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Comparative assessment of three common
algorithms for estimating the variance of the

area under the nonparametric receiver
operating characteristic curve

Mario A. Cleves, Ph.D.
Arkansas Center for Birth Defects Research and Prevention

Department of Pediatrics, University of Arkansas for Medical Sciences
Little Rock, Arkansas

Abstract. The area under the receiver operating characteristic (ROC) curve is
often used to summarize and compare the discriminatory accuracy of a diagnostic
test or modality, and to evaluate the predictive power of statistical models for
binary outcomes. Parametric maximum likelihood methods for fitting of the ROC

curve provide direct estimates of the area under the ROC curve and its variance.
Nonparametric methods, on the other hand, provide estimates of the area under
the ROC curve, but do not directly estimate its variance. Three algorithms for
computing the variance for the area under the nonparametric ROC curve are com-
monly used, although ambiguity exists about their behavior under diverse study
conditions. Using simulated data, we found similar asymptotic performance be-
tween these algorithms when the diagnostic test produces results on a continuous
scale, but found notable differences in small samples, and when the diagnostic test
yields results on a discrete diagnostic scale.

Keywords: st0020, receiver operating characteristic (ROC) curve, trapezoidal rule,
sensitivity, specificity, discriminatory accuracy, predictive power

1 Introduction

The discriminatory accuracy of a diagnostic test or classification method is frequently
evaluated by its ability to correctly classify subjects into disease states. The receiver
operating characteristic (ROC) curve, a plot of the diagnostic test’s sensitivity versus
1 − specificity at the various observed values of the test, can be used to quantify the
accuracy with which the diagnostic test can discriminate between two states or condi-
tions. The ROC curve is also useful in assessing the predictive and discriminatory power
of statistical models for binary outcomes (Hosmer and Lemeshow 2000), and specifi-
cally, it has been used to assess the predictive power of competing comorbidity indices
computed from administrative data (Cleves et al. 1997).

The overall discriminatory power of a diagnostic test is commonly summarized by
the area under the ROC curve (AUC). Assuming that higher values of a diagnostic test are
associated with “abnormal” subjects, while lower values are associated with “normal”
subjects, then the AUC is interpretable as the probability that the observed value of
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the diagnostic test will be greater for a randomly selected abnormal subject than for a
randomly selected normal subject (DeLong et al. 1988). Thus, the greater the AUC, the
better the overall discriminatory power of the diagnostic test or statistical model.

Both nonparametric and parametric methods for fitting the ROC curve and estimat-
ing its area have been developed and implemented in Stata’s roc suite of commands.
Parametric techniques are based on the assumption that there is an unobserved contin-
uous latent variable with known distribution in both the normal and abnormal popula-
tions, and based on this assumption, a smooth maximum likelihood ROC curve is fitted
to the observed data. The AUC and its variance are then computed directly as functions
of the estimated maximum likelihood parameters of the fitted curve (Dorfman and Alf
1969). See [R] roc for a complete description of these commands.

By contrast, nonparametric methods require no assumption about the existence
or the distributional form of an unobserved continuous latent variable. They simply
compute the AUC based on the ROC points. The method implemented in Stata simply
connects the points on the ROC curves using straight lines, and computes the AUC using
the trapezoidal rule. Nonparametric methods for estimating the AUC, however, do not
yield variance estimates for the AUC. Estimates of the variance for the area under the
nonparametric ROC curve are computed in Stata using one of three popular algorithms:
the first suggested by Bamber in 1975, the second suggested by Hanley and McNeil in
1982, and the third suggested by DeLong et al. in 1988.

The DeLong, DeLong, and Clarke-Pearson method was selected as the default be-
cause in several scenarios examined by the author it seemed to perform better than
the other two methods (Cleves 1999). It is unclear, however, if there are any general
systematic differences between these estimators. In an attempt to answer this question,
we examine the performance of these three algorithms for computing the area under the
ROC curve under various simulated conditions.

2 Methods

2.1 Algorithms for computing variance for the area under the ROC
curve

Although much of this information is found in the Stata manual, for completeness, we
review in this section the three algorithms for computing the variance for the area under
the ROC curve.

Assume, without loss of generality, that higher values of a diagnostic test are as-
sociated with “abnormal” subjects, while lower values are associated with “normal”
subjects. Further, assume that the diagnostic test is applied to Nn normal and Na

abnormal subjects. Let Xi, i = 1, 2, . . . , Na and Yi, j = 1, 2, . . . , Nn be the observed
outcomes of the diagnostic test for the abnormal and normal subjects, respectively, and
let θ̂ be the nonparametric estimate of the area under the ROC curve.

The earliest method for computing the variance of the AUC was suggested by Bamber
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in 1975. He showed that the AUC, when calculated using the trapezoidal rule, is equal to
the Mann–Whitney U-statistic and provided an algorithm for estimating its variance.

