
The Stata Journal (2003)
3, Number 1, pp. 81–99

Speaking Stata: On structure and shape: the

case of multiple responses

Nicholas J. Cox
University of Durham, UK

n.j.cox@durham.ac.uk

Ulrich Kohler
Social Science Research Center

Berlin, Germany
kohler@wz-berlin.de

Abstract. A frequent problem in data management is that datasets may not
arrive in the best structure for many analyses, so that it may be necessary to
restructure the data in some way. The particular case of multiple response data
is discussed at length, with special attention to different possible structures; the
generation of new variables holding the data in different form; valuable inbuilt
string and egen functions; using foreach and forvalues to loop over lists; and
the use of the reshape command. Tabulations and graphics for such data are also
reviewed briefly.

Keywords: pr0008, composite variables, concatenation, egen, foreach, forvalues,
graphics, indicator variables, multiple responses, reshape, split, string functions,
tabulations

1 Introduction

A common source of problems in working with Stata, and indeed any statistical software,
is that the data may not come in the most convenient structure for doing what you want
to do. On occasion, restructuring the data may be as challenging as doing the more
interesting statistical analysis. At worst, what could be more frustrating than having
a clear research question, but not being able to see how to get an answer with your
present data structure? In total, this is an enormous and multifaceted field that may be
tackled with a variety of Stata commands. In this column, we will look at a particular
problem, that of multiple response variables.

Multiple responses, in the sense used here, are defined by a degree of open-endedness.
In particular, a question in a survey may receive zero or more positive answers depending
on the characteristics or behavior of the respondent. For example, respondents might be
asked: Have you experienced any of the following symptoms or received information on
a subject from any of the following media? Do you ever drink tea, coffee, wine, beer, or
water? Do you travel to work by foot, bicycle, motorcycle, car, bus, tram, train, boat,
ski, skates, sledge, horse, camel, yak, . . . ? (That may seem a simple question to you,
but consider commuters who cycle or drive to catch a train and then end their journey
to work with a walk.) Note that we are not here discussing multivariate responses in
general, nor repeated measures, nor panel data or longitudinal data, etc.

In statistical computing terms, such multiple responses may pose difficulties both
for data structure and for data analysis. Most commonly, they are held as a set of

c© 2003 Stata Corporation pr0008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6990319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

82 Speaking Stata

variables, but sometimes it can be useful to hold them as a single variable. No structure
is ideal for all purposes, and often you may want to convert from one structure to
another. Similarly, you may want to look at results for individual variables, or at
results calculated from one or more of these variables. Again, even a whole column
cannot cover all possibilities.

Reference is made below to various user-written programs on SSC. Users of Stata 8
will find ssc incorporated as an official command and documented in [R] ssc. Users of
Stata 7 will also have access to ssc as an official command if they have updated their
Stata, but their documentation consists of the online help.

2 How data may be held

2.1 Indicator variables

Let us look first at a relatively simple example. This crucially important question might
appear in a questionnaire:

Which of the following software packages do you use for data analysis?

1 R
2 S-Plus
3 SAS
4 SPSS
5 Stata
6 others

In this question, respondents are asked to mark the name of each package they use.
Respondents may mark any number of packages. Note that the number before each
package name is used as a code in some coding schemes discussed below.

For many statistical analyses, the answers of the respondents are best coded as a set
of indicator or dummy variables:

q1_R q1_SPlus q1_SAS q1_SPSS q1_Stata q1_others
1. 1 0 0 0 0 1
2. 1 1 0 0 1 0
3. 0 0 0 0 1 0
4. 0 0 1 0 0 0
5. 0 0 1 0 0 1

That is, there should be a variable for each possible answer, with value 1 if a respon-
dent uses a specific package and 0 otherwise. The first respondent in this example uses
R and some other package; the second respondent uses R, S-Plus, and Stata; and so on.
We use names for the variables that have a common prefix. This is a small detail, but
it makes it easier to refer to the variables collectively using a wildcard, such as q1 *.

Data on multiple responses with this coding scheme can be used immediately for
many analyses. For example, you might want to know how many respondents use Stata.
Type

N. J. Cox and U. Kohler 83

. count if q1_Stata == 1

or type

. tabulate q1_Stata

You might want to see the distribution of the number of packages used by the
respondents. This is just the row sum of the variables, most easily calculated by egen.
See [R] egen for details on a variety of functions and a previous column (Cox 2002c)
for a general discussion.

. egen npkg = rsum(q1_*)

. tabulate npkg

You might want to know the distribution of users of software packages. One method
is to summarize the variables and compare their means, but a better method is through
tabstat, say,

. tabstat q1_*, s(sum) c(s)

The use of row sums and of variable sums across 1s and 0s underlines the value of
holding data in indicator variable form.

