StatA

May 1992
TecHNICAL STB-7
BuLLeTin
A publication to promote communication among Stata users
Editor Associate Editors

Joseph Hilbe J. Theodore Anagnoson, Cal. State Univ., LA

Stata Technical Bulletin Richard Deleon, San Francisco State Univ.

10952 North 128th Place Paul Geiger, USC School of Medicine

Scottsdale, Arizona 85259-4464 Lawrence C. Hamilton, Univ. of New Hampshire

602-860-1446 FAX Stewart West, Baylor College of Medicine

stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright (¢) by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page
anl.l. STB categories and insert codes (Reprint) 2
anl7. Stata seminars announced 2
anl8. STB-1—STB-6 available in bound format 3
anl9. Stand-alone statistical tools 3

crcl2.1. Oops!, again 3
dm7. Utility to reverse variable coding 3
dm8. Command to unblock data sets 4
dm9. An ANOVA blocking utility 4

gr10.1. Printing graphs and creating WordPerfect graph files 5
os4. Stata icon for Microsoft Windows 3.1 5
sbe5. Calculating person-years and incidence rates 5
sbe6. 3x3 matched case—control tests 7
sed7. Resistant smoothing using Stata 8
sgl.2. Nonlinear regression command 11
sqv3. Wald and Atkinson’s R extensions to logistic 18
sts2. Using Stata for time series analysis 18
tt4. Teaching ecology with Stata 26
tt5. Simple chemical equilibrium 28

zz1. Cumulative index for STB-1—STB-6 30

2 Stata Technical Bulletin STB-7

ani.i STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an announcements ip instruction on programming

cc communications & letters os operating system, hardware, &
dm data management interprogram communication

dt data sets gs questions and suggestions

gr graphics tt teaching

in instruction zz not elsewhere classified
Statistical Categories:

sbe Dbiostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis

sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics

sgc quality control sxd experimental design

sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

ani17 Stata seminars announced

Joseph Hilbe, Editor, STB, 602-860-4331, FAX 602-860-1446

Seminars featuring intermediate and advanced use of Stata are scheduled for August 14-15 at the University of New
Hampshire and August 19-20 at California State University, Fullerton.

Dr. Lawrence Hamilton, Professor of Sociology at the University of New Hampshire and author of Statistics with Stata,
Regression with Graphics, and other related works, and Dr. Joseph Hilbe, Editor of the STB, are the instructors at the New
Hampshire site and Dr. J. Theodore Anagnoson, Professor and Chair of the Department of Political Science at California State
University, Los Angeles and author of numerous articles on EDA and NSF EDA Workshop leader, and Hilbe will conduct the
California seminar.

The focus of discussions will be Exploratory Data Analysis, regression modeling and diagnostics, including robust and
quantile regression, logistic regression including ordinary, grouped, conditional, ordinal, multinomial, and Huber random effects
modeling and diagnostics, and Stata 3.0 programming techniques. Dr. Hamilton will also discuss Monte Carlo sampling. Each
seminar includes a format of theoretical and applied discussion as well as allowing for on-hands “learn-by-doing.” All participants
will have a 386 PC on which to work. Numerous handouts and data sets will be provided. Participants in the New Hampshire
seminar will receive free copies of Dr. Hamilton’s books Statistics with Stata, Version 3 and Regression with Graphics. Participants
in the Los Angeles seminar will receive a free copy of the Stata Graphics Editor. The cost is $395 per participant. Nearby
accommodations are available at conference rates.

Preliminary Schedule
August 14-15, University of New Hampshire

Aug. 14, Fri. AM Hamilton Introduction

AM Hamilton Exploratory data analysis

PM Hilbe Logistic regression modeling and diagnostics
Aug. 15, Sat. AM Hamilton Regression modeling and diagnostics

PM Hilbe Stata 3.0 programming

August 19-20, California State University, Fullerton

Aug. 19, Wed. AM Anagnoson Introduction / Data management
AM Anagnoson Exploratory data analysis

PM Hilbe Logistic regression modeling and diagnostics
Aug. 20, Thu. AM Anagnoson Regression modeling and diagnostics
PM Hilbe Stata 3.0 programming

Registration forms and more information can be obtained from CRC, telephone 800-782-8272 or fax 310-393-7551 or directly
from Joseph Hilbe, 602-860-4331, fax 602-860-1446.

Space is limited at both locations due to individual computer use; early registration is advised. Note that the New Hampshire
session starts the day following the American Statistical Association convention in Boston—Iess than two hours by car. Also,
California State University, Fullerton is very near Disneyland. We mention this for those who desire additional and alternative
stimulation after the seminar.

Stata Technical Bulletin 3

ani8 STB-1—STB-6 available in bound format

Joseph Hilbe, Editor, STB, FAX 602-860-1446

The first year of the Stata Technical Bulletin has been reprinted into a 2004~ page, bound book called The Stata Technical
Bulletin Reprints, Volume 1. The volume is available from CRC for $25—$20 for STB subscribers—plus shipping. Authors of
inserts in STB-1—STB-6 will automatically receive the book at no charge and need not order.

Everything that appeared in the first six issues of the original journals appears in this volume, implying (1) there is no
reason to purchase this volume if you have saved your original STBs and (2) the bound format is a perfect substitute for the
original STBs and more easily stored since it fits on a bookshelf. Our primary reason for reprinting the STB is to make it easier
and cheaper for new users to obtain back issues. For those not purchasing the volume, note that zzI in this issue provides a
cumulative index for the original STBs.

an19 Stand-alone statistical tools

Gerard Dallal, 53 Beltran Street, Malden MA 02148

STATOOLS'™ are stand-alone FORTRAN programs to fill in some gaps left by major statistical packages. They are available
on 5.25-inch disks for IBM PC and compatibles running DOS 2.0 or later versions. The disks contain executable files, user guides,
and, in some cases, FORTRAN source code.

Source
Program included Price Description
PC-SIZE N $15 sample size calculations
PC-PLAN Y 10 generates randomization plans
PC-EMS N 10 tables of expected mean squares for balanced experiments
PC-AIP Y 10 fits additive-in-probits models to 2-D contingency tables
STAT-SAK Y 10 Statistician’s Swiss army knife
OCTA N 10 interactive log-linear analysis
RCJOIN Y 5 1identifies sources of interactions in 2-way tables of counts
MUDIFT N 5 multivariate distribution-free comparison of growth curves
PITMAT Y 10 significance levels using recursive relationships
TRACK Y 10 Foulkes-David tracking index

Other programs are available as well. Please contact Gerard E. Dallal, 53 Beltran Street, Malden, MA 02148 for more information.

‘ crci2.1 ‘ Oops!, again ‘

In crcl2, we reported that [5s] ci incorrectly states that the standard error of the mean s,, is defined /s%/(n — 1) rather

than /s2 / n, and that the ci and cii commands themselves shared this misconception. We also claimed to have fixed the
problem.

We did fix the problem for cii, but not for ci. Installing the crc directory from the STB-7 diskette will finally put an end
to this problem.

In addition, the 1lvr2plot command described in [5s] fit was implemented incorrectly and is fixed with the installation of
these updates. The program incorrectly graphed leverage against the “normalized” predictions squared rather than the normalized
residuals squared. The graphs shown on page 301 of volume 2 are also incorrect as they were drawn with the uncorrected
lvr2plot command.

dm7 Utility to reverse variable coding
Marc Jacobs, Dept. of Sociology, Univ. of Utrecht, The Netherlands, FAX (011)-31-30 53 4405

The syntax for omscore is

omscore varname

omscore creates the new variable rr_varname; e.g., ‘omscore x’ creates rr_x.

There are times when I have found a variable to be coded in the reverse of how I desired. I submit a utility program that
reverses variable coding. It is necessary, however, that the original coding be in numeric order; for example, 1, 2, 3, 4, 5. The
algorithm used is

SCOT€pew = (SCOTemax + SCOr€min) — Score

4 Stata Technical Bulletin STB-7

Two conditions must obtain in order to use this utility. First, it is necessary that the original coding be incremented by one and
be in joined numeric order, as in 1, 2, 3, 4, 5. Second, the variable name can be no longer than five characters.

dm8 Command to unblock data sets

Joseph Hilbe, Editor, STB, FAX 602-860-1446

The blogit and bprobit commands ([5s] glogit) attempt to deal with “blocked” data, that is, data in which the number
of positive and negative outcomes are contained in the same observations. Think of estimating a logit model of posresp in
terms of x1, x2, and x3, with frequency-weighted data. One way the data might be recorded is

. list in 1/2
posresp pop x1 x2 x3
1. 3 5 1 5 9
2. 2 3 2 8 3

Observation 1 says that in the first group (the group with x1 = 1, x2 = 5, and x3 = 9), there were 3 positive responses
(posresp = 3) out of 5 (pop = 5). There were 2 positive responses out of 3 in the second group. In this form, we could
estimate our model using blogit by typing ‘blogit posresp pop x1 x2 x3’.

The problem is that blogit, being based on logit, does not provide the diagnostic features of logistic. We could use
logistic with this data, but first we would have to unblock it. That is, the first observation would become two observations—one
reflecting positive responses and a second reflecting the negative responses—and similarly for the second. The unblocked version
of our data would appear as

. list in 1/4
posresp pop x1 x2 x3
1. 1 3 1 5 9
2. 0 2 1 5 9
3. 1 2 2 8 3
4. 0 1 2 8 3

In this format, the data can be used with either logit or logistic; using logistic, the command would be ‘logistic
posresp x1 x2 x3 [freq=pop]’.

Thus, an alternative to blogit could be the more powerful logistic command, but only after we unblock our data. The
unblock command does this:

unblock pos_var pop_var [, gen (new_grp_var)]

pos_var is the variable recording the number of positive responses and pop_var the total population. At the conclusion of this
command, pos_var will contain a 0/1 variable, with 1 indicating a positive response; pop_var will contain the total population
for the positive or negative response; and the optionally generated new_grp_var will contain a group identification number 1,
2, ..., n, where n is the total number of observations in our original data set. The new data set will have between n and 2n
observations. Each observation in the original data set becomes two observations if there are both positive and negative responses
and one observation if there are only positive or negative responses.

new_grpvar, if requested, ties the new observations back to their original structure. If two observations in the new data
set have new_grp_var equal to k, then both were created from the kth observation in the original data. Unless one is interested
in going back to the blocked structure from the unblocked structure—and there is no reason why one should—this variable will
be of no use.

Thus, starting with the data shown at the start of this insert, one could estimate using logistic by typing

. unblock posresp pop
. logistic posresp x1 x2 x3 [freq=popl

The advantage, of course, is that you can now use all the post-logistic commands described in [5s] logistic.

dm9 An ANOVA blocking utility

Peter A. Lachenbruch, Dept. of Biostatistics, UCLA

I have created a short ado-file which I find very useful in ANOVA problems. It corresponds to the %gl(a,b) command in
GLIM. It generates a variable with levels 1 through A in blocks of B. Thus, g1 2 3 g2 will generate a variable named g2 with
the series 1 11222111222, etc., through the end of the data. This can be used to generate the needed levels for several
factors without the necessity for entering all the numbers. The data, of course, must be sorted in an order corresponding to the
factor levels.

Stata Technical Bulletin 5

The program for doing this, included on the STB-7 diskette, is

program define gl

version 3.0

gen ~3°=int(mod((_n-1)/2",717))+1
end

gr10.1 Printing graphs and creating WordPerfect graph files

Marc Jacobs, Dept. of Sociology, Univ. of Utrecht, The Netherlands, FAX (011)-31-30- 53 4405

The disadvantage of using the HP-driver (hp74751s.pen) for creating WP graphs is that shading is not printed very smoothly.
Besides that, importing a thus created Stata graph into WP is slow. Therefore using the Lotus PIC file driver results in a better
picture. The shading is neatly translated into parallel running lines that prints nicely on a HP-printer and copies just as well. The
Saving and Montgomery (1992) program gphwp can be modified by replacing the next to the last line with:

gphpen %1 /d \pic.pen /oc: \%1.wpg /n /t1111 /p111111111

The created file can be imported (scaled and rotated) into WordPerfect. It saves considerable data space when the graph is not
physically imported into the text file, but is treated as a “file on disk.” In WP:

A1t-F9,1,1,2,2 (file on disk), 1 (choose filename)

References
Saving, T. and J. Montgomery. 1992. grl0O: Printing graphs and creating WordPerfect graph files. Stata Technical Bulletin 5: 6-7.

