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an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an23 CPS labor extracts available

Daniel Feenberg, National Bureau of Economic Research, feenberg@nber.harvard.edu.

The National Bureau of Economic Research has recently prepared a CD-ROM diskette including a series of extracts covering
13 years (1979 through 1991) from the Current Population Survey Outgoing Rotation Group Annual Merge Files. These are
presented as Stata binary files. The annual files include interviews for everyone in a CPS outgoing rotation group during a single
calendar year, or about 300,000 observations per year. To keep file sizes within reason for Stata users, each year of data is
divided into three files. Only a few minutes are required to load each file, however. It is possible to leave a do-file running that
will process all 13 years of data in a few hours, without operator intervention!

The extracts contain information for respondents who were 16 or older. The 50 or so variables selected for the extracts
relate to employment: hours worked, earnings, industry, occupation, education, unionization. The extracts also contain many
background variables: age, sex, race, ethnicity, geographic location, etc. Every effort has been made to keep the variables
consistent over all the years. Users should note, however, that unionization variables are available for 1983 and after, student
enrollment status is available for 1984 and after, metropolitan/central city variables undergo several changes in 1985 (e.g., SMSA

status becomes metropolitan status) and unedited variables may contain spurious data for not-in-universe observations.

Also included on the CD-ROM is the complete 1991 Merged Outgoing Rotation Group file, as supplied by the BLS, but
converted to ASCII and with DOS end-of-line characters after each record. This file is 292,590,662 bytes.

To read the extracts, a user will need a computer capable of reading ISO 9660 disks (any drive for IBM-PC, Mac or Unix
workstation should be fine), 16 megabytes of memory and, of course, a 32-bit Stata. The diskette itself is available for $100
from:

Publications Department
National Bureau of Economic Research
1050 Mass Ave
Cambridge, MA 02138
Tel: 617-868-3900
Fax: 617-868-2754

Questions should be directed to feenberg@nber.harvard.edu. The 1991 extract is available for anonymous ftp from that address.
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Variable list for 1991 extract:

Month in sample Age
State Marital status
Central city status Race
MSA/PMSA FIPS code Major activity last week
PMSA ranking How many hours last week?
CMSA/MSA ranking Reason <= 35 hours last week
MSA/CMSA size Why absent from work last week?
CMSA code 3-digit industry code (1980)
Metropolitan status code 3-digit occupation code (1980)
Individual central city code Class of worker 1
Household ID Usual hours
Sex Paid by the hour
Veteran Union member
Highest grade attended Ethnicity
Whether completed highest grade Labor force status recode
What was doing most of last week Full-time or part-time status
How many hours last all jobs Detailed industry code
Usually works >= 35 hrs at this job Detailed occupation code
Why not at least 35 hours last week (Earnings) eligibility flag
Class of worker Class of worker 2
Usual hours Earnings per hour
Paid by the hour Earnings per week
Earnings per hour Final weight
Usual earnings per week Earnings weight for all races
Union member Usual hours (I25a) allocation flag
Covered by a union contract Paid by hour (I25b) allocation flag
Enrolled student full/part time Earnings/hr (I25c) allocation flag
Relationship to reference person Usl Earn/hr (I25d) allocation flag

crc17 Bug fixes

For the most up-to-date list of new features and bug fixes, type ‘help whatsnew’ after installing the CRC updates. Also
remember, CRC updates are cumulative—if you have not installed past updates, it does not matter. The most recent updates
include all past updates.

Fixed as of STB-7, but not reported due to publication deadlines, were the following:

1. (cc, cs, mcc in [5s] epitab.) Reported results were (obviously) incorrect when frequency weights were specified, some of
the frequencies were 0, and the sum of the frequencies was 0 for one or more cells.

2. (kwallis in [5s] kwallis.) The if exp was ignored.

Fixed this time (or things to note) are

3. (qreg in [5s] qreg.) Despite the syntax diagram, qreg does not allow the noconstant option.

4. (codebook in crc13 of STB-8.) A variable containing only zeros and missing values would cause codebook to loop endlessly
(until Break was pressed).

crc18 Important difference between regular and Intercooled Stata

codebook (crc13 in STB-8) emphasizes an important difference between the regular and Intercooled (which includes Unix)
versions of Stata. The maximum number of variables that can be specified, either explicitly or implicitly, with codebook (and
all other ado-commands) is 28 when running the regular version of Stata and 255 when running the Intercooled version. These
maximums apply only to commands written as ado-files, not to Stata’s built-in commands, and actually, both maximums are
probably larger than 28 and 255. The difference between the two versions, however, is always present.

Let us explain: What is true is that the maximum length of a macro is 255 characters in regular Stata and 2,296 characters
in Intercooled Stata. Among other things, ado-files use macros to store the names of the variables you specify or imply. The
names are unabbreviated and a single blank is inserted between the names. The maximum length of a variable name in Stata
is 8 characters, meaning that if all variable names were 8-characters long, a single macro could hold b255=9c = 28 names in
regular Stata and b2296=9c = 255 names in Intercooled. (bxc refers to the largest integer k � x and is called the floor of x.)
It is unlikely that all variables are exactly 8-characters long. If variable names averaged, say, 4 characters, a macro could hold
b255=5c = 51 in regular Stata and b2296=5c = 459 in Intercooled.
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Now consider what happens when you type ‘codebook’ with no arguments, which is the same, as far as Stata is concerned,
as typing ‘codebook’ followed by every variable in the data. If you are using the regular version of Stata, all those variables
names, with the intervening blank, must fit into a single macro—which is to say, 255 characters. If they do not, you will get
a too-many-variables error. For Intercooled Stata users, the rule is less restrictive but still present—the variable names must fit
into 2,296 characters.

In either case, if you get the too-many-variables error, you can avoid the problem by explicitly specifying a subset of the
variables and issuing the command multiple times. In the case of codebook, however, if you do run into this difficulty, you must
also not specify the mv option. The mv option searches the data for patterns of missing values and, in the process, must make a
list of all the variable names it is to search over. Thus, typing ‘codebook myvar, mv’ can also result in the too-many-variables
error.

Regular’s Stata 255-character maximum is arguably too small, but there is nothing we can do about it; regular Stata is
designed to run on small computers with little memory. For Intercooled Stata users, we admit that even the 2,296-character
maximum is unfortunately small; it will be increased in the next release.

crc19 Nonlinear regression command

Royston’s nonlinear regression command nl (Royston 1992a, b) is now an official part of the CRC updates. This means
(1) the command and help files will automatically be installed when you install these updates or any future updates; (2) nl will
be a part of the next release of Stata with documentation printed in the Reference Manual; and (3) nl is now supported by us.
In the meantime, for printed documentation on this command, see Royston (1992a).

References
Royston, P. 1992a. sg1.2: Nonlinear regression command. Stata Technical Bulletin 7: 11–18.

——. 1992b. sg1.3: Nonlinear regression command: bug fix. Stata Technical Bulletin 8: 12.

dm10 Infiling data: Automatic dictionary creation

William Gould, CRC, FAX 310-393-7551

Reading raw data into Stata (or any statistical package) is probably one of the most difficult tasks facing a researcher. On
the STB-9 media, I provide a utility to examine formatted, raw data and automatically create a Stata .dct dictionary for reading
it and, moreover, for reading it efficiently in that variables are given appropriate storage types.

This utility is in the form of an .exe file for DOS users but, for all users, source code—including a makefile—is provided.
Unix users can easily create their own executable by typing make. Details of installation are explained at the end of this insert.

creatdct

creatdct is a command you issue from your operating system, not Stata. Typing creatdct without arguments presents
a syntax diagram:

C:\XMPL> creatdct

creatdct: usage: creatdct [/b /d /t] infile > outfile

Reads data with variable names on top and writes to standard out

a Stata .dct dictionary that can read the data.

Options:

/b treat blank lines as significant;

/d write only the dictionary, referring to rather than including

the raw data in the output;

/t infile contains data only; no titles.

Limits:

Maximum width of input file: 1000

Maximum number of variables: 254

References:

STB-9: dm10 (which includes source code)

(Under Unix, options are preceded by a ‘-’ rather than ‘/’ and, if run from Unix, the syntax diagram would reflect that fact.)

To understand what creatdct does, consider the following (small) data set:
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---------------------------------- mydta.raw ----------------------------------

Make and Model Price MPG Weight Repair

AMC Concord 4099 2.2e+1 2930 average

"BMW 320" 9735 25 2650 good

Honda Civic 4499 28 1760 exc

Volvo 260 11995 17 3170 exc

--------------------------------- end of file ---------------------------------

In this data, each line represents an observation and a title line appears above the data. The file could also contain blank lines
(although this one does not). To create a dictionary for this data, type

C:\XMPL> creatdct mydta.raw > mydta.dct

The new file mydta.dct contains

---------------------------------- mydta.dct ----------------------------------

dictionary {

*

* This file was created by creatdct from mydta.raw.

* Type "infile using <this file>" to read the data.