2.2 Ranked multiple responses

A common variant is that the question asks you to rank choices, say, from most common
to least common use, or in some other way.

q1_1 q1_2 q1_3 q1_4 q1_5 q1_6
1. 1 6 0 0 0 0
2. 5 2 1 0 0 0
3. 5 0 0 0 0 0
4. 3 0 0 0 0 0
5. 6 3 0 0 0 0

Thus, using the coding scheme indicated previously, person 1 uses R most and some
other package next. There is more information recorded in this variant form, as the
first data structure can be obtained from this one, but not conversely. Two common
variations on this scheme are to use numeric missing rather than 0 and to use string
variables including names rather than numeric codes.

This structure evidently makes it easy to focus on which package is most commonly
used, and so forth. It makes it difficult to focus on which packages are used at all, and
so forth.

We mention here a possibility that researchers may encounter or produce tied ranks
in some projects. How best to handle tied ranks is not considered here.

84 Speaking Stata

2.3 “Order of mention” multiple responses

Yet another situation is that answers have been coded in the order in which the respon-
dent mentioned them. Such data may look like ranked multiple responses, but their
interpretation may or may not be similar. In some fields, it appears common to take
order in which responses were mentioned as tacit indication of an underlying order. For
example, suppose that you were asked to state brands of some item that you purchase
or that you know about. Marketing people could be very interested in what springs
most readily to your mind. Whether “order of mention” is tantamount to ranking is a
substantive matter for you to consider.

2.4 Composite string variables

Sometimes the answers to multiple responses are put into one string variable. Com-
monly, this is the concatenation of the codes of possible (positive) answers. For our
example data, such a variable could look like

spkg1
1. 16
2. 521
3. 5
4. 3
5. 63

where we use numeric codes as above, or it could look like

spkg2
1. R others
2. Stata S-Plus R
3. Stata
4. SAS
5. SAS others

The variable spkg1 states for the first observation that this respondent uses the software
packages 1 and 6, which means R (1) and some other package (6). This may look like a
numeric variable, but it should be a string variable. In our experience, both producing
such a variable from other variables and working with such a variable are much easier
when it is a string variable than when it is an integer-valued numeric variable. In any
case, as soon as the number of possibilities exceeds 10, you will need to punctuate to
avoid ambiguity. Otherwise, someone mentioning symptoms 1 and 3 from a list would
be treated the same as someone mentioning symptom 13; both would be represented
by "13". Similarly, as in the example of spkg2 just given, once nonnumeric characters
are used, there is no reason not to include punctuation to make elements clearer, unless
you are near the limiting size of string variables.

Note various issues that can arise in practice. If packages are being ranked, then
"Stata others" has a different meaning from "others Stata", but not otherwise. In
particular, with unranked data, be warned: values that to you are identical but never-
theless differ literally will be tabulated or counted separately. Similar comments apply to
leading and trailing spaces, accidental misspellings, or inconsistencies in uppercase and

N. J. Cox and U. Kohler 85

lowercase. In the latter situation, problems may be solved by working consistently, say,
in lowercase with the aid of the lower() function; see [R] functions (or see [U] 16.3.5

String functions for all previous releases).

This structure is useful particularly for showing combinations of choices, say, in
tables of the composite variable. As the number of possible answers grows, the number
of possible combinations also grows rapidly. Even setting aside the possibility of ranking,
k choices mean 2k possible combinations. However, this is a fact whatever the data
structure.

A detail important here is whether the variable really is a string variable or (despite
our general advice) a numeric variable. When tabulating a string variable, Stata will
sort "12" before "2"; when tabulating a numeric variable, Stata will sort 2 before 12.
Which convention is better for you will depend on your purpose. Thus, with a string
representation all choices with 1 as first character will be tabulated adjacently, while
with a numeric representation, all choices coded by a single digit will be tabulated
adjacently. Either could be useful.

2.5 Single variable in a long data structure

Another data structure holds all information in a single variable with repeated obser-
vations for each individual in the dataset. An example might be something like

id q1
1. 1 R
2. 1 others
3. 2 R
4. 2 S-Plus
5. 2 Stata
6. 3 Stata
7. 4 SAS
8. 5 SAS
9. 5 Stata

In the jargon associated especially with the reshape command, this is an example of a
long data structure.