0s4 Stata icon for Microsoft Windows 3.1

Joseph Hilbe, Editor, STB, FAX 602-860-1446

I have created a Windows icon for users who desire to run Stata under the Windows 3.1 operating system. It was made
using the Borland C++ Resource Workshop utility and can be linked to either stata.exe, istata.exe, or both.

stata.ico and istata.ico, found on the STB-7 diskette, should be copied to the directory where you have placed
stata.exe; e.g. c:\stata. If you have Intercooled Stata and have named it stata.exe, disregard the istata.ico file. You
must have already created a Stata Program Group and an appropriate pif file for stata.exe and/or istata.exe per manual
instructions ([4] win3). To link the icon with stata.exe do the following:

1. Access Stata 3.0 Program Group.

2. Click once on or select default ms dos icon for Stata. If you have not yet done this, select New from Program Manager
and create a Program Item—then go to 5.

Select File in Program Manager.
Select Properties from menu.

Select Change Icon.

AR

Select Browse. There may be a screen message prior to selection informing the user that no icon exists. Select OK to accept
default and change the directory to c:\stata*.ico.

~

Select stata.ico. Press or click OK.
8. Press or click OK from Change Icon Group.
9. Press or click OK from Program Item Properties.
10. stata.ico should be linked to stata.exe and be visible in the Stata Program Group.

You may follow the same procedure for istata.

sbeb5 Calculating person-years and incidence rates

Joseph Hilbe, Editor STB, FAX 602-860-1446

“Person-years” provides a means to allocate the amount of time a case contributes to a particular age group or interval. Total
person-years represents the sum of the time that individual cases in the study contribute to a group. Epidemiologists frequently
use person-years as the denominators for various statistical calculations. For instance, in Poisson regression models, person-years
are the time-based denominators used to obtain disease or incidence rates for longitudinal studies. The Stata incidence rate
command (ir or iri; see [5s] epitab) also uses person-years as a time-variable denominator.

6 Stata Technical Bulletin STB-7

pyears allows calculation of summary person-year totals for each specified age group as well as numerator failure totals.
The syntax for pyears is

pyears doby,, beginy,, endy,; [deadvar] » 1 (Finterval) 8 Fgroup) s Fstart) [list death]

where doby,, is “date of birth,” begin,,, is the date the patient entered the test or trial, and end.,, is the date on which the
patient either withdrew from the study or died, or is the date on which the study ended. The optional dead,,, indicates whether
the patient died. dead,,, is not used in person-year calculations, but summary statistics appropriate to ascertaining incidence
rates are provided with the death option, where this information is required. Unadjusted rates are calculated by dividing the
number of failures by person-years in each group.

pyears requires three additional parameters: interval(), the length in whole years of the age group interval; group(),
the number of age groups; and start (), the starting year of the first age group. For example, if a study is performed on patients
whose ages range from 30 to 50 during the test period, and if the age groups are stratified into four groups of five years each,
then the command line options would read interval(5) group(4) start(30).

Options include 1ist—screen output of a casewise listing of person-year contribution per age group—and death—summary
statistics for the number of cases entering and ending the study and the number of failures or deaths (coded 1 for failure) per
age group.

All dates must first be converted to elapsed dates; that is, the number of days from January 1, 1960. Stata’s date commands
(see [5d] dates) allow the user to easily convert to elapsed dates from a variety of date formats. For instance, if a date is stored
as yymmdd, convert to an elapsed date using the ftoe command. In the example below, I converted dob to sdob, an elapsed
date, by typing ‘ftoe dob, gen(sdob)’.

There is no by () option currently; however, it is rather simple to separate groups and perform a pyears on each to achieve
the same result. In fact, doing this yourself allows calculation of numerous person-year strata.

The example below provides the results of calculating both individual and total person-years on a five-observation data
set. Note that all observations having a missing value for any of the three time variables will be deleted prior to calculating
person-years.

. use pyrs
. describe
Contains data from pyrs.dta
Obs: 5 (max=126272)
Vars: 6 (max= 52)
Width: 24 (max= 102)
1. dob float %9.0g Date of Birth
2. begin float %9.0g Enter Testing
3. end float %9.0g End Testing
4. sdob long %10.0g SAS DOB
5. bs long %10.0g SAS Enter Testing
6. es long %10.0g SAS End Testing
7. dead float %9.0g Dead (1]0)
Sorted by:
. list
dob begin end sdob bs es dead
1. 441201 840801 911231 -5509 8979 11687 0
2. 510801 840301 911231 -3075 8826 11687 0
3. 540601 840901 890801 -2040 9010 10805 1
4. 450101 900301 911131 -5478 11017 11657 0
5. 500706 850906 881006 -3466 9380 10506 1

. * Note: 5 year intervals, 4 groups, starting at 30 years of age
. pyears sdob bs es, i(5) g(4) s(30) 1 d

ingrpil ingrp2 ingrp3 ingrp4

1. .3312798 4.999999 2.080081

2. 2.414099 4.999999 .4161532

3. 4.744009 .1676933 .

4. . 1.752224

5. 3.082819

Person-years: Totals Enter End Failure

Grp 30 to 34 => 7.1581 2 0 0
Grp 35 to 39 => 8.5818 2 2 2
Grp 40 to 44 => 5.4162 0 1 0
Grp 45 to 49 => 3.8323 1 2 0

Stata Technical Bulletin 7

I welcome any suggestions from users as well as examples of program use.

References
Kahn, H. A. and C. T. Sempos. 1989. Statistical Methods in Epidemiology. New York: Oxford University Press.

sbe6 3x3 matched case—control tests

Joseph Hilbe, Editor, STB, FAX 602-860-4331

mcc3i is an immediate command to calculate appropriate x? statistics and significance tests for 3 x 3 matched case—control
tables. Its syntax is

mcc3i #11 12 Fi13 Fo1 Foo Faz 31 Fa2 Has

Three x? statistics are provided on output: Stuart-Maxwell, Extended McNemar, and Fleiss—Everitt. A summary table of the
differences between cases and controls is also displayed.

The Stuart-Maxwell test is a modification of Stuart (1955) and Maxwell’s (1970) test derived by Fleiss and Everitt (1971)
for 3 x 3 tables. Let such a table be characterized as follows:

A B C Total

A niy N1z N3 N1x
B N2l M22 TN23 N2y
C n31 N3z N33 N34
Total Nyl MNsx2 Ns3 T

Define dz = nix — Nsi, 1= 1,2,3, and ﬁij = (’I’Lij + nﬂ)/Z

Stuart—-Maxwell test

The Stuart-Maxwell x?2 statistic is
5 Tosds + M13d3 + Myads

X = 5== —— ——
2(M12M13 + M12Tas + M13Ti23)

The Fleiss—Everitt test
The Fleiss—Everitt ordered categories x? statistic is

= (dy — d3)*
2(M12 + 4M13 + T23)

This test should be used if the three outcome categories are ordered. However, the significance value is treated differently if the
comparison was planned prior to the collection of the data. In this case, the x? distribution is given with one degree of freedom.
For retrospective studies, two degrees of freedom are appropriate. Both values are provided to the user.

Extended McNemar test

McNemar x? tests whether the corners of the 3 x 3 table are symmetrical; row and column totals as well as the diagonal
are ignored.

Y2 = Zz(”zj — nji)

i=1 j>i z]+ i

Example
The following table of hypothetical data is found in Fleiss (1981, 121):
Diagnostician A
Diagnostician B Schizophrenia Affective Other Total

Schizophrenia 35 5 0 40
Affective 15 20 5 40
Other 10 5 5 20

8 Stata Technical Bulletin STB-7

The command and output follows:

. mcc3i 35 5 0 15 20 5 10 5 5

Controls
Cases | A B C | Total
A | 35 5 0 | 40
B | 15 20 5 | 40
C | 10 5 5 | 20
Total | 60 30 10 | 100

3X3 Matched Case-Control Tests

Stuart-Maxwell Chi2 = 14.00 Pr>chi2(2) = 0.0009
Extend McNemar Chi2 = 15.00 Pr>chi2(3) = 0.0018
Fleiss-Everitt Chi2 = 12.86 Pr>chi2(1) Pre = 0.0003

(ordered cells) Pr>chi2(2) Post = 0.0016

Summary Differences Between Cases and Controls

Diff 1 = -20
Diff 2 = 10
Diff 3 = 10

References

Fleiss, J. L. 1981. Statistical Methods for Rates and Proportions. New York: John Wiley & Sons.

Fleiss, J. L. and B. S. Everitt. 1971. Comparing the marginal totals of square contingency tables. Brit. J. Math. Stat. Psychol. 24: 117-123.
Maxwell, A. E. 1970. Comparing the classification of subjects by two independent judges. Brit. J. Psychiatry 116: 651-655.

Stuart, A. 1955. A test for homogeneity of the marginal distribution in a two-way classification. Biometrika 42: 412-416.

Zar, J. 1984. Biostatistical Analysis. Englewood Cliffs, NJ: Prentice—Hall.

sed7 Resistant smoothing using Stata

Isaias H. Salgado-Ugarte, Biologia, E.N.E.P. Zaragoza, U.N.A.M., Mexico City, Mexico, FAX (011)-52-5-744-1217
Jaime Curts Garcia, Evaluacion y Proyectos Academicos, U.N.A.M., Mexico City, Mexico

As has been shown in several articles in the STB (Geiger 1991; DeLeon and Anagnoson 1991), one of the main purposes
of exploratory data analysis (EDA) techniques is the finding of trends and patterns that are nonlinear. Science and other human
activities produce data for which sequential order is important and for which values are defined by the adjacent ones in the
series. Though “time series” are the general examples of such bivariate data—e.g., daily temperature values or rainfall recorded
at a meteorological station; daily body temperature of milk producer cows; or amount of fish caught at a sea region over several
years—it is possible to consider other types of variables to specify order, such as the resistivity of geological materials along
stratigraphic sections (distance) or the relative frequency of the size of aquatic organisms (length). Often those patterns are hidden
by erratic fluctuations (noise) in the sequence. The smoothers eliminate the noise and make clearer the gradual variable behavior.

Any smoother decomposes the original sequence into two parts: a structured smooth with gradual variation sequence and
a noisy, rough, and varied sequence according to the schematic expression:

data = smooth + rough

The smoothed sequences show patterns that can easily be understood, as seasonal variations and long-term trends. On the other
side, the rough values (residuals of smoothers) make possible the discovery of additional patterns or extraordinary values (spikes)
that deserve additional attention (Velleman 1982).

Traditionally, moving averages have been employed to smooth sequences. However, this kind of smoother presents some
undesirable results because of shifting of peak and trough positions (Davis 1973) and their lack of resistance to spikes. Spikes
are isolated extraordinary observations that affect not only the smoothed value at that point, but all other smoothed values in
which the average participates (Velleman and Hoaglin 1981). For that reason, a few spikes severely occult the subjacent pattern
of a sequence. As a response to this non-resistance, Tukey (1977) suggested the use of moving or running medians that are
resistant to spikes. Velleman (1980, 1982) analyzed several properties and performances of this type of smoother and provides
us with some guidance for its understanding and application. These kinds of exploratory procedures have been named resistant
nonlinear smoothing (RNLS) after their performance and mathematical basis (Velleman 1982).

Resistant smoothers have successfully been used to explore data for patterns and trends which might not be so readily
exposed by more commonly used classical techniques (see Himes and Hoaglin 1989, who compared cubic splines with the

Stata Technical Bulletin 9

4253EH,twice smoother and found that the latter captured the structure of the raw data better than the former). Following Tukey
(1977), by exploration one can reduce the impact of the “rough” on methods intending to seek generalization. What is desirable
is a “rough” that has no “smooth”; for example, graphical representation of roughs (residual of smooth) should contain no
additional pattern or structure. If the graph of roughs does show some additional structure not removed by the smoother, then
further or alternate smoothing should take place (Curts 1986; Himes and Hoaglin 1989).

To show the effects of the resistant, nonlinear smoothers, we utilize data coming from fisheries analysis (Salgado-Ugarte
1991). Table 1 (Alejo-Plata et al. 1989) contains the number of fishes (tilapia) by size (standard body length). It is expected that
the frequency distribution be composed by several gaussian components. Plotting these values one hardly can distinguish such
a thing (Figure 1), so it is desirable to smooth the values. Instead of using moving averages of three or five (as suggested by
Laurec and Mesnil 1987), we prefer to employ a resistant smoother.