*

_column(1) str11 make_an %11s "Make and Model"

_column(25) int price %5f "Price"

_column(33) byte mpg %6f "MPG"

_column(41) int weight %4f "Weight"

_column(49) str7 repair %7s "Repair"

}

AMC Concord 4099 2.2e+1 2930 average

"BMW 320" 9735 25 2650 good

Honda Civic 4499 28 1760 exc

Volvo 260 11995 17 3170 exc

--------------------------------- end of file ---------------------------------

Thus, the entire Stata session to read the data might be:

. !creatdct mydta.raw > mydta.dct

. infile using mydta.dct

And, to prove that the data read correctly:

. describe

Contains data

Obs: 4 (max= 5119)

Vars: 5 (max= 99)

Width: 23 (max= 200)

1. make_an str11 %11s Make and Model

2. price int %8.0g Price

3. mpg byte %8.0g MPG

4. weight int %8.0g Weight

5. repair str7 %9s Repair

Sorted by:

. list

make_an price mpg weight repair

1. AMC Concord 4099 22 2930 average

2. BMW 320 9735 25 2650 good

3. Honda Civic 4499 28 1760 exc

4. Volvo 260 11995 17 3170 exc

Variations

By default, creatdct creates a new file containing the dictionary and the data, but you can prevent creatdct from making
a second copy of the data by specifying the /d (-d, Unix) option:

C:\XMPL> creatdct /d mydta.raw > dctonly.dct
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The new file dctonly.dct contains

--------------------------------- dctonly.dct ---------------------------------

dictionary using mydta.raw {

*

* This file was created by creatdct from mydta.raw.

* Type "infile using <this file> in 2/l" to read the data.

*

_column(1) str11 make_an %11s "Make and Model"

_column(25) int price %5f "Price"

_column(33) byte mpg %6f "MPG"

_column(41) int weight %4f "Weight"

_column(49) str7 repair %7s "Repair"

}

--------------------------------- end of file ---------------------------------

As the comment at the top of the file instructs, typing ‘infile dctonly in 2/l’ will read the data set. The /d option is
most useful when dealing with large amounts of data. (Do not assume that you always type the modifier “in 2/l”; creatdct
modifies the recommended command according to the actual line containing the first observation of the data. From inside Stata,
you can use the type command to display the dictionary on your screen and so read the recommendation.)

Basic logic

The above two examples illustrate how creatdct is typically used. In particular, creatdct assumes:

1. Blank lines can occur any place in the file; their presence is irrelevant.

2. The first non-blank line is a title line; it is from that line that variable names and labels are to be derived.

3. After the title lines, remaining nonblank lines contain the data. Each line contains all the data for a single observation.

Assumptions 1 and 2 can be relaxed by specifying options, but assumption 3 must be true. The /b (-b, Unix) option relaxes
the first assumption, but there is never any reason to specify it. The /t (-t, Unix) option relaxes the second assumption.

Data without titles

Small ASCII data sets often include a title line, but large data sets generally do not. Large data sets, however, at least tend
to be formatted. creatdct can be used to automatically construct a dictionary for such data sets assuming (1) each observation
occupies one line and (2) the values recorded in the data do not “run together”—there is white space separating the columns of
the data. Consider mydta.raw without the title line:

---------------------------------- mydta2.raw ---------------------------------

AMC Concord 4099 2.2e+1 2930 average

"BMW 320" 9735 25 2650 good

Honda Civic 4499 28 1760 exc

Volvo 260 11995 17 3170 exc

--------------------------------- end of file ---------------------------------

Typing ‘creatdct /t mydta2.raw > mydta2.dct’—the /t indicates that the data does not include a title line—results in the
file:

---------------------------------- mydta2.dct ---------------------------------

dictionary {

*

* This file was created by creatdct from mydta2.raw.

* Type "infile using <this file>" to read the data.

*

_column(1) str11 v1 %11s

_column(25) int v2 %5f

_column(33) byte v3 %6f

_column(41) int v4 %4f

_column(49) str7 v5 %7s

}

AMC Concord 4099 2.2e+1 2930 average

"BMW 320" 9735 25 2650 good

Honda Civic 4499 28 1760 exc

Volvo 260 11995 17 3170 exc

--------------------------------- end of file ---------------------------------

When there is no title line, creatdct uses names like v1, v2, etc. The /d option can be combined with the /t option; typing
‘creatdct /t /d mydta2.raw > mydta2.dct’ results in a file that references, rather than contains, the underlying data. This
can be especially useful when the data is large because then you can edit the dictionary and change the names to more reasonable
ones.
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Data with “errors”

creatdct tries to deal with problems that may crop up in real applications. Consider:

---------------------------------- mydta3.raw ---------------------------------

Make and Model Price MPG Weight Repair Repair

AMC Concord 4099 2.2e+1 2930 average fair

BMW 320 9735 25 2650 good good

Honda Civic 4499 28 1760 exc good

Volvo 260 11995 17 3170 exc average

--------------------------------- end of file ---------------------------------

In this data, the title Repair occurs twice (the first time for repair record in 1978 and the second for 1977, although there is no
way you could know that from the data). Typing ‘creatdct /d mydta3.raw > mydta3.dct’ results in

---------------------------------- mydta3.dct ---------------------------------

dictionary using mydta3.raw {

*

* This file was created by creatdct from mydta3.raw.

* Type "infile using <this file> in 2/l" to read the data.

*

_column(1) str11 make_an %11s "Make and Model"

_column(25) int price %5f "Price"

_column(33) byte mpg %6f "MPG"

_column(41) int weight %4f "Weight"

_column(49) str7 v5 %7s "Repair"

_column(60) str7 repair %7s "Repair"

}

--------------------------------- end of file ---------------------------------

creatdct changed one of the duplicate names to v5. creatdct would also change variable names to names like v5 if the
column header was not a legal Stata variable name—for instance, if the column header were “78 repair”.

One of the hardest problems for creatdct is to match the column header to the data—much of its code is dedicated to that
problem and still, it is not always successful. creatdct, however, knows when it has problems and tries to behave reasonably
if not as elegantly. Consider the raw data:

---------------------------------- mydta4.raw ---------------------------------

Make and Model X Price MPG Weight Repair Repair

AMC Concord 4099 2.2e+1 2930 average fair

BMW 320 9735 25 2650 good good

Honda Civic 4499 28 1760 exc good

Volvo 260 11995 17 3170 exc average

--------------------------------- end of file ---------------------------------

Notice the extra “X” in the title line. Is it part of “Make and Model”; is it part of “Price”; or is it all by itself, representing a
variable for which there is no data? Typing ‘creatdct /d mydta4.raw > mydta4.dct’ creates

---------------------------------- mydta4.raw ---------------------------------

dictionary using mydta4.raw {

*

* This file was created by creatdct from mydta4.raw.

* Type "infile using <this file> in 2/l" to read the data.

*

* Note from creatdct: I had trouble lining up the titles against the data.

* Due to blanks in the titles, it appeared that there were more columns than

* columns in the data. I finally gave up and just used the parts of the

* headers that were directly above data. Sorry.

*

_column(1) str11 make_an %11s "Make and Mo"

_column(25) int price %5f "Price"

_column(33) byte mpg %6f "MPG"

_column(41) int weig %4f "Weig"

_column(49) str7 v5 %7s "Repair"

_column(60) str7 repair %7s "Repair"

'}

--------------------------------- end of file ---------------------------------

All of creatdct’s complicated logic for extending the titles around the data columns failed it, so it resorted to a dumber
rule—taking just the part of the titles that lie directly above the data. Notice that the weight variable is now simply called weig.
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Installing creatdct

For DOS users, simply copy creatdct.exe to a directory that is in your DOS path such as c:\dos or c:\stata. Although
c:\stata seems more appealing, c:\dos is probably a better idea. If you put it in c:\stata, the next time we update Stata,
you will have to reinstall creatdct.exe.

For Unix users, note that the C source code is provided. Copy the source to any temporary directory and, with the temporary
directory as your current directory, type ‘make creatdct’. This will produce the executable creatdct which you can copy to
some place along your path.

Actually, the C source code is provided for all users, although it is setup to compile under Unix, which means only that
the option switch character has been set to ‘-’ rather than ‘/’. DOS users can edit the file machdep.h and reset the manifest
ALTSWITCHAR—the change is obvious once you are looking at the file. The limits of a maximum file width of 1,000 characters
and a maximum number of variables of 254 are also set in machdep.h. You can change these limits—much larger limits are
no problem under Unix. DOS users are warned, however, that the size of buffers is determined by these limits and that buffers
are allocated on the stack.

Request for comments

If you have a data set on which creatdct fails or, while in the spirit of the files processed by creatdct, does not exactly
match the rules, please contact me. Our goal is to further refine creatdct through the STB and then, once it is well debugged,
to include its logic in the Stata infile command, offering users a way of reading formatted data without the bothersome step
of creating a dictionary.

Users interested in further automating the infile process might consider typing in the following ado-file and saving it in
their ado directory (c:\ado under DOS or ~/ado under Unix):

---------------------------------- autoin.ado ---------------------------------

*! version 1.0.0

program define autoin /* input filename */

if _N~=0 { error 18 }

drop _all

confirm file `1'

if "`2'"~="" { error 198 }

!creatdct `1' > autoin.dct

infile using autoin.dct

erase autoin.dct

end

--------------------------------- end of file ---------------------------------

Typing ‘autoin mydta.raw’, for instance, would then read the data in the first example.

I do not include this ado-file among the creatdct materials because I cannot believe that creatdct is sufficiently robust
that you should use it without at least looking at the dictionary it produces first, but you are welcome to use the autoin command
if you wish. At some future date, creatdct should be sufficiently robust that a more elegant version of autoin will be justified.

gr11 Using CorelDraw as a Stata graphics editor

Marc Jacobs, Dept. of Sociology, Univ. of Utrecht, The Netherlands, FAX (011)-31-30 534405

After some work I have discovered a way to import Stata graphics into CorelDraw. It is still necessary to put some work
into it.

