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It’s all about the sampling
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Abstract. Effective estimation and inference, when the data are collected using
complex survey designs, requires estimators that fully account for the sampling
design. This article explores, by means of Monte Carlo simulations of the power of
simple hypothesis tests, the consequences of parameter estimation and inference
when naive estimators are employed with survey data.
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1 Introduction

One of the most important concepts in statistics is the Central Limit Theorem. Infor-
mally, this theorem states that if we know the value of the variance S2 of a random
variable and take a sample of n independent measurements (y1, y2, . . . , yn) on that
variable, the distribution of the sample mean y may be approximated by the normal
distribution with mean µ (the population mean) and variance S2

d = S2/n. Although
S2
d is typically unknown, we can usually estimate the variance of y and form a t or F

statistic to test H0 : µ = µ0. Methods that directly employ the Central Limit Theorem
rest on the assumption that the data were collected in the form of a simple random
sample. Survey data, however, are typically collected according to complex designs in-
volving stratification, clustering at one or more stages, and weighted sampling. In this
article, we use Monte Carlo methods to investigate the effect that survey designs have
on the significance level and power of a hypothesis test involving the population mean.

While there are many sampling designs to choose from, each having its own estimator
for the population mean, we will limit our discussion to four simple designs: simple
random sampling (SRS), stratified simple random sampling (STR-SRS), cluster sampling
(PSU), and stratified-cluster sampling (STR-PSU). These designs, while not permitting
us to demonstrate all of the possible pitfalls one might encounter when estimating a
population parameter from survey data, will enable us to adequately demonstrate the
importance of accounting for the sampling design. Failure to fully account for the
sampling design when estimating population parameters can result in biased estimators
of population parameters or biased variance estimators. A statistic used to estimate
a population parameter is said to be unbiased if the mean of its repeated-sampling
distribution is equal to the parameter of interest. A variance estimator of a statistic is
said to be unbiased if the mean of its repeated-sampling distribution equals the repeated-
sampling variance of the statistic of interest. In Stata, one specifies the sampling design
prior to estimation using the svyset command.

c© 2002 Stata Corporation st0016
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Figure 1: Population density estimate compared to a normal density.

1.1 Population under study

The Monte Carlo studies for each of these designs are based on repeated sampling from
the same simulated population. This population was designed to have 4 strata, each
containing 200 clusters of individuals. Each cluster contains 30 individuals, and thus
our population is balanced and contains N = 4 × 200 × 30 = 24,000 observations. The
population was purposely generated to possess cluster and stratification effects in the
measurement y in order to fully appreciate the need to understand design effects. We
first generated data according to the model

xhij = µh + uhi + ehij

where µh is constant within stratum according to

µh =

 −10, h = 2
15, h = 3
0, otherwise

and h = 1, . . . , 4, i = 1, . . . , 200, and j = 1, . . . , 30. The random cluster means uhi
were generated from a normal distribution with zero mean and a variance of 16, and
the ehij are from a normal distribution with zero mean and a variance of 100 + 100h2.
The population values used in the Monte Carlo studies were the values yhij = µ +
xhij − x, where x is the average of the xhij ’s, and µ = 90. Thus, by construction, the
distribution of y is a mixture of normal random variables; Figure 1 depicts a kernel
density estimate of the distribution of y compared to a normal density. From this point
forward, the population is fixed for the purposes of sampling. The standard deviation
of our population is S = 30.86.
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1.2 Significance level and power

We are interested in how misspecifying the sampling design affects the power of testing
H0 : µ = µ0, where µ0 is the hypothesized mean. For theoretical results on these is-
sues, see Cochran (1977), Kish (1965), Korn and Graubard (1999), Levy and Lemeshow
(1999), and Thompson (1992).

We chose an evenly spaced grid of hypothesized means over the interval µ ± 10Sd,
where S2

d is the variance of the mean estimator for a given sampling design. The power
can then be estimated by the proportion of times H0 was rejected. Each proportion is
based on the two-sided t test using the results from svymean applied to 1000 samples
chosen randomly according to the sampling design under study. All tests in the study
will be performed with a significance level α = .05. Since we have our population in
a Stata dataset, we know with certainty the value of the population mean and can
compute the variance of the mean estimator for each sampling design, implying that we
can test H0 using the normal distribution. The power of a two sided Z test is

β(µ0) = Φ
(
−zα/2 − µ0 − µ

Sd

)
+ Φ

(
−zα/2 +

µ0 − µ

Sd

)
(1)

where zα/2 is the 100(1− α/2) percentile of the standard normal distribution, and Φ is
the standard normal CDF.

