The Stata Journal

adata, citation and similar papers at core.ac.uk

brought to you by

provided by Research Papers

H. Joseph Newton	Nicholas J. Cox	
Department of Statistics	Department of Geography	
Texas A & M University	University of Durham	
College Station, Texas 77843	South Road	
979-845-3142	Durham City DH1 3LE	
979-845-3144 FAX	United Kingdom	
jnewton@stata-journal.com	n.j.cox@stata-journal.com	
Associate Editors		
Christopher Baum Boston College	Stanley Lemeshow Ohio State University	
Dino Dolloggo	I Scott Long	
Karolinska Institutet	J. Scott Long Indiana University	
David Clayton Combridge Inst. for Medical Dessent	Thomas Lumley	
Cambridge first. for Medical Research	University of washington, Seattle	
Charles Franklin	Marcello Pagano	
University of Wisconsin, Madison	Harvard School of Public Health	
Joanne M. Garrett	Sophia Rabe-Hesketh	
University of North Carolina	Inst. of Psychiatry, King's College Lor	ndon
Allan Gregory	J. Patrick Royston	
Queens University	MRC Clinical Trials Unit, London	
James Hardin	Philip Ryan	
Texas A&M University	University of Adelaide	
Stephen Jenkins	Jeroen Weesie	
University of Essex	Utrecht University	
Jens Lauritsen	Jeffrey Wooldridge	
Odense University Hospital	Michigan State University	
v *		

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and help files) are copyright ^(C) by Stata Corporation. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtain ed from Stata Corporation if you wish to make electronic copies of the insertions. This precludes placing electronic copies of the Stata Journal, in whole or in part, on publically accessible web sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting files understand that such use is made without warranty of any kind, by either the Stata Journal, the author, or Stata Corporation. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote free communication among Stata users.

The Stata Technical Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered trademark of Stata Corporation.

From the help desk: Transfer functions

Allen McDowell Stata Corporation amcdowell@stata.com

Abstract. The question often arises as to whether one can estimate a transfer function model using Stata. While Stata does not currently have a convenience command for doing so, this article will demonstrate that estimating such a model can be accomplished quite easily using Stata's arima command. The classic text for transfer function modeling is Box, Jenkins, and Reinsel (1994); however, a more concise presentation can be found in Brockwell and Davis (1991).

Keywords: st0009, arima, xcorr, corrgram, transfer function, impulse-response function, autocorrelation function, cross-correlation function, pre-whitened, linear filter, difference equation

1 Transfer function models

Transfer function modeling is simply a methodology for finding a parsimonious, and therefore estimable, parameterization for an infinite-order distributed lag model. In the broadest of terms, transfer functions are a linear filter that can be represented by an equation of the form

$$Y_t = \sum_{i=0}^{\infty} v_i * X_{t-i} + N_t$$
$$= \left(\sum_{i=0}^{\infty} v_i * L^i\right) * X_t + N_t$$
$$= v(L) * X_t + N_t$$

whereby deviations of an output from its steady-state level are represented as a linear aggregate of input deviations. v(L) is a polynomial in the lag operator L and is known as the transfer function of the filter. The weights, v0, v1, v2, ..., are known as the impulse-response function of the system. The term N_t represents an additive noise term that is assumed to be a random variable that follows a stationary autoregressive-moving average (ARMA) process and is independent of the input X_t . The system is said to be stable if the v_i in

$$\sum_{i=0}^{\infty} v_i * L^i$$

are absolutely summable; i.e.,

$$\sum_{i=0}^{\infty} |v_i| < \infty$$

Direct estimation of the vs is problematic because the right-hand side of the above equation is an infinite series. Even if the vs are indistinguishable from zero beyond some finite lag length, unless the finite lag structure is know a priori, some method for identifying the lag structure is needed. The method proposed by Box, Jenkins, and Reinsel (1994) is to equate the infinite-order polynomial distributed lag representation of the input–output system to a generalized linear difference equation of the form

