbol{\beta}}_{i} \widehat{\boldsymbol{\beta}}_{i} \,' - m \bar{\boldsymbol{\beta}} \bar{\boldsymbol{\beta}} \right) - \frac{1}{m} \sum_{i=1}^{m} \widehat{\mathbf{V}}_{i} \end{split}$$

The two-step procedure begins with the usual OLS estimate of β . With an estimate of β , we may proceed by (1) obtaining estimates of \hat{V}_i and $\hat{\Gamma}$ (and, thus, \widehat{W}_i) and then (2) obtain an updated estimate of β .

Swamy (1970, 1971) further points out that the matrix $\hat{\Gamma}$ may not be positive definite and that since the second term is of order 1/(mT), it is negligible in large samples. A simple and asymptotically expedient solution is to simply drop this second term and instead use

$$\widehat{\boldsymbol{\varGamma}} = rac{1}{m-1} \left(\sum_{i=1}^m \widehat{oldsymbol{eta}}_i \widehat{oldsymbol{eta}}_i' - m \bar{oldsymbol{eta}} \widehat{oldsymbol{eta}}
ight)$$

As a test of the model, we may look at the difference between the OLS estimate of β ignoring the panel structure of the data and the matrix-weighted average of the panel-specific OLS estimators. The test statistic suggested by Swamy (1970, 1971) is given by

$$\chi^2_{k(m-1)} = \sum_{i=1}^m [\widehat{\boldsymbol{\beta}}_i - \bar{\boldsymbol{\beta}}^*]' \widehat{\mathbf{V}}_i^{-1} [\widehat{\boldsymbol{\beta}}_i - \bar{\boldsymbol{\beta}}^*] \quad \text{where} \quad \bar{\boldsymbol{\beta}}^* = \left[\sum_{i=1}^m \widehat{\mathbf{V}}_i^{-1}\right]^{-1} \sum_{i=1}^m \widehat{\mathbf{V}}_i^{-1} \widehat{\boldsymbol{\beta}}_i$$

Johnston (1984) has shown that the test is algebraically equivalent to testing

$$H_0: \boldsymbol{\beta}_1 = \boldsymbol{\beta}_2 = \cdots = \boldsymbol{\beta}_n$$

in the generalized (groupwise heteroscedastic) xtgls model where V is block diagonal with *i*th diagonal element Π_i .

xtrchh is an implementation of the random coefficients model (including the test of parameter constancy) with syntax given by

xtrchh depvar [varlist] [if exp] [in range] $[, i(varname_i) t(varname_t) <u>level(#)</u>]$

Options

- i(*varname*) specifies the variable that contains the unit to which the observation belongs. You can specify the i() option the first time you estimate or use the iis command to set i() beforehand. After that, Stata will remember the variable's identity. See [R] **xt** in the Stata 5.0 Reference Manual.
- t(varname) specifies the variable that contains the time at which the observation was made. You can specify the t() option the first time you estimate or use the tis command to set t() beforehand. After that, Stata will remember the variable's identity.
- level (#) specifies the confidence level, in percent, for confidence intervals. The default is level (95) or as set by set level.

Example

Greene (1993, 445) reprints data in a classic study of investment demand by Grunfeld and Griliches (1960). In the Stata manual, we use this data to illustrate many of the possible models that may be estimated with the xtgls command. While the models included in the xtgls command offer considerable flexibility, they all assume that there is no parameter variation across firms (the cross-sectional units).