Table 1: Length-frequency data and 4253EH smoothing values
Standard body length Frequency (individuals) Smoothed values

37 6 6.0000
38 10 6.0000
39 3 6.0000
40 7 6.0000
41 5 6.0000
42 9 5.9375
43 3 5.8125
44 5 5.8125
45 11 5.9375
46 4 6.1875
47 6 6.6250
48 10 6.9375
49 6 7.3750
50 6 8.6875
51 12 10.3125
52 13 11.1250
53 13 11.2500
54 6 10.6250
55 12 9.0625
56 8 7.6250
57 7 6.9375
58 5 6.7500
59 5 6.7500
60 12 7.5625
61 5 9.2500
62 12 10.1875
63 11 10.2500
64 10 10.0000
65 10 8.9375
66 3 7.5625
67 7 7.0000

The simplest resistant smoothers are those that use running medians of groups spanning three points and are resistant to
isolated spikes in the sequence. Running medians of span three are, however, affected by two extraordinary values. Increasing
the span, for example running medians of span 5, attenuates the problem. Even though these uneven group size smoothers are
easy to compute by hand, they are less efficient than those using medians of even size group data values, but such even size
span smoothers move the position of smoothed values at the center of each group (between the two central points). To recover
the original position, it is required to apply a second running median of span four (to provide resistance) followed by a running
median of span two to recover phase.

It is possible to combine even and uneven span running median smoothers, a procedure known as re-smoothing. Traditional
weighted moving average smoothers, as the one with a span of three and weights of 1/4, 1/2 and 1/4 (“Hanning,” after Julius von
Hann, an Austrian meteorologist of the 19th Century) can be also used. The general principle is first to apply resistant smoothers
of larger span and then to smooth with hanning to provide smoother sequences. To briefly represent these compound smoothers,
the span of each is written. In this way, the digits 42 indicate a running median of span four re-smoothed by a running median
of span two. The repeated running median of span 3 until no changes occur (simplest compound smoother) is written as ‘3R’.
The hanning is indicated by an ‘H’ (Tukey 1977; Velleman and Hoaglin 1981).

Additionally, the terminal points of the sequence are estimated by the median of three values: the observed, the nearest
smoothed, and the one from linear extrapolation of the last two smoothed values one point after the first (or last) data point.
This rule is known as the “endpoint adjustment” and here we indicate its application by an ‘E’ in brief notation, as suggested
by Velleman and Hoaglin, 1981 (some programs compute resistant smoothing but do not provide the endpoint adjustment).

10 Stata Technical Bulletin STB-7

These compound smoothers permit elimination of noise but, at the same time, they suppress other interesting trends that
the sequence may contain. To recover these additional trends, the rough values are smoothed and the result is added to the
first smoothed values (a procedure called ‘re-roughing”). It is preferable to apply the same re-smoothing combination to the
roughs so the re-roughing procedure can be indicated by the brief notation “twice”. Velleman (1980) recommends in the first
place the compound smoother 4253EH,twice due to its good performance under several unfavorable conditions (the others are
43R5R2H,twice, 3RSSH, and 53EH,twice).

It is clear that the RNLS is one of the most useful techniques of the EDA procedures. However, the numerous calculations
required can discourage even the most enthusiastic analyst. For this reason the use of computerized methods are particularly suited.
The programming capabilities of Stata make it possible to construct several resistant smoothers. Hamilton (1990a) discusses some
elementary smoothers (moving averages and running medians of three in addition to the hanning moving weighted average).
The Stata programs (ado-files) written by Dr. Hamilton for these procedures are contained in the student version of Stata and
commented on in his book Statistics with Stata (Hamilton 1990b). This contribution contains one ado-file to perform a 4253EH
smoother. With additional result editing and repeated smoothing (as indicated below), it can compute the “twice” part of the
smoother and will produce 4253EH,twice as recommended by Velleman (1980, 1982) and Velleman and Hoaglin (1981). This
program uses programs developed by the authors in combination with Dr. Hamilton’s algorithms.

The sm4253eh. ado file computes running medians of span four, relocated by running medians of two, followed by uneven
span resistant smoothers (span five and three), endpoints adjustment and finally the weighted moving average “hanning.” The
syntax of the program is

sm4253eh datavar smthvar

where datavar is the variable containing the data and smthvar is the variable that will hold the smoothed values resulting from
the smoothing process.

To use this smoother, the values of the original sequence are entered in a file (it is recommended to include only the
response variable values, in this case the frequency in the number of fishes). Once the sequence is in memory, one runs the
program to apply the smoother. The result is only the smoothed sequence (the original data are dropped) and an index variable
(timendx), which can be used to plot results. Applying the above steps to the data used for the example, we obtain the smooth
values, which were plotted against timendx (Figure 2). In this plot, it is easier to distinguish the gaussian components and to
specify them by means of any of the analytical procedures developed to characterize the parameters of multimodal frequency
distributions (i.e. Hasselblad 1966; Bhattacharya 1967).

If desired, it is possible to compute the twice part of the smoother: use log to log output, 1ist the results of the smoothing,
and then combine (with a word processor or editor) with the original data sequence by infiling the data and merging with the
original. Thereafter, the rough is generated by subtracting the smooth from the data and the result is smoothed by sm4253eh.
Finally, the log file containing the list of smoothed rough values is combined with that containing the first smooth (in ASCII
format), translated to Stata to add them, and finally compute the 4253EH,twice smoother results. In the next version of this
smoother, we plan to produce the twice procedure automatically.

We are grateful to Dr. T. Anagnoson, who kindly sent us a copy of the do-files included in the Stata student version diskette
containing Dr. Hamilton’s smoothing programs and to Dr. D. C. Hoaglin for sending a collection of his most recent papers on
exploratory procedures (including resistant nonlinear smoothing).

[Editors note: I created a data set based on Table 1 for your use. It is called fishdata.dta and is found on the STB diskette. I suggest creating
a duplicate variable for the one to be smoothed (i.e., freq). The program drops it; however, retaining the original may be useful. For example, create
a duplicate of freq by gen freql=freq. The program does not produce a graph—it simply produces the variables for graphing. The following
command will create an appropriate graph, using the duplicate variable we made to observe both the original values and the smooth:

graph smooth freql timendx, xlab ylab(0,3,6,9,12,15) c(1l) sort

You may wish to compare the resultant graph with a cubic spline of the original variable values:
graph freq length, xlab ylab c(s) bands(8)

Note that they are nearly alike.]

References

Alejo-Plata, Ma. del C., M. E. Laguna-Marin, and P. Ramirez-Tlalpan. 1989. Estudio de algunos aspectos biologicos de Oreochromis mossambicus
(Osteichthyes: Cichlidae) en la laguna “El Rodeo” Estado de Morelos. Bachelor’s Thesis E.N.E.P. Zaragoza, U.N.A.M., Mexico, p. 130.

Bhattacharya, C. G. 1967. A simple method of resolution of a distribution into gaussian components. Biometrics 23: 115-135.

Curts, J. B. 1986. Teaching college biology students the simple linear regression model using an interactive microcomputer graphics software package.
Dissertation Abstracts International, Vol. 46 (7 sec A).

Davis, J. C. 1973. Statistics and Data Analysis in Geology. New York: John Wiley & Sons, pp. 222-231.

Frequency of indiv counts

Stata Technical Bulletin 11

DeLeon, R. and T. Anagnoson. 1991. sedl: Stata and the four R’s of EDA. Stata Technical Bulletin 1: 13-17.

Geiger, P. 1991. sbe4: Further aspects of RIA analysis. Stata Technical Bulletin 5: 7-10.

Hamilton, L. C. 1990a. Modern Data Analysis. Pacific Grove, CA: Brooks/Cole, pp. 46-52.

——. 1990b. Statistics with Stata. Pacific Grove, CA: Brooks/Cole, pp. 147-149.

Hasselblad, V. 1966. Estimation of parameters for a mixture of normal frequency distributions. Technometrics 8(3): 431-444.

Himes, J. H. and D. C. Hoaglin. 1989. Resistant cross-age smoothing of age-specific percentiles for growth reference data. American Journal of Human
Biology 1: 165-173.

Laurec, A. and B. Mesnil. 1987. Analytical investigations of errors in mortality rates estimated from length distributions of catches. In D. Pauly and
G. R. Morgan, (eds.) Length-Based Methods in Fisheries Research. ICLARM Conference Proceedings 13: 239-282.

Salgado-Ugarte, I. H. 1991. El analisis exploratorio de datos en las poblaciones de peces. Fundamentos y aplicaciones, E.N.E.P. Zaragoza, U.N.A.M.,
pp. 57-85.

Siegel, A. F. 1988. Statistics and Data Analysis. Singapore: John Wiley & Sons, pp. 391-408.
Tukey, J. W. 1977. Exploratory Data Analysis. Reading, MA: Addison—Wesley, Ch. 7.

Velleman, P. F. 1980. Definition and comparison of robust nonlinear data smoothing algorithms. Journal of the American Statistical Association 75:
609-615.

——. 1982. Applied nonlinear smoothing. In S. Leinhardt, S. (ed.), Sociological Methodology, San Francisco: Jossey-Bass, pp. 141-178.
Velleman, P. F. and D. C. Hoaglin. 1981. Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury Press, pp. 441-463.

15 15

4253eh resistant smooth

T T T T T
30 40 50 60 70 0 10 20 30
Standard body length timendx

Figure 1 Figure 2

sgl1.2 Nonlinear regression command
Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740 3119

Following Danuso’s (1991) nonlinear regression program, I provide an enhanced, non-menu-driven command nl. Use of
the program requires Stata 3.0. The syntax is

nl fcn depvar [varlist] [weight] [if exp] [in range] [,
level(#)
init(...) 1lnlsq(#) leave eps(#)
nolog trace iterate(#)
fen_options]

nlpred newvar [if exp] [in range] [, resid]

nlinit # parameter_list

aweights and fweights are allowed.

12 Stata Technical Bulletin STB-7

Description

nl fits an arbitrary nonlinear function to the dependent variable depvar by least squares. You provide the function itself in
a separate program with a name of your choosing, except that the first two letters of the name must be nl. fcn refers to the
name of the function without the first two letters. For example, you type ‘nl nexpgr ...’ to estimate with the function defined
in the program nlnexpgr.

nl typed without arguments redisplays the results of the last estimation.

nl shares most of the features of other estimation commands (see [4] estimate). predict, however, may not be used after
nl—use nlpred instead. correlate, _coef may be used, but you may not use test.

nl should be viewed as work in progress: the fitting process is iterative (modified Gauss-Newton) and there can be
convergence problems. Accurate initial parameter estimates are desirable.

nlpred will calculate predicted values and residuals after nl.

nlinit is useful when writing nlfcns.

Options
level(#) specifies the significance level, in percent, for confidence intervals of the coefficients; see [4] estimate.

init(...) specifies initial values for parameters that are to be used to override the default initial values. Examples are provided
below.

1nlsq(#) fits the model defined by nlfcn using “log least squares,” defined as least squares with shifted lognormal errors. In
other words, In(depvar — #) is assumed normally distributed. Sums of squares and deviance are adjusted to the same scale
as depvar.

leave leaves behind after estimation a set of new variables with the same names as the estimated parameters containing the
derivative of E(y) with respect to the parameter.

eps (#) specifies the convergence criterion for successive parameter estimates and for the residual sum of squares. Default: le-5
(.00001).

nolog suppresses the iteration log.

trace expands the iteration log to provide more details, including values of the parameters at each step of the process.
iterate(#) specifies the maximum number of iterations before giving up and defaults to 100.

fen_options refer to any options allowed by nlfcn.

resid tells nlpred to calculate residuals rather than predicted values.

Remarks

nl fits an arbitrary nonlinear function to the dependent variable depvar by least squares. The specific function is specified
by writing an nlfcn, described below. The values to be fitted in the function are called the parameters.

The fitting process is iterative (modifed Gauss-Newton). It starts with a set of initial values for the parameters (guesses as
to what the values will be and which you also supply) and finds another set of values that fit the function even better. Those
are then used as a starting point and another improvement is found, and the process continues until no further improvement is
possible.

nifcns

nl uses the function defined by nlfcn. nlfcn has two purposes: to identify the parameters of the problem and set default
initial values, and to evaluate the function for a given set of parameter estimates.