The answers, here in q1, could be held in a string variable or in a numeric variable
with value labels attached. To make full use of the information in such data, an identifier
variable, here id, is essential. (An identifier variable was not needed for any of our
earlier examples, although we guess that in practice most researchers will have one in
any case.) Note that there is no requirement to show zero or missing responses; that is,
to make explicit the fact that the person with id 1 does not use programs other than
those mentioned. Thus, this data structure is economical as a way of holding multiple
response data, but it is correspondingly awkward as a way of holding other data on the
same individuals. Suppose, for example, that we were also holding data on individuals’
age, sex, and field of study. This information would be best held repeated for each
observation, which is inefficient (but otherwise not especially problematic).

86 Speaking Stata

Data on multiple responses in this structure can be used immediately for many
analyses. For example, you might want to know how many respondents use Stata. If
q1 is a string variable, type

. count if q1 == "Stata"

or if q1 is a numeric variable in which Stata is represented by 5, type

. count if q1 == 5

Data in this structure may be used easily for analyses of subsets defined by separate
answers, either a particular subset or several subsets. The information yielded by count,
and more, is available from

. tabulate q1

which shows the distribution of users of software packages.

You might want to see the distribution of the number of packages used by the
respondents. This is just the number of observations for each individual (distinct id)
for which q1 is not missing. If q1 is never missing, this is yielded by

. bysort id : generate npkg = _N

Irrespective of whether q1 is ever missing, this is yielded by

. bysort id : egen npkg = count(q1)

as count() counts how often its argument is not missing: see [R] egen.

However, if this were followed by

. tabulate npkg

the individual with id 1 would be shown twice, that with id 2 three times, and so on.
We need a way of selecting each id just once. An egen function is dedicated to this
task: tag(). This tags just one observation in each group of identical values with value
1 and any other observations in the same group with value 0.

. egen tag = tag(id)

. tabulate npkg if tag

Note that the idiom if tag as a contraction of if tag == 1 is always safe, as tag()
never produces missing values. This tagging method has many other uses whenever we
wish to relate multiple response data to other data for each individual.

A final advantage of this structure is that it is also applicable to ranked multiple
variables, given an extra variable holding ranks. It is then easy using (e.g.) generate,
egen, tabulate, by:, if, etc. to produce many basic analyses.

Despite some major advantages, this data structure is awkward for working with
conditions specifying more than one answer. There are some ways to approach this, but
they are not very attractive. We could tag those who use both R and Stata in this way,
illustrated by the case of string variables:

N. J. Cox and U. Kohler 87

. bysort id : egen R_and_Stata = sum(q1 == "R" | q1 == "Stata")

. replace R_and_Stata = R_and_Stata == 2

One part of the argument to sum(), q1 == "R", will pick up any observation for which
that is true. The other part of the argument, q1 == "Stata", will pick up any obser-
vation for that is true. The sum of a result of 1 if each condition is satisfied just once
for an individual should be 2. Naturally, that sum is not affected by any number of
results of 0 arising whenever any condition is false. However, although we could make
some progress with such questions and this data structure, it turns out that other data
structures are far superior whenever examining two or more answers simultaneously.

2.6 Missing values and the appropriate denominator

Missing values are likely to be common with multiple response data. Even if everybody
answered the question—which is unusual in many surveys—it may not be the case that
everybody gives the same number of responses. Even when asked to rank a fixed number
of specified items, respondents often stop ranking when they are indifferent to items,
perhaps through lack of experience or knowledge.

A related issue is the appropriate denominator in calculating proportions or percents.
Again, there will almost always be a difference between “number of respondents” and
“number of responses”. Either or both may be of substantive interest.

We flag here two pertinent details specific to Stata.

First, remember when working with integer variables that numeric missing counts
as nonzero and therefore true. A detailed discussion of this point was given in an earlier
column (Cox 2002a). This can be especially important when trying to produce, or
when working with, indicator variables for which the possible nonmissing values are
just 1 and 0.

Second, note that egen, eqany() and egen, neqany(), like egen, tag(), do not
ever return missing results. We say more on this later.

3 How to change data structure

As data are commonly represented in different data structures, and no one structure
is ideal, we need to consider how to change data structures. We will look in turn at
various frequently needed restructurings.

3.1 Many-to-one mappings: concatenating variables

You can concatenate variables by adding them as string variables or as the string equiv-
alent of numeric variables. A tool specifically for this purpose is egen, concat(). See
[R] egen for more detailed discussion and examples. For example, given

88 Speaking Stata

q1_1 q1_2 q1_3 q1_4 q1_5 q1_6
1. 1 6 0 0 0 0
2. 5 2 1 0 0 0
3. 5 0 0 0 0 0
4. 3 0 0 0 0 0
5. 6 3 0 0 0 0

you can type

. egen response = concat(q1_*)

You need not worry about whether the variables are numeric or string, as egen,

concat() automatically converts to string equivalent. You might want to remove the
zeros padding out the result

response
1. 160000
2. 521000
3. 500000
4. 300000
5. 630000

which is easy with one of Stata’s inbuilt string functions ([R] functions again):

. replace response = subinstr(response,"0","",.)

