
The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142
979-845-3144 FAX
jnewton@stata-journal.com

Executive Editor
Nicholas J. Cox
Department of Geography
University of Durham
South Road
Durham City DH1 3LE
United Kingdom
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

James Hardin
Texas A&M University

Stephen Jenkins
University of Essex

Jens Lauritsen
Fyns Amt Health Service Division

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
Inst. of Psychiatry, King’s College London

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Jeroen Weesie
Utrecht University

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by Stata Corporation. The contents of the supporting files (programs, datasets,

and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any

copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from Stata Corporation if you wish to make electronic copies of the

Stata Journal, in whole or in part, on web sites, fileservers, or any other location or media where the copy

may be accessed by anyone other than the original Stata Journal subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or Stata Corporation. In particular, there is no warranty of fitness of purpose or merchantability, nor for

special, incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to

promote free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of Stata Corporation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6990471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Stata Journal (2001)
1, Number 1, pp. 86–97

Speaking Stata: How to repeat yourself
without going mad

Nicholas J. Cox
University of Durham, UK

n.j.cox@durham.ac.uk

Abstract. This column will focus on how to improve your fluency in Stata. Over
the next issues we will look at Stata problems of intermediate size which turn out
to be soluble with a few command lines. As an introduction, systematic ways of
repeating the same or similar operations are surveyed to give one overview of the
territory to be covered.

Keywords: pr0003, append, by, collapse, contract, do-files, egen, for, foreach, for-
values, log files, merge, naming conventions, programs, repetition, reshape, statsby,
subset or group structure, tabulations

1 Introducing this column

This column will focus on Stata as a language. That may sound rather more technical
than it is meant to be. Some years ago, at the first Stata User Group meeting held
in London, I was expressing my enthusiasm for Stata to another user, and extolling
the fact that, unlike certain other popular statistical software, Stata as a language was
capable of very much more than was covered in the manuals. In a word, it is, by virtue
of being a language, extensible. The reply was that to this user a computer language
meant Fortran, C, C++ and the like, to be avoided at all possible cost whenever some
package could do the job more painlessly. Calling Stata a “language” did not make it
sound appealing!

That user had a fair point. I started computing with a course in Fortran, but have
not written a program in that or any other mainstream language for a long time. For
what I do, there is no need, and I shudder to think of the time I spent doing low-level
stuff; reading in data and writing out results and having to take care of many details.
But this column is not going to be about programming in Stata as the alternative.
It will focus on increasing your fluency in Stata. The column will try to help users
to think more easily in Stata’s language, so that they get to where they want to be
more quickly, and more effectively. Speaking of “fluency” signals a better comparison,
not with learning programming languages, but with improving your skills in a foreign
language that you are studying.

It has been said that when traveling in a country whose language you don’t know, the
words for “yes”, “no”, “water”, “please”, “thank you”, “that”, and as many numbers
as possible will get you through about 90% of the situations you encounter. But anyone
who picks up Stata’s manuals senses the opposite: you are missing most of the power
and flexibility of the software if you only know a few commands. Reading the manual,

c© 2001 Stata Corporation pr0003

N. J. Cox 87

or the FAQs on http://www.stata.com, or answers on Statalist may already have given
you a good impression of how often fluent users can solve a tough-looking problem in
a very few lines of Stata, and even with remarkably simple code. How do you pick up
some of that skill?

2 Problems of different sizes

When you start up Stata, you will usually be tackling a series of questions. At the
easiest, a question may be answered by a single Stata command. You must find out
what that command is, understand as much of its syntax as you need, and use it to get
some results. Naturally, there could be all kinds of small and large difficulties along the
way, but most of the detail you need to know about is somewhere in the manual or in
the on-line help. Or, at the other extreme, although each question could in principle be
answered by a long series of Stata commands, a practical answer can only be produced
if somebody—you, another user or a developer at Stata Corp—writes a Stata program.
When that’s done, all of a sudden a question very difficult, or at least tedious, to tackle
step by step is reduced to an easy question.