For instance, you have variables y and z in your data and wish to fit a negative-exponential growth curve with parameters
By and Bj:
Yy = BO X (1 — C_le)

First, you write a program to calculate the predicted values:

Stata Technical Bulletin 13

program define nlnexpgr

if "1 == non { /* if query call ... x/
mac def S_1 "BO B1" /* declare parameters */
mac def BO=1 /* and initialize them */
mac def Bil=.1
exit

}

replace “1°=$BO*(1-exp(-$Bl*x)) /* otherwise, calculate function */

end

To estimate the model, you type ‘nl nexpgr y’. nl’s first argument specifies the name of the function, although you do not type
the nl prefix. You type nexpgr, meaning the function is nlnexpgr. nl’s second argument specifies the name of the dependent
variable. Replicating the example in the SAS manual (1985, 588-590):

. use sasxmpll

. nl nexpgr y
(obs = 20)
Iteration 0: residual SS = .1999027
Iteration 1: residual SS = .0026142
Iteration 2: residual SS = .0005769
Iteration 3: residual SS = .0005768
Source | SS df MS Number of obs = 20
+ F(2, 18) = 275732.74
Model | 17.6717234 2 8.83b586172 Prob > F = 0.0000
Residual | .00057681 18 .000032045 R-square = 1.0000
+ Adj R-square = 1.0000
Total | 17.6723003 20 .883615013 Root MSE = .0056608
Res. dev. = -152.317
(nexpgr)
y | Coef. Std. Err. t P>|t] [95% Conf. Intervall
BO | .9961885 .0016138 617.303 0.000 .9927981 .9995789
B1 | .0419539 .0003983 105.346 0.000 .0411172 .0427906

(SE’s, P values, CI°s, and correlations are asymptotic approximations)

Notice that the initial values of the parameters were provided in the nlnexpgr program. You can, however, override these initial
values on the n1 command line. To estimate the model using .5 for the initial value of BO rather than 1, you can type ‘nl nexpgr
y, init (B0=.5)". To also change the initial value of B1 from .1 to .2, you type ‘nl nexpgr y, init(B0=.5, B1=.2)".

The outline of all nlfcns is the same:

program define nlfcn
if "1 == nen {
mac def S_1 "parameter names"
(initialize parameters)
exit
}
replace “1° = ...
end

On a query call, indicated by ~1° being “?”, the nlfcn is to place the names of the parameters in the global macro S_1 and
initialize the parameters. Parameters are stored as macros, so if nlfcn declares that the parameters are A, B, and C (via ‘mac def
S_1 "A B C"’), it must then place initial values in the corresponding parameter macros A, B, and C (via ‘mac def A=0’, ‘mac
def B=1’, etc.). After initializing the parameter macros, it is done.

On a calculation call, 1~ does not contain “?”; it instead contains the name of a variable that is to be filled in with the
predicted values. The current values of the parameters are stored in the macros previously declared on the query call (e.g., $A,
$B, and $C).

Example
You wish to fit the CES production functions defined by
In(q) = By + Aln((D)lR +(1- D)kR)

where the parameters to be estimated are By, A, D, and R. g, [, and k refer to total output and labour and capital inputs. In
your data, you have the variables 1nqg, labour, and capital. The nlfcn is

14 Stata Technical Bulletin STB-7

program define nlces
if "1 == nen {
mac def S_1 "BO A D R"
mac def BO = 1

mac def A = -1
mac def D = .5
mac def R = -1
exit

}
replace ~1°=$B0 + $Ax1n($D*labour"$R + (1-$D)*capital”$R)
end

Again using data from the SAS manual (1985, 591-592):

. use sasxmpl2

. nl ces 1lnq

(obs = 30)
Iteration 0: residual SS = 37.09651
Iteration 1: residual SS = 35.48615
Iteration 2: residual SS = 22.69042
Iteration 3: residual SS = 1.845374
(output omitted)
Iteration 19: residual SS = 1.761039
Source | Ss df MS Number of obs = 30
+ F(3, 26) = 292.96
Model | 59.5286148 3 19.8428716 Prob > F = 0.0000
Residual | 1.76103929 26 .06773228 R-square = 0.9713
+ Adj R-square = 0.9680
Total | 61.2896541 29 2.11343635 Root MSE = .2602543
Res. dev. = .0775148
(ces)
1nq | Coef. Std. Err. t P>|t] [95% Conf. Intervall
BO*| .1244882 .0783432 1.589 0.124 -.0365486 .2855251
A | -.336291 .2721672 -1.236 0.228 -.8957387 .2231568
D | .3366743 .1361148 2.473 0.020 .0568863 .6164623
R | -3.011047 2.323489 -1.296 0.206 -7.787048 1.764954

* Parameter taken as constant term in model & ANOVA table
(SE’s, P values, CI°s, and correlations are asymptotic approximations)

If the nonlinear model contains a constant term, nl will find it and indicate its presence by placing an asterisk next to the
parameter name when displaying results. In the output above, BO is a constant. (nl determines that a parameter BO is a constant
term because the partial derivative f = dE(y)/dB0 has a coefficient of variation (s.d./mean) less than eps(). Usually, f =1
for a constant, as it does in this case.)

nl’s output closely mimics that of regress; see [5s] regress. The model F test, R-square, sums of squares, etc., are
calculated as regress calculates them, which means in this case that they are corrected for the mean. If no “constant” is present,
as was the case in the negative-exponential growth example previously, the usual caveats apply to the interpretation of the F and
R-square statistics; see comments and references in Goldstein (1992).

When making its calculations, nl creates the partial derivative variables for all the parameters, giving each the same name
as the corresponding parameter. Unless you specify leave, these are discarded when nl completes the estimation. Therefore,
your data must not have data variables that have the same names as parameters. I recommend using uppercased names for
parameters and lowercased names (as is common) for variables.

After estimating with nl, typing ‘nl’ by itself will redisplay previous estimates. Typing ‘correlate, _coef’ will show
the asymptotic correlation matrix of the parameters, and typing ‘nlpred myvar’ will create new variable myvar containing the
predicted values. Typing ‘nlpred res, resid’ will create res containing the residuals.

nlfcn’s have a number of additional features that are described in More on nlfcns below.

Log-normal errors

A nonlinear model with identically normally distributed errors may be written

yi = f(xi, B) + us, u; ~ N(0,0%) (1)

Stata Technical Bulletin 15

fori =1,...,n. If the y; are thought to have a k-shifted lognormal instead of a normal distribution, that is, In(y; — k) ~ N((;, 72),
and the systematic part f(z;,3) of the original model is still thought appropriate, the model becomes:

In(y; — k) = ¢ +vi = In(f(zi,8) — k) +v;, v ~N(0,7%) (2)
This model is estimated if 1nlsq(k) is specified.

If model (2) is correct, the variance of (y; — k) is proportional to (f(z;, 8) — k) 2, Probably the most common case is k = 0,
sometimes called “proportional errors” since the standard error of y; is proportional to its expectation, f(x;,/3). Assuming the
value of k is known, (2) is just another nonlinear model in § and it may be fitted as usual. However, we may wish to compare
the fit of (1) with that of (2) using the residual sum of squares or the deviance D, D = —2 X log-likelihood, from each model.
To do so, we must allow for the change in scale introduced by the log transformation.

Assuming, then, the y; to be normally distributed, Atkinson (1985, 85-87, 184), by considering the Jacobian []|01n(y; —
k)/0y;|, showed that multiplying both sides of (2) by the geometric mean of y; — k, ¥, gives residuals on the same scale as
those of y;. The geometric mean is given by

y' — 6n71 Zln(yi*k)

which is a constant for a given dataset. The residual deviance for (1) and for (2) may be expressed as
D(B) = (1 + In(2752))n (3)

where B is the maximum-likelihood estimate (MLE) of 3 for each model and n? is the RSS from (1), or that from (2) multiplied
by 92

Since (1) and (2) are models with different error structures but the same functional form, the arithmetic difference in their
RSS or deviances is not easily tested for statistical significance. However, if the deviance difference is “large” (> 4, say), one
would naturally prefer the model with the smaller deviance. Of course, the residuals for each model should be examined for
departures from assumptions (nonconstant variance, non-normality, serial correlations, etc.) in the usual way.

Example

Consider alternatively modeling
E(y;) = 1/(C + AeP™) (4)

E(1/y;) = E(y}) = C + AeP* (5)

where C, A, and B are parameters to be estimated. We will use the data (y,z) = (.04,5), (.06,12), (.08,25), (.1,35), (.15,42),
(:2,48), (:25,60), (.3,75), and (.5, 120) (Danuso 1991).

Model C A B RSS Deviance
4) 1.781 25.74 -.03926 -.001640 -51.95
(4) with 1n1sq(0) 1.799 2545 -.04051 -.001431 -53.18
5) 1.781 25.74 -.03926 8.197 24.70

(5) with 1n1sq(0) 1.799 27.45 -.04051 3.651 17.42

There is little to choose between the two versions of the logistic model (4), whereas for the exponential model (5) the fit using
1nlsq(0) is much better (a deviance difference of 7.28). The reciprocal transformation has introduced heteroscedasticity into
Y. which is countered by the proportional errors property of the lognormal distribution implicit in 1n1sq(0). The deviances are
not comparable between the logistic and exponential models because the change of scale has not been allowed for, although in
principle, it could be.

Weights

Weights are specified the usual way—analytic and frequency weights are supported; see [4] weights. Use of analytic weights
implies that the y; have different variances. Model (1) may therefore be rewritten

yi = f(xi, B) + uy, u; ~ N(0,0% /w;) (la)

where w; are (positive) weights, assumed known and normalized such that their sum equals the number of observations. The
residual deviance for (la) is

D(B) = (1+In(276?))n — Y In(w;) (3a)

16 Stata Technical Bulletin STB-7

(compare with equation 3), where
~ S\ 2
nG? = RSS = sz‘(yi — f(xl,,@))

Defining and fitting a model equivalent to (2) when weights have been specified as in (la) is not straightforward and has not
been attempted. Thus, deviances using and not using the 1nlsq() option may not be strictly comparable when analytic weights
(other than 0 and 1) are used.

Errors
nl will stop with error 196 if an error occurs in your nlfcn program and it will report the error code raised by nlfcn.

nl is reasonably robust to the inability of nlfcn to calculate predicted values for certain parameter values. nl assumes that
predicted values can be calculated at the initial value of the parameters. If this is not so, an error message is issued with return
code 480.

Thereafter, as nl changes the parameter values, it monitors nlfcn’s returned predictions for unexpected missing values. If
detected, n1 backs up. That is, nl finds a linear combination of the previous, known-to-be-good parameter vector and the new,
known-to-be-bad vector, a combination where the function can be evaluated, and continues its iterations from that point.

nl does require, however, that once a parameter vector is found where the predictions can be calculated, small changes to
the parameter vector can be made in order to calculate numeric derivatives. If a boundary is encountered at this point, an error
message is issued with return code 481.

When specifying 1nlsq(), an attempt to take logarithms of y; — k when y; < k results in an error message with return
code 482.

If iterate() iterations are performed and estimates still have not converged, results are presented with a warning and the
return code set to 430.

General comments on fitting nonlinear models

In many cases, achieving convergence is problematic. For example, a unique maximum-likelihood (minimum-RSS) solution
may not exist. A large literature exists on different algorithms that have been used, on strategies for obtaining good initial parameter
values, and on tricks for parameterizing the model to make its behavior as “linear-like” as possible. Selected references are
Kennedy and Gentle (1980, ch. 10) for computational matters, and Ross (1990) and Ratkowsky (1983) for all three aspects. Much
of Ross’s considerable experience is enshrined in the computer package MLP (Ross 1987), an invaluable resource. Ratkowsky’s
book is particularly clear and approachable, with useful discussion on the meaning and practical implications of “intrinsic” and
“parameter-effects” nonlinearity. An excellent general text, though (in places) not for the mathematically faint-hearted, is Gallant
(1987).

The success of nl will be enhanced if care is paid to the form of the model fitted, along the lines of Ratkowsky and Ross.
For example, Ratkowsky (1983, 49-59) analyses three possible 3-parameter “yield-density” models for plant growth:

(a 4 ﬂxi)—l/e
E(y;) = q (a+ Bz +yaf)™!
(a + Baf) ™
All three models give similar fits. However, he shows that the second formulation is dramatically more “linear-like” than the other
two and therefore has better convergence properties. In addition, the parameter estimates are virtually unbiased and normally
distributed and the asymptotic approximation to the standard errors, correlations and confidence intervals is much more accurate

than for the other models. Even within a given model, the way the parameters are expressed (e.g., ¢ or €?77) affects the degree
of linear-like behavior.

My advice is that even if you cannot get a particular model to converge, don’t give up. Experiment with different ways of
writing it or with slightly different alternative models that also fit well.