1. A Stata graphic (boosted up by Stage or not) is translated into a Lotus pic file. For this, I use a DOS BAT file containing
the single line:

c:\stata\gphpen %1 /DC:\stata\pic.pen /oc:\data\%1.pic /n %2 %3 %4 %5

Calling this file pic.bat, I can type ‘pic filename’ to create the file filename.pic in my \data directory.

2. CorelDraw is started and the pic file is imported. ALT-F(ile), I(mport), choose LOTUS PIC file format and pick the
proper file. The pic file is imported, but anything, including text, is seen as several objects in one group. There can easily
be 512 objects in one group.

3. Ungroup the objects first: ALT-A(rrange), U(ngroup). In most cases the graphic is too small for comfort, or the
conversion of the lines is not satisfying. Before editing, change the line size to 1 mm and black: Choose the PENCIL icon,
then the 1 MM LINE icon, and finally the BLACK icon, while the group object still is chosen.

Stata text is made of plotter symbols. It is better to remove the text and replace them by the fancier fonts of CorelDraw.
The only way to do this is to delete the group of objects forming one word of sentence and to replace them by the CorelDraw
text possibilities.
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As general advise: Put guide lines (blue lines pulled out of the rulers) first, where the old Stata text is, before deleting it.
Put snap to guide lines on by choosing ALT-D(isplay), G(uide lines).

Suggestions for improvement are welcome.

ip2 A keyboard shortcut

Peter A. Lachenbruch, Dept. of Biostatistics, UCLA

I am providing a neat trick that other Stata users may already know, but if not it’s a stroke saver. Since the missing value
code ‘.’ is greater than any nonmissing value, we can use that to exclude cases in a simple manner. Suppose I want to compute
the means for X for those cases in which Y is not missing. The usual way is to write

summ X if Y~=.

I find it easier to write

summ X if Y<.

The ‘<’ key is easier for me to reach, and only takes one stroke.

sbe7 Hyperbolic regression analysis in biomedical applications

Paul Geiger, USC School of Medicine, pgeiger@vm.usc.edu

Hyperbolic regression fits a curve to experimentally obtained data points for many analyses used in biochemistry and
molecular biology (Studnicka 1987, 1991). These areas include enzyme kinetics, agarose gel electrophoresis of DNA fragments,
SDS-polyacrylamide gel electrophoresis of proteins, enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA),
Bradford assays (protein), and the much used and cited Lowry protein assay.

Hyperbolic regression fits curves without the biases linear regression introduces to an equation transformed to double
reciprocal coordinates (Lineweaver and Burk 1934). More complicated transforms like the logit-log or four-parameter methods
(Rodbard et al. 1987; Geiger 1991, 1992) may also be unnecessary when a hyperbolic relationship between variables exists.
Hyperbolic regression, like linear regression, has the additional advantage of yielding one simple equation with its estimated
constants. This equation can model actual chemical and biological processes.

Fitting curves with the cubic spline or the model-free approach of Guardabasso et al. (1987) produces no single equation
to describe the scientific phenomena meaningfully. Results can also differ from analysis to analysis.

Studnicka (1987) implemented an algorithm for hyperbolic regression on a Digital Equipment Corporation PDP-11 series
computer and later (1991) designed a spreadsheet to carry out the process. An outline of the mathematics follows.

A general equation for a hyperbola can be written as

(Y � Yo)(X �Xo) = Co

where (Xo; Yo) is the mathematical origin displaced from (0; 0) and Co is a constant. Rearranging the equation by multiplying
and collecting the constants and defining a new constant, Wo = Co �XoYo, gives:

XY = XoY +XYo +Wo

Following Bevington (1969) least squares was satisfied by minimizing:

NX
i=1

(XiYi �XoYi �XiYo �Wo)
2

This can be solved using Stata’s linear regression where Xo, Yo, and Wo are the coefficients.

The above method of fitting works only if curvature really exists. A perfectly linear data set is unacceptable as the
determinants of the matrices all go to zero. Also Studnicka (1987) remarks that if each data point consists of a number of
experimental estimates, the mean must be calculated and used in the equations to get the best fit. This characteristic is a result
of the matrix algebra. I have not observed this behavior.

The above equations have been incorporated into a Stata program, hbolic.ado, that calculates the necessary Xo, Yo and
Co and the fitted curve, hat. This program, together with a help file and an example data set, dnafrag2.dta, are provided on
the STB diskette.
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The syntax of hbolic is

hbolic depvar indepvar

It should be noted that Xo, Yo, and Co are calculated constants that can be renamed according to the application. For instance,
name Km for Xo, Vmax for Yo, and KmVmax for Co if you are concerned with Michaelis-Menten kinetics. The variable Yhat now
denotes the fitted regression line and resids the residuals. The program displays the regression curve fitted to the original data
points. It also displays the residuals plotted against Yhat. These graphs are saved for printing as gph1 and gph2. Finally, the
contents of the completed file are shown on the screen with describe followed by list Yhat depvar indepvar Xo Yo Co

and a message inviting the user to view the saved graphs.

Unlike Studnicka’s program devised for the DEC PDP-11 (1987), I found hbolic.ado works with several Y values (replicates)
for each X value (standard). A mean for the Y s need not be computed before running hbolic.

Three examples of the use of hyperbolic regression with hbolic follow.

Example 1. Michaelis-Menten kinetics model many enzymic and other biological processes. In studies of an enzyme, the two
desired characteristic parameters are the maximum velocity, Vm, and the Michaelis constant, Km. Vm reflects the maximum
velocity of the reaction, usually in micromoles per minute, at substrate saturation. Km is the binding constant for substrate with
enzyme in units of micromoles. The Michaelis-Menten equation is usually written:

Vo =
Vm[S]

Km + [S]

Initial velocity is half-maximal when [S] = Km. The Lineweaver-Burk (1934) rearrangement is the so-called double reciprocal
form, and 1=Vo was plotted against 1=[S] in a graphical analysis approach necessary before the advent of computers. But the
original equation is easily rearranged to make its hyperbolic form evident: (Vo � Vm)([S] +Km) = �KmVm.

Studnicka (1987) used the values in the file michment.dta (taken from his paper and supplied on the disk) to show
strengths and weaknesses in the hyperbolic solution versus the double reciprocal plot to which he applied linear regression. The
file contains the model values from his demonstration.

Estimation errors are less likely to occur using the hyperbolic form. This form is most sensitive to changes at high [S]
values where measurement errors of initial velocity and [S] occur less often. You can see how small changes to Vo or [S] affect
estimated Vm and Km values (Yo and Xo produced by hbolic). Simply run hbolic after changing one value of X or Y . If
the highest value of Vo changes by �10%, Km changes a whopping �50% and the Vm by about �15%.

Example 2. Studnicka (1987) also applied hyperbolic regression to DNA fragment analysis. Data taken from Figure 2 in the
1987 paper referring to an agarose gel electrophoresis experiment are in the file dnafrag.dta supplied on the disk. hbolic
generates the constants, Xo, Yo, Co, after entering the values for X , the known DNA fragment sizes in kilobasepairs (kB), and
Y , the measured migration distances in mm.

Measuring the migration distances accurately in this kind of experiment is the critical aspect and most subject to error.
Compute the sizes of your own unknowns in kB by giving the command ‘generate sizes=(Co/(unk-Yo))+Xo’, solving the
hyperbolic equation for X (“unk” not provided here). In this equation “unk” stands for the migration distances of unknowns,
measured in mm. Alternatively, use infile X Y unk to import a complete ASCII data file containing X , Y and “unk”. If you
use hbolic.ado frequently for many such analyses, append the necessary command to solve for sizes of fragments.

Example 3. This sample radioimmunoassay (RIA) data comes from Sundqvist et al. (1989) and appears in Geiger (1991, 1992).
Geiger (1991) demonstrates the overworked logit-log analysis and Geiger (1992) the four-parameter model solved with Danuso’s
nonlinear regression program (Danuso 1991), an iterative procedure.

Application of hyperbolic regression to radioimmunoassay data seems every bit as effective as these more complicated
methods. Furthermore, the blank or nonspecific binding cpms need not be subtracted as when performing logit-log analysis. The
included file, hypria.dta, reproduces the RIA data from the previous publications.

The original triplicate cpm data were averaged with the command ‘egen Y=rmean(c1 c2 c3)’. hbolic then generated the
necessary constants. Applying the equation in Example 2 above provided the results (pg/ml) from the cpms of the unknowns
after correcting for volume as in the previous reports.

With the file hypria.dta in Stata’s memory, type ‘describe’ to see the labeled variables. Enter ‘list smpl ans 2ans’
to see Sundqvist’s original sample identification numbers and the logit-log result compared to the hyperbolic regression result,
2answer. The comparison is
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Result (pg/ml) Result (pg/ml)
Sample ID logit-log calc. Hyperbolic regression

11772 1567.16 1557.26
11772 1544.25 1534.88
11772 1781.31 1788.14
11772 1767.13 1774.17
11773 1332.42 1344.80
11773 1300.03 1295.99
11774 1074.86 1075.22
11774 1167.37 1181.08
11774 1193.03 1206.56
11774 1032.11 1033.22
11775 1517.34 1508.58
11775 1557.94 1548.26
11775 1748.40 1755.71
11775 1805.22 1811.69
11776 1292.76 1288.87
11776 1343.17 1355.45
11777 1029.33 1030.49
11777 1209.31 1222.73
11778 1486.53 1497.30
11778 1512.91 1504.25
11779 1415.52 1409.01
11779 1360.10 1354.80
11779 1506.45 1516.98
11779 1526.62 1536.91
11780 927.03 929.89
11780 953.58 968.24
11780 986.39 1000.97

Of course, the hyperbolic regression technique still requires investigators to obtain good duplicate and preferably triplicate
observations of their experimental data.