In order to take a first look at the assumption of parameter constancy, we might reshape our data so that we may estimate a simultaneous equation model using sureg. Since there are only 5 panels here, it is not too difficult.

```
. reshape groups company 1-5
. reshape vars invest market stock time
. reshape cons c
. reshape wide
. eq c1 : invest1 market1 stock1
. eq c2 : invest2 market2 stock2
. eq c3 : invest3 market3 stock3
. eq c4 : invest4 market4 stock4
. eq c5 : invest5 market5 stock5
```

. sureg c1	c2 c3 c4 c	5				_	_	
Equation	Obs Pa	rms	RMSE	"R-sc	1"	F	Р	
c1	20	3	91.78166	0.921	14	111.0618	0.0000	
c2	20	3	13.27856	0.913	36	88.06545	0.0000	
c3	20	3	27.88272	0.705	53	19.92612	0.0000	
c4	20	3	10.21312	0.744	14	25.13699	0.0000	
c5	20	3	102.3053	0.440)3	6.361697	0.0027	
	Coef.	St	d. Err.	t	P>	t	[95% Conf.	Interval]
c1								
market1	.120493	.0	234601	5.136	0.0	00	.0738481	.1671379
stock1	.3827462	.0	355419	10.769	0.0	00	.3120793	.453413
_cons	-162.3641	97	.03215	-1.673	0.0	98	-355.29	30.56183
c2								
market2	.0695456	.0	183279	3.795	0.0	00	.0331048	.1059864
stock2	.3085445		028053	10.999	0.0	00	.2527677	.3643213
_cons	.5043113	12	.48742	0.040	0.9	68	-24.32402	25.33264
c3								
market3	.0372914	.0	133012	2.804	0.0	06	.010845	.0637379
stock3	.130783	.0	239163	5.468	0.0	00	.083231	.178335
_cons	-22.43892	27	.67879	-0.811	0.4	20	-77.47177	32.59393
c4								
market4	.0570091	.0	123241	4.626	0.0	00	.0325055	.0815127
stock4	.0415065	.0	446894	0.929	0.3	56	047348	.130361
_cons	1.088878	6.	788627	0.160	0.8	73	-12.40873	14.58649
c5								
market5	.1014782	.0	594213	1.708	0.0	91	0166671	.2196236
stock5	.3999914	.1	386127	2.886	0.0	05	.1243922	.6755905
_cons	85.42324	12	1.3481	0.704	0.4	83	-155.8493	326.6957

Here, we instead estimate a random coefficients model

```
chi(12) = 603.994
P(X > chi) = 0.0000
```

Just as subjective examination of the results of our simultaneous equation model do not support the assumption of parameter constancy, the test included with the random coefficient model also indicates that the assumption of parameter constancy is not valid for this data. With large panel datasets obviously we would not want to take the time to look at a simultaneous equations model (aside from the fact that our doing so was very subjective).

References

Greene, W. H. 1993. Econometric Analysis. 2d ed. New York: Macmillan.

Grunfeld, Y. and Z. Griliches. 1960. Is aggregation necessarily bad? Review of Economics and Statistics 42: 1-13.

Hildreth, C. and C. Houck. 1968. Some estimators for a linear model with random coefficients, Journal of the American Statistical Association 63: 584–595.

Johnston, J. 1984. Econometric Methods. New York: McGraw-Hill.

Swamy, P. 1970. Efficient inference in a random coefficient model. Econometrica 38: 311-328.

-----. 1971. Statistical Inference in Random Coefficient Regression Models. New York: Springer-Verlag.

snp12 Stratified test for trend across ordered groups

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429, P.Sasieni@icrf.icnet.uk

The command nptrend was introduced to Stata following the STB article by Stepniewska and Altman (1992). The command was revised by Sasieni, Stepniewska, and Altman (1996) and an immediate version, nptri, was provided for use with ordered categorical tables. This revision permits calculation of the stratified version of the test.

In many situations, one may wish to stratify the sample on the basis of the values of one or more nuisance variables (such as age and sex in epidemiology). The test is then performed assuming homogeneity of association between the outcome variable and the ordered groups within strata. The new version of nptrend called npt_s, has the ability to perform stratified tests.

The stratified test statistic is calculated by summing the observed value, the expected value, and the variance of the weighted sum of ranks from each strata. npt_s uses the same score for a given value of the grouping (by) variable in all strata.

The output of nptrend has been modified so that even when the strata option is not used, the observed and expected value of the weighted sum of ranks together with the its variance is displayed. Use of nodetail will suppress all but the value of the test statistic and its *p*-value.