$$a(L) * Y_t = c(L) * X_{t-b}$$

so that

$$Y_t = \frac{c(L)}{a(L)} * X_{t-b}$$

Equating coefficients on L identifies a functional relationship between the vs of the infinite-order distributed lag representation and the as and cs of the difference equation representation. These functional relationships can become quite complex as the orders of the polynomials a(L) and c(L) grow and are not presented here (The interested reader should consult Table 10.1 in Box, Jenkins, and Reinsel (1994). Note that I have also ignored the additive noise term for the moment. Some authors include the noise term throughout the derivation of the model, whereas some simply attach it in an ad hoc fashion. Operationally, it makes no difference which approach one takes; the latter method simplifies exposition without loss of generality.

Perhaps the most confusing aspect of transfer function modeling (or perhaps, better said, the transfer function literature) is the following: while one needs the difference equation representation to develop a strategy for estimating the impulse-response function, one must estimate the impulse-response function before one can estimate the parameters of the difference equation. Again, the problem is that the orders of the polynomials a(L) and c(L) and the value of the delay parameter b are unknown a priori. Since the ultimate goal is to obtain estimates of the impulse-response function, there is no compelling reason to ever estimate the parameters of the difference equation. That is, the role of the difference equation representation is as a conceptual device for obtaining an estimator for the impulse-response function. Once estimates of the impulse-response function are obtained, however, one can obtain estimates of the parameters of the difference equation.

Initial, but inefficient, estimates of the impulse-response function are determined by first prewhitening the input series by applying a linear filter d(L). The same filter is then applied to the output series. The cross-correlation function between the two filtered series will be proportional to the impulse-response function, and the constant of proportion will be the ratio of the standard deviations of the two filtered series. To see that this is true consider the following:

$$Y_t = v(L) * X_t$$

Let $d(L) * X_t = \alpha_t$ where α_t is white noise. Applying the same filter, d(L), to Y_t produces

$$d(L) * Y_t = \beta_t$$

where β_t is some stationary ARMA process. Then,

$$d(L) * Y_t = v(L) * d(L) * X_t$$

or equivalently,

 $\beta_t = v(L) * \alpha_t$

Multiplying both sides by α_{t-k} and taking expectations yields

$$E(\alpha_{t-k} * \beta_t) = E\{v(L) * \alpha_t * \alpha_{t-k}\}$$

which is

$$\gamma_{\alpha\beta}(k) = v_k * \sigma_\alpha^2$$

where $\gamma_{\alpha\beta}(k)$ is the cross-covariance at lag +k between α_t and β_t . Thus,

$$v_k = \frac{\gamma_{\alpha\beta}(k)}{\sigma_{\alpha}^2}$$

or, in terms of cross-correlations

$$v_k = \frac{\rho_{\alpha\beta}(k) * \sigma_\beta}{\sigma_\alpha}$$
 $k = 0, 1, 2, \dots$

Given the initial estimates of the v_k , one can determine the lag structure of the impulse-response function, including the value of the delay parameter b. With this information in hand, direct and efficient estimation of the impulse-response function by maximum likelihood is straightforward. This method is demonstrated in the example below.

2 Example

The example is taken from Chapter 11 of Box, Jenkins, and Reinsel (1994). A gas furnace is employed in which the input is a variable methane feed rate and the output is the resulting carbon dioxide concentration in the off-gases. In Figure 1 below, we see the time-series plots of the input, X_t , and the output, Y_t . Each (X_t, Y_t) pair was sampled from the continuous records at 9-second intervals.

Figure 1: Time-series of X_t and Y_t

As a preliminary step, we must insure that both series are, in fact, stationary. If the series prove to be nonstationary, then the series must be transformed in order to induce stationarity. We can perform a visual test by examining the correlogram of each series to see if the autocorrelation function decays rapidly. We can also perform statistical tests for the presence of unit roots using either the Dickey–Fuller tests (Stata's dfuller command) or the Phillips–Perron test (Stata's pperron command).