Given a structure of indicator variables

q1_R q1_SPlus q1_SAS q1_SPSS q1_Stata q1_others
1. 1 0 0 0 0 1
2. 1 1 0 0 1 0
3. 0 0 0 0 1 0
4. 0 0 1 0 0 0
5. 0 0 1 0 0 1

you might prefer a concatenation more interpretable than "100001", "110010", etc.
This code yields values like "R others":

. gen str1 q1 = ""

. qui foreach p in R SPlus SAS SPSS Stata others {

. replace q1 = q1 + "‘p’ " if q1_‘p’ == 1

. }

. replace q1 = trim(q1)

(In Stata 8, specifying str1 has become optional.) For more detail on foreach, see
[P] foreach or a previous column dedicated to it and its siblings (Cox 2002b).

3.2 Many-to-one mappings: reshaping to long

First, let us suppose that our data are

id q1_R q1_SAS q1_SPlus q1_Stata q1_others sex
1. 1 1 0 0 0 1 male
2. 2 1 0 1 1 0 female
3. 3 0 0 0 1 0 male
4. 4 0 1 0 0 0 female
5. 5 0 1 0 1 0 female

N. J. Cox and U. Kohler 89

which is an example of what in reshape jargon is described as a wide data structure.
The variables q1 * are numeric indicator variables. Later, we will comment on data in
which ranks are given.

Conversion of this structure to a long data structure, in which program choice is
represented by a single variable, is a problem best tackled by the reshape command,
documented at [R] reshape. The key to reshape problems is to think in terms of a
data matrix in which data are ordered by rows and columns, indexed as conventionally
in matrix algebra by i and j, respectively. The rows we have are defined by the distinct
values of id, and the columns we have are the variables q1 *. The variable names have
in common a stub q1 , and they differ in the suffixes following the stub, R, SAS, etc.
If the variable names do not have this stub plus suffix form, you will need to apply
rename (see [R] rename) or possibly some other renaming command such as renvars

(Cox and Weesie 2001) before you can apply reshape.

Our reshaping will be mapping the columns of the data matrix (variables q1 *) into
one column, with other variables being rearranged to match. We specify the stub, and
we also need to spell out that the data variable to be created will be string.

. reshape long q1_ , i(id) string

The result is

id _j q1_ sex
1. 1 R 1 male
2. 1 SAS 0 male
3. 1 SPlus 0 male
4. 1 Stata 0 male
5. 1 others 1 male
6. 2 R 1 female
7. 2 SAS 0 female
8. 2 SPlus 1 female
9. 2 Stata 1 female
10. 2 others 0 female
11. 3 R 0 male
12. 3 SAS 0 male
13. 3 SPlus 0 male
14. 3 Stata 1 male
15. 3 others 0 male
16. 4 R 0 female
17. 4 SAS 1 female
18. 4 SPlus 0 female
19. 4 Stata 0 female
20. 4 others 0 female
21. 5 R 0 female
22. 5 SAS 1 female
23. 5 SPlus 0 female
24. 5 Stata 1 female
25. 5 others 0 female

which is almost where we want to be. There is possibly no point in being explicit about
programs not used, so we could

. drop if q1_ == 0

90 Speaking Stata

and follow by dropping that variable altogether and using a more intuitive name:

. drop q1_

. rename _j q1

Here is the result:

id q1 sex
1. 1 R male
2. 1 others male
3. 2 R female
4. 2 SPlus female
5. 2 Stata female
6. 3 Stata male
7. 4 SAS female
8. 5 SAS female
9. 5 Stata female

As seen, we need not worry about variables such as sex, which are constant within
id. They will get carried along automatically.

We promised to look at data in which ranks were given, for example,

id q1_1 q1_2 q1_3 sex
1. 1 R others male
2. 2 R S-Plus Stata female
3. 3 Stata male
4. 4 SAS female
5. 5 Stata SAS female

The data matrix we have here has rows defined by the distinct values of id and
columns that are the variables q1 *. The new data structure will have a single variable
indicating software rank. This can be done directly:

. reshape long q1_ , i(id) j(rank)

The result is

id rank q1_ sex
1. 1 1 R male
2. 1 2 others male
3. 1 3 male
4. 2 1 R female
5. 2 2 S-Plus female
6. 2 3 Stata female
7. 3 1 Stata male
8. 3 2 male
9. 3 3 male
10. 4 1 SAS female
11. 4 2 female
12. 4 3 female
13. 5 1 Stata female
14. 5 2 SAS female
15. 5 3 female