The syntax of npt_s is

```
npt_s varname [if exp] [in range], by(groupvar) [ nodetail strata(varlist) ]
```

Examples

These data come from a study of the effects of reduction in smoking on cervical lesions (Szarewski et al. 1996).

```
use stb2
(Smoking and cervical lesions)
. describe
Contains data from stb2.dta
                                               Smoking and cervical lesions
  Obs:
          82 (max=
                   2021)
 Vars:
           4 (max =
                     999)
                                               27 Aug 1996 14:42
           4 (max= 2000)
Width:
                         %8.0g
  1. quit
                  byte
                                      quit2
                                               Smoking change
  2. sc3
                  byte
                         %9.0g
                                      sc3
                                               Social Class
                         %9.0g
                  byte
                                               Initial No./day
  3. init sm
                                      init2
  4. r_area
                  byte
                         %9.0g
                                      r area
                                               Area: rel. to initial
Sorted by: r_area
```

The main interest is in the association between the extent to which women gave up smoking and the change in the area of their lesions over the same 6 month period.

. tab quit r	_area, row					
Smoking change	Area: rel. <.25	to initial .255	.58	.8-1.2	>1.2	Total
unconf	0	2	1	4	0	7
	0.00	28.57	14.29	57.14	0.00	100.00
>75	0	0	1	12	6	19
	0.00	0.00	5.26	63.16	31.58	100.00
(.5,75]	0	1	2	7	3	13
	0.00	7.69	15.38	53.85	23.08	100.00
(.25,.5]	3	0	6	5	1	15
	20.00	0.00	40.00	33.33	6.67	100.00
(0,.25]	1	3	6	1	0	11
	9.09	27.27	54.55	9.09	0.00	100.00
4 quit 	7 41.18	3 17.65	3 17.65	4 23.53	0 0.00	17 100.00
	11	9	19	33	10	82
Total	13.41	10.98	23.17	40.24	12.20	100.00

•	npt_s r_area	if quit	~=0, by(quit	.)	
	quit	score	obs	sum of ranks	5
	1.0	1.0	19	1062.5	
	2.0	2.0	13	638.5	
	3.0	3.0	15	508.5	
	4.0	4.0	11	267.0	
	5.0	5.0	17	373.5	
			Obs	Exp	Var
			6800.5	8322.0	79572
	z = -5.39 P> z = 0.000	9, chi-)0	squared(1) =	29.09	

It is likely that women of social classes 1 and 2 will have been more successful in giving up smoking.

. tab quit sc3 if quit~=0, row					
Smoking	Social Clas	5			
change	1	2	3-5	Total	
>75	6	4	9	19	
	31.58	21.05	47.37	100.00	
(.5,75]	3	5	5	13	
	23.08	38.46	38.46	100.00	
(.25,.5]	0	13	2	15	
	0.00	86.67	13.33	100.00	
(0,.25]	5	5	1	11	
	45.45	45.45	9.09	100.00	
quit	6	9	2	17	
	35.29	52.94	11.76	100.00	
Total	20	36	19	75	
	26.67	48.00	25.33	100.00	
. npt_s sc3 if quit~=0, by(quit)					
quit	score	obs	sum of ran	nks	
1.0	1.0	19	811.0		
2.0	2.0	13	554.0		
3.0	3.0	15	632.5		
4.0	4.0	11	311.0		
5.0	5.0	17	541.5		
		Obs	Exp	Var	
	7	768.0	8322.0	79572	
z = -1	.96, chi-sq	uared(1) =	3.86		
P > z = 0.0495					

It is important to make sure that the observed association between smoking reduction and change in lesion size is not confounded by the amount that the women smoked at the beginning of the study.