The middle ground between these extremes is the territory that will concern us. Most
of the questions we will use as examples will turn out to have a solution in a few lines
of Stata. Many of those questions will turn out, in a broad sense, to be questions about
data management. Although many users much of the time, and some users most of the
time, are engaged in data management, it is for most Stata users typically a necessary
evil that must be performed before the interesting and useful statistical analysis. We
want to get it over with as soon as possible. But even with the statistical analysis there
are tricks to be learned, ways of getting results more rapidly and more smoothly.

Many readers will know of Statalist as a forum for asking and answering Stata
questions. My experience from watching Statalist and from interacting with Stata users
all the way from fresh beginners to grizzled veterans is that the ideas to be covered
in these columns should be of some use or interest to people at all levels. Those first
encountering Stata will get an indication of what can be done using a variety of tools
and techniques, especially if they are considering investing the time and effort needed
to go further. Even experienced Stata users can become a little inefficient if they are
not aware of recent additions to Stata, and we all know dimly of large chunks of Stata
we have never used, and which just possibly may contain the solution we need.

3 Repetitive tasks

The next few issues will carry Speaking Stata columns looking at a series of worked
examples in some detail, but what I want to do in this first column is to try to give
you one overview of the terrain to be covered. What ties many examples together is the
theme of repeating yourself, or more prosaically, of doing more or less the same thing
over and over again.

88 Speaking Stata

Much statistically-based research is repetitive to some extent, partly as a conse-
quence of data structure, partly because of the need to consider multiple aspects of a
dataset, and partly because the same kinds of question recur with different datasets.
The typical Stata dataset has at a minimum a structure of observations (e.g., people)
by variables (e.g., their attributes). If, as often happens, there are bundles of related
variables, then many analyses may be repeated for those variables. Common complica-
tions are variations in time (e.g., people by attributes by time) or variations within and
between larger groups (e.g., people within firms by attributes).

In my own field of geography, even with a simple data structure of, say, rainfall
measured at several rain gauges for several hundred days, analysts might be interested
in aggregations to easily defined months, seasons or years, or to empirically defined
spells. (A spell might be, for instance, a series of days in which it rained every day.)
Even this relatively simple kind of dataset may need several iterations of analysis, yet
at the same time the iterations may be both simple and similar.

Let’s now run through some of the ways of repeating the same or similar operations,
or of making those easier. We will start at the simplest, and move up. See how far your
awareness stretches: marks out of 10?

3.1 Operations are repeated across observations for variables

It is worth emphasizing, especially for Stata users more used to some other software, such
as spreadsheets, that many operations are automatically repeated across observations.
Simple calculations such as generate c = a + b add the variables (columns) a and b
and put the result in new variable (column) c; that is, automatically, c[1] = a[1] +
b[1], c[2] = a[2]+b[2], and so on, for observations (rows) 1, 2, and so on. One jargon
is that such calculations are vectorized. Of course, this is also possible in a spreadsheet.
Actually, even a background in some language such as Fortran or C can mislead people
new to Stata, as that background imprints the idea of an explicit DO or for loop as the
control structure for repeating an operation over observations. Almost all problems for
which beginners start trying to write Stata programs that loop over observations turn
out to be solvable through normal Stata commands. If you find yourself doing this,
think again, and ask!

3.2 Use Page Up/Page Down and clicking in Review window

The Page Up key goes back a command at a time in your command history and the
Page Down key goes forward. Once a previous command is in the Command window,
you may reissue it. (For the equivalent keys on your keyboard, you may need to consult
[U] 13 in the manual.) Alternatively, previous commands may be selected by clicking
in the Review window. Most Stata users internalize these habits early on in their
experience, but if somehow you have missed these possibilities, or you are explaining
Stata to somebody else, make a special note of such features. But be aware that a
repeated command is carried out on the data currently in memory: if those data have
changed since the previous execution, then naturally the results may differ.

N. J. Cox 89

3.3 Log files

For best use of Stata, keep a log file containing a transcript of what appears in each
session in the Results window, namely a record of commands typed in the Command
window and all (non-graphical) Results. The value of such detailed transcripts is difficult
to overstate.