CPM of Standards vs. conc., pg/ml
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sbe8 Left-censored survival data

William Rogers, CRC, FAX 310-393-7551

Left-censored survival data arise when a subject comes under observation some time after the event that starts the “clock.”
For example, suppose you are studying factors that predict whether a woman will give birth to a child. You sample women, give
them a baseline survey, and then follow them annually for 6 years thereafter. At the start of the study, each woman has been at
risk since her last birth, or since menarche.

Suppose that woman A in this sample had her last child 3.2 years ago, and she has a child 2.4 years after your baseline
survey. You would probably want to analyze the birth interval of 5.6 years. The hitch is that you could not have observed an
interval of 5.6 years for this woman unless she had gone at least 3.2 years from her last birth without having another child. In
other words, you want to analyze the probability of surviving from 3.2 years to 5.6 years and then giving birth.

Actually, most analysts are not interested in the probability per se, but rather the relative risk of giving birth for a woman
with one set of characteristics as opposed to another. For example, what is the relative risk of giving birth for an unmarried
woman as opposed to a married one?

There are several ways to handle this kind of problem in Stata, of which I will discuss two here.

Method 1: Use exponential instead of Cox regression. In exponential regression, the likelihood is completely specified and
the hazard does not depend on previous time at risk. There is, however, a price. It now becomes your responsibility to verify
that the likelihood does not depend on time since last birth or to specify the dependence if there is one.

In this example, there is a dependence. It is almost impossible to have another child within 11 months, and the likelihood is
low immediately after that. So you might break the time into intervals and introduce variables for 11–16 months, 17–24 months
25–36 months, etc., and replicate the observation on each woman up to the point she has another child or no longer appears in
the data. This replication, resulting in a dataset where the same woman appears more than once, could potentially result in a
dataset where the outcomes are dependent on each other. A solution to this problem is “Huber” exponential regression.

Method 2: Use time-varying Cox regression and introduce a variable that describes the left-censoring period.

The following example shows how to do the data preparation for each method. They are both tricky. Let me begin by
concocting a data set:

. input id age previous tbirth isbirth

1 24 10 5 1

2 19 2 2 1

3 42 2 6 0

4 36 6 6 0

5 30 2 4 1

6 32 18 6 1

7 38 14 6 0

8 28 6 3 1

9 22 3 1 1

end

. save birth, replace
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previous records the number of years at the time of the baseline survey since the previous birth (or menarche). tbirth is the
time from the baseline survey to the next birth or end of the survey period. isbirth records 1 if the woman had another (or
first) birth during the survey period and 0 otherwise.

The exponential-regression solution relies on the fact that the probability distribution of tbirth is the same as the distribution
of tbirth+ previous given previous:

. use birth, clear

. expand 2

. sort id

. qui by id: gen record = _n

. gen over5 = record==2

. drop if record==1 & previous>=5

. gen atrisk = min(tbirth,5-previous) if record==1

. replace isbirth=0 if record==1 & atrisk<tbirth

. drop if record==2 & isbirth[_n-1]==1 & id==id[_n-1]

. replace atrisk = tbirth-atrisk[_n-1] if record==2 & id==id[_n-1]

. replace atrisk = tbirth if record==2 & id~=id[_n-1]

. hereg atrisk age over5, dead(isbirth) group(id) hr

Each woman in the original data potentially becomes two observations, the first reflecting the first five years (from the last child
or menarche) and the second the remaining period. Since the same woman may appear in the data more than once, we use
hereg (see sg8.1 in this issue) to correct for the violation of independent-observations assumption.

The second approach, using Cox regression, is easier. tbirth + previous is used as the time-to-birth variable, but we
must create a censored segment for the times between 0 and previous:

. use birth, clear

. expand 2

. sort id

. qui by id: gen record = _n

. gen atrisk = tbirth+previous if record==2

. replace atrisk = previous if record==1

. gen left = (record==1)

. replace isbirth = 0 if record==1

. cox atrisk age left, dead(isbirth) tvid(id) hr

The output produced by the two estimation steps is

. hereg atrisk age over5, dead(isbirth) group(id) hr

Iteration 0: Log Likelihood = -12.037857

Iteration 1: Log Likelihood = -10.206155

Iteration 2: Log Likelihood = -8.9897404

Iteration 3: Log Likelihood = -8.8922672

Iteration 4: Log Likelihood = -8.8907967

Exponential regression (log relative hazard form) Number of obs = 11

Log Likelihood = -8.891 Pseudo R2 = 0.2614

Grouping variable: id

------------------------------------------------------------------------------

atrisk | Hz. Ratio Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

age | .8403259 .0352805 -4.144 0.003 .7627832 .9257515

over5 | 1.514651 1.063751 0.591 0.571 .2998902 7.650031

------------------------------------------------------------------------------

. cox atrisk age left, dead(isbirth) tvid(id) hr

Iteration 0: Log Likelihood =-9.0484095

Iteration 1: Log Likelihood =-2.8854591

Iteration 2: Log Likelihood =-2.1052036

(output omitted )
Iteration 44: Log Likelihood =-1.7583729

Iteration 45: Log Likelihood =-1.7583729
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Cox regression Number of obs = 18

chi2(2) = 14.58

Prob > chi2 = 0.0007

Log Likelihood = -1.7583729 Pseudo R2 = 0.8057

------------------------------------------------------------------------------

atrisk |

isbirth | Haz. Ratio Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

age | .7223358 .1759505 -1.335 0.199 .4320623 1.207624

left | 3.37e-21 . . . . .

------------------------------------------------------------------------------

For the exponential regression, the nonsignificant coefficient for over5 suggests that previous time exposed is not an
important factor in the hazard rate.

For the Cox regression, the impact of the variable left is huge. Since this regression is presented in hazard form, the
hazard ratio of 3.37e–21 reflects the fact that we observed no failures in the left-censoring period. The long iteration log is
characteristic of a parameter that is being driven to infinity. Stata recognizes that something is wrong with this variable and
prints a ‘.’ for the standard error. In some cases you will get a zero t-statistic, which is also a sign of trouble.

Although both hazard ratios for age are well below 1, the two methods give slightly different hazard ratios. More importantly,
the t-statistics are quite different. There are two reasons. First, the parametric information typically improves precision. Second,
the hereg estimates are based on asymptotic results and overstate accuracy in very small samples.

sg8.1 Huber exponential regression

William Rogers, CRC, FAX 310-393-7551

After my insert on probability weighting (Rogers 1992), I have received a number of questions asking what to do about
design problems (probability weighting and clustering) with survival analysis, most often in reference to Cox regression.

Unfortunately, the Huber method that worked for regress and logit (yielding the Stata hreg and hlogit commands)
does not work well in the case of Cox regression because the conditional likelihood derivatives for each observation are a
complicated function of the entire dataset. It is, however, easy to apply the Huber method to exponential regression, which is a
close cousin of Cox proportional hazards model.

hereg has the syntax:

hereg
�
depvar

�
varlist

� �
weight

� �
if exp

� �
in range

� � �
, hazard hr tr dead(varname)

level(#) group(varname) maximize options
�

See [5s] huber for a description of the treatment of the optional weight and group() option; see [5s] ereg for a description of
the remaining options.

In survival analysis, violations of assumptions can arise both at the sampling stage and be purposefully induced by the
researcher at the analysis stage. In sbe8 of this issue, I demonstrate a purposeful induction to estimate a model with both left
and right censoring. hereg handles the problems associated with the violations of assumptions.

References
Rogers, W. H. 1992. Probability weighting. Stata Technical Bulletin 8: 15–17.

sg9 Similarity coefficients for 2 x 2 binary data

Joseph Hilbe, Editor, STB, FAX 602-860-1446

Binary similarity measures estimate the proximity between two 1/0 binary variables. Three types of measures are provided:
ones that can be thought of as similar to a correlation coefficient, others that can be interpreted as conditional probabilities, and
lastly those that are predictability measures. I have provided a program called similari which displays twelve such similarity
coefficients. The program is called similari and not similar because it is an immediate command (see [4] immediate); one
need only input the tabulated summary data on the command line. The syntax of similari is

similari A
0;0 B0;1 C1;0 D1;1

Hence, you may directly type in the summary data from the Stata tabulate command.
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The following statistics are provided:

1. Czekanowski (Dice): A matching coefficients measure in which double weights are given to matches (1,1).

2. Dispersion: A similarity measure that ranges from �1 to 1.

3. Jaccard: A similarity ratio in which 0,0 is excluded from the equation.

4. Match percent: The ratio of total matches to the total population.

5. Ochiai: A similarity measure in cosine form.

6. Phi 4-point: A binary form of the Pearson product correlation coefficient.

7. Russell & Rao: a binary dot product; 1,1 matches to total population.

8. Hamann: A conditional probability measure ranging in value from �1 to 1.

9. Anderberg’s D: A predictability measure indicating the reduction in the probability of error when an item is used to predict
another.

10. Goodman and Kruskal’s Lambda: Indicates the proportional reduction in the probability of error when one item is used
to predict another when the prediction directions are equal. The predictability of the value of one item given the value of
another.