. tab quit i	.nit if quit~=	0, row		
Smoking Initial No./day				
change	1-10	11-20	21+	Total
>75	4	10	5	19
	21.05	52.63	26.32	100.00
(.5,75]	0	5	8	13
	0.00	38.46	61.54	100.00
(.25,.5]	3	10	2	15
	20.00	66.67	13.33	100.00
(0,.25]	7	4	0	11
	63.64	36.36	0.00	100.00
 quit	8	8	1	17
-	47.06	47.06	5.88	100.00

---+-22 37 16 75 Total 29.33 49.33 21.33 100.00 - I . npt_s init if quit~=0, by(quit) quit score obs sum of ranks 793.5 1.0 19 1.0 2.0 2.0 13 745.0 15 3.0 579.5 3.0 4.0 4.0 11 244.5 5.0 5.0 17 487.5 Obs Exp Var 7437.5 8322.0 79572 z = -3.14, chi-squared(1) = 9.83 P > |z| = 0.0017. npt_s r_area if quit~=0, by(quit) strata(sc3) sc3 Obs Exp Var 504.5 651.0 1953 1 2 1964.5 2183.0 6573.6665 3 311.0 390.0 1043.3334 ____ ____ _____ ____ 2780.0 3224.0 9569.9999 Total z = -4.54, chi-squared(1) = 20.60 P > |z| = 0.0000. npt_s r_area if quit~=0, by(quit) strata(sc3 init) sc3 init_sm Obs Exp Var 195.0 316 1 10 234.0 76.0 6.0 1 20 53.5 100 1 30 6.0 0 41.666668 189.5 190.0 2 10 2 20 601.5 682.5 1181.25 2 30 54.0 13.333333 60.0 3 10 5.0 6.0 1 3 20 100.0 161.33333 121.0 3 30 41.0 52.0 60 ____ ____ _ _ _ _ _ _ _____ 1245.5 1427.5 1874.5833 Total z = -4.20, chi-squared(1) = 17.67 P > |z| = 0.0000

The second example uses Stata's automobile dataset.

. use /usr/local/stata/auto (1978 Automobile Data)

Fuel consumption increases with repair record.

```
. npt_s mpg, by(rep78)
    rep78
                                 sum of ranks
             score
                         obs
                        2
      1.0
              1.0
                                   72.5
      2.0
               2.0
                          8
                                    220.5
      3.0
               3.0
                         30
                                   905.0
                                   688.5
      4.0
               4.0
                         18
      5.0
               5.0
                                    528.5
                         11
                       Obs
                                  Exp
                                             Var
                     8625.0
                                          26821.666
                                8225.0
                chi-squared(1) = 5.97
    z = 2.44,
 P > |z| = 0.0146
```

This association is virtually all explained by the fact that foreign cars had better repair records and more efficient fuel consumption.

```
. npt_s mpg if foreign==0, by(rep78)
    rep78
               score
                           obs
                                     sum of ranks
      1.0
                 1.0
                             2
                                         60.0
      2.0
                                        188.5
                 2.0
                             8
      3.0
                 3.0
                            27
                                        648.5
      4.0
                 4.0
                             9
                                        184.0
      5.0
                 5.0
                             2
                                         95.0
                         Obs
                                      Exp
                                                   Var
                       3593.5
                                    3552.5
                                              6463.9165
                  chi-squared(1) =
    z = 0.51,
                                      0.26
 P > |z| = 0.6101
. npt_s mpg if foreign==1, by(rep78)
    rep78
               score
                           obs
                                     sum of ranks
      3.0
                 3.0
                             3
                                         28.5
      4.0
                             9
                                        102.0
                 4.0
      5.0
                 5.0
                             9
                                        100.5
                         Obs
                                                   Var
                                      Exp
                        996.0
                                     990.0
                                                     396
    z = 0.30,
                  chi-squared(1) =
                                      0.09
 P > |z| = 0.7630
. npt_s mpg, by(rep78) strata(foreign)
       foreign
                         Obs
                                      Exp
                                                   Var
          0
                       3593.5
                                    3552.5
                                              6463.9165
                                     990.0
                        996.0
                                                     396
          1
         ____
                        ____
                                    _ _ _ _ _ _
                                                  ____
                                    4542.5
                                              6859.9165
        Total
                       4589.5
                                      0.32
       = 0.57,
                  chi-squared(1) =
    z
 P > |z| = 0.5704
```