Users who started their Stata experience with earlier versions may not have grasped
that the functionality of log files changed drastically with the release of Stata 7. First, it
is now possible to keep simultaneously log files as just mentioned and command log files
that contain only a transcript of commands issued. With some self-discipline to edit
log files while each session is fresh in mind, and to remove mistakes, repetitions, and
dead ends, each set of commands can then be converted into a do-file, to be discussed
in more detail shortly.

To do this conveniently, some familiarity with a decent text editor helps greatly.
Here “decent” implies that you can perform editing easily without being distracted by
wanting functions that the editor lacks. The merits of different text editors give rise to
occasional fervent discussions on Statalist, and in many other computing circles, but all
experienced Stata users do seem to agree on the value of a text editor that you have
gotten to know and like. Most people who have spent time using some flavor of Unix,
including Linux, prefer some version of vi (now usually vim) or Emacs. Windows users
can go beyond the somewhat limited Notepad or Wordpad editors bundled with the
operating system to try any number of free or inexpensive editors, such as TextPad,
NoteTab, PFE, or vim (again). The Macintosh, as usual, is a special case: BBEdit has
many admirers. But let’s not ignore that nearest to hand. Stata’s own do-file editor
doedit is fine for many tasks and it has the major advantage that it is well integrated
with the rest of Stata. Don’t let the name distract you: there is no reason why you
should not use it for, say, editing little datasets, or little text files unrelated to Stata. I
find it useful in copying and pasting some datasets from email, which I then convert to
Stata-readable files. (Naturally, Stata’s own data editor can also be invaluable for this.)

I am digressing here, but I do want to underscore the value of a good text editor to
Stata users. Depending on your age and career, you may have spent much more time
editing documents with a word processor, but for working with text files containing data
or Stata commands, a text editor is the better tool. Finding an editor with a congenial
style is one of the best things you can do to ease your computing sessions with Stata.

The second change in Stata 7 concerning log files is the new mark-up language SMCL,
and logs are now by default in SMCL, although simple unadorned text is easily specified.
A detail not documented elsewhere, but which may be of interest, is that log files in
SMCL can be converted into HTML: the form of the command is

. log html filename.smcl filename.html

Incidentally, a common question is why Stata did not in fact use HTML or some other
existing mark-up language for logs. The heart of the problem is that Stata needed a
language in which logs can be produced a line at a time without foreknowledge of what

90 Speaking Stata

is to follow, let alone of the end of a document. That rules out HTML, which is based
on the idea that a document file is processed as an integrated whole.

One way in which a log file is frequently invaluable is that it can be, in effect, a first
stab at a routine for analyzing a particular kind of dataset. I often work step by step
through the management or analysis of a new kind of dataset: once it becomes clear
what the routine tasks are, it is then easy to edit a command log file so that the same
commands can be repeated. Even if the analysis is never going to be repeated on a
different dataset, one excellent practice is to remove all garbage from a command log
file, preferably at the end of a Stata session, and then to run the analysis all over again
from the log file. This does require self-discipline, but a strong incentive for doing it is
that a messy log file will only make later rereading harder than is necessary. A messy
log will certainly be more difficult for anyone else to follow.

3.4 Do-files

How is that possible? How can log files be run as a series of commands? The answer is
that they can be treated as a do-file. To Stata, a do-file is just a text file containing a
series of Stata commands. Conventionally, they are given the extension .do, but that
is not essential. In Stata, they are then run quietly by run filename.do and noisily by
do filename.do. You may omit the extension .do. If the file were, say, filename.log,
then do filename.log will work fine, but now you must specify the extension.

So, very simply, instead of typing a whole series of commands again—which is likely
to be tedious and error prone—repeating that series is reduced to a single action. One
of the most valuable steps a Stata user can take is getting in the habit of putting
commands in do-files. The habit is best learned by putting little sequences in little
do-files, and eventually it becomes clear that longer sequences can be stored in exactly
the same way. Several very experienced Stata users make extensive use of quite long do-
files (hundreds of lines long). For substantial data files, they have identified all kinds of
checking, reporting and manipulative commands for detailed, yet also routine, analyses.