11. Yule’s Q: A binary version of the Gamma test ranging from �1 to 1.

12. Yule’s Y: A coefficient of colligation ranging from �1 to 1.

All coefficients range from 0 to 1 unless otherwise indicated. An example program run follows:

. use lbw

. tab smoke low

smoked| birth weight<2500g

during|

pregnancy| 0 1 | Total

-----------+----------------------+----------

0 | 86 29 | 115

1 | 44 30 | 74

-----------+----------------------+----------

Total| 130 59 | 189

. similari 86 29 44 30

Similarity coefficients for 2 X 2 binary data

Controls

Cases | 0 1 | Total

-------+--------------------------------+----------

0 | 86 29 | 115

1 | 44 30 | 74

-------+--------------------------------+----------

Total | 130 59 | 189

Proximity measures Conditional probability measure

Czekanowski = 0.4511 Hamann = 0.2275

Dispersion = 0.0365

Jaccard = 0.2913 Predictability measures

Match % = 0.6138 Anderberg's D = 0.0026

Ochiai = 0.4540 G & K Lambda = 0.0026

Phi 4-point = 0.1614 Yules Q = 0.3382

Russell & Rao = 0.1587 Yules Y (colligation)= 0.1742

Each listed statistic accords with that produced by the proximity command in SPSS for Windows.

References
Anderberg, M. R. 1973. Cluster Analysis for Applications. New York: Academic Press.

Romesburg, H. C. 1984. Cluster Analysis for Researchers. Belmont, CA: Lifetime Learning Publications.
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sg10 Confidence limits in bivariate linear regression

Paul Geiger, USC School of Medicine, pgeiger@vm.usc.edu

[The method discussed in this insert is often described as the “calibration method.”—Ed.]

Many analytical methods in chemistry and biology provide a linear relationship between the response variable, Y , and
the amount of material determined, X . We construct a standard curve using known amounts of X and observe the response
in Y . Samples containing unknown amounts of X are treated along with the known quantities. From the standard curve given
by linear regression of Y on X , the unknown X’s can be estimated. Examples that come readily to mind from my own work
are the modified Fisk and Subbarow colorimetric assay for inorganic phosphate, spectrophotometric and fluorometric assays for
various enzymes and their metabolic products (Lowry and Passonneau 1972; Bergmeyer 1983–1986) and scintillation counting
of radioactive element-tagged compounds.

In planning further experiments or making decisions based on values of X computed from the standard curve, we may
wish to know the confidence limits of X . Also, in developing a new method, we want to know if the analysis is trustworthy
within reasonable limits.

I followed the equations given in Snedecor and Cochran (1989, 170–172) in writing the program confx.ado. The program
is furnished along with a help file on the STB diskette. It gave correct answers for the problems listed in Snedecor and Cochran
as well as for example 14.7 from Sokal and Rohlf (1981, 498). These exercises are also supplied on the disk.
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sg11 Quantile regression standard errors

William Rogers, CRC, FAX 310-393-7551

Obtaining standard errors for the coefficients in quantile regression (qreg) is a difficult problem and one for which the
literature provides only sketchy guidance. In the case of linear regression, one can prove that the standard errors of the coefficients
are given by the diagonal of s2(X0X)�1, at least if the residuals are i.i.d. (independently and identically distributed) N(0; �2)
(s2 is the estimate of �2 and formulas can similarly be derived). A considerable literature on “robustness” and accompanying
algorithms is available when assumptions fail (e.g., rreg, hreg).

What is worth understanding is that there are no clear-cut answers for quantile regression even when assumptions are met.
There are some existing proofs (Koenker and Bassett 1978, 1982) that suggest estimates for the asymptotic parameter variances
and covariances. These estimates form the basis of the Stata calculations. Of course, all proofs depend on assumptions and
asymptotic estimates are not guaranteed to apply in small samples. The question of how good these estimates really are in small
samples is open.

A primary purpose of quantile regression is to escape assumptions. One particular noteworthy assumption in the Koenker
and Bassett formulation is that the error distribution is homoscedastic, that is it does not depend on x, the vector of independent
variables. Indeed, a major use of quantile regression is to calculate quantiles in situations where the quantiles are not parallel.

Bootstrapping (Efron 1982) provides an alternative way of obtaining standard errors without assumptions, but at the cost
of computer time. In bootstrapping, we replicate the sampling experiment that created the sample by drawing from the sample
as if it were a population. The idea that the sample is a close approximation to the population is the fundamental idea behind
sampling. (A companion insert (sg11.1) provides a bsqreg command for constructing such estimates.) However, the fact that
bootstrapping involves resampling makes it nonverifiable because the answers depend on the vagaries of a random number
generator. In order to minimize the randomness, many replications should be taken.

In this insert, I explore the quality of the standard errors produced by the qreg command and those produced by bootstrapping.
I find that the reported standard errors are quite satisfactory except in the case of heteroscedastic errors, in which case they
substantially understate the true standard error. Since quantile regression is often used to estimate with precisely this kind of
data, in such cases, bootstrap standard errors are preferable.
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Analytic standard errors for quantile regression

Before comparing the standard errors produced by qreg to bootstrap standard errors, let me quickly review how qreg

calculates the standard errors it reports. The Stata manual is somewhat terse on the subject and, worse, there is an error. In
[5s] qreg, the manual says the variance–covariance matrix is estimated by R�1

2
R

1
R�1

2
. What it does not say, but should, is

that R
1

is estimated as X0WW0X, where W is a n� n diagonal matrix with elements

Wii =

(
q=f

errors
(0) if r > 0

(1� q)=f
errors

(0) if r < 0

0 otherwise

and R
2

is the design matrix X0X. This is derived from formula 3.11 in Koenker and Bassett (1982), although their notation is
much different. f

errors
() refers to the density of the true residuals.

There are many things that Koenker and Bassett leave unspecified, including how one should obtain a density estimate for
the errors in real data. For example, a side effect of quantile regression is that if there are k parameters, at least k residuals must
be exactly zero. Also, while their formula recognizes that heteroscedasticity may alter the standard errors, the factor increase is
not computable unless one goes back to the assumption that the errors are i.i.d.

Below, we will explore the quality of the standard errors produced by qreg and its boot-strapped variant bsqreg in:

1. A simple bivariate model y = �+ �
1
x+ u.

2. A trivariate model y = �+ �
1
x
1
+ �

2
x
2
+ u.

3. Various models in which assumptions or tacitly assumed conditions fail to be true, including (a) heteroscedastic errors and
(b) skewed covariates.

Monte Carlo Experiment 1: A simple bivariate model

We wish to consider estimation of various quantiles for models of the form y = �
0
+ �

1
x + u. A typical experiment in

this group worked like this:

. drop _all

. set obs 1000

. gen x = invnorm(uniform())

. gen y = invnorm(uniform())

. qreg y x, quant(0.4)

. display _b[x]/_se[x]

. display (_b[_cons]-invnorm(0.4))/_se[_cons]

If the standard errors produced by qreg are accurate, the results displayed by the last two display statements should each be
normally distributed with mean 0 and variance 1. This example is actually more general than one might first think, since the
quantile regression function is a linear function of the independent variables. The quantile-regression estimator is not a linear
estimator, but it does have certain properties that are worth appreciating, and which we will call “transparency.” Given the model
y = bx+ u, where the vector x may include an element equal to 1 corresponding to the constant, the transparency properties
are

1. y ! cy ) b! cb; sb ! csb. Multiplying the dependent variable by any constant results in new coefficient estimates that
are the constant multiplied by the original coefficients. Standard errors are similarly multiplied by the constant; t-statistics
are unchanged. This statement holds for c > 0. If c < 0, it holds if the quantile fraction is reversed.

2. x ! Ax ) b ! bA�1. Transforming the independent variables in some way comes out entirely in the coefficient
estimates and does not affect the errors.

3. y ! y + gx ) b ! b + g. Adding a multiple of x to the dependent variable comes out entirely in the estimated
coefficients and does not essentially change the solution.

You can add to the Stata experiment shown above to verify these properties:

. gen w = 2*y

. qreg w x, quant(.4)

. gen z = - x

. qreg y z, quant(.4)

. gen v = y + 10*x

. qreg v x, quant(.4)

As a result of these transparency properties, it is not necessary to consider a wide range of multivariate problems. Complex
multivariate problems can be transformed to look like univariate ones. For example, I do not need to consider problems where
the x’s are highly correlated.
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I do consider problems over a range of sample sizes. In order to gain a complete understanding of the most common
situation (median regression), I ran this simulation 5,000 times with a variety of sample sizes ranging from 20 to 5,000 (this
took 240 hours on an unloaded DECstation 3100).

Sample size does not appear to be a major consideration (there was no relationship of either the formula or the bootstrap
performance based on sample size).

var(tx) var(t
cons

)

Quantile Replications Formula Bootstrap Formula Bootstrap

Median 5000 1.02 1.13 0.98 1.11
.4 219 1.00 1.09 1.02 1.19
.3 1250 1.11 1.11 0.98 1.13
.2 1250 0.93 1.10 0.95 1.22
.1 200 0.97 1.29 1.09 1.33
.05 n > 100 236 1.40 0.91 1.10 1.40
.05 n � 100 1014 38.15 1.66 23.34 2.53

The desired answer for all of the entries on the right-hand side of the table is 1.00, meaning that both the formula answer and
the bootstrap answer produce asymptotic normal t-statistics.