We do not need observations with missing q1, and we can clean up the variable name:

N. J. Cox and U. Kohler 91

. drop if missing(q1_)

. rename q1_ q1

(In Stata 8, you can say mi() as an abbreviation for missing(). Over time, knowing
that could save many keystrokes.) The result is

id rank q1 sex
1. 1 1 R male
2. 1 2 others male
3. 2 1 R female
4. 2 2 S-Plus female
5. 2 3 Stata female
6. 3 1 Stata male
7. 4 1 SAS female
8. 5 1 Stata female
9. 5 2 SAS female

This example was of a string variable. Any value labels attached to a numeric
variable survive the reshape, so it is immaterial whether q1 is string or numeric with
labels. However, in practice it is a good idea to ensure that the numeric variables in
the data matrix all share the same value labels.

3.3 One-to-many mappings: indicator variables

Given a composite variable, with values such as "125" or "Stata R", how can it be
converted to a set of indicator variables? One answer lies in the index() function,
one of Stata’s string functions. We assume here that you are following our advice and
holding the codes as a composite string variable. If not, then in the examples below use
(e.g.) index(string(varname)) rather than index(varname).

index() finds the position of one string within another. It is yet another useful
string function ([R] functions). The string "I" has position 10 in the string "Where

am I?", as the first starts at the 10th position within the second. index() returns 0 if
the first string is nowhere included in the second (e.g., "you" is not within "Where am

I?"). Thus, in general, a positive result from index() means that one string is included
within another (often, precisely where is of no consequence), and a zero result means
that it is not.

We can also feed to index() any expression which evaluates to a string, such as the
name of a string variable, so that a new variable can be generated as follows:

. generate byte q1_1 = index(spkg1, "1") > 0

index(spkg1, "1") will return a positive number if "1" is included in a value of spkg1
and 0 otherwise. index(spkg1, "1") > 0 will in turn evaluate to 1 if true and to 0 if
false, thus yielding an indicator variable. For background, see the previously mentioned
column discussing true and false in Stata (Cox 2002a).

Note in passing the specification of a byte variable type, possible in this case because
we know that the possible values are well within the limits for that data type, as
discussed at [U] 15.2.2 Numeric storage types. Using an economical data type for
an indicator variable can be helpful whenever space is short.

92 Speaking Stata

We will want to generate similar variables for other answers. Doing this variable by
variable can be avoided, for example, by using forvalues:

. forvalues i = 1/6 {

. generate byte q1_‘i’ = index(spkg1, "‘i’") > 0

. }

For more detail on forvalues, see [P] forvalues or Cox (2002b). A further extension
would be something like

. forvalues i = 1/6 {

. capture assert index(spkg1, "‘i’") == 0

. if _rc {

. generate q1_‘i’ = index(spkg1, "‘i’") > 0

. }

. }

What is going on here? Any statement tested by assert will yield a so-called return
code that is zero if the statement is true for all observations examined and a return
code that is nonzero (in fact, 9) if it is false. We test to see if any observations contain
values other than zero before we generate a new variable. The capture ensures that
everything continues smoothly, whatever the outcome. See [R] assert and [P] capture

for further examples.

In particular, in our dataset nobody uses SPSS, and so arguably we could dispense
with an indicator variable for that choice. When we get to

assert index(spkg1, "4") == 0

this assertion will be true of all the data and the return code from assert will be
0. So, the return code—which is accessible in rc—will be nonzero and thus true.
More generally, this approach will avoid creation of variables for any choices that were
possible, but which happen to have been chosen by none of the sample.

This approach will work well with choices coded by one-digit characters, numeric
or otherwise. You need to be more careful, however, when the choices include, say,
"1", "10", or "11", as a search for the character "1" will then find it whenever it
occurs as part of "10" or "11", say. Given space separation, as in "1 10 11", one
possibility is to search for " 1 " within the string expression " " + string variable +

" ". Another possibility is to split the variable into “words” and then work from the
resulting variables. This is explained in more detail in the next subsection. Typically
easier, however, are unambiguous strings, as exemplified by

. foreach p in R S-Plus SAS SPSS Stata others {

. local P : subinstr local p "-" ""

. gen byte q1_‘P’ = index(spkg2, "‘p’") > 0

. }

This code generates the variables q1 R, q1 SPlus and so forth, with values 1 and
0 just like in the example before. Incidentally, in the case of S-Plus, we need to catch
the hyphen, which may not appear as a character in a variable name. Rather than
massaging our example to remove all the wrinkles, we left this quirk as an illustration of

N. J. Cox and U. Kohler 93

the little problems that arise. The syntax for substituting within strings is documented
at [U] 21.3.6 Extended macro functions. Note again that this is all totally literal
and thus dependent on consistent spelling, use of spaces, and use of lowercase and
uppercase. On that last point alone, we can be more broad-minded in this way,

. foreach p in S-Plus SAS SPSS Stata others {

. local P : subinstr local p "-" ""

. gen byte q1_‘P’ = index(lower(spkg2), lower("‘p’")) > 0

. }

but we need a separate approach for R, given that the character "r" is evidently part
of the string "others".