As a simple example, consider a basic task of converting Fahrenheit temperatures
to Celsius and inches of rainfall to mm. Two statements, one on each line, could make
up the file convert.do:

. generate temp C = 5 * (temp - 32) / 9

. generate rain mm = rain * 25.4

Then the whole is executed by

. do convert.do

At first sight, the gain seems slight, but very often the do-file grows as one learns to
add extra checking and calculation statements, e.g., counting implausible or missing
values, checking for reasonable day-to-day changes, and so on. Also, it may seem that
this do-file can only be applied to datasets in which the same variable names are used.
However, the do-file may be generalized to accept arguments (that is, names or values
that are fed to it). So

N. J. Cox 91

. generate temp C = 5 * (‘1’ - 32) / 9

. generate rain mm = ‘2’ * 25.4

is executed by

. do convert.do temp rain

or

. do convert.do Temp Rain

or whatever. Here ‘1’ and ‘2’ are simply the first and second arguments fed to the
do-file after it is named.

Let’s take that more slowly. You direct Stata to the file convert.do and the com-
mand do says: execute the commands in the file specified, and show me the output. In
so doing, you also specify Temp and Rain. Looking inside the .do file, you will see that
there are two placeholders, ‘1’ and ‘2’. The mapping follows your order: whatever
you name first is treated as ‘1’ and whatever you name second is treated as ‘2’. So,
there is some generality imparted here by the one step towards abstraction, the use of
placeholders that can be filled by whatever you supply to the file. Technically, ‘1’ and
‘2’ are so-called local macros, the “local” meaning that they should be thought of as
existing inside the do-file, and not at all outside it. If you happen to be dealing with
‘1’ in some other do-file, or in a program, or while interacting with Stata directly, that
is just a different beast. The meaning is local, as said, just as “Pat” in one circle will
be one person and “Pat” in another circle another person. In Stata’s case, however,
strict control of namespaces means that there is never a problem of ambiguity, as may
sometimes arise with people’s names, to our amusement or bemusement.

That one step of abstraction is a step towards Stata programming in a stronger
sense. What is lacking includes, in particular, any kind of error checking: that two
and only two arguments are provided, that they are the right kind of things for the
program to make sense, and so forth. In this example, suppose that you forgot that two
arguments were needed, and only specified one. Stata would have no problems with the
first statement, but would stop with an error when asked to evaluate * 25.4, which is
not a legal Stata expression. (Why is it asked to evaluate this? Because if Stata does
not know what you want to be the second argument, ‘2’ is treated as blank space; that
is, it is ignored.) So, and this happens more widely, what would happen is usually that
the do-file would stop part of the way through, and some of your work would be done,
but not all, leaving behind a bit of a mess. It is possible to go beyond this and build in
much more error checking, and that is much of the business of programs, in the strict
sense.

3.5 Programs

What then, strictly, defines a Stata program? Logicians and language mavens should
enjoy the answer: a program is defined as such by the program define command. In

92 Speaking Stata

early versions of Stata, there were very strict divides between typing in commands one
by one, running a do-file, and running a program. More recent versions have made
this range a smoother transition, so that, for example, several commands that control
looping (historically, while and then for, and now also foreach and forvalues) can
also be used, not only in do-files, but also interactively. This shift puts more power even
in the hands of the Stata user who lacks the time or the inclination to start writing
Stata programs.

As said earlier, this column is not going to focus much on programming, at least
not directly. But right now you may be interested in the possibility of moving further
towards writing your own Stata programs. Many are actually very simple indeed, al-
though some are hundreds of lines long and call their own subroutines, not that size is
a measure of significance. There is no special mystery here, merely some complications
that need to be considered. For example, most commands in Stata allow the user to
specify a subset of observations to be used by means of an if condition. Hence, this is
often also expected behavior in a user-written program, and certain syntax has to be
specified to permit it. On the other hand, many people have used Stata almost daily
for years without ever writing a full-blown Stata program. Indeed, quite apart from
the extensive set of commands within official Stata, many hundreds of Stata programs
are now available outside it, so that it is usually worth trying first to find an existing
program. Use findit (see Allen McDowell’s column in this issue) or, if that yields
nothing, try posting a question on Statalist.