(Continued on next page)

. corrg	ram x, la	gs(20)					
LAG	AC	PAC	Q	Prob>Q	-1 0 : [Autocorrelation]	1 -1 [Partia]	0 1 l Autocor]
1	0.9525	0.9526	271.26	0.0000			
2	0.8341	-0.7898	480	0.0000			
3	0.6819	0.3424	619.96	0.0000			
4	0.5312	0.1230	705.21	0.0000			
5	0.4075	0.0571	755.55	0.0000			
6	0.3182	-0.1159	786.35	0.0000			
7	0.2602	0.0539	807.01	0.0000			
8	0.2275	0.1030	822.86	0.0000	—		
9	0.2131	0.0145	836.82	0.0000	—		
10	0.2083	-0.0712	850.2	0.0000	—		
11	0.2028	-0.0971	862.94	0.0000	—		
12	0.1893	0.0455	874.07	0.0000	<u> </u>		
13	0.1673	0.0877	882.79	0.0000	<u> </u>		
14	0.1375	-0.1436	888.71	0.0000	—		_
15	0.1048	0.0475	892.16	0.0000			
16	0.0754	0.0463	893.95	0.0000			
17	0.0520	-0.0184	894.8	0.0000			
18	0.0371	0.0228	895.24	0.0000			
19	0.0340	0.0944	895.61	0.0000			
20	0.0424	-0.0351	896.18	0.0000			
. dfull	er x						
Dickey-	Fuller te	st for uni	it root		Number of	f obs =	295
				:	Interpolated Dicke	ey-Fuller ·	
		Test	1%	Critical	5% Critical	L 10%	Critical
	S	tatistic		Value	Value		Value
Z(t)		-2.665		-3.456	-2.878	3	-2.570
* MacKi	nnon appr	oximate p-	-value fo	or $Z(t) =$	0.0802		
. pperr	on x	-					
Phillin	s-Perron	test for y	unit root	-	Number of	fobs =	205
титттр	S TELLOI	test for t		,	Neueu-Wee	t lagg =	235
					newey wea	st Iags -	5
					Interpolated Dicke	ey-Fuller	
		Test	1%	Critical	5% Critical	L 10%	Critical
	S	tatistic		Value	Value		Value
Z(rho)		-33.910		-20.336	-14.000)	-11.200
Z(t)		-4.131		-3.456	-2.878	3	-2.570

* MacKinnon approximate p-value for Z(t) = 0.0009

While the Phillips–Perron test rejects the null hypothesis of a unit root, the Dickey– Fuller test's rejection is somewhat weak. This is an indication that perhaps we should perform an augmented Dickey–Fuller test just to be sure. The number of lags for the test was chosen to be $int(12 * (\frac{T}{100})^{\frac{1}{4}})$, following Schwert (1989).

. dfuller	x, lags(2)				
Augmented	Dickey-Fuller test	for unit root	Number of obs	=	293
		Int	terpolated Dickey-Full	ler ·	
	Test	1% Critical	5% Critical	10%	Critical
	Statistic	Value	Value		Value
Z(t)	-4.879	-3.457	-2.878		-2.570

* MacKinnon approximate p-value for Z(t) = 0.0000

Based on the visual inspection as well as the unit-root tests, we can reject the null hypothesis that there is a unit root in the input series and assume stationarity of the input series X_t . We can now proceed to test the output series for stationarity.