More on nifcns
Note that the syntax for nl is

nl fen depvar [varlist] [.] [, fcn_options]

The syntax for an nlfcn is

Stata Technical Bulletin 17

nifen {varname | 7} [varlist] [, fen_options]

The varlist, if specified with n1, will be passed to nlfcn along with any options not intended for nl. Thus, it is possible to write
nlfcns that are quite general.

When nlfcen is called with a ?, the varlist and fcn_options, if any, are still passed. In addition, $S_E_depv contains the
identity of the dependent variable; $S_E_if and $S_E_in contain the if exp and in range specified on the n1 command line;
and $S_E_wgt and $S_E_exp contain the weight and expression.

nlfcn is required to post the names of the parameters to S_1 and to provide default initial values for all the parameters. In
addition, it may post up to two titles in S_2 and S_3 that will be subsequently used to title the output. The S_E_ macros provide
useful information for filling in titles and generating initial parameters estimates.

When nlfcn is called without a ?, it is required to calculate the predicted values conditional on the current value of the
parameters. Note that nlfcn is not required to process if exp or in range. Restriction to the estimation sample will be handled
by nl.

Thus, at the beginning of this insert, I gave an example for calculating a negative-exponential growth model. A better
version of the nlfcn would have been

program define nlnexpgr
if Il‘l’ll == ll?ll {
mac def S_1 "BO B1"
mac def BO=1
mac def Bil=.1
mac def S_2 "negative-exp. growth"
mac def S_3 "$S_E_depv = BO*(1l-exp(-B1*-27))"
exit
}
replace ~1°=$BO*(1-exp(-$B1*>2°))
end

This version would title the output and allow the independent variable to be specified on the n1 command line:
. nl nexpgr y xval

An even more sophisticated version of nlnexpgr might use S_E_depv, “2°, S_E_if, and S_E_in to generate more reasonable
starting values of BO and B1.

nlinit
nlinit is intended for use by nlfcns. Its syntax is
nlinit # parameter_list

nlinit initializes each parameter in parameter_list to contain #. For example:

nlinit O A

B C
nlinit 1 D E

Saved Results

nl saves in the system S_# macros:

S_1 number of observations S_7 R-square

S_2 model sum of squares S8 adjusted R-square

S_3 model degrees of freedom S_9 residual root mean square

S_4 residual sum of squares S_10 residual deviance

S_5 residual degrees of freedom S_11 geometric mean (y—k)? if 1nlsq(), otherwise 1
S_6 model F statistic S_12 0 if convergence failed, otherwise 1

Note that S_1 through S_9 correspond to the successive elements of _result () following regress; see [Ss] regress.

The final parameter estimates are available in the parameter macros defined by nlfcn. The standard errors of the parameters
are available through _se [parameter]; see [2] coefficients.

nlpred and nlinit save nothing in S_# macros or _result ().

18 Stata Technical Bulletin STB-7

References

Atkinson, A. C. 1985. Plots, Transformations and Regression. Oxford: Oxford Science Publications.

Danuso, F. 1991. sgl: Nonlinear regression command. Stata Technical Bulletin 1: 17-19.

Gallant, A. R. 1987. Nonlinear Statistical Models. New York: John Wiley & Sons.

Goldstein, R. 1992. srd7: Adjusted summary statistics for logarithmic regressions. Stata Technical Bulletin 5: 17-21.
Kennedy, W. J., Jr. and J. E. Gentle. 1980. Statistical Computing. New York: Marcel Dekker.

Ratkowsky, D. A. 1983. Nonlinear Regression Modeling. New York: Marcel Dekker.

Ross, G. J. A. 1987. MLP User Manual, release 3.08. Oxford: Numerical Algorithms Group.

—— 1990. Nonlinear Estimation. New York: Springer-Verlag.

SAS Institute Inc. 1985. SAS User’s Guide: Statistics, Version 5 Edition. Cary, NC.

sqv3 Wald and Atkinson’s R extensions to logistic

Joseph Hilbe, Editor, STB, FAX 602-860-1446

Wald and Atkinson’s partial correlation statistics for logistic regression were provided in the previously published lo-
giodd2.ado command (Hilbe 1991). The new 3.0 logistic command does not incorporate these statistics; hence, I have
provided an extension to logistic called 1wald. Type 1lwald after using logistic as you would other extensions, for example
1fit, 1stat and so forth. No variable names or options are required. The following results are provided for each coefficient
in the model: Wald statistic, x? significance of Wald, and Atkinson’s R (partial correlation).

A variable’s R value is reported as 0.000 if its Wald statistic is less than 2 (see Atkinson 1980). Moreover, negative
coefficients are given negative R values. I have not included any adjustment for categorical variables, although creation of
appropriate design or indicator variables using tab var, gen(var) should solve the problem.

I advise caution when using Wald’s test p-values—or t-test p-values, for that matter—when selecting variables for fitting a
model. Wald’s test proves erratic if there is collinearity between predictors or if there exists extreme values for the coefficients.
In general, use of the likelihood-ratio test is preferable and more robust when selecting model predictors.

The basic formula for calculating the Wald statistic is

2
Wald; = < a >
oB;

where

Atkinson’s R is calculated as

where [is the intercept log likelihood.

lwald ado and help files are found on the STB diskette.

References
Atkinson, A. C. 1980. A note on the generalized information criterion for choice of a model. Biometrika 67: 413-418.

Hilbe, J. 1991. sqv1.3: An enhanced logistic regression program. Stata Technical Bulletin 4: 16-18.

sts2 Using Stata for time series analysis

Sean Becketti, Federal Reserve Bank of Kansas City
[The programs reported here, and included on the STB-7 diskette, require Stata 3.0—Ed.]

1. Introduction

Many Stata users switch to another software package for time series analysis. Some switch because they require specialized
tests or procedures not readily available in Stata. Others switch because they believe a software package designed to handle time
series will be more convenient to use than Stata.

Stata Technical Bulletin 19

In fact, Stata is well-adapted to performing time series analyses including fairly sophisticated statistical tests. I routinely
use Stata for analyses that others tell me can be performed only by such programs as PC-GIVE, RATS, SAS, or TSP. In my opinion,
Stata’s data handling capabilities and powerful programming tools make it the equal, if not the better, of these more-specialized
programs.

This article presents a set of ado-files for time series analysis. The next section presents six simple utility programs that
are generally useful for time series applications. The following sections present three Stata programs for particular time series
applications. The sequence moves from the simplest, most frequently used program to programs that perform more advanced
analyses. These programs demonstrate Stata’s ability to perform time series analysis. However, this suite of programs does not
cover all, or even most, of the needs of a practicing time series analyst. Extensions to this suite are discussed, some of which
may appear in later STBS.

No program is perfect, and there are enhancements that would make Stata even more useful for time series analysis. Some of
the changes are modest and could easily be incorporated in a future upgrade. Other changes are more ambitious, and Stata users
may well disagree on their design. The final section of this article discusses some suggested enhancements. It is my hope that
other Stata users will consider these suggestions and communicate their comments and criticisms to the STB. Such an exchange
may encourage the developers of Stata to incorporate some of the more important of these enhancements.

2. Utility programs for lags, differences, and growth

2.1 lag, lead, and dif

The lag operator, L, and the difference operator, A, are used extensively in time series analysis. The lag operator is defined
by the relation
Ly = x4,

that is, the lag of the variable x in period ¢ is the variable x in period ¢ — 1. Variables can be lagged more than one time period
by applying the lag operator multiple times, thus

Lz, = L(Lay) = x4,
and
LFx, = Lkil(Lwt) = Ti_k.

In other words, L*z; is the k-th lag of x.

The difference operator can be defined in terms of the lag operator:
Az =(1—L)xy =24 — x4 1.

Thus the first difference of =, Axy, is the arithmetic difference between x in period ¢ and z in period ¢t — 1. The difference
operator can be composed in the same way as the lag operator:

Az.’L't = A(A.’L‘t) =Tt — 2$t,1 + Ty 2.

Note that
A2.Tt 7é Tt — Tg_2.

From these definitions, it is clear that Stata can easily generate lags and differences of series. For example, to create the
first lag of the Gross National Product (GNP), we could type

. generate gnplag = gnp[.n-1]
and to create the first difference of GNP, we could type
. generate gnpdif = gnp - gnp[.n-1]

However it would be tedious to have to type all the commands needed to generate the many lags of variables used in a typical
time series analysis. Moreover, it is useful to be able to generate arbitrary lags and differences from within Stata programs. The
lag and dif programs address these needs.

The lag and dif programs are so simple, it is probably better to demonstrate them than to explain them. Thus:

20 Stata Technical Bulletin STB-7

. describe

Contains data from gnp.dta

Obs: 160 (max= 5068) Quarterly data on GNP
Vars: 4 (max= 99)
Width: 12 (max= 200)
1. year int %8.0g Year
2. quarter int %8.0g quarter Quarter
3. date float %9.0g Date
4. gnp float %9.0g GNP
Sorted by: year quarter
. lag 4 gnp
. describe

Contains data from gnp.dta

Obs: 160 (max= 5068) Quarterly data on GNP
Vars: 8 (max= 99)
Width: 28 (max= 200)
1. year int %8.0g Year
2. quarter int %8.0g quarter Quarter
3. date float %9.0g Date
4. gnp float %9.0g GNP
5. L.gnp float %9.0g L.gnp
6. L2.gnp float %9.0g L2.gnp
7. L3.gnp float %9.0g L3.gnp
8. L4.gnp float %9.0g L4.gnp

Sorted by: year quarter
Note: Data has changed since last save

. dif gnp
. describe

Contains data from gnp.dta

Obs: 160 (max= 5068) Quarterly data on GNP
Vars: 9 (max= 99)
Width: 32 (max= 200)
1. year int %8.0g Year
2. quarter int %8.0g quarter Quarter
3. date float %9.0g Date
4. gnp float %9.0g GNP
5. L.gnp float %9.0g L.gnp
6. L2.gnp float %9.0g L2.gnp
7. L3.gnp float %9.0g L3.gnp
8. L4.gnp float %9.0g L4.gnp
9. D.gnp float %9.0g D.gnp

Sorted by: year quarter
Note: Data has changed since last save

. lag 2 D.gnp
. describe

Contains data from gnp.dta

Obs: 160 (max= 5067) Quarterly data on GNP
Vars: 11 (max= 99)
Width: 40 (max= 200)
1. year int %8.0g Year
2. quarter int %8.0g quarter Quarter
3. date float %9.0g Date
4. gnp float %9.0g GNP
5. L.gnp float %9.0g L.gnp
6. L2.gnp float %9.0g L2.gnp
7. L3.gnp float %9.0g L3.gnp
8. L4.gnp float %9.0g L4.gnp
9. D.gnp float %9.0g D.gnp
10. LD.gnp float %9.0g LD.gnp
11. L2D.gnp float %9.0g L2D.gnp

Sorted by: year quarter
Note: Data has changed since last save

Note that lag can generate many new variables while dif always generates exactly one new variable. In addition to lag, I
have also written lead. ‘lead 2 gnp’ creates F.gnp and F2.gnp, but so will ‘lag -2 gnp’. (‘lead -2 gnp’ will do the same
thing as ‘lag 2 gnp’, t00.)

Stata Technical Bulletin 21

The syntax of these three commands is

lag [#] varname [, suffix(string)]
lead [#] varname [, suffix(string)]
dif [#] varname [, suffix(string)]

In all commands, if # is not specified, 1 is assumed. lag and lead create variable names like L.gnp, L2.gnp, L3.gnp, ...,
F.gnp, F2.gnp, ..., and dif creates variable names like D.gnp, D2.gnp, and so on.

All commands have a suffix option that allows replacing the variable name with an arbitrary suffix. For example, ‘lag
2 gnp, suffix(x)’ generates the variables called L.x and L2.x. This is useful in programs.

Useful conventions

In order for this suite of time series programs to work together smoothly, a number of conventions must be adopted. The
conventions I have adopted are

1. The use of capital letters (such as L for lag) to denote operators;
2. The exclusive use of a period to separate operators from variable names.

There are a number of different conventions I could have adopted for naming lags and differences of variables. After a bit of
experimentation, I settled on the current convention. My use of period allowed me to write another command, dropoper, that
drops all variables that have an embedded period. Such derived variables have a way of accumulating in a data set, but with
lag, lead, and dif, they are easily reconstructed so there is no reason why they shouldn’t be easily eliminated. Moreover, the
convention allows programs like 1lag and lead to drop variables freely. Typing ‘lag gnp’ produces L.gnp. If, later, I decide I
need two lags, ‘lag 2 gnp’ knows it can drop L. gnp and recreate it because the convention makes clean the variable’s derivation.
And, it turns out that attaching a prefix rather than a suffix to the original variable name simplifies some of the programs that
use lag and dif.