If you are curious, note that which command will reveal the file containing the pro-
gram whenever command is defined by a so-called ado-file file, ado meaning automatic
do-file. A text editor will then allow scrutiny of the code, which may be instructive.
(Sometimes commands are part of the executable program and their source code, in C,
is then not accessible to users.)

3.6 Subset or group structure

Many problems in data analysis involve calculations done separately for each of several
subsets (groups, more loosely). Note that a group here may be defined for a combination
of conditions (e.g., sex is male and patient died), which fortunately is not really more
difficult to handle. A slow but sure way of doing these separate calculations may be
to repeat a command with a series of conditions, say, if group == 1, if group == 2,
etc. As soon as you find yourself doing this again and again, stop! There are several
ways of repeating for distinct subsets, which are quite easy to learn and which avoid
such repetition. We will look at several in turn.

collapse, contract, statsby

Sometimes what is desired is a condensation of the data into summary statistics, one
for each group. The twin commands collapse and contract are often helpful here.
In essence, collapse is more general, allowing a variety of summary statistics to be

N. J. Cox 93

produced, while contract is specialized to counting categories or combinations of cat-
egories. Note that both involve destruction of the original data, which therefore should
be saved first. To put this another way, instead of somehow looping over groups, we
just request that Stata produces the group summaries all at once.

The newer command statsby helps with similar tasks, especially for producing a
set of regression (or regression-like) results.

Tabulations

From that it is one step towards the production of tables of summary statistics (including
counts), which leave the original data intact. Here it is easy even for experts to get
confused because there are now several tabulation commands with overlapping functions
in official Stata (and outside there is, for example, the tab chi package with yet more:
typing findit tab chi will pinpoint locations). First, there is tabulate, which has
long been in Stata, and which is perhaps best at contingency tables (e.g., sex by school-
leaving age, with counts, percents, chi-square statistics, etc.). Second, more recently
table and tabstat have been added to official Stata. On the whole, tabstat would
now often be my first port of call. The key point is that instead of a series of, for
example, summarize statements, it may be easier to go straight to, say, tabstat, which
will calculate the summary statistics separately and put them together for you in a more
presentable and more customizable form. From that it is then easy to copy the table to
some report document that you are preparing.

egen

egen stands for extended generate and is the home for a library of programs, many
of which allow a by() option, or prefixing by by varlist:, essentially the same thing in
this case. The whole idea of by will be picked up again in a moment. The reason egen
is distinct from generate is purely syntactic. generate can work with complicated
expressions making use of variables, constants and built-in functions of various kinds.
log() and sqrt() are examples of the latter. egen has by comparison a simpler and
more restricted syntax, but also the great advantage that it can run what are in effect,
although not in name, user-written functions. (As a small matter of history, most of the
functions bundled with egen in official Stata were originally written by users outside
StataCorp.) Thus, for example,

. egen mean = mean(varname1), by(varname2)

calculates the mean of varname1 separately for each group of varname2. A glance at the
data editor, or a listing of the data, will show that necessarily each mean is repeated
for each observation within a group. On the day that I wrote this, a questioner on
Statalist wrote of a do-file containing 500 commands, two for each of 250 item codes. It
appears that his question could be largely solved by just two egen commands in which
the by() option is used to iterate across different codes.

94 Speaking Stata

More generally, once these means are included in a variable, then they can be tab-
ulated, graphed, saved as a separate dataset, and so forth. Similar applications are
possible with other egen functions. The on-line help for egen will reveal dozens of
functions and dozens more can be found on the Internet.

3.7 by varlist:

The by construct is in many ways extremely simple, yet with some extremely clever
touches. It does seem that many experienced users find it difficult to wrap their heads
around it, as I did for some years until enlightenment dawned. One of the distinctive
details (and I know of no precise analogues outside Stata) is that n and N are reinter-
preted to apply within each distinct group. Recall that n is the observation number,
which runs from 1 to N, reflecting the current sort order of the data. The FAQs on data
management on the StataCorp web site give several detailed examples of how this can
be exploited.

Here is one example. Often there is concern about duplicate observations whenever
it is thought that some records may have been entered twice or more. Given a list of
variable names (the Stata jargon is varlist),

. bysort varlist: list varlist if N > 1

lists all observations that are duplicates (pedantically, replicates!) with respect to
varlist. With many other programs, the solution is much more complicated.