. corrgram y, lags(20)

					-1 0 1 -1	0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation] [P	artial Autocor]
1	0.9708	0.9747	281.78	0.0000		
2	0.8960	-0.8575	522.67	0.0000		
3	0.7925	0.4651	711.77	0.0000		
4	0.6800	0.2152	851.43	0.0000		<u> </u>
5	0.5745	-0.0903	951.47	0.0000		
6	0.4854	-0.0580	1023.2	0.0000		
7	0.4161	-0.0080	1076	0.0000		
8	0.3656	0.1319	1116.9	0.0000		<u> </u>
9	0.3304	-0.0332	1150.5	0.0000		
10	0.3065	-0.0666	1179.5	0.0000		
11	0.2880	-0.0937	1205.1	0.0000		
12	0.2693	0.0666	1227.7	0.0000		
13	0.2473	0.0236	1246.7	0.0000	<u> </u>	
14	0.2215	0.0200	1262.1	0.0000	<u> </u>	
15	0.1930	-0.0661	1273.7	0.0000	<u> </u>	
16	0.1649	0.0958	1282.3	0.0000	<u> </u>	
17	0.1398	0.0141	1288.5	0.0000	<u> </u>	
18	0.1210	0.0696	1293.1	0.0000		
19	0.1103	-0.0354	1297	0.0000		
20	0.1078	-0.0092	1300.7	0.0000		
. dfull	ler y					
Dickey-	-Fuller te	st for un	it root		Number of obs	= 295
					Interpolated Dickey-Fu	ller ———
		Test	1%	Critical	5% Critical	10% Critical
	S	tatistic		Value	Value	Value
Z(t)		-1.864		-3.456	-2.878	-2.570

* MacKinnon approximate p-value for Z(t) = 0.3492

. pperron y					
Phillips-Pe	rron test for uni	t root	Number of ob Newey-West 1	s = ags =	295 5
		Inte	erpolated Dickey-F	uller -	
	Test	1% Critical	5% Critical	10%	Critical
	Statistic	Value	Value		Value
Z(rho)	-23.969	-20.336	-14.000		-11.200
Z(t)	-3.423	-3.456	-2.878		-2.570

* MacKinnon approximate p-value for Z(t) = 0.0102

Note that while the sample autocorrelation function of the output series dampens out fairly quickly and the Phillips–Perron unit root test rejects the null hypothesis of a unit root, the Dickey–Fuller unit root test fails to reject the same null hypothesis. Again, this led me to perform an augmented Dickey–Fuller test using two additional autoregressive lags.

Z(t)	-3.872	-3.457	-2.878		-2.570		
	Test Statistic	1% Critical Value	5% Critical Value	10%	Critical Value		
0	Traternal at al Dialana Fullan						
Augmented	Dickev-Fuller tes	st for unit root	Number of o	obs =	293		
. dfuller	y, lags(2)						

* MacKinnon approximate p-value for Z(t) = 0.0023

The augmented Dickey–Fuller test rejects the null hypothesis of a unit root so we can proceed, as did Box, Jenkins, and Reinsel (1994), under the assumption that both the input and output series are stationary.

The next step is to pre-whiten the input series. Inspection of the sample autocorrelation function and the sample partial-autocorrelation function suggests an autoregressive model of order 3.

```
. arima x, ar(1/3)
(setting optimization to BHHH)
Iteration 0: log likelihood =
                                72.554746
Iteration 1:
              log likelihood = 72.567122
Iteration 2:
              \log likelihood = 72.568408
              log likelihood = 72.568679
Iteration 3:
              log likelihood =
Iteration 4:
                                72.568788
(switching optimization to BFGS)
Iteration 5: log likelihood = 72.568839
Iteration 6:
              \log likelihood = 72.568879
Iteration 7:
              \log likelihood = 72.568895
              log likelihood = 72.568897
Iteration 8:
Iteration 9:
              log likelihood = 72.568898
Iteration 10: log likelihood = 72.568898
```

ARIMA regress	sion						
Sample: 1 to	296			Number Wald c	of obs hi2(3)	=	296 18662.04
Log likelihoo	od = 72.5689	Prob >	chi2	=	0.0000		
		OPG					
x	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
x							
_cons	0607873	.2112943	-0.29	0.774	474	9165	.353342
ARMA							
ar							
L1	1.969063	.0297688	66.15	0.000	1.91	0717	2.027409
L2	-1.365142	.0690584	-19.77	0.000	-1.50	0494	-1.22979
L3	.3394078	.0488192	6.95	0.000	.24	3724	.4350916
/sigma	.1878718	.0040316	46.60	0.000	. 1	7997	.1957736

To get the pre-whitened series, we just use the residuals that are generated by predict.