This can be illustrated using the dotplot graphically as follows.

```
. gen for = foreign
. dotplot mpg, by(rep78) s([for]) center
                                      41
                                                                                                         1
                                                                                                        1 1
0
                              Mileage (mpg)
                                                                                           10
                                                                                           1 1 1
1
1 1
0
0 1
                                                                  0 0
                                                                                           0 0
                                                                                                        11
11
                                                                                           0
0
0 0
                                                                               0 0
                                                                              0 0
                                      12
                                                                     3
Repair Record 1978
                                                                                                        5
                                                       1
                                                                  2
                                                                                            4
                                                                       Figure 1
```

References

Stepniewska, K. A. and D. G. Altman. 1992. snp4: Non-parametric test for trend across ordered groups. *Stata Technical Bulletin* 9: 21–22. Sasieni, P. D., K. A. Stepniewska, and D. G. Altman. 1996. snp11: Test for trend across ordered groups revisited. *Stata Technical Bulletin* 32: 27–29.

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:					
an	announcements	ip	instruction on programming		
cc	communications & letters	OS	operating system, hardware, &		
dm	data management		interprogram communication		
dt	datasets	qs	questions and suggestions		
gr	graphics	tt	teaching		
in	instruction	ZZ	not elsewhere classified		
Statis	stical Categories:				
sbe	biostatistics & epidemiology	ssa	survival analysis		
sed	exploratory data analysis	ssi	simulation & random numbers		
sg	general statistics	SSS	social science & psychometrics		
smv	multivariate analysis	sts	time-series, econometrics		
snp	nonparametric methods	svy	survey sample		
sqc	quality control	sxd	experimental design		
sqv	analysis of qualitative variables	SZZ	not elsewhere classified		
srd	robust methods & statistical diagnostics				

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company:	Applied Statistics &	Company:	Smit Consult
	Systems Consultants	Address:	Scheidingstraat 1
Address:	P.O. Box 1169		Postbox 220
	Nazerath-Ellit 17100, Israel		5150 AE Drunen
Phone:	+972 6554254		Netherlands
Fax:	+972 6554254	Phone:	+31 416-378 125
Email:	sasconsl@actcom.co.il	Fax:	+31 416-378 385
Countries served:	Israel	Email:	j.a.c.m.smit@smitcon.nl
		Countries served:	Netherlands
Company:	Dittrich & Partner Consulting	Company:	Timberlake Consultants
Address:	Prinzenstrasse 2	Address:	47 Hartfield Crescent
	D-42697 Solingen		West Wickham
	Germany		Kent BR4 9DW U.K.
Phone:	+49 212-3390 99	Phone:	+44 181 462 0495
Fax:	+49 212-3390 90	Fax:	+44 181 462 0493
Email:	available soon	Email:	100412.2603@compuserve.com
Countries served:	Austria, Germany, Italy	Countries served:	Ireland, U.K.
Company:	Metrika Consulting	Company:	Timberlake Consultants
Address:	Roslagsgatan 15		Satellite Office
	113 55 Stockholm	Address:	Praceta do Comércio,
	Sweden		N°13-9° Dto. Quinta Grande
Phone:	+46-708-163128		2720 Alfragide Portugal
Fax:	+46-8-6122383	Phone:	+351 (01) 4719337
Email:	hedstrom@metrika.se	Telemóvel:	0931 62 7255
Countries served:	Baltic States, Denmark, Finland,	Email:	100412.2603@compuserve.com
	Iceland, Norway, Sweden	Countries served:	Portugal
Company:	Ritme Informatique		
Address:	34 boulevard Haussmann		
	75009 Paris		
	France		
Phone:	+33 1 42 46 00 42		
Fax:	+33 1 42 46 00 33		
Email:	ritme.inf@applelink.apple.com		
Countries served:	Belgium, France,		
	Luxembourg, Switzerland		