For the median, the variance of the bootstrap answer is slightly higher (e.g., 1.13 instead of 1.02) because the bootstrap
standard error is computed from 20 replications. Since this estimated standard error becomes the denominator of a t-statistic,
we must evaluate that t-statistic against a t-distribution with 20 degrees of freedom. The match is perfect; the probability of
exceeding the 5% cutoff values for a t-distribution with 20 degrees of freedom is 5.1% for both the coefficient of x and cons.
The performance of the formula answers is consistent with the asymptotic theory for a z-statistic.

The performance of the formula holds up well down to about the 10th percentile and does not depend on sample size.
Below that, small-sample phenomena begin to take over. At the 5th percentile, both the formula and the bootstrap break down,
but for different reasons. The formula breaks down because the density estimate breaks down. In the group with sample size
100 and less, the 10th percentile was 3.8 observations from the bottom edge of the dataset on the average. The density estimate
is based on the nearest

p
n observations, which covers a thicker part of the distribution. The bootstrap is much better than the

formula, but still underestimates the variance.

Monte Carlo Experiment 2: A trivariate model

The second experiment is a trivariate regression. For the reasons of the previous discussion (which I confirmed in simulations
not reported), there is nothing to be learned from an experiment with two normally distributed x’s. So I simulated one x (say
x2) that distributed with one observation at +1, one at �1, and 198 at zero.

I was interested in the effect that x2 might have on the other x, which was normally distributed. But this x2 pointed out
an interesting dilemma faced by quantile regression theory. It is easy to construct examples where there are two quite different
answers with exactly the same minimum weighted sum of deviations, and this particular design happens to be one such instance.
Regardless of the quantile, one point seems to be ignored completely, while the coefficient of x2 fits the other point exactly.

The answer to our original question—which standard error is better—now becomes clear. Although the formula is stressed,
it is in the ballpark. The bootstrap frequently misses both of the high-leverage points and comes up with a much different
solution. For the normally distributed x, the answers are pretty good for both methods, but for x2 and cons, the bootstrap is
not a competitor.

Monte Carlo Experiment 3: Other not-so-nice problems

The following kinds of problems might be suspected to cause some problems for the theory:

a. Problems where there are heteroscedastic errors.

I simulated a case similar to the one-variable simulation above, but made sd(y) = exp(x). This implies that the sd(y) is
about 50 times higher on one end of the x-distribution compared with the other one. This would be noticeable in a graph!

b. Problems with skewed covariates.
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These simulations were all done with median regression with 1,250 replications of a sample size of 200:

var(tx) var(t
cons

)

Problem Formula Bootstrap Formula Bootstrap

Heteroscedastic Errors 2.89 0.88 3.93 1.13
Skewed Covariates 1.23 1.18 0.92 1.07

Heteroscedastic errors turn out to be a major problem for the standard error formula, consistent with the theory suggested by
Koenker and Bassett (1982). They have roughly the same kind of impact as they would have in regular regression. The actual
standard deviations of the t-statistics are well above 1. Standard errors of coefficients are underestimated, and so results are
non-conservative.

The bootstrap is better, but slightly conservative for the coefficient of x. With the 20 degree-of-freedom approximation, we
would like a variance of 1.11 in this column.

For a skewed covariate (implying a few points with very high leverage), the bootstrap performed well, but the formula was
slightly high for the variance of x and low for cons.

Conclusions

Quantile regression is becoming a favorite technique for identifying and exploiting naturally heteroscedastic phenomena,
such as income inequality. These results suggest that standard errors produced in this kind of problem should be looked at
suspiciously. We suggest that the bootstrap standard errors be used in cases where heteroscedasticity is suspected.

Quantile regression has also been suggested as a form of robust regression—a method that can be trusted without looking
into the impact of outliers in y or x. These results suggest that such complacency is premature.

Finally, do not assume that either answers are good for extreme quantiles; for example, if n < 5=q or n < 5=(1� q).
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sg11.1 Quantile regression with bootstrapped standard errors

William Gould, CRC, FAX 310-393-7551

Rogers in sg11 argues that the formula-based Koenker and Bassett standard errors used by qreg are not satisfactory when
heteroscedasticity of the residuals is suspected and suggests the substitution of bootstrap standard errors. Bootstrapping allows
one to obtain standard errors for any statistic even when an analytical formula is not available and a large literature on this subject
is available (see, for example, Efron 1982 and Wu 1986). The method is procedurally simple but computationally expensive.
One has a data set containing N observations and an estimator which, when applied to the data, produces certain statistics
(such as the coefficients produced by qreg). One draws, with replacement, N observations from the N observation data set.
In this random drawing, some of the original observations will appear once, some more than once, and some not at all. Using
that data set, one applies the estimator and estimates the statistics. One then does it again, drawing a new random sample and
reestimating, and again, and keeps track of the estimated statistics at each step of the way (called a replication).

Thus, one builds a data set of the estimated statistics. From this data, one calculates the standard deviation of the statistic
using the standard formula (

pP
[bi � �b]2=[K � 1], where K is the number of replications). That number is your estimate of

the standard error of the statistic. Note that, while the average value of the observed statistic (�b) is used in the calculation of the
standard deviation, it is not used as the estimated value of the statistic itself. The statistic is obtained in the normal way using
the original N observations. (Many researchers new to bootstrapping think that �b is somehow a better estimate of the statistic
than the statistic obtained in normal ways. That is not quite true. What is true is, that if the statistic is biased in some way, �b
exaggerates the bias. Denoting b as the statistic calculated in the normal way, the amount of the bias can be estimated as �b� b
and, in fact, an unbiased statistic would be b� (�b� b) = 2b� �b. This adjustment, however, should only be applied if there are
strong theoretical reasons to believe the statistic is biased.)

The syntax of bsqreg is

bsqreg
�
depvar

�
indepvars

� �
if exp

� �
in range

� � �
, level(#)

quantile(#) wlsiter(#) reps(#)
�
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That is, the syntax is identical to qreg (see [5s] qreg) except (1) weights are not allowed and (2) the option reps() is added.
The reps(#) option controls the number of bootstrap replications used for calculating the standard errors and defaults to 20 if
not specified.

In [5s] qreg, the following model was reported as an example:

. qreg price weight length foreign

Iteration 1: WLS sum of weighted deviations = 114043.7

Iteration 1: sum of abs. weighted deviations = 114998.67

Iteration 2: sum of abs. weighted deviations = 111786.7

(output omitted )
Iteration 9: sum of abs. weighted deviations = 108822.59

Median Regression Number of obs = 74

Raw sum of deviations 142205 (about 4934)

Min sum of deviations 108822.6 Pseudo R2 = 0.2347

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

weight | 3.933588 .8602185 4.573 0.000 2.217936 5.64924

length | -41.25191 28.86931 -1.429 0.157 -98.82993 16.3261

foreign | 3377.771 577.3392 5.850 0.000 2226.304 4529.238

_cons | 344.6494 3260.245 0.106 0.916 -6157.704 6847.002

------------------------------------------------------------------------------

This model is an excellent candidate for bootstrapping as one might suspect that a model of price (as opposed to, say, log of
price) would suffer from heteroscedasticity. Estimating this model with bsqreg:

. bsqreg price weight length foreign

(estimating base model)

(bootstrapping ....................)

Median Regression, bootstrap(20) SEs Number of obs = 74

Raw sum of deviations 142205 (about 4934)

Min sum of deviations 108822.6 Pseudo R2 = 0.2347

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

weight | 3.933588 2.837216 1.386 0.170 -1.725061 9.592236

length | -41.25191 73.45879 -0.562 0.576 -187.7608 105.257

foreign | 3377.771 1164.462 2.901 0.005 1055.325 5700.217

_cons | 344.6494 6587.404 0.052 0.958 -12793.51 13482.81

------------------------------------------------------------------------------

As we would expect based on Rogers’ findings, the standard errors are larger (the ratios vary from 2.02 to 3.3).

The standard errors produced by the bootstrap technique are only approximations. Estimating the same model again produces
different estimates:

. bsqreg price weight length foreign

(estimating base model)

(bootstrapping ....................)

Median Regression, bootstrap(20) SEs Number of obs = 74

Raw sum of deviations 142205 (about 4934)

Min sum of deviations 108822.6 Pseudo R2 = 0.2347

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

weight | 3.933588 3.042472 1.293 0.200 -2.134431 10.00161

length | -41.25191 84.80841 -0.486 0.628 -210.397 127.8931

foreign | 3377.771 974.9878 3.464 0.001 1433.219 5322.323

_cons | 344.6494 7482.968 0.046 0.963 -14579.66 15268.96

------------------------------------------------------------------------------

The accuracy of the approximation increases with the number of replications, but it is worth noting that, even at a moderate 20
replications, results are not substantively different.

Anytime one works with a computer, it is important to be able to reproduce results. Although the standard errors produced by
bsqreg have a random component, they can be mechanically reproduced by resetting the random number seed (see [5d] generate)
assuming one knows the seed prior to estimation. For instance, the following two commands will always produce the same
results:
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. set seed 573998311

. bsqreg price weight length foreign

(output omitted )

One could produce more accurate estimates of the standard errors by including the rep() option: ‘bsqreg price weight

length foreign, rep(50)’.

bsqreg is not as well integrated into Stata as the other estimation commands. While b[] does contain the parameter
estimates, and predict can be used to obtain predicted values and residuals, se[], test, and correlate cannot be used after
estimation.
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snp4 Non-parametric test for trend across ordered groups

K. A. Stepniewska and D. G. Altman, Imperial Cancer Research Fund, London, EMAIL k stpniewska@icrf.ac.uk

The syntax of the nptrend command is

nptrend varlist
�
if exp

� �
in range

�
, by(groupvar)

�
trend(scorevar)

�
nptrend performs a non-parametric test for trend across ordered groups. This test, developed by Cuzick (1985), is an extension
of the Wilcoxon rank-sum test and is a useful adjunct to the Kruskal–Wallis test (kwallis). Formula for the test statistic is
given by Cuzick (1985) and Altman (1991). Correction for ties is incorporated into the formula.

groupvar is a grouping variable, and scorevar defines scores for groups. When trend() is not specified, the values of
groupvar are used as the scores.