We use the power curve based upon the normal distribution as the standard for
comparison. A power curve generated from employing a biased estimator will exhibit
a horizontal location shift relative to the Z test power curve. Power curves resulting
from biased variance estimators will exhibit nonhomothetic vertical shifts relative to the
Z test power curve.

2 Simple random sampling

There are
(
N
n

)
possible samples of size n that can be drawn from a population of size N

using simple random sampling without replacement. For this design, each individual in
the population has an equal chance of being observed. Data from this design is the least
difficult to analyze, since most of the results we learned in our introductory statistics
courses apply. The sample mean estimates the population mean without bias, and its
variance is

S2
d =

S2

n
(1 − f)

where f = n/N is called the sampling fraction or finite population correction (FPC).
Ignoring the fact that the sample is being drawn from a finite population results in
an estimate of variance that is biased upwards. However, if the sample size is a small
percentage of the population size, the bias becomes negligible, and the FPC can be
effectively ignored. With the variance estimated by

s2d =
s2

n
(1 − f)
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the usual t statistic will tend to follow Student’s t distribution with df = n− 1 degrees
of freedom.
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Figure 2: Monte Carlo power compared with the power from a Z test for the SRS
design.

Figure 2 exhibits three power curves generated for this design using f = 0.25. The
Z test power curve, β(µ0) from (1) with Sd = 0.3450, is plotted using a solid line. The
circles plot the estimated power for the case where the FPC was specified. The squares
plot the estimated power where the FPC was not specified. Note that the test that
excludes the FPC (represented by the squares) does not have the correct significance
level. Due to the large sample size, it is not surprising to see that the power curve
for the estimator that includes the FPC, which has the correct significance level, closely
approximates the power curve based on the Z test.

3 Stratified simple random sampling

In the stratified SRS design, the population is partitioned into L mutually exclusive and
exhaustive strata, thus N = N1 + · · ·+NL, with Nh denoting the number of individuals
in stratum h. The strata samples are then independently drawn according to the SRS

design within each stratum. The survey designer identifies the strata and the strata
sample sizes nh to be drawn from each stratum. If stratification is being employed in
order to improve estimation precision, some prior information regarding the population
is implied. There are

(
N1
n1

)(
N2
n2

)
. . .

(
NL

nL

)
possible samples of size n = n1 + · · · + nL that

can be drawn from the population with the STR-SRS design. Since the sample space is
reduced compared to that of the simple random sampling design, individuals may no
longer have the same probability of being selected. In fact, each stratum has its own
sampling fraction, fh = nh/Nh. Thus, except for the special case when the sampling
fractions are equal across strata, the inclusion probabilities are not the same across
all strata. Failing to account for this will bias the estimator for the population mean.
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Weighting each observation by the inverse of its probability of inclusion will eliminate
the bias; these weights are called probability sampling weights or pweights in Stata.
Failing to account for potential differences in location or scale across strata will result
in biased variance estimators that will tend to be larger than that of the variance of the
mean for this design.

The mean estimator for this design is

yst =
L∑
h=1

Whyh

where yh is the mean for stratum h and Wh = Nh/N . The Wh are a result of correctly
specifying pweights. The variance of this estimator is

S2
d =

L∑
h=1

W 2
h

S2
h

nh
(1 − fh) (2)

where Sh denotes the standard deviation of the population values in stratum h. The
variance estimator results from estimating Sh from the sample values in stratum h. The
degrees of freedom for this variance estimator is typically taken to be df = n− L.
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Figure 3: Monte Carlo power compared with the power from a Z test for the STR-SRS

design.

The results of the power study for this design are shown in Figure 3. Here we drew
samples with stratum sampling fractions according to f1 = .10, f2 = .20, f3 = .30, and
f4 = .40. The Z test power curve, with Sd = 0.3084, is depicted as a solid line. The
power values plotted using a dashed line depict the results from specifying FPC only.
The squares depict the results from specifying both strata and FPC, but not pweights.
The triangles depict the results from specifying pweights and FPC, but not strata. The
circles depict the results from fully specifying the design.
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The bias in the estimated mean caused by not using sampling weights is clearly
illustrated by the rightward location shifts of the dashed line and squares relative to the
Z test power curve. The triangles exhibit a significance level that is too low, indicating
that the variance estimators are biased upward. Finally, the fact that the circles closely
approximate the Z test power curve demonstrates that specifying stratification along
with proper weighting results in an unbiased estimator of the population mean with a
variance estimator that provides the appropriate significance level.