. predict alpha, resid

We can inspect the correlogram of the filtered series to ensure that we have, in fact, produced a white-noise series.

LAG	AC	PAC	Q	Prob>Q	-1 0 1 [Autocorrelation]	-1 0 1 [Partial Autocor]
1	-0.0352	-0.0352	.36967	0.5432	1	1
2	0.0709	0.0699	1.8759	0.3914		
3	0.0578	0.0632	2.8834	0.4100		
4	-0.1426	-0.1451	9.0243	0.0605	_	_
5	-0.0094	-0.0284	9.051	0.1070		
6	0.0585	0.0792	10.094	0.1208		
7	0.0145	0.0400	10.158	0.1798		
8	0.0024	-0.0286	10.16	0.2540		
9	-0.0542	-0.0766	11.062	0.2715		
10	0.0365	0.0545	11.473	0.3219		
11	0.1434	0.1807	17.841	0.0854	<u> </u>	
12	-0.0761	-0.0804	19.64	0.0742		
13	0.0988	0.0320	22.681	0.0457		
14	0.0423	0.0645	23.24	0.0565		
15	-0.0819	-0.0212	25.344	0.0455		
16	0.0172	-0.0304	25.437	0.0625		
17	0.0653	0.0613	26.784	0.0613		
18	-0.0523	-0.0234	27.651	0.0676		
19	-0.0787	-0.1140	29.625	0.0568		
20	0.0229	0.0149	29.792	0.0733		

[.] corrgram alpha, lags(20)

The evidence does indeed suggest that alpha is a white-noise series.

A. McDowell

Next, we apply the same filter to the output series. This requires a little data management on our part. This is the type of operation that one would presumably like to see eliminated by a convenience command. Nevertheless, our task is easily accomplished by renaming two variables, using **predict** once again to generate the filtered output series, and then returning our variables back to their original names.

```
rename x x1
rename y x
predict beta, resid
rename x y
rename x1 x
```

We will need the standard deviations of the two filtered series for our initial estimates of the impulse-response function, so I will save them as scalars:

•	summarize al	lpha								
	Variable	Obs	Mean	Std. Dev.	Min	Max				
	alpha 296		.0000753	.1882882	9202943	.9906531				
	scalar s_alp	pha = r(sd)								
	summarize be	eta in 2/1								
	Variable	Obs	Mean	Std. Dev.	Min	Max				
	beta	295	3.042023	.377452	2.074999	4.701234				
	. scalar s beta=r(sd)									

We can now examine the cross-correlation function of α_t and β_t , which, as indicated earlier, will be proportional to the impulse-response function. The **xcorr** command will also allow us to generate a new variable containing the estimates of the cross-correlation function at each lag. From this variable and the standard deviations of α_t and β_t , we can construct initial estimates of the impulse-response function. From these estimates and an application of Bartlett's approximation of the standard errors of the cross-correlation function (Bartlett 1955), we can identify the lag structure of the transfer function that we wish to estimate.

(Continued on next page)

. xcorr alpha beta in 2/l , saving(alpha_beta, replace) title(" ") l1title(" ")