Another simple time series program that benefits from the adoption of sensible conventions is a program to calculate growth
rates. Many of my colleagues have written short Stata programs to generate the growth rate of a variable. Program authors
must decide which growth rate formula they prefer, whether to express the growth rates as a fraction or as a percent (fractions
are more useful in succeeding calculations while percents are easier to read), and whether to annualize the growth rates. For
example, one way to calculate an annual growth rate for quarterly GNP is

. generate ggnp = 4 * (log(gnp) - log(gnp[n-1])
Alternatively,
. generate ggnp = (gnp/gnp[n-11)"4 -1

The ‘4’ in these formulas is the appropriate factor for converting quarterly to annual growth rates. Since you are unlikely to use
only quarterly data, it would be nice to have a program that annualized growth rates for any time series frequency. An obvious
solution would be to pass the factor as an option. For example,

. growth gnp, period(4)

might generate G.gnp, the annualized growth rate of quarterly GNP. A more useful convention is to define a system macro, say
S_PERIOD, that indicates the data frequency. Thus

macro define S_PERIOD "quarter"

indicates the current data set contains quarterly data. This macro can be used by any time series program that needs to know or
to set the data frequency.

In fact, this worked out so well that, with more work, I wrote a period command to hide the fact that S_PERIOD needed
to be set. My period command has the syntax

period { # | word | # word }
where word is annual (corresponding to # = 1), semiannual (corresponding to 2), quarterly (4), monthly (12), weekly

(52), and daily (325).

Thus, I can type ‘period 4’ or ‘period quarterly’ to indicate that my data is quarterly. In case I did not anticipate all
my needs, I could even type ‘period 1 hourly’ to say that each observation corresponds to an hour of the day, or ‘period
24 hourly’, which again indicates hourly data, but that, in general, I want rates normalized to daily rates.

22 Stata Technical Bulletin STB-7

Once the period is set, the growth command can be used without options. The syntax of growth is
growth varname [, period(#) ma(#) noannual log percent]

The period() option is an alternative to specifying period ahead of time; I never use it. ma() generates moving averages;
so with quarterly data, I can type ‘growth gnp’ to obtain quarterly growth in GNP normalized to annualized rates, or ‘growth
gnp, ma(4)’ to obtain the moving average yearly rates. In either case, the resulting variable is called G.gnp. growth, like lag,
lead, and dif, is quite willing to replace the G.gnp variable.

3. A common problem: finding the optimal lag length

A practical problem in time series analysis is determining the appropriate number of lags of a variable to include in an
equation. This problem is a special case of the problem of selecting the best set of regressors, and some of the tests developed
for this problem are also helpful in determining optimal lag length.

Formally, we want to estimate the equation

A(L)yy = o+ Brxre + - .. + Brre + €

where A(L) is a polynomial in the lag operator, that is,
ALy, =(1 —oyL —apl? — ... — a, LP)y,
=Yt —1Yt—1 — Q2Yt—2 — ... — QpYt—p.

Expanding A(L) in the original equation and rearranging terms gives

Yt = Q1Yp—1+ ... Fopyi—p + Bo + Bizie + ...+ BrTre + &

While theory may suggest the set of z’s that should enter this equation, it is rare that theory indicates p, the appropriate
lag length. If too few lags are included, estimates of the coefficients will be inconsistent. If too many lags are included, the
estimates will be inefficient.

findlag calculates the optimal values of p suggested by four widely used statistics: the root mean squared error (RMSE)
of the estimated regression, Akaike’s Information Criterion (AIC), Amemiya’s Prediction Criterion (PC), and Schwarz’s Criterion
(SC). (Judge et. al. 1985, contains an excellent discussion of these criteria.)

For example, the following commands could be used to help determine the appropriate specification for a simple autoregression
of the log of GNP.

. generate lgnp = log(gnp)

(29 missing values generated)

. findlag lgnp

RMSE AIC PC sSC (obs=127)

3 3 3 2

In this example, one to four lags of log GNP are tried in the equation
A(L)log GNP; = ¢;.

For each of the five estimated equations, the four statistics are calculated and the lag lengths that produced the optimal values
of each statistic are reported. In this example, the Schwarz Criterion favors two lags while the other statistics indicate that three
lags are required.

findlag has other options not shown in this example. Typing help findlag will display an explanation of them. It is
worth noting that findlag uses lag.

4. The problem of nonstationarity: unit roots and cointegration

The majority of time series statistical techniques can be applied only to stationary variables. The concept of stationarity can
be a little abstract. For most purposes, the simpler property of covariance stationarity will serve. (See Box and Jenkins 1976 or
Granger and Newbold 1977 for a more rigorous explanation of stationarity.) A time series xz; is covariance stationary if

Exy=p

Stata Technical Bulletin 23

and
E(ze — p)(@e-k — p) = Ya-
In plain English, z; is covariance stationary (or just stationary, for short) if its mean is constant and if the covariance between x

and the k-th lag of x (called the k-th autocovariance of x and denoted by %) depends only on k, the distance in time between
Tt and Tt—k-

A moment’s reflection reveals that many interesting time series are nonstationary. For example, GNP does not have a constant
mean. Rather it grows more or less steadily over time. This is true of most economic time series and most population measures.
Even per capita measures of economic variables tend to grow steadily as societies become more affluent over time. Although
many interesting variables are nonstationary in the sense of trending steadily up or down, the growth rates (or log first differences)
of many of these variables are often stationary. Thus these stationary growth rates can be analyzed using standard time series
techniques.

Stationarity is such a crucial characteristic that almost all time series analyses begin by checking variables for stationarity.
A way of characterizing nonstationary variables that is convenient for testing is in terms of unit roots. If a time series can be
modeled as
A(L).’I)t = €¢

and €; is white noise (that is, a serially uncorrelated, stationary disturbance), then x; is stationary if and only if the roots of the
equation
0=A(z)

:>0:17a127a2227...7apzp
are greater than one in modulus. If there are any unit roots, that is, if z = 1 is a root of this equation, then z; is nonstationary.

There are a number of ways to check for stationarity. You can inspect a timeplot of the variable to see if it “looks”
stationary. Alternatively, you can plot the autocorrelations and partial autocorrelations of the variable to see if they decay rapidly
enough to indicate stationarity. (The stsl programs ac and pac, Becketti 1992, produce these charts; I have updated them for
this submission; see the on-line help.) Finally, you can test the hypothesis that A(L) contains a unit root. (Dickey and Fuller
1979 pioneered formal tests for unit roots. Engle and Granger 1987 develop the related concept of cointegration which will be
discussed below. Engle and Yoo 1987 provide useful tables of critical values for tests of both unit roots and cointegration.)

Let’s consider the simplest possible case. The null hypothesis is that the time series x; follows a random walk, that is,
Ty = Tp_1 + €.
The alternative hypothesis is that x; follows a stationary first-order autoregression
Ty = pTi—1 + €

where |p| < 1. The null hypothesis can be restated as p = 1 which implies that x; has a unit root. By subtracting z; 1 from
both sides of this equation, we obtain
Azy = (p— 1)z4-1 + €.

—

The so-called Dickey—Fuller test estimates this equation by ordinary least squares and tests the null hypothesis (p — 1) =0

— —

against the alternative hypothesis (p — 1) < 0. The test statistic is the t-statistic on the estimated coefficient (p — 1). This
statistic has a non-standard distribution under the null hypothesis. Critical values for the Dickey—Fuller statistic are tabulated
in the articles by Dickey and Fuller and by Engle and Yoo. In some cases, the appropriate test statistic is derived from the
regression

A(L)Azy = (p— Dap—1 + €.

dickey calculates the Dickey—Fuller test. As an example, let’s test whether the log of GNP has a unit root.

. dickey lgnp
(obs=130, constant, no trend)
Lags tau

RMSE AIC PC SC (obs=126)

2 2 2 0

24 Stata Technical Bulletin STB-7

In order to reject the null hypothesis of a unit root at the 5 percent level, the test statistic tau should be less than —2.89.
Thus, in this example, we cannot reject the hypothesis that the log of GNP is nonstationary. Note that dickey calls findlag to
determine how many lags of Ax; should be included in the Dickey—Fuller regression.

The final time series concept we will consider in this article is cointegration. Regressions between nonstationary variables
are known to give spurious results: this is one of the reasons time series analysts check so carefully for stationarity before
proceeding in an analysis. However, theory often suggests that some combinations of nonstationary variables should not drift
too far apart. For example, some theories indicate that the money supply and the price level should have a definite relationship
on average even though both these variables are nonstationary. Formally, nonstationary variables are cointegrated if a linear
combination of the variables is stationary. Just as univariate time series analysis begins with tests for stationarity, multivariate
time series analysis begins with cointegration tests.

coint performs the Engle—Granger test for cointegration. For this test, the null hypothesis is that the variables are not
cointegrated. To run the test, a regression is run with one of the variables chosen as the left-hand-side variable. Then a Dickey—
Fuller test is run on the estimated residuals from this initial regression. (Critical values for the cointegration test are in Engle
and Yoo 1987.)

Many asset prices are closely linked by arbitrage even though none of the asset prices in isolation is stationary. The following
listing illustrates the use of coint and shows that the prime rate and the 3-month Treasury bill yield are cointegrated.

. describe

Contains data from interest.dta

Obs: 877 (max= 5186) Monthly data on interest rates
Vars: 5 (max= 99)

1. year int %8.0g Year

2. month int %8.0g month Month

3. date float %9.0g Date

4. rprime float %9.0g Prime rate

5. rtb3 float %9.0g 3-month T-bill yield

Sorted by: year month
. dickey rprime

(obs=515, constant, no trend)
Lags tau

RMSE AIC PC SC (obs=511)

. dickey rtb3

(obs=696, constant, no trend)
Lags tau

RMSE AIC PC sSC (obs=692)

2 2 2 2

. coint rprime rtb3

(obs=515, constant, no trend)
Lags tau

RMSE AIC PC SC (obs=511)

Stata Technical Bulletin 25

The 5 percent critical value for this test is —3.37; thus, the test clearly rejects the null hypothesis of no cointegration.

5. Some suggested enhancements to Stata

The sections above illustrate just a few of the time series tools that Stata can provide. Other techniques I have incorporated
in my library of Stata ado-files include programs for exponential smoothing, Cochrane—Orcutt correction of serial correlation,
and estimation under autoregressive conditional heteroscedasticity (ARCH). This list can easily be extended without undue effort.

Nonetheless, aspects of Stata do make it more difficult than I’d like to handle time series. This section lists some of these
problems along with some suggested enhancements to overcome these problems.

5.1 Date formats: a simple but amazing useful enhancement

One of the most frustrating gaps in Stata is the lack of date formats. The single most frequently used time series technique is
to graph one or more series against time. Currently, Stata comes with a number of useful programs for creating and manipulating
date variables. However, Stata contains no way to format these date variables for use in graphs or listings. My rough and ready
solution is to create a variable called date that serves this purpose. For monthly data, I type

. generate date = year-1900 + (month-1)/12
and for quarterly data I use
. generate date = year-1900 + (quarter-1)/4

This is a stopgap, but it is better than nothing. All this rigmarole could be avoided if Stata defined date formats that would
display the current date variables in a form readable by humans. Nothing fundamental in Stata would be affected by this change.

5.2 Expanded variable lists: a more ambitious enhancement

An obvious disadvantage of the 1ag program is the number of extra variables it creates. Typically these lags are needed only
for one or two calculations. Furthermore these lags are easily calculated from the original variable at any step of the calculations.
More subtle but equally important, it is impossible to construct dynamic forecasts with predict because the lagged forecasts
are not used, that is, the temporal connection between the lagged variables and the current values is obscured.

Both these problems, and several others, could be solved if the notion of a variable list in Stata were expanded. Currently,
a variable list must contain either all new variables or all existing variables. A more useful notation for lists of existing variables
would allow (non-existent) leads and lags of existing variables to be included.

There are a number of complications that must be considered in designing the syntax for expanded variable lists. Without
confronting them now, let me illustrate the idea with a simple example. In an improved Stata, we might be able to type

.regressyL.yL2.yxzL.zL2.z
or, even better,
. regress y-L2.y x z-L2.z

For more complicated examples than this one, some notation such as this would both reduce typing and conserve variable storage
space. More importantly, Stata commands could recognize and exploit the temporal connections between the coefficients on the
y’s (and the z’s) when constructing forecasts and test statistics.