4 One-stage clustered designs

In one-stage cluster sampling designs, the population is partitioned into groups of indi-
viduals called clusters or primary sampling units (PSU). A simple random sample of n
clusters is then taken from the population, and all individuals within a sampled cluster
are observed. Thus, it is the cluster as a whole that contributes information instead of
the individuals. Suppose we have a population where we identify N clusters, each with
M individuals, and denote yij as the observed value for the jth individual within the
ith cluster. An unbiased estimator for the population mean is

y =
1
nM

n∑
i=1

M∑
j=1

yij

The variance of this estimator is

S2
d =

1 − f

nM2

1
N − 1

N∑
i=1

(yi − y)2 (3)

where yi is the total for cluster i and y is the average of the cluster totals. From our
population, we keep the clusters identified even as we ignore the strata; thus, there are
N = 4 × 200 = 800 clusters in the population, each containing M = 30 individuals.

There are
(
N
n

)
possible samples. Except for the special case where all of the clusters

are of equal size, the number of observations in the sample will not be equal; the sample
size becomes a random variable. As a consequence of this sampling design, individuals
within a cluster are dependent upon each other with respect to the probability of being
sampled. Note that this alone does not appreciably affect the sampling distribution of
the mean; however, the association of individuals within each cluster does.

So the question is: How does this within-cluster association affect the variance of
our mean estimator? We will try to explain this using intracluster correlation. Cochran
(1977) defines the intracluster correlation as “the correlation coefficient between pairs of
units that are in the same systematic sample”. By this definition, intracluster correlation
is

ρ =
E(yij − Y )(yik − Y )

E(yij − Y )2
=

2
∑
i

∑
j<k(yij − Y )(yik − Y )

(M − 1)(NM − 1)S2
(4)

where Y denotes the population average per individual (Y = µ), and S2 is the variance
among the individuals. Correlation coefficients take on the values from −1 to 1, where
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values near −1 indicate very strong negative associations, values near 1 indicate very
strong positive associations, and values near 0 indicate no association at all. Let’s look
at some simulated populations to see what values ρ can take on, and how to interpret
these values.
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Figure 4: Scatter plots of cluster id i by measure yij . Left: Population with clusters
from the uniform distribution centered at the cluster id and with unit range. Right:
Same population with cluster id permuted.

Figure 4 contains two scatter plots of the cluster id versus y. The yij in the left
plot are simple random samples from the continuous uniform distribution centered at i
(the cluster id). The right plot contains the same data but with the cluster id randomly
assigned. The relationship between the values in yij and the artificial cluster id i do
not play a role in the value of ρ = 0.99. The fact that the clusters do not overlap gives
us a visual clue that there is a strong positive intracluster association.

(Continued on next page)
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Figure 5: Scatter plots of cluster id i by measure yij . Top left: Clusters centered at i
with range 5. Top right: Clusters centered at i with range 10. Bottom left: Clusters
centered at i with range 30. Bottom right: Clusters each iid samples from the uniform.

Figure 5 contains similar plots but with increasing amounts of overlap. This was
accomplished by changing the range of the uniform distribution we used to generate the
yij from 5 (top left) to 10 (top right) to 30 (bottom left). The remaining plot contains
clusters taken from the uniform distribution without shifting or rescaling. Thus, as we
look at these plots from left to right and top to bottom, we can see the intracluster
association getting weaker and weaker.

(Continued on next page)
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Figure 6: Examples of negative intracluster association.

It may not seem so, but it is possible for clustering to result in sampling distributions
that are less variable than those from simple random sampling. Consider a population
where yij is from the uniform distribution centered at j instead of i and with range 0.3.
Figure 6 contains plots of data from three such populations. The top left plot comes from
data generated with 10 individuals within each cluster, the top right from a population
with 5 individuals within each cluster, and the bottom with 2 individuals per cluster.
In this case, the clusters are so similar to each other that the negative intracluster
association becomes stronger as the number of individuals per cluster decreases. Perfect
negative association is achieved only when all the clusters contain the same two distinct
values.