Example

Consider the following data (Altman 1991):

Transmission of
Group visible light Ocular exposure to ultraviolet radiation

1 < 25% 1.4 1.4 1.4 1.6 2.3 2.3
2 25 to 35% 0.9 1.0 1.1 1.1 1.2 1.2 1.5 1.9 2.2 2.6 2.6

2.6 2.8 2.8 3.2 3.5 4.3 5.1
3 > 35% 0.8 1.7 1.7 1.7 3.4 7.1 8.9 13.5

We can use nptrend to test for a trend of increasing exposure across the three groups. When we do not specify scores for
groups, they are defined by the grouping variable groupvar:

. nptrend exp, by(group)

Test: Trend across groups

gr _Score _Obs _RankSum

1 1 6 76.00

2 2 18 290.00

3 3 8 162.00

z = 1.519

probability = 0.1288

When the groups are given any equally spaced scores—such as �1, 0, 1—we obtain the same answer as above. To illustrate
the effect of changing scores, an analysis of these data with scores 1, 2, 5 (admittedly not very sensible in this case) gives

. nptrend exp, by(group) tr(score)

Test: Trend across groups

group _Score _Obs _RankSum

1 1 6 76.00

2 2 18 290.00

3 5 8 162.00

z = 1.464

probability = 0.1432

This example suggests that the analysis is not all that sensitive to the scores chosen.
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sqv3.1 Graphical display of Atkinson’s R values

Marc Jacobs, Dept. of Sociology, Univ. of Utrecht, The Netherlands, FAX (011)-31-30-53 4405

Building on the lwald command supplied in STB-7 (Hilbe 1992), I have written a program that graphically displays
Atkinson’s R values in ascending order. Moreover, the program saves the graph for future printing. It can be located in the
c:\ado directory as pc n.gph, where n is the number of variables in the model. Histograms are not provided for R values of 0.

The program, called atrgph, is used like logit. An example partial output is shown below.

. atrgph foreign price rep78 gratio

/* Normal logistic regression output not shown */

Wald Statistics and Partial Correlations (Atkinson's R)

No. Var Wald Prob(Chi) Partial Cor

----------------------------------------------------

1 price 2.575 0.109 0.080

2 rep78 7.376 0.007 0.244

3 gratio 9.869 0.002 0.296

----------------------------------------------------

Partial correlation, Atkinson's r
Model set  3  Variables sorted by signif icance

0

.295583

price rep78 gratio

References
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sqv4.1 Correction to ldev command output

Joseph Hilbe, Editor, STB, FAX 602-860-1446

Users of the ldev extension to the logistic command may have noticed that in some cases the screen display indicating
the number of observations in the data set is incorrect. The deviance and �2 values are not affected. A fix has been made to
ldev; simply replace the old program with the new one found on the STB-9 diskette.

sqv5 Univariate log-likelihood tests for model identification

Joseph Hilbe, Editor, STB, FAX 602-860-1446

Comparing the log-likelihood of a logistic regression model containing only the intercept with that of a model having a
single predictor provides prima facie evidence of whether the predictor in fact contributes to the model. The comparison statistic
is provided by the likelihood-ratio test. At the early model building stage, a p value of .25 or less can be considered adequate
for inclusion of a variable as a main effects predictor. However, this does not mean that transformation or collapsing value levels
may not prove to later enhance the contribution a variable may make to the full model. What we are really looking for at this
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stage are high p values. If we find one, at say .80, we can probably exclude it from subsequent analyses. But a caveat—if the
variable is likely to serve as a factor in a significant interaction—we may need to retain it regardless of its p value.

I provide a program called unilogit. It calculates, for each variable listed after the response variable, the coefficient,
standard error, log-likelihood, chi-square (LL ratio statistic), and significance. The intercept-only model log-likelihood is also
provided for comparison. The default is one degree of freedom.

The intercept-only log-likelihood value can be calculated directly from the distribution of the response variable. Let n
0

and
n
1

represent the respective number of observations having 0’s or 1’s and let N be the total number of nonmissing observations.
The log-likelihood can be determined by

LL = n
0
ln(n

0
) + n

1
ln(n

1
)�Nln(N)

After the logit command, one can also obtain the LL statistic directly from Stata by

LLo = -( result(6)+(-2* result(2)))/2

where result(6) is the �2 and result(2) is the log-likelihood of the model with predictor(s).

The likelihood-ratio test evaluates the hypothesis that the slope coefficient is zero. Given LL
1

as the log-likelihood of the
model with the predictor, and LL

0
as the intercept log-likelihood, the ratio is determined by �2 = 2(LL

1
� LL

0
).

Example

. use lbw

. describe

Contains data from lbw.dta

Obs: 189 (max= 166927)

Vars: 12 (max= 99)

Width: 14 (max= 200)

1. id int %8.0g identification code

2. low byte %8.0g birth weight<2500g

3. age byte %8.0g age of mother

4. lwt int %8.0g weight at last menstrual period

5. smoke byte %8.0g smoked during pregnancy

6. ptl byte %8.0g premature labor history (count)

7. ht byte %8.0g has history of hypertension

8. ui byte %8.0g presence, uterine irritability

9. race1 byte %8.0g race==white

10. race2 byte %8.0g race==black

11. race3 byte %8.0g race==other

12. ftv byte %8.0g 1st trimester M.D. visits

Sorted by:

. unilogit low age lwt smoke ptl ht ui ftv

Univariate Logistic Regression Models

1 Degrees of Freedom

Intercept LL = -117.3360

Variable Coeff St Error LL Chi2 Prob

__________________________________________________________________________

age -0.0512 0.0315 -115.9560 2.7600 0.0966

lwt -0.0141 0.0062 -114.3453 5.9813 0.0145

smoke 0.7041 0.3196 -114.9023 4.8674 0.0274

ptl 0.8018 0.3172 -113.9463 6.7794 0.0092

ht 1.2135 0.6083 -115.3249 4.0221 0.0449

ui 0.9469 0.4168 -114.7979 5.0761 0.0243

ftv -0.1351 0.1567 -116.9494 0.7731 0.3792
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srd13 Maximum R-squared and pure error lack-of-fit test

Richard Goldstein, Qualitas, Brighton, MA, EMAIL goldst@harvarda.bitnet

The syntax of maxr2 is

maxr2

This program can only be used after the fit estimation command. No options are allowed; the routine will automatically ensure
that the same cases that are in your fit are used here.

How does one determine the “goodness-of-fit” (GOF) of an ordinary least squares regression? Although many people use
R-squared as a summary GOF measure, it is not a good measure for a number of reasons; thus, most users of regression supplement
R-squared with a number of more specific, and limited, measures and graphs. Many of these are included in Stata.

There is a situation in which (1) it is possible to obtain a simple summary GOF measure, and (2) in which R-squared is a
particularly bad GOF measure. This occurs when one’s data set includes “replicates”: cases that are tied on every independent
variable but that may differ in their values on the dependent variable. In particular, if the replicates do differ in their Y values,
it is impossible to obtain an R-squared of 1.0 making the usual use of R-squared questionable (at best).

For instance, we want to predict a person’s weight based on their height and have the following data:

Weight Height

130 66
135 67
140 68
145 69
150 70
155 71
160 72
165 73
170 74
175 75
180 76
185 77

In the above data, we have a perfect relation: for every additional inch of height we have 5 more pounds of weight. Following
is the regression:

. fit weight height

Source | SS df MS Number of obs = 12

---------+------------------------------ F( 1, 10) = .

Model | 3575.00 1 3575.00 Prob > F = .

Residual | 0.00 10 0.00 R-square = 1.0000

---------+------------------------------ Adj R-square = 1.0000

Total | 3575.00 11 325.00 Root MSE = 0.00

-----------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

height | 5 0 . . . .

_cons | -200 0 . . . .

-----------------------------------------------------------------------------

R-squared is 1.0 and everything else is missing since all measures of variance are equal to 0. Now let’s add a case with
height equal to 70 but weight equal to 145; we also show the results of the maxr2 routine:

. fit weight height

Source | SS df MS Number of obs = 13

---------+------------------------------ F( 1, 11) = 1787.58

Model | 3696.48422 1 3696.48422 Prob > F = 0.0000

Residual | 22.7465536 11 2.0678685 R-square = 0.9939

---------+------------------------------ Adj R-square = 0.9933

Total | 3719.23077 12 309.935897 Root MSE = 1.438

-----------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

height | 5.04772 .1193884 42.280 0.000 4.784948 5.310492

_cons | -203.7911 8.531825 -23.886 0.000 -222.5695 -185.0127

-----------------------------------------------------------------------------
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. maxr2

max R-square = 0.9966

relative R-square = 0.9972

Rel. Adj. R-square= 0.9970

SSLF (df) = 10.246554 (10) MSLF = 1.0246554

SSPE (df) = 12.5 (1) MSPE = 12.5

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 0.0820 (10,1)

prob > F = 0.9942

number of covariate patterns = 12

as ratio of observations: 0.923

Note that not only is R-squared no longer equal to 1.0 (and variances are now positive so we have p-values), but that the
maximum possible R-squared is less than 1.0 (an R-squared of 1.0 implies that the regression line goes through every point; this
is not possible if two points have the same X value(s) but different Y values). The “relative R-square” is the R-square reported
by Stata (here, .9939) divided by the maximum possible R-square (.9939/.9966) and similarly for “Rel. Adj. R-square” (except
for possible rounding errors). Thus, the “relative” values are again proportions of 1.0.