Finally, you may catch choices never made, just as before:

. foreach p in R S-Plus SAS SPSS Stata others {

. local P : subinstr local p "-" "

. capture assert index(lower(spkg2), lower("‘p’")) == 0

. if _rc {

. gen byte q1_‘P’ = index(lower(spkg2), lower("‘p’")) > 0

. }

. }

3.4 One-to-many mappings: splitting variables

A composite string variable with values such as "125" or "43" can be split into individual
str1 variables by a simple loop. You just need to find out the length of the composite,
say from describe. Suppose that you want to split a str7 variable:

. forvalues i = 1/7 {

. gen str1 r‘i’ = substr(response,‘i’,1)

. }

A composite string variable with values such as "Stata R" or "coffee,beer", in
which words or phrases or other elements are separated by some punctuation, say, a
space or a comma, is best handled by another approach. In Stata 8, this can be done
with the split command (see [R] split). In Stata 7, you can use the predecessor of
that command, also split, available from SSC. In Stata 6, you can use the predecessor
of that command, strparse, also available from SSC.

3.5 One-to-many mappings: reshaping to wide

First, let us suppose our data are like

id q1 sex
1. 1 R male
2. 1 others male
3. 2 R female
4. 2 S-Plus female
5. 2 Stata female
6. 3 Stata male
7. 4 SAS female
8. 5 SAS female
9. 5 Stata female

94 Speaking Stata

which is an example of what was earlier described as a long data structure. To resolve
an ambiguity, let us specify that q1 is a string variable. Later, we will comment on the
case of a numeric variable with value labels. Finally, we will comment on data in which
ranks are given.

To convert this structure to a wide data structure in which each distinct answer in
q1 is represented by a single variable, we need to use reshape, as discussed earlier.

Once again, the key to such reshape questions is to think in terms of a data matrix
in which data are ordered by rows and columns, indexed as conventionally in matrix
algebra by i and j, respectively. The rows we desire are defined by the distinct values
of id, and the columns we desire are defined by the distinct values of q1. Those values
will be used as the suffixes of a set of variable names. If q1 is a string variable, we
immediately have a small problem, as indicated earlier: the hyphen within S-Plus is
not acceptable within a variable name. We could fix this by another string function
([R] functions)

. replace q1 = subinstr(q1,"-","",.)

or in more difficult situations we could encode a string variable into a numeric variable.
In the matrix itself, we want indicator variables in which 1 represents yes and 0 no.
All our observations at present are in effect instances of 1, but we need to make that
explicit:

. gen byte one = 1

That creates a variable which is 1 in every observation. In most circumstances, such
a variable would be pointless, but here it is essential. Once again, the variable is created
as a byte variable, to economize on storage. You can dispense with this detail if you
have plenty of memory to spare.

Now, we can reshape:

. reshape wide one, i(id) j(q1) string

We need not worry about variables such as sex, which are constant within id. They
will get carried along automatically. (If, contrary to assumption, they are not constant
within id, then you will get an error message and no reshape, as something that should
be true of your data is in fact false.) Here is the result of the reshape:

id oneR oneSAS oneS_Plus oneStata oneothers sex
1. 1 1 . . . 1 male
2. 2 1 . 1 1 . female
3. 3 . . . 1 . male
4. 4 . 1 . . . female
5. 5 . 1 . 1 . female

We are almost done, but, depending on taste, there may be some cleaning up to do.
First, we have a stub for the new variables that may not be to our liking. One specific
way to fix that is with renpfix (see [R] rename)

. renpfix one q1_

N. J. Cox and U. Kohler 95

Second, we may wish to change all the missings in q1 * to 0. Once again, a specific
command can do this, mvencode (see [R] mvencode):

. mvencode q1_*, mv(0)

We promised to comment on the case in which the argument of j(), here q1, is a
numeric variable with value labels attached. The code is very similar:

. gen byte one = 1

. reshape wide one, i(id) j(q1)

. renpfix one q1_

. mvencode q1_*, mv(0)

However, note that a side-effect of reshape in this case is that the value labels
associated with q1 get dropped. For this reason, using a string variable is attractive
here whenever practicable, bearing in mind that the values of the string variable are
destined to be variable name suffixes: hence, only alphabetical, numeric, and underscore
characters are allowed.