Now, Theorem 9.2 of Cochran (1977) shows how the variance of the mean estimator
for this design is related to ρ,

S2
d =

1 − f

nM

NM − 1
M(N − 1)

S2{1 + (M − 1)ρ}

where nM is the sample size. Thus, positive intracluster associations result in larger
variances for the PSU design than for the SRS design. As a consequence, not specifying
the clusters will result in variance estimators that are biased downward. Conversely,
negative intracluster associations result in smaller variances for the PSU design than for
the SRS design, so not specifying the clusters will result in variance estimators that are
biased upward. For our simulated population described in Section 1.1, ρ = 0.1019, so
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we would expect our variance estimates to be too small if clusters are not specified.
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Figure 7: Monte Carlo power compared with the power from a Z test for the PSU design.

The results of the power study for this design are shown in Figure 7; we used a
sampling fraction of f = 0.25. The Z test power curve, with Sd = 0.6864, is depicted
as a solid line. The squares plot out estimated power where only the FPC was specified.
The circles represent the case where both the PSU and FPC were specified. Note that
sampling weights are unnecessary for estimating the mean since all of our clusters have
the same chance of being observed. The fact that the estimated power plotted by
the squares is so far above the Z test power curve clearly indicates that the variance
estimator is biased downwards. As a result, we are rejecting the null hypothesis far too
often when it is true.

5 Stratified-cluster sampling

In a stratified and clustered design, the population is, as in the case of the STR-SRS

design, segmented into L mutually exclusive and exhaustive strata, and stratum h has
Nh clusters. The sampling then involves taking an independent simple random sample of
clusters from each stratum. The survey designer is responsible for choosing the number
of clusters nh to be sampled from stratum h. Once a cluster is selected, every individual
within the cluster is observed. In the case of the stratified one-stage clustered design,
there are

(
N1
n1

)(
N2
n2

)
. . .

(
NL

nL

)
possible samples that can be drawn from the population.

Except for cases like ours where all of the clusters are of equal size M , the total sample
size is dependent upon the particular sample drawn.

The mean estimator for this design is given by

yst =
L∑
h=1

Whyh (5)
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where yh is the mean of the observations from stratum h and Wh = Nh/N . Its variance
is

S2
d =

L∑
h=1

W 2
h

1 − fh
nhM2

Nh∑
i=1

(yhi − yh)2

Nh − 1
(6)

where fh = nh/Nh is the sampling fraction for stratum h, yhi is the total of the mea-
surements in cluster i of stratum h, and yh is the average of the cluster totals within
stratum h.
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Figure 8: Monte Carlo power compared with the power from a Z test for the STR-PSU

design.

The results of the power simulations for this design are shown in Figure 8. Here, as
in STR-SRS, we drew samples according to f1 = .10, f2 = .20, f3 = .30, and f4 = .40.
As in all the previous graphs, the Z test power curve, with Sd = 0.4507, is represented
by a solid line. The power values plotted using a dashed line depict the results from
specifying only the FPC. The rightward and upward shifts of this curve, relative to the
Z test power curve, indicate that this mean estimator is biased and results in a variance
estimator that is biased downwards. The squares depict the results from specifying the
PSUs and the FPC. Here too we see that the mean estimator is similarly biased, but that
the variance is now biased upwards. The triangles depict the results from specifying
strata, pweights, and the FPC. The mean estimator in this case is unbiased, but the
variance is biased downwards. Finally, the circles depict the results from fully specifying
the design. As for the previous designs, the circles closely approximate the Z test power
curve, indicating that the mean estimator and its variance estimator are unbiased.

6 Conclusion

Table 1 contains summary information from the Monte Carlo studies where the sampling
designs were fully specified. It contains the values of Sd, the standard error of the mean
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estimator, for each design along with the associated degrees of freedom. A power curve
evaluated at the true population mean represents the achieved significance level of the
test performed. Let β̂(µ) denote the Monte Carlo estimator of power evaluated at the
true population mean. Since all of the tests performed were based on a 5% significance
level, β̂(µ) is just an estimator of 0.05. The evidence supports the conclusion that,
for the simple designs considered here, the estimators from the fully specified designs
produce unbiased estimates and variances such that inference for a specified significance
level can be achieved with correct probability coverage. It was also clearly demonstrated
that estimators that do not fully take into account the sampling design are biased or
have biased estimates of variance. Thus, statistical inference based upon such estimators
will be flawed.

Table 1: Overview of results

Binomial Exact
Design Sd df β̂(µ) 95% Confidence Interval
SRS 0.3450 5999 0.048 0.0356001 0.0631401
STR-SRS 0.3084 5996 0.050 0.0373352 0.0653910
PSU 0.6864 199 0.048 0.0356001 0.0631401
STR-PSU 0.4507 196 0.045 0.0330098 0.0597525
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