Figure 2: Cross-correlation function of α_t and β_t

. ACOII	arpita be	ta in 2/1, generate(
LAG	CORR	-1 0 1 [Cross-correlation]
-20	-0.0519	
-19	0.0269	
-18	-0.0434	
-17	-0.0462	
-16	-0.0272	
-15	0.0358	
-14	-0.0023	
-13	0.0210	
-12	0.0029	
-11	0.0119	
-10	0.0197	
-9	-0.0087	
-8	-0.0965	
-7	-0.0325	
-6	-0.1195	
-5	-0.0103	
-4	-0.0208	
-3	-0.0378	
-2	0.0033	
-1	-0.0306	
0	0.0010	
1	0.0573	
2	-0.0285	
3	-0.2771	
4	-0.3248	_
5	-0.4435	
6	-0.2633	
7	-0.1669	

xcorr alpha beta in 2/1 generate(cross) table

A. McDowell

8	-0.0283	
9	0.0287	
10	-0.0519	
11	-0.0305	
12	-0.0156	
13	-0.0642	
14	0.0026	
15	-0.0150	
16	-0.0583	
17	-0.0472	
18	-0.0299	
19	-0.1122	
20	0.0090	

We can use the new variable, cross, generated by **xcorr** along with the ratio of the standard deviations of the filtered input and output series to get initial estimates of the impulse-response function. Actually, all you need is the estimate of the cross-correlation function to identify the lag structure of the impulse-response function since the impulse-response function is proportional to the cross-correlation function. However, one could use these initial estimates of the impulse-response function as starting values in **arima** for models that have difficulty achieving convergence.

Under the null hypothesis that there is no cross correlation between the pre-whitened input series and the filtered output series, Bartlett's formula for the standard errors of the cross-correlations reduces to 1/sqrt(n). While the theoretical impulse-response function will exhibit a pattern dictated by a difference equation of an order equal to 1 plus the order of the polynomial a(L), past a certain lag, the individual cross-correlations, and thus the individual impulse-response functions, will not be significantly different from zero. We can, for example, use zero minus two standard deviations as a cutoff to determine which cross-correlations are significantly different from zero. Simulations indicate that with a sample of 296 observations, tests based upon the assumption that the cross-correlations are approximately normally distributed do not have the correct coverage probabilities; the tests are overly conservative. Nevertheless, continuing to follow Box, Jenkins, and Reinsel (1994), we can use the results of these tests to determine the value of b, the delay parameter, as well as the finite lag structure of the transfer function to be estimated.

```
. generate lag =_n-21
. generate std = -2/sqrt(296)
. generate zero = 0
. generate ir = (s_beta/s_alpha)*cross
(255 missing values generated)
. list lag cross ir std if ir != . & lag >=0 & cross < std
          lag
                   cross
                                ir
                                           std
24.
            3
                -.277086 -.5554606 -.1162476
25.
            4 -.3247887 -.6510878 -.1162476
26.
            5 -.4435291
                         -.8891206 -.1162476
27.
            6 -.2632791 -.5277824 -.1162476
            7 -.1669311 -.3346385 -.1162476
28.
```

From the estimates we can now hypothesize that there is a three-period delay and that the transfer function will include five lags of the input series. We can estimate such a model using arima as follows:

```
. arima y 1(3/7).x
(setting optimization to BHHH)
Iteration 0:
               log likelihood = -363.30663
               \log likelihood = -363.30663
Iteration 1:
ARIMA regression
Sample: 8 to 296
                                                   Number of obs
                                                                       =
                                                                                289
                                                   Wald chi2(5)
                                                                       =
                                                                            1725.43
Log likelihood = -363.3066
                                                   Prob > chi2
                                                                             0.0000
                                                                       =
                                 OPG
                                                              [95% Conf. Interval]
                     Coef.
                             Std. Err.
                                                   P>|z|
у
                                              z
у
x
          L3
                 -.6992201
                              .3150715
                                          -2.22
                                                   0.026
                                                             -1.316749
                                                                          -.0816914
          L4
                 -.5496065
                              .7044173
                                          -0.78
                                                   0.435
                                                             -1.930239
                                                                           .8310261
          L5
                 -1.016878
                              .8318415
                                           -1.22
                                                   0.222
                                                             -2.647257
                                                                           .6135019
          L6
                  .1387479
                              .6717631
                                           0.21
                                                   0.836
                                                             -1.177883
                                                                           1.455379
          L7
                 -1.014284
                              .2799281
                                          -3.62
                                                   0.000
                                                             -1.562933
                                                                          -.4656348
_cons
                  53.32959
                              .0837679
                                         636.64
                                                   0.000
                                                             53.16541
                                                                          53.49377
      /sigma
                  .8505925
                              .0248751
                                          34.19
                                                   0.000
                                                              .8018382
                                                                           .8993467
```