Again, let’s look more slowly at how that works. When there is no by in sight, N is
the number of observations in the whole dataset. One way of seeing this is just to type
display N in the Command window. But under the aegis of by varlist:, N changes
its meaning to the number of observations in each group defined by varlist. In each
such group, all observations have identical values for all the variables in varlist. The
bysort command in fact does two things in one: it sorts the observations according to
their values on varlist, and then executes the command following by varlist:, meaning,
precisely once for each group of varlist. (If you are still on Stata 6, or an earlier version,
you will need to sort first and then do things by varlist:.) If a group occurs once and
once only, then N is 1, while if there are two or more copies, then N is greater than 1,
and values are thus listed if there are replicates.

Now, in fact, this is not quite a practical way of looking for duplicates, as Stata does
not maintain perfect silence over the singletons, and typically there is too much output,
especially for large datasets. Not surprisingly, problems with duplicates are sufficiently
common and important that several user-written commands have been written to detect
and (if necessary) drop such observations. For one such effort, see Steichen and Cox
(1998). Indeed, there has been, almost inevitably, a certain duplication of effort on this
problem. But for our purpose, the example shows vividly how the by construct yields
a remarkably simple and direct solution.

N. J. Cox 95

3.8 for, foreach, and forvalues

These commands look a little tricky at first, but grow on users with experience. It
is a pity that they are often labeled—especially by Stata Corp!—just as programming
commands, when in fact all can be used interactively.

To understand the basic idea, you need to struggle a little with Stata jargon for
various kinds of lists, as each of these commands boils down to cycling through a list
and doing something for each member of a list. A varlist, as mentioned already, is
a list of variable names, which can just be spelled out one after another (clicking on
variable names in the Variables window is often convenient). In addition, a varlist
may be expressed more concisely by hyphenation. Thus, the varlist first-last is all
variables between first and last: the order of variables in the dataset may be seen
in the Variables window or through describe. Also, a varlist may involve wildcards:
a* consists of all variables beginning with a, including a if it exists; * is all variables.
Less greedily, a single question-mark stands for any single character in this position:
weight? would include weight1 and weight2, but not weight.

A numlist is just a list of numbers, which again may be spelled out one by one: 1 2
3 4 5 or 2 3 5 7 11 qualifies, as does 11 2 7 5 3. More commonly, however, some
precise notation is used to specify regular sequences: 1/5 is 1 2 3 4 5, while 10(10)50
is 10 20 30 40 50.

There are other kinds of lists in Stata, but these will do fine to get the ball rolling.

Suppose we want to take logarithms of a set of variables. Once more we could do
this one at a time, one variable in each command, but it may be preferable to use (say)
for,

. for var length width height : gen logX = log(X)

which can be construed as follows: for the varlist length width height, take log()
of each (think of X as a placeholder) and use that to generate new variables, generically
called logX, but in practice called loglength, logwidth, logheight. Here the symbol
X just happens to be the default symbol, but it is not obligatory.

A second example is calculating powers of variables, say, the 2nd through 5th powers:

. for num 2/5 : gen xpowX = x^X

foreach and forvalues are more recently added relatives of for. At their best they
allow small programs to be written on the fly, but to achieve that may take a little effort
to master the syntax. Here are two translations of the last two examples:

. foreach v in length width height { gen log‘v’ = log(‘v’) }

. forval i = 2/5 { gen xpow‘i’ = x^‘i’ }

One syntax is just as about as complicated as the other. More generally, much could
be said on the detailed advantages and disadvantages of these constructs, but a few
broad comments must suffice for now. If you are used to for from previous versions,

96 Speaking Stata

and find it useful, stick with it, but otherwise, check out foreach and forvalues. For
one thing, they are closer in syntax to much of the rest of Stata, which eases any learning
of Stata programming. And for another, they are much easier to extend to lengthier
programs written on the fly: for can be difficult to handle in some such cases, and it is
easier to come to grief.