5.3 Shoot the moon: linking Stata to a matrix language

Stata’s multiple equation estimation techniques and matrix calculations are limited. Many modern approaches rely on systems
estimation, matrix corrections to covariance matrices, and the like. All these could easily be accommodated without changing
Stata if Stata’s data sets and calculations could be linked to some other matrix programming language (MPL). If ado-files could
offload these calculations to an MPL, then utilize the output from the MPL within Stata, Stata would essentially have no limits at
all.

6. Call for comments

This article highlights the perspective of a generally happy, though sometimes frustrated Stata user. While I have a high
regard for my own opinion, Stata will develop more productively if others contribute to the debate over useful programming
conventions and future enhancements. I look forward to reading such contributions in future issues of the STB.

26 Stata Technical Bulletin STB-7

7. Summary of submitted programs

ac Display correlogram growth Generate growth rate

coint Test for cointegration lag Generate lags

dickey Test for unit root lead Generate leads

dif Generate differences pac Display partial autocorrelation plot
dropoper Drop operator variables period Set period of time series data

findlag Find optimal lag length

8. References
Becketti, S. 1992. stsl: Autocorrelation and partial autocorrelation graphs. Stata Technical Bulletin 5: 27-28.
Box, G. E. P. and G. M. Jenkins. 1976. Time Series Analysis: Forecasting and Control. revised ed. Oakland, CA: Holden—Day.

Dickey, D. A. and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical
Association 74: 427-31.

Engle, R. F. and C. W. J. Granger. 1987. Cointegration and error correction: Representation, estimation, and testing. Econometrica 55(2): 251-76.
Engle, R. F. and B. S. Yoo. 1987. Forecasting and testing in co-integrated systems. Journal of Econometrics 35(1): 143-159.
Granger, C. W. J. and P. Newbold. 1977. Forecasting Economic Time Series. Academic Press.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Liitkepohl, and Tsoung-Chao Lee. 1985. The Theory and Practice of Econometrics. 2d ed. New York:
John Wiley & Sons.

tt4 Teaching ecology with Stata

James Taylor, Department of Zoology, University of New Hampshire

As noted in ttl, (Anagnoson and DeLeon 1991) and tt2 (Macy 1991), the pedagogical use of computer programs for
statistical analysis presents many problems. If program access is a “user friendly” graphical interface or menu, students are
prone to proudly submit totally inappropriate analyses (e.g., a fifth-order polynomial fitted to a simple allometric relationship.)
With more conventional access, all but the simplest procedures require cookbook recipes of cryptic commands and options all
too susceptible to frustrating errors (a ‘1’ for an ‘1", etc.) To a student, all statistics packages spew out a bewildering array of
numbers, many of which are not germane to introductory level interpretation, and some of which are not strictly comparable
(see 3 below for an example.) Finally, many discipline-specific analyses may require special tricks to get a general package to
perform them.

All of these problems have arisen in our General Ecology laboratory, in which I and my associate attempt to get students
to “do science” by recording and interpreting their own observations. As in the standard classic experiments approach, the
methodology for each exercise is carefully defined. Our approach differs from the classic approach, in which a known result is to
be obtained, in that there is no one correct result; students must interpret their own data in the light of competing hypotheses. In
any one laboratory section, results and their correct interpretation may vary widely. We believe that our emphasis on interpretation
closely approximates the way real ecologists work. We do have the advantage of having computers in the laboratory, so students
can move from observation to analysis with assistance nearby.

We rely heavily on Stata’s graphics to aid the students, as we emphasize graphing as the first step in exploratory data
analysis. We also introduce a few rudimentary statistics. However, as a review in the Bulletin of the Ecological Society of
America recently pointed out, Stata is more of a programming language than a statistical package, and initial efforts with raw
Stata, in menu or command line form, were not well received by students. Our solution was to write a series of ado-programs
that achieve the following goals:

1. Combine several procedures into a single command. For example, fitline.ado computes regression statistics, graphs a
linear regression, and displays the regression equation, R-squared, and significance level on the graph.

2. Selectively display the few statistics emphasized in the course. For example, variance is a statistic used throughout the
course; it’s very simple to write an ado-file that adds variance to the statistics displayed by the summarize command, and
avoid the bewildering detail of summarize, detail. Also, fitline.ado displays a few pertinent regression statistics
right on the graph, without the detail produced with the regress command.

3. Correctly calculate statistics for comparative purposes. For example, fitpower.ado graphs a power curve using antilogs
of the predicted values from linear regression of log-transformed data. It also calculates the R-squared for the fit of the
nonlinear regression (which is not the same as the fit of the linear regression on log-transformed data.) This R-squared is
directly comparable with that displayed by fitline.ado for the linear regression on the same data, and fits of the two
models to the same data can be compared.

Stata Technical Bulletin 27

4. Make arcane commands more intuitive. For example,
. display exp(n)
means nothing to most students; they do understand
. antilogn
which calls the antilog.ado file encapsulating display exp(*1°).

5. Implement discipline-specific analyses. In ecology, species-area and dominance-diversity curves are important tools.
esarea.ado and domdiver.ado produce these graphs.

6. Make arcane options, such as axes maxima and labels, interactive. For example, careful comparison of different species-area
or dominance-diversity graphs requires use of common axes maxima. The following ado-file for species-area curves illustrates
interactive requests for input of axes maxima, as well as for an informative title. Note that defaults are provided for each
choice. In all fairness, note also that the program name is as cryptic as any Stata command, even if one knows that S is a
common symbol for species richness.

* Draw species-area curve
program define esarea
version 3.0
ok ok CLEAR DUMMY VARIABLES
capture drop V1
capture drop V2
capture drop V3
*kok DEFINE VARIABLES & STANDARD AXIS LABELS
local varlist "required existing max(1)"
local options "*"
parse ll‘*’ll
parse "“varlist”", parse(" ")
local a "1l1(Cumulative Number of Species)"
local b "b2(Number of Samples/ Relative Area Sampled)"
local c "bl(Species-Area Curve)"
generate V2=sum(*1°)
*okk ENTER AXIS MAXIMA

di
di "To control scale of the X-axis, enter a maximum value (must be >" _N ")"
di " OR Press <Enter> to let STATA select X-axis scales."

di "Enter X-axis maximum (or press <Enter>)..." _r(_xmax)
di
di "To control scale of the Y-axis, enter a maximum value (>" V2[_N] ")"
di " OR Press <Enter> to let STATA select Y-axis scales."
di "Enter Y-axis maximum (or press <Enter>)..." _r(_ymax)
* ok k USE DEFAULT MAXIMA, if necessary
if "“xmax "=="" { local xmax=_N }
if "“ymax“"=="" { local ymax =V2[_N] }
confirm number °xmax”
confirm number ymax~
*okk GET GRAPH TITLE
di
di "Enter a title to label this graph,"
di " OR press <Enter> to use " in red " %-1 " in white " as a label."
di "Title..." _r(_label)
di
if "“label”"=="" { local label "“1°" }
local label "t2(“label”)"
*okok ANCHOR X-AXIS AT O, by adding a null observation.
local d=_N+1
quietly {
set obs “d-
generate Vi=_n-1
generate V3=V2[_n-1]
replace V3=0 if _n==1
}
*okok GRAPH WITH INTERACTIVES “label”, “xmax”, and “ymax~

gr V3 Vi, c(1) xla yla xscale(0, xmax”) yscale(0, ymax”) “a” “b° ~c¢” “label” “options~
drop V1 V2 V3
capture drop in 1

end

By making it easier for students to get appropriate results, and leaving less opportunity for inappropriate analysis, more time
can be spent actually examining the results and thinking about what they mean. The use of original data makes the exercises

28 Stata Technical Bulletin STB-7

more than cookbook procedures. We see no merit in teaching Stata (or any other) syntax to students. It is familiarity with
some basic tools of analysis that we wish to teach, and Stata is just a means of providing those tools.

References
Anagnoson, T. and R. DeLeon. 1991. ttl: Teaching beginning students with Stata. Stata Technical Bulletin 4: 27-28.
Macy, M. 1991. tt2: Using “front-ends” for Stata. Stata Technical Bulletin 4: 28.

tt5 Simple chemical equilibrium

Paul Geiger, USC School of Medicine, pgeiger@vm.usc.edu

Equilibrium considerations in chemical reactivity determine the direction of a chemical reaction. These considerations are
important in industrial processes as well as in understanding biochemical processes in cellular metabolism. The smaller the
equilibrium constant, K4, the less the product derived from the reactants.

Consider a simple reaction of the type
A+B=C+D

where reactants are placed on the left of the double arrows and products are to the right in the scheme.
By chemical convention, the equilibrium constant has the form

_ [Cleg[Dleg
Jeq[Bleq

where [Aleq, [Bleg> [Cleq> and [D]eq are the concentrations of A, B, C, and D at equilibrium.

If the initial concentrations (at time zero) of A, B, C, and D are denoted by [A],, [Blo, [C],, and [D], and the change
in concentration that occurs to reach equilibrium is designated x, the following equations express concentrations at equilibrium:

[Aleq = ([A]o —)
[Bleq = ([Blo —)
[Cleq = ([Clo + @)
[Dleq = ([D]o +)

Substituting these values into the equation for K4, multiplying and rearranging leads to the quadratic equation:
(1= Keg)z® + ([Clo + [Dlo + Keg[Alo + Keg[Blo)a + [Clo[Dlo — KeglAlo[Blo = 0
In order to make a do-file to carry out calculations with the quadratic formula let:

a=1- K
b=[Clo+ [Dlo + KeqlAlo + Keq[Blo
[C]O[D]o - Keq[A]O[B]o

c

Solving for = in x = (—b & sqrt(b? — 4ac))/2a gives a pair of roots, but only the positive solution makes chemical sense.
Calculation of a, b, and ¢ need not be done separately but may help in teaching, particularly when a spreadsheet is used as in
Atkinson et al. 1987.

The do-file equil.do supplied on the disk, generates a, b, c, x and Aeq, Beq, Ceq, Deq and x_Ao, from the variables Ao,
Bo, Co, Do, and Keq provided in the file equil.dta. The calculated ratio, x/A, (Stata variable x_Ao), provides the fraction of
[A], converted when various starting concentrations for reactants have been assumed. Of course, starting values can be typed
in using the input command or generated using the range command. The infile command is used if a table of values has
already been made using an editor.

Running the do-file after selecting the equil.dta file or typing in the K., and values for the reactants at time zero
(Keq, Ao, Bo, Co, Do) allows the student to explore equilibrium easily and quickly and see how a reaction might be driven to
completion or nearly so. The left half of the following table illustrates starting conditions with K., = 0.01 and with [A], and
[B], supplied but no products present, that is, a reaction unfavorable to making products from reactants. The right half shows
equilibrium conditions and x_Ao (z/A,), the fraction of [A], converted, say, to [C]e,.

Stata Technical Bulletin 29

Key Ao Bo Co Do Aeq Beq Ceq Deq x_Ao

.01 1 1 0 0 .91 .91 .09 .09 .09
.01 1 20 0 0 .64 19.6 .36 .36 .36
.01 1 40 0 0 .54 39.5 .46 .46 .46
.01 1 60 0 0 .47 59.5 .53 .53 .53
.01 1 80 0 0 .42 79.4 .58 .58 .58
.01 1 100 0 0 .38 99.4 .62 .62 .62

With up to 100 times more starting reactant B supplied, A has been forced to yield 62% product from reactant. A graph of Ceq
vs. Bo illustrates how product tapers off even if 100 times more of reactant B than A is supplied (in Stata, type graph using
equil, graph supplied on disk).

Now suppose that we desire to make C from A and that A is very expensive relative to B. A naive chemist might think,
at first blush, to increase the concentration of A. The Stata user can check this method quickly by reversing the values of Ao
and Bo from the table. The fraction of A converted, x_Ao, will be only 0.006. True, the absolute amount will be the same, but
the chemist will have used 100 times more of an expensive starting material to get the same amount of product.

What about the influence of K.,? This can be explored by changing all Bo values, say, to 100 and supplying a range of
Keq values and then running the do-file. For instance, if K., = 0.1, ten times greater than before, the yield of [C]., rises to
0.92 if [A], =1 and [B], = 100, and so forth.

Other explorations of changes in the starting mix can also be made. Suppose there were contaminants, [C], and/or [D],,
in the starting materials? This situation also easily yields to Stata and the chemist user (exercise left to the reader). For instance,
find the effect of the ratio of [B], to [D], on the conversion of A (valuable, remember) to C'.