We must now turn our attention to modeling the additive noise term.

```
. predict n, resid
```

```
. corrgram n, lags(20)
```

LAG	AC	PAC	Q	Prob>Q	-1 0 [Autocorr	1 [elation]	-1 [Partial	0 1 Autocor]
1	0.8850	0.9640	228.7	0.0000	ŀ			<u> </u>
2	0.6999	-0.5440	372.23	0.0000	-			-
3	0.4924	-0.0406	443.53	0.0000	-			
4	0.3124	0.1915	472.32	0.0000	-			—
5	0.1818	0.0376	482.11	0.0000	-	_		
6	0.0951	-0.0130	484.8	0.0000				
7	0.0385	-0.0852	485.24	0.0000				
8	0.0016	0.0437	485.25	0.0000				
9	-0.0164	0.1025	485.33	0.0000				
10	-0.0085	-0.0079	485.35	0.0000				
11	0.0021	-0.1440	485.35	0.0000			_	_
12	-0.0072	-0.1036	485.37	0.0000				
13	-0.0358	-0.0296	485.76	0.0000				
14	-0.0754	-0.0640	487.49	0.0000				
15	-0.1198	-0.1037	491.9	0.0000				
16	-0.1509	-0.0108	498.91	0.0000	_			
17	-0.1721	-0.0683	508.07	0.0000	_			
18	-0.1748	0.0324	517.54	0.0000	_			
19	-0.1526	0.0541	524.8	0.0000	_			
20	-0.1021	0.1211	528.06	0.0000				

A. McDowell

Inspection of the sample autocorrelation function and the partial autocorrelation function indicates that the noise term follows a second-order autoregressive process. We can now include the error term in our model to jointly estimate all of the parameters.

```
. arima y 1(3/7).x, ar(1/2)
(setting optimization to BHHH)
Iteration 0:
               \log likelihood = -41.695686
               \log likelihood = -23.171625
Iteration 1:
Iteration 2:
               \log likelihood = -5.7968769
               \log likelihood = -2.1599672
Iteration 3:
Iteration 4:
               \log likelihood = -1.4669091
(switching optimization to BFGS)
Iteration 5:
               \log likelihood = -1.2421862
Iteration 6:
               log likelihood = -.853274
Iteration 7:
               \log likelihood = -.83456897
Iteration 8:
               \log likelihood = -.82355348
Iteration 9:
               log likelihood = -.82147948
               log likelihood = -.82086731
Iteration 10:
               log likelihood = -.82067251
Iteration 11:
               log likelihood = -.82065843
Iteration 12:
               log likelihood = -.82065789
Iteration 13:
Iteration 14:
               log likelihood = -.82065783
ARIMA regression
                                                                               289
Sample: 8 to 296
                                                  Number of obs
                                                   Wald chi2(7)
                                                                       =
                                                                           6547.92
Log likelihood = -.8206578
                                                  Prob > chi2
                                                                            0.0000
                                                                       =
                                 OPG
                     Coef.
                             Std. Err.
                                             z
                                                  P>|z|
                                                             [95% Conf. Interval]
у
у
x
          L3
                 -.5557759
                              .0653626
                                          -8.50
                                                  0.000
                                                            -.6838843
                                                                         -.4276675
                 -.6444723
                              .0744984
                                                  0.000
                                                            -.7904865
          T.4
                                          -8.65
                                                                          -.498458
          L5
                 -.8598032
                              .0784265
                                         -10.96
                                                  0.000
                                                            -1.013516
                                                                         -.7060902
          L6
                 -.4835769
                              .0862466
                                          -5.61
                                                  0.000
                                                            -.6526171
                                                                         -.3145366
          L7
                 -.3633083
                              .0776425
                                          -4.68
                                                  0.000
                                                            -.5154849
                                                                         -.2111318
                  53.37647
                              .1876201
                                         284.49
                                                  0.000
                                                             53.00874
                                                                           53.7442
_cons
ARMA
ar
                  1.537904
                                                  0.000
          L1
                              .0386701
                                          39.77
                                                             1.462112
                                                                          1.613696
          L2
                 -.6291054
                              .0426486
                                                  0.000
                                                            -.7126951
                                                                         -.5455156
                                         -14.75
      /sigma
                  .2413085
                              .007408
                                          32.57
                                                  0.000
                                                               .226789
                                                                          .2558279
```