Define for any two Y values, Yj and Yk, and any Xi value,

byyx = p(Yj ,Yk < Xi) + p(Xi < Yj ,Yk) − 2p(Yj < Xi < Yk)

and similarly, define for any two values of two X values, Xi and Xl, and any Yj value,

bxxy = p(Xi,Xl < Yj) + p(Yj < Xi,Xl) − 2p(Xi < Yj < Yl)

Then, Bamber’s unbiased estimate of the variance for the AUC is computed as

var(θ̂) = 1
4 (Na − 1)(Nn − 1) ∗{

p(Xi �= Y) + (Na − 1)bxxy + (Nn − 1)byyx − 4(Na +Nn − 1)(θ̂ − 0.5)2
}

The second algorithm was described by Hanley and McNeil in 1982. For brevity, we
will refer to this as Hanley’s method. Hanley’s variance for the AUC is computed as
follows. Let Q1 be the probability that two randomly selected abnormal subjects will
both have a higher score than a randomly selected normal subject, and let Q2 be the
probability that one randomly selected abnormal subject will have a higher score than
any two randomly selected normal subjects. Then, the variance for the AUC derived by
Hanley and McNeil is computed as

var(θ̂) =
θ̂(1 − θ̂) + (Na − 1)(Q1 − θ̂2) + (Nn − 1)(Q2 − θ̂2)

NnNa

The most recent of the three algorithms was suggested by DeLong et al. (1988); we
will refer to this as DeLong’s method. Their method was derived in the context of
developing an approach for comparing areas under two or more ROC curves. They sug-
gested using a comparison variance–covariance matrix computed based on Sen’s (1960)
structural components method for obtaining the elements of the variance–covariance
matrix of a vector of U-statistics. The variance of each of the areas under the curve is
obtained as the corresponding diagonal element of the computed variance–covariance
matrix.

The DeLong variance for each AUC is computed as follows. Define for each abnormal
subject, i, the quantities

V10(Xi) =
1
Nn

Nn∑
j=1

ψ(Xi,Yj) and S10 =
1

Na − 1

Nn∑
i=1

(
V01(Xi) − θ̂

)2

and similarly, define for each normal subject, j, the quantities

V01(Yj) =
1
Na

Na∑
i=1

ψ(Xi,Yj) and S01 =
1

Nn − 1

Nn∑
j=1

(
V01(Yj) − θ̂

)2
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where

ψ(Xi,Yj) =




1 Y < X
1
2 Y = X
0 Y > X

Then, DeLong’s variance of the estimated AUC is given by

var(θ̂) =
1
Na

S10 +
1
Nn

S01

2.2 Simulations

Data were simulated by assuming both a diagnostic test that produced results in a
continuous scale, such as blood pressure or serum glucose level, and a diagnostic test
that produced results in an ordinal scale similar to those produced by rating or ranking
modalities.

In all cases, data were simulated assuming the existence of an unobserved latent
variable that is Gaussian distributed in both the “normal” and “abnormal” subpopu-
lations. For each simulation, a random sample of predetermined size was drawn from
each of these subpopulations. When the diagnostic test was assumed to produce results
on a continuous scale, the randomly selected value was directly used in the ROC compu-
tations. When the diagnostic test was assumed to produce results in the ordinal scale,
the complete population was first partitioned into a predetermined number of discrete
categories (4, 6, or 8). Each randomly selected continuous observation was then recoded
to the discrete value corresponding to the value of the category in which the observation
fell.

Data were simulated for sample sizes of 10, 25, 50, 100, and 150 observations per
group. The degree of overlap of the two populations was controlled by generating
observations from Gaussian distributions whose means differed by 0.5, 1, 1.5, 2.0, and
2.5 standard deviations. Additionally, data were simulated assuming equal variances in
the two subpopulations, and assuming distributions with standard deviation ratios of
1:1.5, 1:2 and 1:2.5. Each of the 100 combination of sample size, degree of overlap, and
standard deviation ratio was replicated 5,000 times.

From each of the 5,000 replications, the area under the ROC curve was calculated
using the trapezoidal rule, and three variances were computed using the previously
described algorithms. Thus, each simulation generated 5,000 areas and 15,000 variance
estimates (5,000 from each of the three methods). For each simulation, the empirical
standard deviation of the AUC was computed as the standard deviation of the 5,000
areas under the curve.

For each simulation, comparisons were made by subtracting the computed aver-
age standard deviation of each method from the empirical standard deviation. Thus,
positive differences indicate an estimated standard deviation less than the empirical
standard deviation (i.e., an underestimation of the empirical value), while a negative
difference indicates an overestimation of the empirical standard deviation.
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3 Results

3.1 Continuous scale

Plotted in Figure 1 are the results of simulations assuming a diagnostic test that pro-
duced results in a continuous scale from two normal populations with equal standard
deviations. Similarly, Figure 2 summarizes results from simulations also assuming a
diagnostic test that produced results in a continuous scale, but from two normal pop-
ulations with unequal standard deviations of 1:2. Results assuming other standard
deviation ratios were similar to these, and thus are not presented here. In these and all
subsequent graphs, a horizontal line at zero is plotted for reference. Data points above
this reference line indicate an underestimation of the empirical standard deviation, while
data points below the reference line indicate an overestimation of the empirical standard
deviation.
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Figure 1: Results of simulations assuming a diagnostic test that produces measure-
ments on a continuous scale from a binormal population with equal standard deviations.
Graphs A through E are for populations with means 0.5, 1.0, 1.5, 2.0, and 2.5 standard
deviations apart, respectively. ◦-Delong, �-Hanley, and 
-Bamber