Following the R-squared information is a pure error lack-of-fit F test, if the p-value is “small,” then the fit is not good.
This test examines the sums of squares within “replicates.” If this test is not significant, and thus the fit is “good,” you must
still examine your regression for failures of assumptions, influential points, etc.

The final block of information just gives a count of the number of covariate patterns and the ratio of the number of covariate
patterns to N , the number of observations.

Note that if we change the 13th data point so that the weight becomes more discrepant, the R-squared information changes,
sometimes drastically, but the GOF test does not change. The following two examples demonstrate this. In the first, the weight
for the 13th data point is changed to 130 (from 145) and the height is left at 70; in the second, the weight is changed to 110
and the height is again unchanged.

. fit weight height

Source | SS df MS Number of obs = 13

---------+------------------------------ F( 1, 11) = 118.15

Model | 3909.13207 1 3909.13207 Prob > F = 0.0000

Residual | 363.944857 11 33.0858961 R-square = 0.9148

---------+------------------------------ Adj R-square = 0.9071

Total | 4273.07692 12 356.089744 Root MSE = 5.752

-----------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

height | 5.19088 .4775538 10.870 0.000 4.139791 6.241969

_cons | -215.1644 34.1273 -6.305 0.000 -290.278 -140.0507

-----------------------------------------------------------------------------

. maxr2

max R-square = 0.9532

relative R-square = 0.9597

Rel. Adj. R-square= 0.9561

SSLF (df) = 163.94486 (10) MSLF = 16.394486

SSPE (df) = 200 (1) MSPE = 200

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 0.0820 (10,1)

prob > F = 0.9942

number of covariate patterns = 12

as ratio of observations: 0.923

. fit weight height

Source | SS df MS Number of obs = 13

---------+------------------------------ F( 1, 11) = 31.75

Model | 4201.91288 1 4201.91288 Prob > F = 0.0002

Residual | 1455.77943 11 132.343584 R-square = 0.7427

---------+------------------------------ Adj R-square = 0.7193

Total | 5657.69231 12 471.474359 Root MSE = 11.504

-----------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

height | 5.38176 .9551076 5.635 0.000 3.279583 7.483938

_cons | -230.3287 68.2546 -3.375 0.006 -380.5561 -80.10138

-----------------------------------------------------------------------------
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. maxr2

max R-square = 0.8586

relative R-square = 0.8650

Rel. Adj. R-square= 0.8527

SSLF (df) = 655.77943 (10) MSLF = 65.577943

SSPE (df) = 800 (1) MSPE = 800

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 0.0820 (10,1)

prob > F = 0.9942

number of covariate patterns = 12

as ratio of observations: 0.923

This comparison helps give a better idea of what is going on: the GOF test is not affected by how much different the one
case is, but the maximum R-square is. The test and measure are discussed in Draper and Smith (1981, 33–42); the test is also
discussed in Neter, Wasserman and Kutner (1989, 131–140) and Weisberg (1985, 89–95). Each book gives a bivariate regression
example; the data for these three are on the disk and the examples follow:

. use ds38

(Draper & Smith example, p. 38)

. fit y x

Source | SS df MS Number of obs = 24

---------+------------------------------ F( 1, 22) = 6.57

Model | 6.32466658 1 6.32466658 Prob > F = 0.0178

Residual | 21.1936683 22 .963348559 R-square = 0.2298

---------+------------------------------ Adj R-square = 0.1948

Total | 27.5183349 23 1.19644934 Root MSE = .9815

-----------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

x | .3378862 .1318692 2.562 0.018 .0644062 .6113662

_cons | 1.436396 .5900072 2.435 0.023 .2127955 2.659996

-----------------------------------------------------------------------------

. maxr2

max R-square = 0.5468

relative R-square = 0.4203

Rel. Adj. R-square= 0.3939

SSLF (df) = 8.7236679 (11) MSLF = .79306072

SSPE (df) = 12.47 (11) MSPE = 1.1336364

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 0.6996 (11,11)

prob > F = 0.7183

number of covariate patterns = 13

as ratio of observations: 0.542

. use neter132

(Neter, Wasserman & Kutner example, p. 132)

. fit numnew minimum

Source | SS df MS Number of obs = 11

---------+------------------------------ F( 1, 9) = 3.14

Model | 5141.33841 1 5141.33841 Prob > F = 0.1102

Residual | 14741.5707 9 1637.9523 R-square = 0.2586

---------+------------------------------ Adj R-square = 0.1762

Total | 19882.9091 10 1988.29091 Root MSE = 40.472

-----------------------------------------------------------------------------

numnew | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

minimum | .4867016 .2747105 1.772 0.110 -.1347368 1.10814

_cons | 50.72251 39.39791 1.287 0.230 -38.40176 139.8468

-----------------------------------------------------------------------------

. maxr2

max R-square = 0.9423

relative R-square = 0.2744

Rel. Adj. R-square= 0.1938

SSLF (df) = 13593.571 (4) MSLF = 3398.3927

SSPE (df) = 1148 (5) MSPE = 229.6

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 14.8014 (4,5)

prob > F = 0.0056

number of covariate patterns = 6

as ratio of observations: 0.545
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. use wberg90

(Weisberg example, p. 90)

. fit y x

Source | SS df MS Number of obs = 10

---------+------------------------------ F( 1, 8) = 8.67

Model | 4.56925017 1 4.56925017 Prob > F = 0.0186

Residual | 4.21663901 8 .527079876 R-square = 0.5201

---------+------------------------------ Adj R-square = 0.4601

Total | 8.78588918 9 .976209909 Root MSE = .726

-----------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

x | .5327329 .1809361 2.944 0.019 .1154935 .9499724

_cons | 2.090621 .5397843 3.873 0.005 .8458762 3.335366

-----------------------------------------------------------------------------

. maxr2

max R-square = 0.7316

relative R-square = 0.7109

Rel. Adj. R-square= 0.6748

SSLF (df) = 1.8582478 (2) MSLF = .92912389

SSPE (df) = 2.3583912 (6) MSPE = .3930652

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 2.3638 (2,6)

prob > F = 0.1750

number of covariate patterns = 4

as ratio of observations: 0.400

The final two examples use the Stata auto.dta for multiple regression—first with three variables and then with two
variables and an if expression.

. use auto

(1978 Automobile Data)

. fit mpg weight w2 foreign

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 3, 70) = 52.25

Model | 1689.15372 3 563.05124 Prob > F = 0.0000

Residual | 754.30574 70 10.7757963 R-square = 0.6913

---------+------------------------------ Adj R-square = 0.6781

Total | 2443.45946 73 33.4720474 Root MSE = 3.2827

-----------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

weight | -.0165729 .0039692 -4.175 0.000 -.0244892 -.0086567

w2 | 1.59e-06 6.25e-07 2.546 0.013 3.45e-07 2.84e-06

foreign | -2.2035 1.059246 -2.080 0.041 -4.3161 -.0909003

_cons | 56.53884 6.197383 9.123 0.000 44.17855 68.89913

-----------------------------------------------------------------------------

. maxr2

max R-square = 0.9808

relative R-square = 0.7049

Rel. Adj. R-square= 0.6922

SSLF (df) = 707.30574 (65) MSLF = 10.881627

SSPE (df) = 47 (5) MSPE = 9.4

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 1.1576 (65,5)

prob > F = 0.4897

number of covariate patterns = 69

as ratio of observations: 0.932
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. fit mpg weight w2 if foreign==0

Source | SS df MS Number of obs = 52

---------+------------------------------ F( 2, 49) = 91.64

Model | 905.395466 2 452.697733 Prob > F = 0.0000

Residual | 242.046842 49 4.93973146 R-square = 0.7891

---------+------------------------------ Adj R-square = 0.7804

Total | 1147.44231 51 22.4988688 Root MSE = 2.2226

-----------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------------

weight | -.0131718 .0032307 -4.077 0.000 -.0196642 -.0066794

w2 | 1.11e-06 4.95e-07 2.249 0.029 1.19e-07 2.11e-06

_cons | 50.74551 5.162014 9.831 0.000 40.37205 61.11896

-----------------------------------------------------------------------------

. maxr2

max R-square = 0.9590

relative R-square = 0.8228

Rel. Adj. R-square= 0.8155

SSLF (df) = 195.04684 (44) MSLF = 4.4328828

SSPE (df) = 47 (5) MSPE = 9.4

F (dfn, dfd) for lack-of-fit test (MSLF/MSPE) = 0.4716 (44,5)

prob > F = 0.9193

number of covariate patterns = 47

as ratio of observations: 0.904

I know of no other software that provides the maximum R-square measure for multiple regression. MINITAB does provide
the pure error GOF test, and I used MINITAB for the two regressions using the auto data—both matched to the precision shown by
the two packages. MINITAB also provides, and Draper and Smith and others (see, e.g., Christensen, 1989), a GOF test based on
“near-replicates,” but I have not found this very useful due to problems in defining what is “near” and have not implemented it.

Finally, weighting is not allowed in the regression, although such an adjustment could probably be added fairly easily (at
least for frequency weighting).
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