For diagnostic purposes, we should now check the residual to ensure that it is a white-noise process and that it is uncorrelated with the filtered input series α_t . Failure of either of these tests would indicate an inadequacy of the model.

. predict residual, residual (7 missing values generated)

LAG	AC	PAC	Q	Prob>Q	-1 0 1 -1 [Autocorrelation] [Partia	0 1 L Autocor]
1	0.0323	0.0325	.30472	0.5809		
2	0.0710	0.0707	1.7816	0.4103		
3	-0.0749	-0.0801	3.4294	0.3300		
4	-0.0673	-0.0694	4.7668	0.3121		
5	-0.0639	-0.0519	5.9774	0.3084		
6	0.0978	0.1093	8.819	0.1840		
7	0.0272	0.0237	9.04	0.2498		
8	0.0340	0.0065	9.3852	0.3109		
9	-0.0548	-0.0561	10.288	0.3277		
10	0.0893	0.1260	12.692	0.2414		<u> </u>
11	0.0600	0.1142	13.783	0.2453		
12	0.1148	0.1267	17.783	0.1224		<u> </u>
13	-0.0280	-0.0158	18.022	0.1567		
14	0.0634	0.1098	19.252	0.1555		
15	-0.0798	0.0022	21.204	0.1304		
16	-0.0024	0.0232	21.206	0.1707		
17	-0.0745	-0.0738	22.924	0.1517		
18	-0.0112	-0.0585	22.963	0.1920		
19	-0.1106	-0.1399	26.772	0.1101	-	_
20	-0.0003	-0.0691	26.772	0.1418		
. xcorr	alpha re	esidual, sa	aving(alp	ha_resid	<pre>lual, replace) title(" ") 1</pre>	ltitle(" ")

. corrgram residual, lags(20)

Figure 3: Cross-correlation function of residual and α_t

The diagnostics indicate that the residual is white noise and that it is uncorrelated with the input series α_t .

Finally, we can generate the predicted value of the output and compare it to the observed series.

```
. predict yhat
(option xb assumed; predicted values)
(7 missing values generated)
. graph y yhat t, c(ll[..#.#]) s(..) saving(prediction, replace)
```


Figure 4: Time-series of Output (Y) and Prediction (yhat)

Comparison of the parameter estimates achieved by arima and those reported by Box, Jenkins, and Reinsel (1994) indicates that we have estimated the same model. There are minor numerical differences, but these differences are due to rounding in the reported results in Box, Jenkins, and Reinsel (1994).

3 References

Bartlett, M. S. 1955. Stochastic Processes. Cambridge: Cambridge University Press.

- Box, G. E., G. M. Jenkins, and G. C. Reinsel. 1994. Time Series Analysis Forecasting and Control. 3d ed. Upper Saddle River, NJ: Prentice–Hall.
- Brockwell, P. J. and R. A. Davis. 1991. Time Series: Theory and Methods. 2d ed. New York: Springer-Verlag.
- Schwert, W. G. 1989. Tests for Unit Roots: A Monte Carlo Investigation. Journal of Business & Economic Statistics 7(2).

About the Author

Allen McDowell is Director of Technical Services at Stata Corporation.