We also promised to look at data in which ranks were given. This is even easier.

id q1 sex rank
1. 1 R male 1
2. 1 others male 2
3. 2 R female 1
4. 2 S-Plus female 2
5. 2 Stata female 3
6. 3 Stata male 1
7. 4 SAS female 1
8. 5 SAS female 2
9. 5 Stata female 1

The data matrix we seek has rows defined by the distinct values of id, and columns
defined by the distinct values of rank. In the matrix itself, we want variables indicating
software. This can be done directly:

. reshape wide q1, i(id) j(rank)

. renpfix q1 q1_

In this problem, any value labels attached to a numeric variable q1 do survive the
reshape, so it is immaterial whether q1 is string or numeric with labels.

3.6 Many-to-many mappings

Many-to-many mappings: using egen

The most common problem here seems to be the creation of indicator variables from
variables indicating successive choices. One pertinent tool in official Stata for the case of
integer codes held in numeric variables is egen, neqany(). The result can be thought of
as number of variables equal to any of the values specified. A sibling is egen, eqany().
The result can be thought of indicating whether values of variables are equal to any of
the values specified.

96 Speaking Stata

For example, given the ranked responses

q1_1 q1_2 q1_3 q1_4 q1_5 q1_6
1. 1 6 0 0 0 0
2. 5 2 1 0 0 0
3. 5 0 0 0 0 0
4. 3 0 0 0 0 0
5. 6 3 0 0 0 0

we can generate the corresponding variables:

. forvalues i = 1/6 {

. egen Q1_‘i’ = neqany(q1_*), val(‘i’)

. }

Note first that we loop over the possible answers (the values of the data), here the
integers 1/6. More complicated sets of answers might be better handled using foreach.
For each possible answer, in turn 1 2 3 4 5 6, we count how many of the variables,
here the q1 *, are equal to any of the values specified, here just a single value in each
case. Note also that we use uppercase Q1 as a prefix for the new variables. Above all,
appreciate that the new variables do not retain all the information in the originals, as
we are ignoring the information on rank order.

Using neqany() rather than eqany() is a small wrinkle: with this example, we
expect that each package will be mentioned at most once, but counting with neqany()

allows a data check: any multiple count will show up as a value of 2 or more, and we can
identify any respondent trying to subvert the questionnaire by repeatedly mentioning
their favorite software. Alternatively, if it seems appropriate, we treat that as a measure
of strength of interest.

Naturally, if you prefer, you can use eqany(). This is guaranteed to produce an
indicator variable with values 1 or 0.

If you choose either of these functions, note that, as mentioned earlier, neither
function ever produces missing values as a result. This may be surprising, but it was
intended as a feature, given what were seen as the most likely uses of the generated
new variables and how they might appear within Stata commands. However, if all
the variables supplied as arguments are missing in an observation, then the result of
eqany() or neqany() will be 0 for that observation. If you want to recode such 0s to
numeric missing, here is one way to do it. We exploit the fact that the observation-wise
(row-wise) maximum will be returned as missing by egen, rmax() if and only if all
values examined in an observation are missing.

. egen rmax = rmax(q1_*)

. forvalues i = 1/6 {

. replace Q1_‘i’ = . if rmax == .

. }

A crucial limitation is that both functions eqany() and neqany() apply only to
integer codes. With arbitrary string codes, say,

N. J. Cox and U. Kohler 97

q1_1 q1_2 q1_3 q1_4 q1_5 q1_6
1. R others
2. Stata S-Plus
3. Stata
4. SAS
5. others SAS

we need to create our own numeric measures from first principles, say,

. foreach p in R S-Plus SAS SPSS Stata others {

. local P : subinstr local p "-" ""

. gen byte q1_‘P’ = 0

. forval i = 1/6 {

. qui replace q1_‘P’ = q1_‘P’ + (index(q1_‘i’,"‘p’") > 0)

. }

. }

Here, we need a double loop, one over possible responses, initializing a variable to
0, and one over existing variables, adding 1 each time we find the package name in-
side. Counting whether index() returns a positive count is here a little more general
than testing for equality, as it guards against the possibility that leading and/or trail-
ing spaces have somehow been added to the variable. Nothing is done here directly
about consistency of case—we have already seen how to tackle that—or about catching
misspellings.

The code example here uses addition to produce an analog of egen, neqany(). One
way of producing an analog of egen, eqany() is to use the or operator |, as 0 | 1 and
1 | 1 both yield 1. See help on logical operators at [U] 16.2.4 Logical operators.