(Continued on next page)
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Figure 2: Results of simulations assuming a diagnostic test that produces measurements
on a continuous scale from a binormal population with unequal standard deviations of
1:2 ratio. Graphs A through E are for populations with means 0.5, 1.0, 1.5, 2.0, and
2.5 standard deviations apart, respectively. ◦-Delong, �-Hanley, and 
-Bamber

For sample sizes of 25 or greater, all three algorithms produced similar results close
to the empirically expected value. They all approached the expected value as the sample
size, and the distance between populations increased.

Some variability in the estimation, however, was noted for smaller samples, with a
tendency of the three methods to underestimate the empirical standard deviation as
the distance between the populations increased. No single method consistently outper-
formed another in these simulations.

3.2 Discrete ordinal scale

Summarized in Figure 3 are the results of simulations assuming a diagnostic test that
produced results at four values of a discrete ordinal scale from two normal populations
with equal standard deviations. Similarly, Figure 4 summarizes results from simulations
also assuming a diagnostic test that produced results at four values of a discrete ordinal
scale, but from two normal populations with unequal standard deviations of 1:2. Results
assuming four result categories and other standard deviation ratios were similar to these,
and thus are not presented here. The standard deviations estimated by the DeLong and
Bamber algorithm produced similar results. As with the continuous outcome scale, they
produced results close to the empirically expected value for sample sizes larger than 25.
They also produced results close to the empirically expected value when the population
means were less than 1.5 standard deviations apart. However, they underestimated the
empirical standard deviation as the distance between the populations increased.
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Figure 3: Results of simulations assuming a diagnostic test that produces results at
4 values of a discrete ordinal scale from a binormal population with equal standard
deviations. Graphs A through E are for populations with means 0.5, 1.0, 1.5, 2.0, and
2.5 standard deviations apart, respectively. ◦-Delong, �-Hanley, and 
-Bamber
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Figure 4: Results of simulations assuming a diagnostic test that produces results at
4 values of a discrete ordinal scale from a binormal population with unequal standard
deviations of 1:2 ratio. Graphs A through E are for populations with means 0.5, 1.0, 1.5,
2.0, and 2.5 standard deviations apart, respectively. ◦-Delong, �-Hanley, and 
-Bamber

On the other hand, Hanley’s method consistently produced standard deviations
greater than the other two methods, in most cases overestimating the empirical standard
deviation. Hanley’s method, however, approached the results of the other two methods
and the empirical value as either the sample size or the distance between populations
increased.
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All three methods underestimated the standard deviation for small sample sizes
when the distance between populations exceeded one standard deviation. This underes-
timation became more pronounced as the distance between the populations increased.
Similar results were observed when data were simulated assuming six and eight classi-
fication levels (Figure 5).
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Figure 5: Results of simulations assuming a diagnostic test that produces results at
8 values of a discrete ordinal scale from a binormal population with equal standard
deviations. Graphs A through E are for populations with means 0.5, 1.0, 1.5, 2.0, and
2.5 standard deviations apart, respectively. ◦-Delong, �-Hanley, and 
-Bamber

4 Conclusions

The area under the receiver operating characteristic (ROC) curve has been successfully
used to summarize and compare the discriminatory accuracy of a diagnostic test and to
evaluate the predictive power of statistical models for binary outcomes (Harrell et al.
1984). When this area is computed nonparametrically, three algorithms for computing
its variance are commonly used. These three methods were compared by simulating
data under various conditions.

When the outcome of the diagnostic test was measured on a continuous scale, little
difference was found between the methods for sample size greater than 30 in each of the
“normal” and “abnormal” groups. Not unexpectedly, the estimates from all three meth-
ods approached the empirically expected variance as the number of subjects per group
increased. The more noticeable differences were found for smaller sample sizes, where all
three methods yielded variances smaller than the empirically expected values and more
variability between methods was found. Based on these simulations of continuous out-
comes, it is difficult to recommend a single method, although DeLong’s method tended
to yield values closer to expected in cases where the normal and abnormal population
means were more than one standard deviation apart.



288 Variance of the area under the nonparametric ROC curve

When the outcome of the diagnostic test was measured on a discrete ordinal scale,
the methods developed by DeLong et al. and by Bamber outperformed Hanley and Mc-
Neil’s method. This was true regardless of sample size and distance between population
means. The Hanley and McNeil’s method always yielded standard deviations that were
greater than those of the other two methods and frequently produced values that were
greater than the empirically expected value. Based on these simulations, statistical tests
comparing ROC areas constructed using Hanley and McNeil’s variance estimator will be
overly conservative when a discrete rating scale such as a comorbidity index is used.
This negative bias of the Hanley and McNeil’s method could be of concern. In particular
this method is often used to compute sample sizes and could also potentially impact
statistical inference, statistical power, and confidence interval coverage probabilities.
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