I also find that for and its siblings are very useful in non-Stata tasks. As a user
of Windows (a matter of institutional choice), I could try doing many manipulations
involving several files by repeated clicking, or I could loop over those files within Stata
using for. You can even copy files across the Internet in this way, so long as you know
what they are called, and that cuts out a lot of mousing around in your browser.

3.9 Systematic naming conventions

A point tacit here, and important enough to deserve flagging, is the value of systematic
naming conventions. There is much benefit in variables that have something in common
having some element of their names in common. This may sound obvious, but people
are sometimes casual about names. The point applies more generally, as in selecting
names for graph files. With commands like for it is easier to loop over a list if there is
some pattern to the naming. A simple example is that pop60 pop70 pop80 is easier to
handle than pop1960 pop70 popn80. One way such inconsistencies may arise is that
datasets may be formed by putting together the efforts of one person at many times,
or of several people: in fact, discrepancies of naming are quite likely to occur even with
careful workers. Such problems can easily be managed with a renaming tool such as
renvars; see Cox and Weesie (2001).

3.10 append, merge, reshape

There are many commands for more-or-less drastic restructuring of datasets. The
append command joins datasets by adding observations and merge joins them by adding
variables. reshape allows moving back and forth between long and wide structures.
With panel or longitudinal data, in particular, is time represented by separate columns,
or by separate observations for each person in the panel? Stata has a marked preference
for the second (long) structure over the first (wide) structure. In any case, with long
structures it is easier to handle, for example, different times of observations, or different
numbers of observations, for different members of the panel.

A moment’s reflection points up a simple but fundamental fact. Stata’s general data
model is asymmetric: operations for variables (along, or more precisely, down columns)
are one thing, and operations across variables (across rows) are another, and they are
not always equally easy, even when either is appropriate. (Tried taking a row median?)
We could debate this at length, but from, say, the point of view of array-based languages
such as APL and its successors, such asymmetry could be cited as a design limitation
to Stata. Be that as it may, Stata includes many commands that help you get from the
data structure you have to the data structure you need to answer your question.

N. J. Cox 97

So, for example, joining or reshaping datasets may then allow some other device to
be applied. In particular, it is often much easier to work on different groups within
one large dataset than on separate smaller datasets. Naturally, much depends on what
defines a dataset, and on what you are doing, but many comparative analyses depend
on the data being together. In contrast, it is all too common with some software that
the file structure and data structure initially chosen may channel all further analyses,
as it becomes too awkward or even impracticable for the user to overcome that starting
point.

4 What’s next?

That’s been, quite deliberately, a whistle-stop tour of much of the territory that this
column will explore. The commands, devices, habits, tricks, tactics and strategies that
make problem solving easier for the Stata user will be our concern. Over the next few
columns, I will be looking at more substantial examples and dissecting how they are
best tackled in Stata terms.

5 References
Cox, N. J. and J. Weesie. 2001. dm88: Renaming variables, multiply and systematically.

Stata Technical Bulletin 60: 4–6. In Stata Technical Bulletin Reprints, vol. 10, 41–44.
College Station, TX: Stata Press.

Steichen, T. J. and N. J. Cox. 1998. dm53: Detection and deletion of duplicate observa-
tions. Stata Technical Bulletin 41: 2–4. In Stata Technical Bulletin Reprints, vol. 7,
52–55. College Station, TX: Stata Press.

About the Author

Nicholas J. Cox is a statistically-minded geographer at the University of Durham. He con-
tributes talks, postings, FAQs, and programs to the Stata user community. He has also co-
authored seven commands in official Stata. He was an author of several inserts in the Stata
Technical Bulletin and is the Executive Editor of The Stata Journal.

	Copyright
	Speaking Stata, N. J. Cox
	1 Introducing this column
	2 Problems of different sizes
	3 Repetitive tasks
	3.1 Operations are repeated across observations for variables
	3.2 Use Page Up/Page Down and clicking in Review Window
	3.3 Log files
	3.4 Do-files
	3.5 Programs
	3.6 Subset or group structure
	3.7 by varlist:
	3.8 for, foreach, and forvalues
	3.9 Systematic naming conventions
	3.10 append, merge, reshape

	4 What's next?
	5 References