Many-to-many mappings: user-written programs

A program zb qrm by Eric Zbinden (SSC; Stata 5) maps from a set of numeric variables
with codes 1 upwards to a set of indicator variables for those codes. It also displays
information on the occurrence pattern of indicators.

A program mrdum by Lee Sieswerda (SSC; Stata 7) is similar, but on the whole more
general.

These programs differ over what is an appropriate denominator, all observations or
all observations containing at least one response. As flagged previously, various choices
may be sensible depending on the problem being tackled.

4 Tabulation and graphics

Tabulation and graphics are evidently both large and complex subjects. Our aim in
this section is just to give some pointers to commands that may be of use.

Stata’s official tabulation commands do not give much support to multiple response
variables, although we gave an example earlier of the application of tabstat. A device
that sometimes works very well for multiple responses held as long structures is to

98 Speaking Stata

pretend to Stata that the data are panel data, and then to use xttab for tabulation
(see [XT] xttab). For example, individuals may define panels, as expected, and rank
or order of mentions of items may define a time surrogate. Another general strategy is
to use an egen function to calculate something; (possibly) egen, tag() to tag just one
observation in each of several groups; and then list to show the results. list is greatly
enhanced in version 8 and may produce displays which are both informative and well
presented. Using collapse or contract followed by list is more drastic, but may be
just what you need, always noting that both commands are destructive.

Alternatively, user-written commands in this territory include

1. tabcond (Nicholas J. Cox, SSC; Stata 7). Tabulates frequencies satisfying up to 5
specified conditions. Zero frequencies are shown explicitly.

2. tabm (Nicholas J. Cox, SSC as part of tab chi; Stata 7) Tabulates two or more
comparable variables, in a combined two-way table of variables by values. Either
all variables should be numeric, or all variables should be string.

3. tabsplit (Nicholas J. Cox, SSC as part of tab chi; Stata 6) Tabulates frequencies
of occurrence of the parts of a string variable. By default, the parts of a string
are separated by spaces. Optionally, alternative punctuation characters may be
specified.

4. tabw (Sasieni 1995; Stata 3.1). For each variable in a list, tabulates the number of
times it takes on the values 0, 1, . . . , 9; the number of times it is missing; and the
number of times it is equal to some other value. String variables are not tabulated
but are identified at the end of the displayed table.

Graphics is, as said, a large area. We restrict ourselves to pointing to some new
commands in Stata 8, which are helpful in showing frequencies of categorical data,
especially graph bar and graph hbar. The options ascategory and asyvars offer
considerable flexibility for multiple-response data, sometimes best thought of as different
categories of one variable, and sometimes best thought of as several variables yoked
together.

5 Summary

The problem of handling multiple responses is common in various fields, including social
statistics and medical statistics. It appears to be one without a magic key, and there
is no data structure optimal for all purposes. In practice, therefore, the watchword is
flexibility, and for that, Stata users need to know their tools. Among those mentioned
several times in this column—and indeed in some previous columns—are various inbuilt
string and egen functions; using foreach and forvalues to loop over lists; and the use
of the reshape command.

N. J. Cox and U. Kohler 99

6 What’s next?

Passing mention has been made in this column of some changes introduced in Stata 8,
distributed from January 2003. In the next column, we will look more directly at one
of many innovations in the new version, a suite of functions that facilitate the handling
of lists.

7 Acknowledgment

Lee Sieswerda made several very helpful comments on a draft.

8 References

Cox, N. J. 2002a. Speaking Stata: How to move step by: step. Stata Journal 2(1):
86–102.

—. 2002b. Speaking Stata: How to face lists with fortitude. Stata Journal 2(2): 202–222.

—. 2002c. Speaking Stata: On getting functions to do the work. Stata Journal 2(4):
411–427.

Cox, N. J. and J. Weesie. 2001. dm88: Renaming variables, multiply and systematically.
Stata Technical Bulletin 60: 4–6. In Stata Technical Bulletin Reprints, vol. 10, 41–44.
College Station, TX: Stata Press.

Sasieni, P. 1995. sg36: Tabulating the counts of multiple categorical variables. Stata

Technical Bulletin 25: 15–17. In Stata Technical Bulletin Reprints, vol. 5, 93–96.
College Station, TX: Stata Press.

About the Authors

Nicholas Cox is a statistically-minded geographer at the University of Durham. He contributes
talks, postings, FAQs, and programs to the Stata user community. He has also co-authored ten
commands in official Stata. He was an author of several inserts in the Stata Technical Bulletin

and is Executive Editor of The Stata Journal.

Ulrich Kohler is a sociologist at the Social Science Research Center in Berlin who has used
Stata for several years. His interests include social inequality and political sociology. With
Frauke Kreuter, he is author of the German textbook Datenanalyse mit Stata.