In biochemical systems, the problem of product build-up and the consequent reaction slowing with approach to equilibrium
is often obviated by product removal. For instance, in the important energy yielding reaction system of glycolysis the enzyme
aldolase produces glyceraldehyde phosphate and dihydroxyacetone phosphate from fructose-1,6-bis-phosphate, K., = 10~%. The
direction of equilibrium favors the fructose bis-phosphate (backward direction) but glyceraldehyde phosphate is removed by
oxidation while an isomerase enzyme converts dihydroxyacetone phosphate to more of the glyceraldehyde phosphate. Thus the
pathway goes forward to produce pyruvate which is used further in other energy yielding reactions for the cell.

Manipulating chemical equilibrium is highly useful in establishing assays for certain biochemical compounds. In the case
of fructose bis-phosphate, Lowry and Passonneau (1974) used three different enzymes as reagents to determine it.

In the University of Southern California basic chemistry course, chemical equilibrium is taught from a standard textbook
used for chemistry majors. Programmable calculators are not used but ordinary ones that provide such things as squares and
square roots, simple statistics, etc., are permitted. The students, therefore, come closer to understanding principles by actually
setting up and solving the quadratic equations that often appear in equilibrium calculations, a situation usually avoided by
approximation in the old, slide-rule days. With Stata, however, or Student Stata it would seem that learning the nuances of
chemical equilibria could be made much more efficient, particularly with the power to visualize the results of changes in reagent
and product concentrations with Stata’s graphics.

References that may be of interest in addition to Atkinson et al. and Lowry and Passonneau are included below.

References

Atkinson, D. E., et al. 1987. Dynamic Models in Biochemistry. A Workbook of Computer Simulations Using Electronic Spreadsheets. Menlo Park,
CA: Benjamin/Cummings.

Benson, S. W. 1971. Chemical Calculations. An Introduction to the Use of Mathematics in Chemistry. 3d ed. New York: John Wiley & Sons.
Dickerson, R. E., et al. 1970. Chemical Principles. New York: W. A. Benjamin.

Lowry, O. H. and J. V. Passonneau. 1972. A Flexible System of Enzymatic Analysis. New York: Academic Press.

Segel, I. H. 1976. Biochemical Calculations. 2d ed. New York: John Wiley & Sons.

30 Stata Technical Bulletin STB-7

‘ zz1 Cumulative index for STB-1—STB-6

[an] Announcements

STB-1 2 anl STB overview J. Hilbe

STB-1 3 an2 The editorial board J. Hilbe

STB-1 4 an3 STB and STB disk subscriptions

STB-1 4 an4d Submission guidelines

STB-1 5 and BeNeLux countries Stata distributor J. Groot

STB-1 5 an6 CRC provides 800 service to Canada C. Fox

STB-1 5 an7 Physiatric research supplement available T. Findley

STB-1 5 an8 Stata-based instructional software for social science M. Macy
STB-3 2 an9 Change in associate editors J. Hilbe

STB-3 2 anl0 Stata available for DECstation T. Anderson

STB-3 2 anll Stata X-Window driver available for SPARCstation T. Anderson
STB-4 2 anl2 CRC has new area code C. Fox

STB-4 2 anl3 TCL now marketing Stata in the UK A. Timberlake

STB-4 3 anl4 SAS’s new technical journal J. Hilbe

STB-4 3 anl5 Regression with Graphics released J. Hilbe

STB-5 2 anl5.1 Regression with Graphics now available from CRC L. Brown
STB-6 2 anl6 Stata 3.0 released T. Anderson

STB-6 2 anl6.1 Implications for the STB J. Hilbe

[cre] CRC-Provided Support Materials

STB-1 6 crcl CRC provided support materials

STB-1 6 crc2 File comparison command

STB-1 7 crc3 Variable comparison command

STB-1 7 crc4 Data set rectangularization command

STB-1 7 crcS Data set transposition command

STB-1 8 crcb Likelihood-ratio test command

STB-2 2 crc? Corrections and changes in ado-files

STB-2 2 crc8 Actuarial or life-table analysis of time-to-event data
STB2 4 crc9 Replacing coded missing values

STB-3 3 crcl0 Correction and updates to roc and poisson commands
STB4 3 crcll Drawing random samples

STB-6 3 crcl2 Oops!

[dm] Data Management

STB-2 4 dml Date calculator M. Ureta

STB-3 3 dm2 Data format conversion using DBMS/COPY & STAT/TRANSFER J. Hilbe
STB-3 7 dm2.1 Vendor’s response to review S. Dubnoff

STB-6 3 dm2.2 Stat/Transfer 2.0 review update J. Hilbe

STB-4 4 dm3 Automatic command logging for Stata D. Judson

STB-5 2 dm3.1 Typesetting correction to automatic command logging for Stata

STB-4 5 dm4 A duplicate value identification program M. Jacobs

STB-5 3 dm5 Creating a grouping variable for data sets M. Jacobs

STB-5 3 dm6 A utility to document beginning and ending variable dates S. Becketti

[gr] Graphics

STB-1 8 grl Enhancing visual display using stem-and-leaf P Geiger

STB-2 5 g2 Importing Stata graphs into MS-Word or WordPerfect R. DeLeon and J. Anagnoson
STB-2 6 gr3 Crude 3-dimensional graphics W. Gould

STB-2 8 grd 3-dimensional contour plots using Stata and Stage G. van de Kuilen

STB-2 9 gr5 Triangle graphic for soil texture F Danuso

STB-3 7 gr6 Lowess smoothing P Royston

STB-3 9 g7 Using Stata graphs in the Windows 3.0 environment J. Hilbe

STB-4 5 gr8 Printing a series of Stata graphs J. Anderson

STB-5 5 g9 Partial residual graphs for linear regression J. Hilbe

STB-5 6 grl0 Printing graphs and creating WordPerfect graph files T. Saving and J. Montgomery

Stata Technical Bulletin

[in] Instruction
STB-1 9 inl Installation of the STB disk

[ip] Instruction on Programming

STB-5 4 ipl Customizing a Stata menu system M. Jacobs

[os] Operating System, etc.

STB-1 10 osl Gphpen and colour PostScript R. Reese

STB-3 10 osl.1 Update on gphpen and colour PostScript use R. Reese
STB-2 10 o0s2 Questions and answers about Stat/Transfer S. Dubnoff
STB-4 6 o0s2.1 os2—an addendum T Anagnoson

STB-3 11 o0s3 Using Intercooled Stata with DOS 5.0 J. Hilbe

STB-4 7 o0s3.1 Comment: Using Intercooled Stata with DOS 5.0 M. Jacobs
STB4 7 0s3.2 A follow-up question to 0s3 A. Kaiz

[qs] Queries and Suggestions

STB-1 10 gsl Request for Stata course outline P Geiger

STB-2 11 gs2 Why is the cubic spline so-called? T. Anagnoson

STB-2 11 @s3 Request for confidence intervals for proportions I Zavala
STB-3 12 qgs4 Request for additional smoothers I Ugarte

[sbe] Biostatistics and Epidemiology

STB-1 11 sbel Poisson regression with rates ~W. Rogers
STB-2 11 sbe2 Bailey—Makeham survival model = W. Rogers
STB-3 12 sbe3 Biomedical analysis: Radioimmunoassay calculations P Geiger

STB-5 7 sbe4 Further aspects of RIA analysis P. Geiger

[sed] Exploratory Data Analysis

STB-1 13 sedl Stata and the four R’s of EDA R. DeLeon and T. Anagnoson

STB-2 14 sed2 Ladder-of-powers variable transformation ~W. Gould and J. Hilbe

STB-2 15 sed3 Variable transformation and evaluation T. Findley

STB-3 15 sed4 Resistant normality check and outlier identification L. Hamilton

STB-3 18 sed5 Enhancement of the Stata collapse command P Banens

STB-6 4 sed6 Quartiles, outliers, and normality: Some Monte Carlo results L. Hamilton

[sg] General Statistics

STB-1 17 sgl Nonlinear regression command F Danuso

STB-3 19 sgl.l Correction to the nonlinear regression program J. Hilbe
STB-1 19 sg2 Exact and cumulative Poisson probabilities J. Hilbe
STB-1 20 sg3 Skewness and kurtosis test of normality W. Gould

STB-2 16 sg3.1 Tests for departure from normality P. Royston

STB-3 19 sg3.2 Shapiro—Wilk and Shapiro—Francia tests P. Royston

STB-3 20 sg3.3 Comment on sg3.1 R. D’Agostino, A. Belanger, and R. D’Agostino Jr.
STB-3 20 sg3.4 Summary of tests of normality = W. Gould and W. Rogers

STB-3 23 sg3.5 Comment on sg3.4 and an improved D’Agostino test P. Royston
STB-4 8 sg3.6 A response to sg3.3: Comment on tests of normality P. Royston
STB-5 10 sg3.7 Final summary of tests of normality ~W. Gould

STB-3 25 sg4 Confidence intervals for t-test R. Goldstein
STB-5 11 sg5 Correlation coefficients with significance levels S. Becketti
STB-5 12 sgb Regression switching models D. Benjamin and W. Gould

[smv] Multivariate Analysis

STB-4 9 smvl Single-factor repeated measures ANOVA J. Hilbe

STB-5 13 smvl.l Minor change to single-factor repeated measures ANOVA J. Hilbe

STB-4 10 smv2 Analyzing repeated measurements—some practical alternatives W. Rogers
STB-5 13 smv3 Regression-based dichotomous discriminant analysis J. Hilbe

STB-6 5 smv4 One-way multivariate analysis of variance (MANOVA) J. Hilbe

STB-6 7 smv5 Performing loglinear analysis of cross-classifications D. Judson

32 Stata Technical Bulletin STB-7

[snp] Nonparametric methods

STB-2 17 snpl Kolmogorov—Smirnov one- and two-variable tests L. Giventer
STB-3 26 snp2 Friedman’s ANOVA test and Kendall’s coefficient of concordance R. Goldstein
STB-3 28 snp3 Phi coefficient (fourfold correlation) R. Goldstein

[sqv]l Analysis of Qualitative Variables

STB-1 21 sqvl Additional logistic regression extensions J. Hilbe

STB-2 21 sqvl.l Correction to logit regression extensions J. Hilbe

STB-3 28 sqvl.2 Additional logistic regression diagnostic: Cook’s distance J. Hilbe

STB-4 16 sqvl.3 An enhanced Stata logistic regression program J. Hilbe

STB-5 17 sqvl.4 Typographical correction to enhanced logistic regression J. Hilbe

STB-6 17 sqv2 A graphical method for assessing goodness-of-fit of logit models D. Judson

[srd] Robust Methods and Statistical Diagnostics

STB-2 21 srdl How robust is robust regression? L. Hamilton

STB-2 26 srd2 Test for multivariate normality R. Goldstein

STB-2 26 srd3 One-step Welsch bounded-influence estimator R. Goldstein

STB-2 27 srd4 Test for general specification error in linear regression R. Goldstein

STB-2 27 srdS Ramsey test for heteroscedasticity and omitted variables R. Goldstein

STB-2 27 srd6 A randomization test for the equality of two groups R. Goldstein

STB-5 17 srd7 Adjusted summary statistics for logarithmic regressions R. Goldstein

STB-5 21 srd8 Interpretations of dummies in regressions with log dependent variable R. Goldstein
STB-5 22 srd9 Box—Cox statistics for help in choosing transformations R. Goldstein

STB-5 25 srdl0 Maximum-likelihood estimation for Box—Cox transformation P. Royston
STB-6 19 srdll Generating ordered (“cascading”) dummy variables R. Goldstein
STB-6 22 srdl2 Some model selection statistics R. Goldstein

[ssa] Survival Analysis

STB-1 23 ssal Actuarial or life-table analysis of time-to-event data H. Krakauer and J. Stewart
STB-2 28 ssal.l Menu interface to life-table command W. Gould
STB-5 26 ssa2 Tabulating survival statistics =~ W. van Putten

[ssi] Simulation and Random Numbers

STB-1 25 ssil Monte Carlo simulation L. Hamilton
STB-4 18 ssi2 Bootstrap programming L. Hamilton

[sts] Time Series and Econometrics

STB-5 27 stsl Autocorrelation and partial autocorrelation graphs —S. Becketti

[tt] Teaching

STB-4 27 ttl Teaching beginning students with Stata T. Anagnoson and R. DeLeon
STB-4 28 tt2 Using “front ends” for Stata M. Macy
STB-6 26 tt3 Teaching biochemistry and chemistry: Understanding buffer solutions P Geiger

